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Abstract 

In this globalised world where the efficient transportation of people and goods 

greatly contributes to the development of a given region or country, the aviation 

industry has found the ideal conditions for its development, thereby becoming in one of 

the fastest growing economic sectors during the last decades. The continuing growth in 

air traffic and the increasing public awareness about the anthropogenic contribution to 

global warming have meant that environmental issues associated with aircraft 

operations are currently one of the most critical aspects of commercial aviation. Several 

alternatives for reducing the environmental impact of aircraft operations have been 

proposed over the years, and they broadly comprise reductions in the number of aircraft 

operations, changes in the type of aircraft, and changes in the aircraft operational rules 

and procedures. However, since the passenger traffic is expected to increase over the 

next years, only the last two options seem to be the most feasible solutions to alleviate 

the problem. Accordingly, the general aim of this research work is to develop a 

methodology to evaluate and quantify aircraft/engines design trade-offs originated as a 

consequence of addressing conflicting objectives such as low environmental impact and 

low operating costs. More specifically, it is an objective of this work to evaluate and 

optimise both aircraft flight trajectories and aircraft engine cycles taking into account 

multidisciplinary aspects such as performance, gaseous emissions, and economics. 

In order to accomplish the objectives proposed in this project, a methodology for 

optimising aircraft trajectories has been initially devised. A suitable optimiser with a 

library of optimisation algorithms, Polyphemus, has been then developed and/or 

adapted. Computational models simulating different disciplines such as aircraft 

performance, engine performance, and pollutants formation, have been selected or 

developed as necessary. Finally, several evaluation and optimisation processes aiming 

to determine optimum and ‘greener’ aircraft trajectories and engine cycles have been 

carried out and their main results summarised. In particular, an advanced, innovative 

gaseous emissions prediction model that allows the reliable calculation of emissions 
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trends from current and potential future aircraft gas turbine combustors has been 

developed. When applied to a conventional combustor, the results showed that in 

general the emission trends observed in practice were sufficiently well reproduced, and 

in a computationally efficient manner for its subsequent incorporation in optimisation 

processes. For performing the processes of optimisation of aircraft trajectories and 

engine cycles, an optimiser (Polyphemus) has also been developed and/or adapted in 

this work. Generally the results obtained using Polyphemus and other commercially 

available optimisation algorithms presented a satisfactory level of agreement (average 

discrepancies of about 2%). It is then concluded that the development of Polyphemus is 

proceeding in the correct direction and should continue in order to improve its 

capabilities for identifying and efficiently computing optimum and ‘greener’ aircraft 

trajectories and engine cycles, which help to minimise the environmental impact of 

commercial aircraft operations. 

The main contributions of this work to knowledge broadly comprise the 

following: (i) development of an environmental-based methodology for carrying out 

both aircraft trajectory optimisation processes, and engine cycle optimisation-type ones; 

(ii) development of both an advanced, innovative gas turbine emissions prediction 

model, and an optimiser (Polyphemus) suitable to be integrated into multi-disciplinary 

optimisation frameworks; and (iii) determination and assessment of optimum and 

‘greener’ aircraft trajectories and aircraft engine cycles using a multi-disciplinary 

optimisation tool, which included the computational tools developed in this work. Based 

on the results obtained from the different evaluation and optimisation processes carried 

out in this research project, it is concluded that there is indeed a feasible route to reduce 

the environmental impact of commercial aviation through the introduction of changes in 

the aircraft operational rules and procedures and/or in the aircraft/engine configurations. 

The magnitude of these reductions needs to be determined yet through careful 

consideration of more realistic aircraft trajectories and the use of higher fidelity 

computational models. For this purpose, the computations will eventually need to be 

extended to the entire fleet of aircraft, and they will also need to include different 

operational scenarios involving partial replacements of old aircraft with new 

environmentally friendly ones. 
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1  
General Introduction 

This first chapter provides a general introduction to the subject addressed in this 

research project in an attempt to provide an idea of the general context in which the 

project was developed. It also deals with the general and specific objectives of the 

research project, as well as it summarises the main contributions of the same. The 

specific context and scope of the research, and the methodology followed during the 

research in order to achieve the objectives initially proposed are also included in this 

chapter. In addition, an outline of this thesis is also provided. 

1.1  
Introduction 

In a globalised world, in which the efficient transportation of people and goods 

from one place to another greatly contributes to the development of a given region or 

country (through the creation and/or development of new business and leisure 

opportunities, the facilitation of cultural exchanges, and the development of 

relationships among people and institutions, among others), the aviation industry has 

found the ideal conditions for its development. These conditions have allowed the 

aviation industry becomes one of the fastest growing economic sectors during the last 

decades. The growth in the aviation industry is reflected in the increase in air transport, 

which has risen at an average annual rate of around 5% over the past 20 years [1]. 

Market projections associated with this industry indicate this growth will continue over 

the following years, as illustrated in Figure 1-1, which shows the projected increase 

(average annual rate of 4.9%) in the Revenue Passenger-Kilometres (RPKs) – the 

number of fare-paying passengers multiplied by the number of kilometres they fly (i.e., 

airline passenger traffic) – for the following 20 years. 

Environmental issues associated with aircraft operations are currently one of the 

most critical aspects of commercial aviation [2]. This is a result of both the continuing 
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growth in air traffic, and the increasing public awareness about the anthropogenic 

contribution to global warming. Clarke [3] indicates that if reductions in the 

environmental impact of aircraft operations are to be achieved then either (i) the number 

of operations must be reduced, (ii) the type of aircraft must be changed, or (iii) the 

aircraft operational rules and procedures must be changed. However, due to the fact that 

passenger traffic is expected to increase over the next years (Figure 1-1), it seems 

unlikely that the number of operations will be reduced. Only the last two options, or a 

combination of both, seem to be then the most feasible solutions to the problem. 

 
Figure 1-1. Airline passenger traffic projections [1] 

This last aspect is emphasised by Clarke [3] considering one of the major 

contributors to environmental pollution, noise. He highlights that the reduction in source 

noise produced per unit of thrust that has been achieved each year during the last 50 

years has diminished over time and appears to be asymptotically approaching a constant 

noise level per unit thrust. If it were the case, he concludes, without revolutionary 

changes in the way that engines are designed, the only alternatives available to the 

aviation community are either to design aircraft that require lower thrust to move the 

same payload (addressed through better aerodynamics or lighter aircraft structures), or 

to determine ways to operate aircraft at lower thrust levels (addressed through changes 

in flight procedures). 
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Regarding the change of the type of aircraft (Clarke’s second option [3]), in 

reference [2] it is indicated that the main focus of commercial aircraft design has been 

on producing airplanes that meet performance goals at minimum operating costs. 

Environmental performance has been mostly considered, consequently, at the post 

design analysis phase, during which adjustments have been made to satisfy specific 

environmental constraints (sequential design approach). Currently, however, due to the 

gradual tightening of environmental requirements, the cost and complexity of meeting 

this environmental performance in the post design phase has increased significantly. It 

has been concluded in reference [2], therefore, that there is a need for integrating 

environmental considerations at an early stage of the aircraft design process, and for 

more systematic investigations and quantifications of the trade-offs involved in meeting 

the associated specific environmental constraints. 

