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Abstract 
 

This paper presents a micropump fabricated from low-cost materials with specific goal of 

cost reduction. The micropump does not require any valve flap and comprises of one plastic 

pump polyether-ether-ketone (PEEK) body, one metal diaphragm, and three piezoelectric 

ceramics to form piezoelectrically actuated diaphragm valves. The valve actuation simplifies 

micropump structural designs and assembly processes to make the pump attractive for low 

cost bio-medical drug delivery applications. A detailed optimization design of geometric 

parameters of the piezoelectrically actuated diaphragm is undertaken by use of 3D finite 

element method (FEM) to maximize piezoelectric actuation capability and ensure actuation 

reliability. An optimized geometric dimensional design: the ratio of thicknesses between the 

piezoelectric ceramics and the metal diaphragm, and the lateral dimension of the piezoelectric 

ceramic, is obtained through simulations. Based on the optimized design, a good agreement 

has been reached between simulated and measured strokes of the micropumps. The tested 

results show that the micropump has a high pump flow rate for air, up to 39 ml/min, and for 

water up to 1.8ml/min, and is capable of ensuring diaphragm’s maximum stress and strain is 

within material strength for reliable work.   
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Introduction 

Micro total analysis system or µTAS are becoming increasing important for large variety 

applications, such as pharmaceutical and bio-medical drug delivery systems, since the concept 

was introduced in 1990 [1] and [2]. The earliest development of micropump was in 1980 with 

a peristaltic micropump using piezoelectric biomorphies [3]. The earliest silicon micropump, 

that uses sputtering of the piezoelectric films directly onto the silicon pump diaphragm, was 

presented in 1988 [4]. Since then, many other integrated silicon based micropumps, mostly 

using piezoelectric actuation, were presented [5, 6]. Silicon MEMS micropumps have found 

several commercial applications for insulin delivery, in gas control as fluidic valves and in 

inject technology [7-8]. Reyes et al. [9] provides a comprehensive overview of the important 

developments in technology, theoretical understanding and applications in the field. During 

the developments, a continuous challenge has been the transport and pumping of small 

quantities of biological fluids on the order of a few micro/mill-litres per minutes.  

 However, material cost of silicon and elaborate micro-manufacturing processes burden 

the use of such silicon micropumps because the micropumps require expensive silicon 

micromachining facilities and processes. The use of plastics has already been shown to have 

great potential to reduce the fabrication cost. This is due to the fact that plastics are 

disposable, low cost, and offer a competitive manufacturing process in mass production [10]-

[12]. To date, several of micropumps have been developed. Examples include ThinXXs [13], 

Bartels Mikrotechnik [14], and Star Micronics Companies [15] use Cyclo-Olefin-Copolymers 

or Polyimide as the pump body material. Nevertheless, the pumps have passive micro check 

valves and require advanced micro-manufacturing processes and specialized assembly 

techniques. Richter et al. [16] have recently developed a plastic micropump which comprises 

five parts: one plastic pump body, one metal diaphragm, and three piezoelectric ceramics. 

This micropump overcomes the passive micro check valve drawback by having a simple 
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valve actuation design: piezoelectrically actuated diaphragm valves without requiring any 

valve flap. The use of plastic material in the simplified structural design, fabrication and 

assembly processes, and makes the pump attractive for low cost applications. While the 

micropump has been presented before, its optimization design has not been done yet. 

In this paper, therefore, we focus on optimization of the piezoelectrically actuated 

diaphragm for actuation capability and reliability of the micropump. This is mainly due to the 

fact that the higher the applied voltage, the higher the deflection of diaphragm and thus the 

higher the pump flow rate. But a higher applied voltage will lead to a higher stress and a 

higher strain in the piezoelectric ceramics and possibly makes the pump unreliable to operate 

if the stress and strain is beyond material strength due to brittle nature of piezoelectric 

ceramics. In order to make sure of the pump with high pumping rate and high reliability, there 

is a need to predict the pump actuation capability and reliability and optimize geometric 

dimensional design of the piezoelectric diaphragm. The results presented consist of work 

previously reported in a proceeding paper [17] with comparisons of computational and 

experimental results.   

 

2 Description of the micro-pump 

A multi-material micropump studied here is shown in Fig.1 in an exploded view. It is 

comprised of solely five functional parts: one plastic body, one metal diaphragm, and three 

piezoelectric ceramics. Three piezoelectric ceramics are glued onto the metal diaphragm to 

form three actuation units to control diaphragm valve opening and closing for generation of 

pumping motion. The metal diaphragm is bonded to the plastic body to form two valve seats 

on the left and right, and one pump chamber sit in the centre.  

A photo of plastic micropump body is shown in Fig. 2. An interconnection channel with a slot 

shape between valve seats and micro-pump chamber are designed to allow the flow through 

fluidic chambers and so as to reduce the flow resistance. A capillary stop channel is also 



 4

designed around the plastic body to prevent glue to flow into the chambers after bonding the 

metal diaphragm to the plastic body. Because there are burrs at the edges after dicing of the 

metal diaphragm, a burr channel was also designed to absorb the burr of the metal diaphragm 

after assembly. The electrical connections to the top and bottom of piezoelectric ceramics 

were done by wire bonding to a standard connector. 

The operational principle of the pump is described as follows. When a proper voltage is 

applied to one of the piezoelectric ceramics, there will be a downward deflection in the metal 

diaphragm. For example, the downward deflection, shown in Fig. 3, will close the left orifice 

in the plastic body and the valve will be closed if the piezoelectric ceramics is able to excite 

an enough deflection in the metal diaphragm. When the applied voltage is zero, there will be 

no downward deflection in the metal diaphragm and the valve will be opened. Furthermore, 

when there are three alternative electrical voltages with given phase shifts, shown in Fig. 3, 

independently applied to the piezoelectric ceramics, the valves will be opened and closed with 

a proper sequence and then pumping mode will be generated. As the phase shifts among three 

electrical signals are adjustable, the fluid can be pumped from the left seat to the right seat, 

and vice versa. So the pump is capable of pumping bidirectional. It is worthwhile to mention 

that a negative voltage is also applied to the designed micro-pumps because the negative 

voltage has an advantage of exciting an upward deflection to reduce the fluidic resistance of 

the valves and increase the pump volume. 

In order for the pump to handle and dose chemical gases and liquids, Polyether-ether-

ketone (PEEK) of plastics was chosen as material for the pump body because PEEK has the 

property of very good stability and resistance to a broad range of chemical gases and liquids. 

It should be mentioned that PEEK is an expensive material but only a small amount of PEEK 

(a few grams) is needed for the micropump and so a low cost micropump can still be 

achieved. It should be noted that for a true low cost it is advisable to use a different material 
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rather than PEEK and a further investigation of the pump body material is needed. However, 

this issue is outside the scope of the current paper. Stainless steel (no.1.4310, from Ergeste) 

was chosen as material for the metal diaphragm. Adhesives for bonding between the metal 

diaphragm and the plastic body have been tested and special methanol stable epoxy glue is 

utilised. Since the glue is stable to methanol solvents, the pump is capable for fuel cell 

applications. In addition, to improve the sealing of the interface and prevent the leakage of the 

pump, a layer of polydimethylsiloxane (PDMS) elastomer (PDMS Sylgard, Dow Chemicals) 

was deposited to the metal diaphragm by spin coating with a two step process: the first step 

with 1500r/min and the second step with 6000r/min. The ratio between binder and hardener 

was chosen to be 9:1. The layer was hardened for 5 min on a hot plate. These layers had a 

thickness of 6µm. 