Similarly, Green [4] points out that until now the main focus of commercial 

aircraft design has been on producing aircraft to fly further, faster, higher, and at less 

cost. However, in the present century, he adds, it is expected that the emphasis be 

shifted towards increasing safety and, above all, reducing the impact on the 

environment. The introduction of new configurations of aircraft (mostly related to 

unconventional and innovative airframe configurations) constitutes an alternative for 

medium and long term, because, as Brooker [5] highlights, the timescale from new 

aircraft concepts to be brought to operational readiness is a lengthy one (often several 

decades). Major changes in aircraft design can only be expected then in 20 to 50 years. 

One of the novel aircraft concepts extensively studied during the last years is the 

Blended Wing Body (BWB). This aircraft configuration has received great attention 

mainly because of its airframe aerodynamic efficiency. 

Revising the current aircraft operational rules and procedures (Clarke’s third 

option [3]), with respect to necessary changes or the implementation of new ones, 

provides an option for reducing the impact of aircraft operations on the environment 

that may be implemented more readily than changes in aircraft design or component 

technology. In particular, an analysis of advanced aircraft trajectory technologies to 

identify ‘greener’ trajectories (aircraft trajectories with minimum environmental impact) 

has the potential to contribute to a significant reduction in both fuel consumption and 

the pollutants emitted (gaseous emissions and noise). 
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From what was mentioned above (and in accordance with what is highlighted in 

reference [2]), it is concluded that there is indeed a need for integrating environmental 

considerations at an early stage of the aircraft/engine design process, and for more 

systematic investigations and quantifications of the trade-offs involved in meeting 

specific noise and gaseous emissions constraints. It implies, in turn, the use of 

multidisciplinary design optimisation (MDO) processes in order to evaluate and 

quantify aircraft/engines design trade-offs originated as a consequence of addressing 

conflicting objectives such as low environmental impact and low operating costs.  

It is in this general context that the present work has been mainly developed, i.e., 

considering environmental performance, gaseous emissions in particular, as one of the 

key aspects in the assessment of different alternatives (including the engine preliminary 

design) for reducing the impact of aircraft operations on the environment. Thus, the 

present research project focuses mainly on the development (and/or adaptation) of not 

only robust computational models capable of rapidly quantifying the level of pollutants 

emitted by aircraft along their whole mission profile (e.g. gaseous emissions prediction 

model); but also aircraft trajectory computation algorithms capable of performing 

efficient trajectory optimisation processes involving multi-criteria optimisation (fuel, 

emissions, time, etc.), thereby identifying aircraft ‘greener’ mission profiles. 

The main contributions of this work to knowledge broadly comprise the 

following: (i) development of an environmental-based methodology for carrying out 

both aircraft trajectory optimisation processes, and engine cycle optimisation-type ones; 

(ii) development of both an advanced, innovative gas turbine emissions prediction 

model, and an optimiser suitable to be integrated into multi-disciplinary optimisation 

frameworks; and (iii) determination and assessment of optimum and ‘greener’ aircraft 

trajectories and aircraft engine cycles using a multi-disciplinary optimisation tool, 

which included the computational tools developed in this research project. The main 

results of this research project have been already published (or will appear published) in 

several scientific journals and international conferences as highlighted in Appendix A. 
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1.2  
Context 

The critical nature of the problem has meant that currently several organisations 

worldwide focus their efforts towards large collaborative projects whose main objective 

is to identify the best alternatives or routes to reduce the environmental impact of 

aircraft operations. Particular examples of these projects include the PARTNER 

(Partnership for AiR Transportation Noise and Emissions Reduction) project [6], and 

the European Clean Sky JTI (Joint Technology Initiative) project [7]. The Clean Sky 

JTI will demonstrate and validate different technologies thereby making major steps 

towards achieving the environmental goals set by the Advisory Council for Aeronautics 

Research in Europe (ACARE). These goals, which are to be realised in 2020, include, 

among others, reductions in carbon dioxide (CO2) and oxides of nitrogen (NOx) 

emissions of 50% and 80%, respectively. 

Cranfield University (CU) and other partners from the European aviation industry 

are collaboratively participating in several areas of the Clean Sky project, including the 

Systems for Green Operations (SGO) Integrated Technology Demonstrator (ITD). The 

Systems for Green Operations (SGO), one of the six ITDs of the project, concentrates 

on two key areas: Management of Aircraft Energy (MAE), and Management of 

Trajectory and Mission (MTM). The main contributions of CU to the SGO ITD relate to 

the development of computational algorithms not only for the management of aircraft 

trajectory and mission (i.e., for aircraft trajectory optimisation), but also for the 

modelling of different disciplines taking part in the optimisation processes, such as 

aircraft performance, engine performance, and pollutants formation, among others. The 

results of this research project constitute some of the main contributions of CU to the 

SGO ITD. 

In this sense, the aircraft trajectory optimisation algorithms developed and/or 

adapted in the present research project constitutes the basis of an industry standard 

optimisation tool being developed as part of the main activities of the SGO ITD. The 

development of this tool will take several years, and it is expected that at the end of its 

development its level of maturity is high, which is reflected in high TRL (Technology 

Readiness Level) values, i.e., TRL: 5-6 (tool fully functional). This optimisation tool 

will be eventually deployed by industry and policy-makers to assess different 
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alternatives that reduce the environmental impact of aircraft operations. The work 

developed as part of this research project corresponds thus to the initial stages of the 

development of the referred optimisation tool. 

Accordingly, a methodology for optimising aircraft trajectories has been initially 

devised. Optimisation algorithms have been then developed and/or adapted for carrying 

out these aircraft trajectory optimisation processes. Computational models simulating 

different disciplines such as aircraft performance, engine performance, and pollutants 

formation, have been selected or developed as necessary. Finally, in order to evaluate 

the performance of the optimisation algorithms developed and/or adapted, simplified 

aircraft trajectory optimisation processes have been carried out using these algorithms 

and the computational models selected and/or developed. The main results of these 

optimisation processes are summarised in this thesis. In addition, in order to show the 

flexibility of the optimisation algorithms developed/adapted, engine cycle optimisation 

assessments have been performed, and their main results are presented as well. 

1.3  
Objectives 

The main contributions of this work to knowledge broadly comprise the 

following: (i) development of an environmental-based methodology for carrying out 

both aircraft trajectory optimisation processes, and engine cycle optimisation-type ones; 

(ii) development of both an advanced, innovative gas turbine emissions prediction 

model, and an optimiser suitable to be integrated into multi-disciplinary optimisation 

frameworks; and (iii) determination and assessment of optimum and ‘greener’ aircraft 

trajectories and aircraft engine cycles using a multi-disciplinary optimisation tool, 

which included the computational tools developed in this research project. 

The general and specific objectives of the present research project, whose main 

contributions are highlighted above, included the following: 

• In general, to develop a methodology to evaluate and quantify 

aircraft/engines design trade-offs originated as a consequence of addressing 

conflicting objectives such as low environmental impact and low operating 

costs. 
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• More specifically, to evaluate and optimise both aircraft flight trajectories 

and aircraft engine cycles taking into account multidisciplinary aspects such 

as performance, gaseous emissions (environmental performance), and 

economics, among others. 

• To use the different computational tools currently available at Cranfield 

University, and, when necessary, to develop new computational tools or to 

introduce modifications to the existing ones, in order to perform the tasks 

proposed in this project. 

• Additionally, to contribute to the adaptation and deployment of the Techno-

economical Environmental Risk Analysis (TERA*) techniques, and to 

participate in the development of projects. 