 

3 Optimization of the piezoelectric diaphragm 

As general rule the higher the applied voltage, the higher the deflection of diaphragm and 

the higher the pump flow rate. Unfortunately, a higher deflection leads to a higher stress and a 

higher strain in the piezoelectric ceramics and further leads to the piezoelectric actuator 

reliability deficiency if the stress and strain is beyond material strength due to brittle nature of 

piezoelectric ceramics. In order to ensure the pump work reliably, this section will study the 

micropump actuation capability and reliability and then based on the study, obtain an 

optimized dimensional design for the piezoelectric diaphragm.  

 

3.1 FEA Method 

Commercially available finite element analysis (FEA) software (ANSYS Inc. Canonsburg, 

PA), was utilized to calculate actuation capability and reliability of piezoelectrically actuated 

diaphragm. Here the actuation capability means how much deflection piezoelectric ceramics 

can excite in the diaphragm and the reliability means that the maximum stress and strain 
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generated in the metal diaphragm and the piezoelectric ceramics should be below material 

strength limits. So the deflection of the diaphragm, below called stroke (S), and the maximum 

stress in metal diaphragm )( max,mσ  and the maximum stress and strain in piezoelectric 

ceramics )/ (  max, max, pp εσ  were chosen as the criteria to measure the actuation capability and 

reliability of the micropump as described below. The reason for this is that the stroke and 

stress are the key performance parameters for optimized structural design with a higher pump 

flow rate and for ensuring the maximum stress and strain within material strength. 

The geometric parameters of modelled piezoelectric diaphragm are shown in Fig. 5. The 

metal diaphragm in-plane dimensions were designed to be fixed at 44mm ×16.95mm with the 

thickness of 0.05mm, and the valve chamber sizes were fixed at 14mm (l) ×14mm (l) with 

radius fillet of 4.8mm at the corners, where l represents the lateral dimension of the square 

valve seat, in-plane dimensions of the valve chamber sizes and pump chamber are designed  

based on the designed flow rate, and the depth are designed to adapt to strokes actuated by 

piezoelectric ceramics. Piezoelectric ceramic structural parameters, pp ll ×  and tt p , were 

chosen to be variable, where pl and pt represent the length and thickness of square 

piezoelectric ceramics, respectively, t is the thickness of metal diaphragm and so tt p  is the 

ratio of the thicknesses. It should be noticed that ll p <  due to structural limitation. As the glue 

is very thin, the thickness of glue is ignored in all the simulations.  

The developed FEM model of piezoelectric diaphragm is shown in Fig. 6 with meshes. 

The model uses the 8-node, hexahedral, coupled-field element SOLID5 for the piezoelectric 

materials and the 8-node, linear, structural element SOLID45 for the non-piezoelectric 

materials. The material parameters and geometrical dimensions used in the model are listed in 

Table 1 except where specifically mentioned in the text. Static analyses were performed to 

determine the stroke, the maximum stress in the metal diaphragm and the maximum 
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stress/strain in the piezoelectric ceramics.  

 

3.2 FEA results and analyses 

A. Distribution of simulated deflection 

Fig. 7 shows the distribution of simulated deflection along the metal diaphragm length 

direction when a voltage of 100 volts is applied to the left, centre, and right piezoelectric 

ceramics, respectively. It can be seen that a large stroke, about 62µm, is achieved in all three 

chambers for the designed micro-pump with the dimensions listed in Table 1. As a large 

stroke leads to a high pumping rate, the micropump has a potential of pumping high volume 

of fluids and gases. 

B S and mmax,σ  as functions of aV  

Fig. 8 shows ,S  which occurs at the centre of diaphragm, and mmax,σ , which occurs at the  

four corners of piezoelectric ceramics in the metal diaphragm, as functions of .aV  From Fig. 

8, it can be seen that the higher ,aV  the higher S and the higher .max,mσ  It seems that there is a  

linear relationship between S and ,aV  and between S  and .max,mσ   However, it should be 

borne in mind that there is a non-linearity in reality when the applied voltage is larger than 

100 volts. The reason for leading to this conclusion is that a linear piezoelectric theory is used 

in the simulation.  

C. S and mmax,σ  as functions of pl  

Fig. 9 shows S  and mmax,σ  as a function of the piezoelectric ceramics length .pl  From Fig. 

9, it can be observed that when pl  increases but mm6.9<pl , S  and mmax,σ  increase but when 

mm6.9>pl , S starts to decrease  and mmax,σ  starts to increase sharply. So there exists an 

optimized piezoelectric ceramics length pl  for the optimized design, which is 9.6mm and 

means that the pump designed at this length has a potential of achieving a higher stroke and 

not suffering higher maximum stress when the chamber size is designed at 14mm×14mm with 
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radius fillet of 4.8mm.  

D. S and mmax,σ  as functions of tt p /  

Fig. 10 shows S  and mmax,σ  as a function of tt p / , where t is fixed at 0.05mm. For a 

comparative study reason, the electric field strength applied to the piezoelectric ceramics was 

fixed at 1000 volts/mm for all the simulations and this leads to the relationship that the 

applied voltage is proportional to .tt p  From Fig. 10, it can be seen that when tt p =1.4, that 

is, 70=pt µm, S reaches a maximum value, about 67 µm; when tt p >1.4, S starts to decrease 

while mmax,σ continues rising until 4.2=tt p , that is, 120=pt µm, and then mmax,σ  almost 

keeps a level, about 166MPa when .4.2=tt p  Theoretically, an optimized tp/t for designed 

micro-pump should be taken to be 1.4, that is, m,70µ=pt  as this value could make the pump 

have the largest stroke and suffer the highest stress. But due to difficulties in fabrication of 

such thin bulk piezoelectric ceramics and the availability of minimum thickness of 

piezoelectric ceramics is about 100µm for the time being, tp is designed at 100µm for the 

developed and tested pump. It is worthwhile to mention that, for 0.6 < tt p <1.4, that is, 30 

µm < 70<pt µm, piezoelectric ceramics could be available in the thick film form although 

currently the available piezoelectric coefficients of the thick film are much less than those in 

bulk form because thick film material is a relative new and still in the development stage. If 

similar piezoelectric coefficients of thick film as those of bulk material are achieved, it is 

recommended to utilize thick film piezoelectric ceramics to design the micropump because 

they could excite a higher stroke. Furthermore, for 2.0<tt p , that is, 10<pt µm, it can be 

seen that the actuated stroke is very small, about 17.5µm at tt p =0.2, not enough to form 

pumping motion for the designed pump. So it is not recommended to use thin film 

piezoelectric ceramic to design the micro-pump due to the small stroke. 
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E. pmax,σ  and pmax,ε  for piezoelectric ceramics 

Figs. 11, 12 and 13 show pmax,σ and pmax,ε  in the piezoelectric ceramics as functions of aV , 

pl and ,tt p  respectively. From these figures, very similar conclusions can be drawn as ones 

from Figs. 8, 9 and 10. Because of brittle nature of piezoelectric ceramics, piezoelectric 

material can not be subjected to a higher tensile stress and a higher tensile strain than material 

strength limits. So for reliability analyses of piezoelectric ceramics, the tensile strain no more 

than 0.1%, that is, %,1.0max, <pε  was chosen as a criterion during reliability study. Because 

tensile strain in piezoelectric ceramics is larger than 0.1%, it will possibly cause the 

piezoelectric ceramics to crack So from Figs. 11, 12, 13, it can be concluded that the 

optimized applied voltage is about 100 volts and optimized structural parameters are 

mmlp 6.9=  and 2=tt p , that is, ,100 mtp µ= and the designed pump using such parameters 

can have maximum stroke and work reliably. 