1.4  
Scope 

In this research project, the processes of evaluation and optimisation of aircraft 

propulsion systems have been performed from two different perspectives: operation and 

preliminary design. However, both aircraft flight trajectories and aircraft engine cycles 

have been evaluated and optimised from the point of view of the design and operation 

of the propulsion system (aircraft engine) only. Thus, it has been assumed that both the 

optimum aircraft flight trajectories determined, as well as the reference trajectories 

utilised for the optimisation of the aircraft engine cycles are feasible and safe to fly, 

even though they represent only theoretical ones. In other words, aspects related to the 

feasibility of the aircraft operation and its associated safety issues have not been 

considered in this work. It has been also assumed that only one aircraft is present in the 
                                            

 

 

 

 

 
* TERA is a concept conceived by Cranfield University. As a multi-disciplinary optimisation tool, 

TERA increases the visibility of the risks and enables the user to compare and rank competing power-
plant schemes on a formal and consistent basis. 
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air space during any given flight, i.e., there are no obstacles (flight corridors, other 

aircraft, hills, etc.) that might constrain the aircraft flight path unless otherwise 

explicitly specified. Finally, uncertainties associated with the data used as input in the 

different computational models utilised have not been considered. The referred 

uncertainties will be addressed in future as part of the further work to be developed in 

this research area. Thus, when possible, results are presented in relative terms rather 

than in absolute terms. This means that the trends in the results obtained are considered 

more representative than the absolute values. 

1.5  
Methodology 

During this research project, initially a set of computational tools currently 

available at CU has been utilised. However, due to the need of the same, new 

computational tools have been developed and implemented, and/or modifications to the 

existing ones have been introduced. This last aspect is particularly important because it 

improved the degree of reliability of the results obtained from the aircraft/engine 

simulations. One particular example of these tools constitutes the gaseous emissions 

prediction model developed, which predicts more accurately emissions trends from 

current and potential future aircraft gas turbine combustors. Another example 

constitutes the optimisation algorithms developed and/or adapted, which allowed 

performing the optimisation processes initially proposed. Finally, in order to determine 

optimum and ‘greener’ aircraft trajectories and engine cycles that help to minimise the 

impact of commercial aircraft operations on the environment, multidisciplinary 

evaluation and optimisation processes of both aircraft flight trajectories and aircraft 

engine cycles have been carried out. The main results obtained from these evaluation 

and optimisation processes are summarised in this thesis. 

1.6  
Thesis Outline 

The main results of the present research project which are summarised in this 

thesis are presented in ten chapters. The first chapter (i.e., current one) provides a 
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general introduction to the subject addressed in this research project in an attempt to 

provide an idea of the general context in which the project was developed. It also deals 

with the general and specific objectives of the research project, as well as it summarises 

the main contributions of the same. The specific context and scope of the research, as 

well as the methodology followed during the research in order to achieve the objectives 

initially proposed are also included in this chapter. In addition, an outline of this thesis 

is also provided. 

An initial literature review related to the state-of-the-art of the different 

approaches considered so far to reduce the environmental impact of commercial aircraft 

operations is presented in Chapter 2. In order to facilitate its understanding, the review 

is presented separately in two parts: one corresponding to those studies that mainly 

involve new configurations of aircraft, and the other one corresponding to those studies 

involving the introduction of changes in the aircraft operational rules and procedures. 

Additionally, a summary of further references reviewed is presented at the end of this 

chapter. 

Chapter 3 describes the development and implementation of a gaseous emissions 

prediction model, which allows the reliable calculation of emissions trends from current 

and potential future aircraft gas turbine combustors. Initially the model requirements are 

established, and the main strategies that can be adopted for combustor emissions 

prediction are then described. The methodology followed for simulating combustion 

chambers, and the algorithms utilised for modelling the formation of pollutants inside 

them are also summarised. The emissions prediction model developed has been verified 

through simulations of an actual combustor. The main results obtained from these 

simulations using the model developed are also shown and discussed in this chapter. 

Chapter 4 is focussed on optimisation problems and, in particular, on those main 

aspects that characterise the aircraft trajectory optimisation ones. The first sections 

discuss general aspects of optimisation, as well as a general classification of the 

different optimisation problems that can be found in practical applications. Aircraft 

trajectory optimisation problems are then classified according to their main features. 

This is followed by a short description of the main numerical techniques that can be 

utilised for solving this type of problems. Finally, the last sections of this chapter briefly 

describe part of the past experience on optimisation problems through the presentation 
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of a summary of some of the research work developed about this subject at both 

Cranfield University, and other research organisations. 

Since the optimisation algorithms utilised in the present research project are based 

on genetic algorithms, basic concepts associated with this optimisation technique are 

initially presented in Chapter 5. This is followed by a short description of the main 

characteristics of the genetic algorithms-based optimiser utilised. The description 

presented in this thesis highlights the main modifications introduced in the past into a 

general-purpose genetic algorithms library. The aim of these modifications was both the 

adaptation of the algorithms for engineering design optimisation problems, and the 

maximisation of their performance. 

Chapter 6 and Chapter 7 describe, in turn, the main results obtained from the 

processes of evaluation and optimisation of environmentally friendly aircraft propulsion 

systems. The aircraft propulsion systems have been optimised from two different 

perspectives: propulsion system operation (Chapter 6) and propulsion system design 

(Chapter 7). As part of the optimisation of the operation of aircraft propulsion systems 

(and/or aircraft, in general), aircraft flight trajectories have been optimised considering 

that the aircraft/engine configurations are unchanged, i.e., aircraft/engine configurations 

already designed and in operation. From the propulsion system design point of view, the 

preliminary design of different aircraft propulsion systems has been optimised. In this 

case, the aircraft flight profile (aircraft trajectory) has been considered fixed. 

Finally, Chapter 8 and Chapter 9 of this thesis summarise, respectively, the main 

conclusions drawn from the work developed during this research project, including 

some recommendations for further work; and the main references consulted during the 

research, and for the elaboration of this thesis. This thesis concludes with some 

appendices (Chapter 10) which provide supporting information for the discussions 

carried out in its main body. 

 



  

2  
Literature Review 

An initial literature review performed in order to have a better understanding of 

the state-of-the-art of the ways of reducing the environmental impact of aircraft 

operations is summarised in this chapter. In order to facilitate its understanding, this 

review is presented separately in two parts: one corresponding to those studies mainly 

involving new configurations of aircraft (Clarke’s second option [3]), and the other one 

corresponding to those studies mainly involving the introduction of changes in the 

aircraft operational rules and procedures (Clarke’s third option [3]). These second and 

third options correspond to the alternatives of solution to the problem that represents the 

environmental impact of aircraft operations, which were identified in reference [3] and 

highlighted in Chapter 1. Additionally, a summary of further literature reviewed is 

presented at the end of this chapter. 

2.1  
New Configurations of Aircraft 

The introduction of new configurations of aircraft (mostly related to 

unconventional and innovative airframe configurations) in order to reduce the aircraft 

climate impact constitutes an alternative for medium and long term, since as highlighted 

in reference [5], the timescale from new aircraft concepts to be brought to operational 

readiness often involves several decades. A first step for the accomplishment of this 

goal is the inclusion of environmental aspects at the early stage of the aircraft/engine 

design process. Currently, several well-known academic institutions and research 

centres worldwide study the feasibility of including environmental performance (i.e., 

parameters measuring the environmental impact) as an optimisation objective at the 

aircraft conceptual design stage [2-7]. These studies commonly include the use of 

multidisciplinary design optimisation processes in which conflicting objectives such as 

low noise, low gaseous emissions, and low operating costs are addressed in order to 
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estimate optimal aircraft configurations. For instance, in reference [2], the development 

of a preliminary design framework, which explores and quantifies trade-offs between 

aircraft design, operations, and environmental impact, is described. The referred 

framework includes not only computational models that estimate aircraft noise and 

engine performance; but also aircraft operational procedures, analysis, and optimisation 

modules, which were developed in order to assess the relative benefits of different 

opportunities for improving air transportation. 