 

4 Micropump testing 

Taking the optimized geometry parameters obtained in the simulation, three piezoelectric 

ceramics were glued onto the metal diaphragm. To verify the capabilities of piezoelectric 

actuators, the strokes of the left, centre, and right diaphragms were measured at voltages 

between 20 volts and 100 volts by use of the laser profilometry laser scan system (Microfocus 

from UBM, USA). Similar measurement results were obtained and Fig. 14 shows the strokes 

actuated by the central piezoelectric ceramics at the diaphragm. A very large stroke, about 

55µm, was achieved at the applied voltage of 100 volts. It is also observed that the higher the 

applied voltage, the higher the stroke when 100<V volts. The trend well agrees with the 

simulation results in Section 3, shown in Fig. 8. It should be mentioned that there is some 

difference between the simulated and tested results in the stroke through comparisons, shown 

in Fig. 8. The possible reasons are that (1) actual piezoelectric ceramic property parameters 

vary from the catalogue parameters and (2) the tolerances of the piezoelectric ceramic 

geometric dimensions possibly causes the difference. 

Micropumps with and without PDMS coating were fabricated and tested. Figs. 15 and 16 
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show forward and backward flow rates of the micropump with PDMS coating as function of 

actuation frequency, for air and water. From these figures, it can be seen that the micropump 

enables to pump water and air and bidirectional pumping (forward and backward pumping) 

and the flow rates is a function of actuation frequency. The maximum flow rates of 39 ml/min 

were achieved for air at the actuation frequency of about 225Hz and applied voltage of 100 

volts, and 1.8ml/min for water at about 17 Hz. As mentioned in Section 2, PDMS coating is 

used to improve the sealing and prevent the leakage of the micro pump at the interface. Tested 

results have shown a good improvement of pumping performance in flow rate as for the 

micropump without PDMS coating. 

 

5 Conclusions 

An optimisation design of the micropump, using multi-materials for low cost applications, 

has been presented with actuation and fluidic test results in this paper. As the micropump 

comprises solely five functional parts: one plastic pump body, one metal diaphragm and three 

piezoelectric ceramics, the micropump has a simple structure, easy to assemble and suitable 

for low cost applications. Furthermore, the pump body is made of Poly-Ether-Ether-Ketone 

(PEEK), which is chemical inertia for a broad range of liquid and gases, so it is able to work 

with aggressive gases and liquids.  

A detailed parameter design analysis and optimization of piezoelectric diaphragm has 

been performed based on 3D finite element method (FEM). An optimized geometric 

dimensional design: the ratio of thicknesses between the piezoelectric ceramics and the metal 

diaphragm, and the lateral dimension of the piezoelectric ceramics length, has been obtained 

and based on the optimized parameters, a micropump was fabricated and tested. The tested 

results show that such optimized dimensions have a high pump flow rate for air up to 

39ml/min and for water up to 1.8ml/min currently.   
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It is believed that the micro-pump is very promising to go into the commercial market to 

handle aggressive liquids and gases at low pressures in bio-medical and drug delivery 

systems. But it is worthwhile to admit that there is still a lot further work to be done before 

this can happen. For example, there are needs to study effects of the backing pressure on the 

pumping rate and further to reduce the plastic body material (PEEK) cost and silicone 

elastomer materials (PDMS) cost.  Our targeted pump costs at high volume production (> 

106/year) is a needed control within the order of magnitude of 1€/pump (plastic part: 0.1€, 

piezoelectric ceramics: 3×0.1€, metal diaphragm: 0.02€, assembly and test: 0.4€).  

 

Acknowledgement 

The authors gratefully acknowledge the support from the network excellence “Multi-

Material-Micro-Manufacture” (4M). 

 



 12

References 

1. A. Manz, N. Graber, and H. M. Widermer, Miniaturized total chemical analysis systems: a 

novel concept of chemical sensing, Sensors and Actuators B, Chemicals, 1, 244—248, 

1990.  

2. A. Manz et al., Micromachining of monocrystalline silicon and glass for chemical analysis 

systems-a look into next century’s technology or just a fashionable craze? Trends, Anal. 

Chem. 10, 144-149, 1991. 

3. J. M. Smits, Piezoelectric micropump with three values working peristaltically, Sensors 

and Actuators A 21 to 23, 203-206, 1990. 