Diedrich et al. [8] describe an integrated design tool developed in order to predict 

and optimise the performance and costs associated with producing a novel commercial 

aircraft – the so called ‘silent’ aircraft – placing noise as the primary design goal. The 

silent aircraft configuration studied was based upon a BWB aircraft, whose main 

characteristic relates to its airframe aerodynamic efficiency. The MDO framework 

utilised (Figure 2-1) included several acoustic models coupled to a set of first-principles 

and empirically-based aircraft design modules that address design issues related to 

propulsion, aerodynamics, structures, weight, and flight profiles. During the 

optimisation process, given the aircraft load (215 passengers) and range (5,000 nm), the 

maximum take off weight (MTOW) subject to noise constraints was minimised. 

Although many of the noise components exhibited large reductions in comparison with 

current aircraft of similar size (Boeing 767-300), the results showed that the design does 

not achieve the goal of ‘an aircraft inaudible outside the airport perimeter’, i.e., a ‘silent’ 

aircraft. 

A three-dimensional airframe design methodology for low noise emissions and 

high fuel efficiency is presented by Hileman et al. [9]. This study, which was also based 

on a BWB aircraft (Figure 2-2), describes the incorporation of leading edge camber of 

the centre body to provide cruise pitch trim without large penalties in drag. In order to 

reduce the noise approach, a reduced approach velocity and an increased distance 

between the airframe and the observer – steep approach – were utilised. This was 

obtained through a combination of thrust vectoring, quiet drag generation, and leading 

edge high-lift devices. The referred design methodology essentially involved the 

generation of three-dimensional airframes, aerodynamic assessments at cruise 

conditions (using computational fluid dynamics – CFD), and approach aerodynamic and 

aero acoustic assessments. Based on the results, the authors of that study concluded that 
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although the preliminary BWB type airframe design is highly efficient (Mach number 

times lift-to-drag ratio – ML/D ≈ 18.5), it does not yet fully meet the noise reduction 

goal – ‘silent’ aircraft – due to limitations on the low speed, high-lift performance of the 

fixed geometry outer-wing. 

 
Figure 2-1. Silent aircraft experimental MDO design framework [8] 

According to Hileman et al. [10], aircraft technology and operational procedures 

need to be designed in parallel to meet the noise goal of being below ambient noise 

levels outside the perimeter of a typical urban airport – ‘silent’ aircraft. Thus, in their 

work [10] they describe the incorporation of different technologies into a conceptual 

‘silent’ aircraft BWB type design allowing a slow (≈ 60.8m/s) and steep (≈ 3.9°) 

continuous descent approach (CDA) trajectory with a displaced landing threshold (≈ 

1.2km). The results showed that the use of this approach trajectory produces a peak 

noise level of 61 dBA outside the airport perimeter (Figure 2-3). Among others, the 

technologies utilised included the use of an all-lifting-body – no flaps, a deployable 

drooped leading edge, and trailing edge brushes. The authors of this study concluded 

that the benefits of CDA procedures would be enhanced through the incorporation of 

steeper approach angles (e.g., 3.9° versus a conventional approach of 3°), displaced 

landing thresholds, and low engine thrusts. At the same time, they indicated that 
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although the noise benefits of these ‘silent’ aircraft technologies and operating 

techniques could be used in the short term for existing aircraft, the operational 

consequences of these modified procedures need to be carefully analysed. 

 
Figure 2-2. BWB Silent aircraft experimental – Three-dimensional view [9] 

 
Figure 2-3. Components’ noise at airport perimeter (BWB Silent aircraft experimental) [10] 

Crichton et al. [11] studied the feasibility of obtaining further improvements in jet 

noise reduction during take off through the use of variable jet area. According to 

Crichton et al., by continuously modifying the nozzle exit area, the fan can operate at an 

ideal local location (e.g., away from stall and surge regions). In addition, the take off 

optimisation can be extended to cover noise sources other than the jet. Thus, they 

increased the nozzle area at take off relative to the area at top of climb and cruise. 

Additionally, in order to make full use of a variable area nozzle to reduce jet noise, the 

fan was operated at part-speed during take off, which in turn allowed larger nozzle 

increases before obtaining a choked fan. The results showed that when the take off 

optimisation process is performed considering the jet noise as the only noise source, 
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noise levels below the ‘silent’ aircraft noise target (60 dBA) can be achieved, even with 

a relatively high top of climb fan pressure ratio of 1.50. However, when additional noise 

sources (fan and airframe) are considered, noise levels of about 5 dBA above the ‘silent’ 

aircraft noise target are obtained.  

A study of a distributed propulsion/airframe configuration that provides low-noise 

short take off and landing (STOL) operations carried out in order to explore the 

potential benefits from incorporating embedded distributed propulsion systems into a 

cruise efficient airplane is presented by Kim et al. [12]. The study mainly focuses on the 

use of embedded distributed propulsion for very low noise STOL capability with highly 

efficient cruise performance. Due to the exponential rise in noise rules, regulations and 

restrictions, Kim et al. indicate that revolutionary airplane concepts are needed in order 

to meet future traffic demand. Thus a BWB type of airplane using distributed propulsion 

with 12 small engines was selected as the baseline configuration (Figure 2-4). Some of 

the results showed that it is possible to achieve a sideline noise of 96.8 EPNdB 

(Effective Perceived Noise, in decibels), flyover noise of 94.7 EPNdB, and approach 

noise of 47.7 EPNdB. The approach prediction did not include turbomachinery noise, so 

according to the authors of the work it is likely to be considerably higher. It was 

concluded that this type of aircraft have the potential to offer a relatively quieter 

approach, which would allow the use of smaller and more noise sensitive airports, 

relieving in turn congestion and enabling the growth of the aviation industry. 

 
Figure 2-4. STOL aircraft with distributed propulsion [11] 

Leifsson et al. [13] used a MDO process to optimise the design of aircraft using 

MTOW as the objective function (to be minimised), while constraining noise at the 

approach condition. The MDO framework utilised included, essentially, aircraft 

conceptual design tools and an aircraft noise prediction model (Figure 2-5). The results 

of this design study, which was performed for cantilever wing and Strut-Braced Wing 
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(SBW) transport aircraft (payload: 300 passengers, range: 7,700 nm), showed that, by 

reducing the approach speed alone, only a small reduction in airframe noise is achieved. 

Even though, in this case, the performance and weight penalty incurred was significant. 

Thus, it was concluded that, in order to achieve a significant airframe noise reduction, 

more dramatic changes to the aircraft design are needed, including the re-design of the 

high-lift devices and the landing gear. The results also indicated that the trailing edge 

flap can be eliminated without large weight and performance penalties. 

 
Figure 2-5. Diagram of MDO framework [13] 

There are some researchers who consider that runway-independent aircraft (RIA) 

– vertical take off and landing (VTOL), and extremely short take off and landing 

(eSTOL) vehicles – could increase passenger throughput at crowded urban airports via 

the use of vertiports or stub runways. Thus, in references [14-16] studies of 

simultaneous non-interfering noise abatement procedures (NAPs) for RIA are described. 