4. H. T. G. van Lintel, F.C. M. Van de Pol, S. Bouwstra, A piezoelectric micropump based 

on micromachining of silicon, Sensors and Actuators A 15, 153-167, 1988. 

5. N. T. Nguten et al., MEMS-micropumps: a review, Journal of Fluids Engineering, 124, 

384-392, 2002. 

6. F. E.H. Tray, Microfluidics and BioMEMS Applications, Boston, MA: Kluwer Academic, 

2002, Chapter 1.   

7. C. Yamahata et al., Plastic micropump with ferrofluidic actuation, Journal of 

microelectromechanical systems, 14(1), 96-102, 2005. 

8. R. Linnemann, M. Richter, P. Woias, A self priming and bubble-tolerant silicon micro-

pump for space research, Proceedings of 2nd Round Table on Micro/Nano Technologies 

for Space (ESTEC), Noordwijk, The Netherlands, 15-17 October 1997, 83-90. 

9. D. R. Reyes, D. Iossifidis, P. A. Auroux, and A, Man, Micro total analysis systems, 1, 

Introduction, theory, and technology, Anal. Chemicals, 74, 2623-2636, 2002. 

10. S. Bohm, W. Olthuis, P. Bergveld, A plastic micropump constructed with conventional 

techniques and materials, Sensors and Actuators, 77, 223-228, 1999. 

11. A. Olsson, et al., Valve-less diffuser micropumps fabricated using thermoplastic 

replication, Sensors and Actuators, 64, 63-68, 1998. 



 13

12. T. Merkel, M. Graeber, and L. Pagel, A new technology for fluidic  microsystems based 

on PCB technology, Sensors and Actuators, 77, 98-105, 1999 

13. Available from http://www.thinxxs.de, 2006. 

14. Available from http://www.bartels-mikrotechnik.de, 2006. 

15. Available from http://www.star-micronics.co.jp, 2006. 

16. M. Richter et al., Development of a multi-material micropump, Journal of Mechanical 

Engineering Science, Part C, 220, 1619-1624, 2006.  

17. M. Zhu, P. Kirby, M. Richter, Y. Congar, A. Diehl, R. Voelkl, Modelling and simulation 

of piezoelectric actuation and reliability of micro-pumps, second international conference 

on multi-material micro manufacture, 20-22 September 2006, Grenoble, France, 263- 266, 

2006. 



 14

Authors’ short biography 

Meiling Zhu received her Ph. D. at the Department of Mechanical Engineering, Southeast 

University, Nanjing, China in 1995. She is working in the Microsystems and Nanotechnology 

Centre at the School of Applied Science of Cranfield University. Her interest is in the field of 

piezoelectric sensing and actuation, and energy harvesting, including piezoelectric motors, 

accelerometers, acoustic resonators and filters, micropumps, and piezoelectric energy 

harvesters. Her expertise is mainly in design, analysis, modelling and simulation, prototyping 

and applications of macro/micro sized piezoelectric devices. 

 

Paul B. Kirby was born in Catford, London within the sound of Bow Bells. His studies 

concluded with the award of a PhD in Physics from the Cavendish Laboratory, University of 

Cambridge. Presently, he is a Reader in Microsystems at Cranfield University where his 

research has continued his career theme of developing processes that allow the introduction of 

new materials into electronic devices and sensors and actuators. Prior to his appointment at 

Cranfield he undertook fundamental material studies of amorphous silicon and III-V quantum 

well structures at industrial laboratories: IBM’s Thomas J Watson Research Centre, Harvard 

University, and GEC’s Hirst and Caswell Research Centres. His present interests include 

sputtering of ferroelectric materials, the development of passive component devices based on 

high dielectric constant materials, the fabrication of Piezoelectric MEMS devices including 

piezoelectric switches and frequency agile microwave devices and inertial sensors. A new 

recent interest is the development of an automated Patch Clamping microsystem. Presently he 

is undertaking a Walton Fellowship Award at the Tyndall Institute in Ireland.   