These studies mainly analysed different trajectory optimisation algorithms in order to 

develop tools that identify (rapidly and efficiently) acceptable NAPs, and evaluate their 

impact on air traffic and the surrounding communities. The optimisation cost functions 

utilised included, typically, time, fuel, and noise terms. It was concluded in these studies 

that the optimisation tools developed might eventually provide airport and airspace 

designers with a larger number of trajectory options for analysis of potential landing 

sites, associated traffic procedures, and entry options. 

2.2  
New Aircraft Operational Rules and Procedures 

Regarding the aircraft operational rules and procedures, a revision of the current 

ones with respect to necessary changes or the implementation of new ones provides an 
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option for reducing the environmental impact of aircraft operations that may be 

implemented more readily than changes in aircraft design or component technology. 

However, as discussed above, the introduction of new configurations of aircraft – a 

possibility for medium and long term – will also result in significant changes on aircraft 

operations as a whole. In the literature, it is possible to find a number of studies carried 

out in order to analyze the feasibility of using new (or modified) operational rules and 

procedures seeking to reduce aircraft climate impact, namely, noise and gaseous 

emissions. These studies describe typically the development of methodologies and/or 

computer codes that efficiently estimate optimal procedures to be followed in order to 

mitigate the environmental impact of aircraft operations. 

It is important to highlight that studies regarding this subject have been performed 

by researchers associated with not only academia and research centres, but also 

industry. In this sense, in reference [17] different programs currently in development by 

The Boeing Company including those related to flight efficiency (advanced noise, fuel 

and time efficient procedures, CDAs, etc.), guidance law (vertical), advanced trajectory 

technologies (advanced trajectory prediction, trajectory optimisation, trajectory 

management, etc.), and air transport economics are described. The ultimate goal of these 

technologies (when implemented) is to relieve crowded airspace and airports in an 

efficient manner and with a minimum environmental impact. The following paragraphs 

summarise some of the main studies developed in the past on this area of aircraft 

operational rules and procedures. 

The research work carried out by Visser and Wijnen [18-21] related to 

optimisation of noise abatement trajectories (departure and arrival) is perhaps the most 

important one in this category. This is because in the optimisation processes they use 

indices that are not only generic in nature (e.g. noise footprints), but also site-specific 

criteria that take into account the population distribution in those areas surrounding the 

airport. In reference [18], the development of a tool that combines a noise model, a 

geographic information system, and a dynamic trajectory optimisation algorithm, which 

allows the analysis and design of noise abatement procedures at any given airport, is 

described. Due to the fact that the optimisation process involved a compromise between 

two conflicting requirements, noise and fuel consumption, a composite performance 

measure, which consisted of a weighted combination of a noise-impact-related criterion 
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and fuel consumed, was used as its performance index. In order to take into account the 

dependence of the true noise impact on the population density distribution around the 

airport, the so-called ‘awakenings’ parameter (i.e., number of people within the exposed 

community that are expected to awake due to a single event night-time noise intrusion) 

was utilised as the noise-impact-related criterion. This parameter was estimated as a 

function of the sound exposure level (SEL), as shown in Figure 2-6. 

 
Figure 2-6. FICAN sleep disturbance dose-response relationship [18-21] 

In the optimisation processes, essentially routings and flight paths were modified 

to minimise the noise impact on the surrounding communities, while satisfying different 

imposed constraints. Results obtained from the optimisation of the departure trajectory 

of a Boeing 737-300 at Amsterdam Airport Schiphol (AAS) showed that the number of 

people that awake due to the noise impact reduces from 5042 to 3312 (about 35%) when 

compared to the reference condition (fuel-optimal trajectory), and that the noise-optimal 

departure trajectory requires only about 1% more fuel. In particular, it was observed that 

the noise optimisation process shifts the noise impact from densely populated city areas 

to more rural regions. The authors of that study concluded that the optimisation concept 

developed is generic and flexible, since alternative optimisation criteria, additional 

constrains, or model refinements can be readily introduced. 

In reference [19] the same optimisation tool was applied to the design of noise-

optimised arrival trajectories considering the same airport and the same type of aircraft. 

The results indicated that the number of people that awake due to the noise impact 

reduces from 3166 to 1495 (about 50%) when compared to reference condition (fuel-
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optimal trajectory); and that the noise-optimal trajectory requires about 30kg (15%) 

more fuel, and an additional flight time of about 50s (about 10%), as illustrated in 

Figure 2-7. Due to limitations from an operational point of view, a modification of the 

composition of the performance index used in the two works described previously is 

proposed and utilised in reference [20]. The new performance index incorporates the 

deviation from a reference flight path instead of a fuel parameter. Thus, an optimised 

trajectory deviates from the reference track only if this improves the noise impact. The 

results obtained from the optimisation process of a Boeing 737-300 departure trajectory 

at AAS showed that, using the modified performance index, noise-optimised trajectories 

can be generated in a similar way. The possibility of choosing whether the optimisation 

process should be performed by changing the vertical and/or horizontal flight profile 

seems to be an additional advantage of the use of this modified performance index. 

 
Figure 2-7. Comparison of minimum-fuel and minimum-noise arrival trajectories [19] 

The trajectory-synthesis tool initially developed by Visser and Wijnen was 

extended to include other noise performance criteria [21]. The original performance 

index (fuel and awakenings) was modified by adding two new parameters: population 

(population living within a specified noise contour level) and area (total area enclosed 

within a specified noise contour level). A parametric analysis involving the four 

weighting parameters in the composite noise performance index was performed by 

comparing arrival trajectories of a Boeing 737-300 at AAS. From the results, it was 

concluded that an optimisation process with respect to one particular criterion may lead 

to a solution that exhibits undesirable performance with respect to the other parameters 
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considered. Thus, it is indicated that a compromise must be achieved by specifying a 

sensible combination of the weighting factors used in the performance index. 

According to the relationship between aircraft noise exposure and sleep 

disturbance (dose-response) utilised in the studies carried out by Visser and Wijnen [18-

21], the population expected to awake due to a single event night-time noise 

(awakenings) is estimated as a function of SEL only (Figure 2-6). However, Quehl and 

Basner [22], in their work developed in order to establish dose-response curves 

regarding the annoying impact of nocturnal aircraft noise, concluded that not only the 

energy equivalent noise level (calculated by integrating the sound energy from all noise 

events over a given time period) commonly used in noise abatement rules, but also the 

number of aircraft events are a major source of nocturnal aircraft noise induced 

annoyance (see Figure 2-8). They also concluded that the noise exposure in the last two 

decades has changed in qualitative terms. There has been a strong increase in air traffic 

with a simultaneous reduction of the emission levels of a single aircraft. According to 

them, this fact explains why airport residents claim today that the noise has increased 

during the past few years. 

Clarke [3] highlights that the primary obstacle to the implementation of advanced 

noise abatement procedures, such as CDAs, is the inability of air traffic controllers to 

maintain manually the precise sequencing and spacing required for maximum take off 

and landing rates in heavy traffic. Thus, he concludes that the introduction of 

automation that not only predicts the performance and noise impact of aircraft, but also 

assist the controller in determining and maintaining appropriate sequencing and spacing 

is critical to the successful utilisation of these procedures. In reference [23], in turn, the 

development of an aircraft noise pollution model for trajectory optimisation based on 

simulation data of a Boeing 737-200 is described. The model developed is used to 

obtain the footprint on the ground that is exposed to noise levels at or above 70 dB 

given a particular aircraft orientation, altitude, and thrust setting. This footprint is 

determined by the intersection with the ground of the surface (ellipsoid) around the 

aircraft inside of which the noise is at or above 70 dB. It is concluded that although the 

model was developed for a specific aircraft, the methodology would be applicable to 

other different ones. 
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Figure 2-8. Aircraft noise annoyance as a function of LAS,max and number of noise events [22] 

Norgia [24] describes a numerical approach utilised for the computation of noise 

contours (footprint) generated during aircraft take off and landing operations. In the 

model, for the generation of a single noise contour, the trajectory followed by the 

aircraft is divided into several straight-line segments. Along any segment, a constant 

noise-level surface (circular cylinder) is determined. The intersection of this surface 

with the ground plane originates an elliptic curve, part of which represents the 

contribution of this particular segment to the total contour. The total contour is obtained 

from the summation of the contributions of all segments of the trajectory. The model 

developed was subsequently utilised to define a new noise abatement procedure during 

aircraft take off at an Italian airport. The results of the simulations indicated that 

through the use of this model noise contours can be obtained quickly and efficiently. 

En route Descent Advisor (EDA), details of which can be found in references [25-

27], is a decision support computer tool that is being developed at the National 

Aeronautics and Space Administration (NASA) Ames Research Center for managing 

complex en route traffic subject to metering restrictions. The ultimate goal of EDA is to 

allow future use of controller procedures based on trajectory management instead of the 

existing ones based on sector management. Among the multiple capabilities of EDA, 

those related to arrival trajectory optimisation seem to bring multiple benefits as 

claimed by its authors. They indicate that EDA allows both horizontal and vertical 

trajectory optimisation of arrival flight trajectories, which in turn result in more fuel-
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efficient arrivals. Some of the EDA benefits mechanisms are graphically illustrated in 

Figure 2-9. 

In general, EDA proposes several concepts for trajectory optimisation including  

(i) top of descent (TOD) optimisation, which improves the flight’s vertical descent 

profile by moving its TOD location further downstream, minimising flight time at less 

efficient, lower altitudes (bottom of descent – BOD – fixed); (ii) user preferred routing, 

which facilitates flow-rate conformance, independent of path; and (iii) relaxed static 

metering fix restrictions: (a) vertical anchor point (improvement of flight’s vertical 

descent profile by moving the bottom of descent downstream of the current metering fix 

location), and (b) horizontal anchor point (improvement of the horizontal arrival 

trajectory by moving the current metering fix, enabling in this way a more direct route 

to the runway). 

 
Figure 2-9. EDA benefit mechanisms [25] 

A methodology to generate optimal 4D-trajectories subject to multiple time 

constraints is presented by Hagelauer and Mora-Camino [28]. The work was developed 

based on the fact that in future precise time control of aircraft flight trajectories is 

expected to allow a significant increase in capacity, while keeping the present level of 

safety. The 4D-trajectory optimisation problem was formulated as an optimal control 

problem, and neural networks were used to reduce the computational time related to the 

calculation of the costs associated with each decision step in the search process. The 

Direct Operating Cost (DOC) – fuel plus flight time costs – was considered as the cost 

function in the optimisation process. Results obtained from a 4D-cruise optimisation 
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process with multiple time constraints showed that a considerable amount of fuel can be 

saved (when compared to fixed altitude profile solutions). Thus, the authors concluded 

that the approach described seems to provide a solution for on-line 4D-trajectory 

optimisation for the next generation of Flight Management Systems (FMS). 

Different issues related to the minimisation of the noise impact of aircraft are 

addressed in some detail in reference [29]. In particular, the development and use of 

analytical and semi-empirical aircraft trajectory and noise models in order to define 

low-noise flight procedures are described. Particular consideration is given to both the 

mathematical aspects involved in the aircraft trajectory model and its associated 

constraints, as well as the aircraft noise control criteria used to define the cost function 

to be utilised in the optimisation processes. The main results related to a set of 

operational measures to be implemented in order to reduce the aircraft noise levels in 

the vicinity of airports. 

In order to reduce the noise level around airports, most of the noise abatement 

procedures involve measures in which both elapsed flight time, and thrust level are 

reduced. This results in turn in a decrease in the level of aircraft gaseous emissions. 

Even so it is important to highlight some of the technologies that are currently under 

development in order to mitigate the negative effects of these gaseous emissions. As 

emphasised in reference [2], these technologies, which mainly seek to adaptively 

modify aircraft engine performance, eventually could lead to improved engine 

component efficiency and/or reduced weight, reducing overall fuel burn and 

consequently CO2 emissions. Among others, these technologies include inlet, fan, and 

compressor flow control; compressor stall, blade clearance, and combustion control; 

active bearings; as well as active materials and wireless sensors. 

An alternative for reducing aircraft gaseous emissions is switching from kerosene 

supported aviation to liquid hydrogen supported aviation as highlighted in reference 

[30]. It is indicated in that work that cryoplane technology would not only eliminate 

particle and CO2 emissions (if hydrogen is not produced from fossil energy sources), but 

also reduce oxides of nitrogen (NOx) emissions. However, hydrogen engines would 

emit more water vapour (H2O), which in turn would contribute to contrail formation. 

Different scenarios for a respective gradual technology transition between 2015 and 

2050 from a global point of view are evaluated and analysed in reference [30]. Analyses 
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are mainly based on the level of CO2, H2O, and NOx emitted, as well as on contrails, 

radiative forcing, and global surface temperature changes. The results associated with 

all cryoplane transition scenarios suggest, in general, smaller increases in CO2 

concentrations, higher H2O emission indices, lower NOx emission indices, less but 

larger ice crystals in contrails, and a lower total aviation impact on earth surface 

temperature (Figure 2-10), when compared to those values corresponding to the 

kerosene scenario. 

 
Figure 2-10. Global mean surface temperature change for cryoplane transition scenarios [30] 

2.3  
Further References 

As already indicated, a key aspect, when addressing the problem of the impact of 

aircraft operations on the environment, is the inclusion of environmental considerations 

at the early stage of the aircraft/engine design process. This aspect is emphasised by 

Antoine et al. in references [31,32]. In their work, a design tool that includes different 

design modules that address key aspects of aircraft such as aerodynamics, performance, 

stability/control, structures, and economics, was developed. This tool was subsequently 

utilised for carrying out optimisation processes of a 280-passenger, twin-engine airliner 

(6,000 nm range). For these optimisation processes, different design variables (i.e., 

aircraft geometry, engine parameters, and performance), as well as different constraints 

(i.e., engine-out climb gradient, drag-to-thrust ratio, stability margins, etc.), were 

utilised. Pareto set of solutions (e.g., Figure 2-11) obtained from the minimisation of the 

aircraft operating cost, fuel consumption, NOx emissions, and noise, are summarised in 
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these studies. The main results indicated that significant reductions in emissions and 

perceived noise are possible to achieve, if aircraft are optimised based on these 

objective functions. Thus, for an increase in operating cost of 9%, NOx emissions could 

be reduced by as much as 54%, whereas cumulative certification noise could be lowered 

by 15 EPNdB for a cost increase of 25%. The authors concluded that the trend emerging 

from the analyses of the seemingly conflicting objectives of noise, fuel consumption, 

and NOx emissions (Figure 2-11), is the opportunity for significant reductions in aircraft 

environmental impact by designing the aircraft to fly slower and at lower altitude, i.e., 

‘slower, lower, greener’. 