 

Martin Wacklerle Martin Wackerle received his diploma degree in physics in 1999. He is 

working at the Fraunhofer Institute in Munich since 1999 as a member of the department 



 15

micromechanics, actuators and fluidics.  He is mainly involved in the development of silicon 

micro pumps and free jet dispensers. 

 

Markus Herz received a diploma in mechanical engineering from the Technical University 

Munich, Germany and the Universidad Politécnica de Madrid, Spain in 2006. He is working 

as a research fellow at the Fraunhofer Institute for Reliability and Microintegration in 

Munich. His current fields of interest include dosing aspects of micropumps, high 

performance micropumps and micromechanic manufacturing.  

 

Martin Richter Martin Richter received his diploma degree in physics in 1993. He finished 

his PhD in the field of microfludic systems in 1998. He is working at the Fraunhofer Institute 

in Munich, since 2001 as head of department micromechanics, actuators and fluidics. His 

scientific interest is in the field of microfluidic actuators like piezoelectrically and 

electrostatically driven micropumps made of silicon, metals or plastics, active and passive NC 

and NO valves, mixers, reactors, jet-spotters, flow sensors and the combination of these 

components to systems. 



 16

Table 1 Material parameters and geometrical dimensions  

Metal diaphragm dimensions  
Length l (mm) 44 
width w (mm) 16.95 
thickness t (mm) 0.05 
  
Piezoelectric plate dimensions   
Length lp (mm) 9.6 
Width wp (mm) 9.6 
Thickness tp (mm) 0.1 
 
Metal diaphragm (Argeste) 
Young’s modulus Es (GPa) 200 
Poisson ratio µs 0.3 
Density (kg/m3) 7800 
 
Chamber 
    Area l× l (mm×mm)                  14×14 
     Fillet radius (mm)                        4.8 
 
Piezoelectric material from Block Technique 
PPK11 
Compliance constant 1210− (1/Pa) 

Es11      
Es33  

 
 
15.9 
19.0 

Density ρp(kg/m3) 8100 
  
Piezoelectric constant (10-12 C/N) 
d33 
d31 

 
680 
350 

  
Dielectric constant  
ε11/ε0  
ε33/ε0  

 
5000 
5000 

  
Applied voltage (volts) 100 
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Fig. 2 Photo of the plastic pump body 
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Fig. 3 Downward deflection actuated by the left piezoelectric ceramics 
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Fig. 4 An example of actuation signals for pumping motion 
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Fig. 5 Geometric parameters of the modelled diaphragm  
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Fig. 6 Developed FEM model of the piezoelectric diaphragm with meshes 
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Fig. 7 Simulated deflections along the diaphragm when a voltage of 100 volts is applied to the 
left, middle and right piezoelectric ceramics, respectively. 
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Fig. 8 Strokes and maximum stresses in the metal diaphragm as functions of applied voltages 
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Fig. 9 Strokes and the maximum stresses in the metal diaphragm as functions of piezoelectric 
length pl  
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Fig. 10 Strokes and the maximum stresses in the metal diaphragm as functions of the ratio of 
,/ tt p  where mm05.0=t and tp=0 ~0.20mm 
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Fig. 11 Maximum strains and stresses in the piezoelectric ceramic as functions of applied 
voltage 
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Fig. 12 Maximum strains and stresses in the piezoelectric ceramics as functions of pl  
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Fig. 13 Maximum strains and stresses in the piezoelectric ceramics as functions of ratio of 

,/ tt p  where mm05.0=t and tp=0 ~0.20mm 
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Fig. 14 Actuated strokes of the diaphragm at different applied voltage  
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Figs. 15 Forward and backward flow rates of the micropump with PDMS coating as function 
of actuation frequency (pumping air,  volt100=aV ) 
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 Fig. 16 Forward and backward flow rates of the micropump with PDMS coating for water as 
functions of actuation frequency (  volt100=aV ) 