 
Figure 2-11. Pareto fronts of fuel carried, NOx emissions, and noise margin vs. cost [32] 

Le Dilosquer [33] studied the influence of civil subsonic aero engine design and 

flight operations on atmospheric pollution, particularly, gaseous emissions. The 

pollutants considered in the analyses included NOx, H2O, and CO2. Other pollutants 

such as carbon monoxide (CO), unburned hydrocarbon (UHC), soot, smoke, and 

sulphur dioxide (SO2), were not considered. This was due to fact that the relative 

importance of these pollutants on earth’s atmosphere pollution is smaller when 

compared to the corresponding one associated with those pollutants considered in Le 

Dilosquer’s work. Since aircraft NOx contribute to both the increase of the tropospheric 

ozone, and to the destruction of the stratospheric ozone, the study was focused on 
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medium and long range aircraft. This was done with the purpose of evaluating the 

consequences of releasing significant amounts of NOx at high altitudes on earth’s 

atmosphere, and eventually on global warming. For the analyses, a computer simulation 

system was developed. This computer program consisted of three main modules 

developed and integrated in order to simulate the aircraft flight route, the performance 

of the aircraft engines, and the formation of pollutants in the engine combustors. 

Simulations of a long range widebody passenger aircraft (Boeing 747-400) were 

then carried out using the system developed. The objective of these simulations was to 

evaluate mainly the influence on net trust (FN) and specific fuel consumption (SFC) of 

designing the aero engine for both low landing and take off (LTO) cycle emissions, and 

low mission emissions. The main conclusions indicates that mission NOx reductions of 

up to 10% over designs optimised for LTO NOx are possible, suggesting that current 

International Civil Aviation Organization (ICAO) regulations are not an adequate 

criterion for controlling mission NOx. It was also concluded that other operational 

measures (e.g. cruise speed reductions) could bring further reductions, but some of these 

improvements would be made at the expense of fuel burn, CO2 and H2O, payload-range 

capability, and direct operating costs. It was concluded, in addition, that the benefits 

from engine cycle and flight profile optimisations are not negligible, but smaller when 

compared not only to the potential gains associated with the introduction of low-NOx 

technology (30-80%), but also to the cumulative improvements (next 20 years) in 

airframe weight and aerodynamics, and the use of more efficient navigation processes 

(30%). 

The potential benefits of adopting ‘all’ or ‘more’ electric aircraft concepts for 

secondary power systems of high capacity long range aircraft are assessed by Laskaridis 

[34]. In his work Laskaridis analyses qualitatively and quantitatively different issues 

associated to the implementation of these concepts in practice. Initially, in order to 

determine how these concepts fit with the overall design approach, future trends in 

aircraft and engine design are reviewed. The effects of off-takes (namely, bleed air and 

shaft power) on the performance of the engine, as well as the limitations of secondary 

power systems are then studied. An aircraft performance model was subsequently 

developed in reference [35] and utilised for the assessment of the impact of the ‘all’ or 

‘more’ electric technologies on long range aircraft. Finally, conceptual design and 
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electric systems architectures suitable for the all or more electric technologies are 

developed and presented. 

The main conclusions of Laskaridis’ work indicate that engine parameters such as 

overall pressure ratio (OPR) and turbine entry temperature (TET) have an important 

effect on engine performance when bleed air or power extraction is utilised for the 

operation of aircraft secondary power systems. On the other hand, when a constant 

percentage of off-take is utilised, its associated penalties on engine performance do not 

depend on engine bypass ratio. It is also concluded that the power extracted in the form 

of bleed air for the operation of the aircraft environmental control system is about twice 

as much the actual power required. This is clearly a limitation of current secondary 

power systems. In addition, aircraft mass changes eventually would depend on the 

configuration of the electric system utilised and the extent of adopting all electric 

technologies. Finally, it is concluded that the adoption of ‘all’ or ‘more’ electric 

technologies could enable the design of more efficient aircraft, i.e., aerodynamic 

efficiency improvement and reduction in overall fuel consumption (about 4% for the 

long range aircraft studied); and that the impact of this type of technologies depends on 

the configuration of the specific aircraft being analysed. 

Three main factors that characterise the environmental impact of aircraft 

operations: noise, air pollution around airports, and climate change, are discussed by 

Green in reference [36]. From these factors, because of its long term importance, the 

impact on climate change is extensively discussed in Green’s work. Green argues that 

from the three main contributors to climate change from aircraft, CO2, NOx, and 

contrails, the last two ones (i.e., NOx and contrails) are the most promising targets. 

However, he adds, because of the long life of CO2 in the atmosphere, it is vital that a 

significant reduction in CO2 emissions is achieved in the long term. He suggests that, 

based on previous works, the introduction of technology related to contrail avoidance 

would be cost effective, and probably the single most powerful way of the reducing the 

environmental impact of aircraft operations, even though it would increase the level of 

CO2 emitted. Regarding NOx emissions, Green recognises the conflict between reducing 

CO2 and NOx simultaneously. He indicates that increasing OPR and TET in order to 

increase engine thermal efficiency will increase NOx emissions, and, consequently, it 

does not seem the best way forward. The main conclusions of Green’s work mainly 
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indicate that measures (regulatory, economic, etc.) to be implemented in future should 

promote reduction in the impact on climate change rather than reduction in CO2 

emissions, since that measures based solely on CO2 emissions are likely to do more 

harm than good. 

Several questions oriented to the identification of civil aircraft design priorities are 

addressed by Brooker [5]. The design priorities discussed include air quality, climate 

change, and noise. In Brooker’s work, these environmental concerns are classified as 

‘externalities’, i.e., things arising from the production or consumption of goods that 

affect third parties. Thus, in order to estimate their associated external costs, ways of 

weighting these externalities, which allow the establishment of the type of policy (taxes, 

emissions, charges, marketable permits, etc.) that can be considered, are discussed. He 

concludes that future aircraft designs should focus on reducing significantly climate 

change impact; and that it is vital to avoid design compromises that prejudice this 

primary goal. Regarding the reduction in both gaseous emissions (in order to improve 

air quality) and noise, he concludes that the targets related to these issues should be 

pursued only to the extent that they do not affect both improved fuel efficiency, and 

reduced climate change emissions. 

Filipone [37] addresses the benefits of operating subsonic commercial aircraft at 

speeds below the long-range cruise speed. Thus, he looks critically at the consequences 

of flying a subsonic commercial airliner slower on fuel savings, exhaust gas emissions, 

and overall costs. The case study considered involves the analysis of a subsonic jet 

airline operating over short to medium distances: flight segments up to 1,000nm. The 

limit of nominal 1,000nm was dictated by the possible delay at arrival. Particular 

emphasis is placed on the benefits of operating the aircraft at Mach numbers (M ≈ 0.77 

to 0.78) slightly lower than the corresponding cruise Mach number (M = 0.80). Some of 

the main results obtained by Filipone are illustrated in Figure 2-12. This figure 

corresponds to a general representation of the fuel versus time performance, which 

gives percentage values of fuel saving over percentage values of time saving. In 

Filipone’s study, it is concluded that a cruise M reasonably lower that the nominal one 

helps to conserve a considerable amount of fuel. Estimated savings are about 1.8% of 

the total mission fuel for a 1,000nm flight segment (≈ 150,000kg per year). These fuel 
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savings are achieved at a cost of a delay of less than three minutes on each flight 

segment. 

 
Figure 2-12. General representation of fuel vs. time performance [37] 

It is worth highlighting that other alternatives for reducing the environmental 

impact of aircraft operations, different to those ones described through the studies 

summarised in this chapter, have been also considered in the past. Some of these 

alternatives are more unconventional than others. One particular example of these 

alternatives involves the use of air-to-air refuelling [38,39]. It is claimed that use of this 

type of technology would produce overall savings of the order of 30-40% fuel and 35-

40% financial [38]. Even though these savings are very significant in terms of the 

impact on aviation’s contribution to reducing atmospheric pollution, there are still some 

safety issues that need to be addressed carefully, and which, probably, will prevent the 

use of this type of technology for civil applications in the short term. 

Finally, it is important to emphasise that the authors of all studies described 

briefly in this chapter and of many others available in literature have something in 

common that is very important for the aviation industry as a whole. They believe that 

environmental issues associated with commercial aircraft operations constitute a critical 

aspect currently. They also believe that there are different alternatives that could reduce 

the impact of commercial aviation on the environment. However, if not analysed 

carefully, some of these routes or alternatives are likely to do more harm than good. 

This is because, even though they can reduce some of the factors that exacerbate the 

aircraft environmental problem, they also can increase other ones that make this 
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problem worse. Therefore, a primary goal (impact on climate change, for instance) 

needs to be firstly identified, and compromises that prejudice this primary goal should 

be avoided. Based on the different efforts being made worldwide, which are reflected in 

the large amount of studies available in open literature, it seems likely that the main 

pollutants originated from aircraft operations will be reduced in future. It is expected of 

course that this enables the aviation industry to grow in a continuous and sustainable 

manner. 

 



  

3  
Emissions Prediction Model 

The development and implementation of a gaseous emissions prediction model 

which allows the reliable calculation of emissions trends from current and potential 

future aircraft gas turbine combustors is summarised in this chapter. Initially the model 

requirements are established, and the main strategies that can be adopted for combustor 

emissions prediction are then described. The methodology followed for simulating 

combustion chambers and the algorithms utilised for estimating the level of the main 

pollutants of interest formed inside the same are next summarised. The emissions 

prediction model developed has been verified through simulations of an actual 

combustor. The main results obtained from these simulations using the model developed 

are also shown and discussed in this chapter. 

3.1  
Model Requirements 

In general the establishment of the main requirements of any computational model 

in development is directly related to its ultimate goal. In this particular case, the ultimate 

goal of the emissions prediction model developed is to allow the reliable calculation of 

emissions trends from current and potential future aircraft gas turbine combustors. More 

specifically, its use in efficient evaluation and optimisation processes performed for 

design space explorations and trade-off studies constitutes one of the main objectives of 

the model developed. Particular examples of these evaluation and optimisation 

processes constitute those ones carried out in this work involving both aircraft 

trajectories, and aircraft engine cycles, which are described in the following chapters. 

The results obtained from the utilisation of this model are expected to be used 

eventually for analysing aircraft/engine design trade-offs and interdependencies, and 

helping policy-makers in decision-making processes. 
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Based on both its ultimate goal and its intended usage, the main requirements of 

the emissions prediction model described in this thesis were established as follows: 

• Suitability of the model for predicting emissions from potential future 

aircraft gas turbine combustors. In other words, the approach to be utilised 

for the emissions prediction and the algorithms involved should allow both 

the modelling of novel concepts of aircraft gas turbine combustors, and the 

estimation of the level of pollutants emitted.  

• Suitability of the model for carrying out reliable calculations of emissions 

trends. This means that emissions trends are good enough for what is 

expected from the model. If, in addition, absolute values of emissions are 

predicted properly, this would constitute an additional advantage of the 

emissions model. However, in the context in which this model was 

developed, this does not represent an initial requirement. 

• Use of aircraft/engine-level design parameters (e.g., combustor inlet 

pressures, temperatures, etc.) instead of combustor-level design ones (e.g., 

parameters associated with fuel injector designs, recirculation zone patterns, 

etc.). There are two main reasons that support this requirement. The first one 

relates to the sensitivity of the information. Information about engines in 

general and combustors in particular is considered sensitive and can be 

hardly obtained. The second reason relates to the generality of the model. If 

combustor-level design parameters were utilised in the model, it would 

loose generality, and it might be applicable only to particular types of 

combustors. 

• Generality and simplicity are important. The model should be as general 

(see previous requirement) and simple as possible. However, simplicity 

should not represent a detriment of the reliability of the results to be 

obtained. Thus, a compromise between the reliability of the results and the 

complexity of the model has to be achieved at some stage. This compromise 

can be achieved through the identification of those phenomena (physical, 

chemical, etc.) occurring inside aircraft gas turbine combustors that should 

be simulated, and those ones that should not. Phenomena that should be 

modelled include those ones that allow the reliable calculation of emissions 
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trends. In turn, phenomena that might increase the level of complexity of the 

model only without producing appreciable benefits should not be included 

in the model.  

• Minimum computational time. Since one of the main uses of the model will 

involve its utilisation in aircraft/engine optimisation processes, the 

computational time involved in the emissions prediction is a critical 

parameter. The emissions prediction should be then carried out in a practical 

(shortest possible) time. Otherwise, this might prevent its use in 

optimisation processes. 

• Modularity and extensibility features are welcomed. As indicated above, the 

model should be able to predict emissions from potential future aircraft gas 

turbine combustors. This means that novel concepts of aircraft gas turbine 

combustors will need to be accommodated in the future. Obviously good 

features of model modularity and extensibility will make much easier this 

process. These modularity and extensibility features could also help greatly 

in the adaptation of the model to other types of engines, for instance, 

industrial gas turbines. 

According to these requirements, the emissions prediction model was developed 

and implemented, and the main stages of this development and implementation are 

described in detail in the following sections. 

3.2  
Emissions Prediction Modelling 

In general, as pointed out in [40], three broad strategies can be adopted for 

combustor emissions prediction: empirical correlations, stirred reactor models (or 

physics-based models as they are sometimes described), and comprehensive numerical 

simulations involving detailed Computational Fluid Dynamics (CFD) calculations. On 

one hand, empirical correlations, in which fine details of the combustion chemistry and 

internal flow are completely subsumed into global expressions (largely established from 

measurements), present some basic limitations. This is because the complex processes 

occurring inside the combustor are only coarsely represented. This shortcoming is 
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compounded by the observation that different combustion concepts require the creation 

of new experimental databases. However, in a more rapidly evolving design phase it is 

unlikely that such data will become available; and therefore, a purely correlation-based 

approach to emissions prediction can provide little guidance [40], and at the same time 

prevents its use for potential future combustors designs. Even though detailed data on 

combustor performance can be incorporated in empirical correlations that map the 

variation around the flight envelope, such data is proprietary and not generally 

accessible. Furthermore, such correlations can only satisfactorily be applied to specific 

engine architectures and accommodate only minor design changes. 

Detailed numerical simulations of the turbulent reacting flow inside the combustor 

involving CFD computations, on the other hand, represent the other extreme of the 

approaches to gas turbine emissions prediction. However, this approach is both time 

consuming and requires a detailed definition of the combustor geometry, which again 

would not be available for assessing technology trade-offs for potential future 

combustor designs, and may be difficult to obtain for even current designs [41]. The 

lack of robustness/reliability made evident through the continuous need for validating 

data obtained empirically constitutes another drawback of this approach. The 

computational time involved in each combustor CFD simulation would also inhibit their 

use in models developed to optimise aircraft trajectories and/or aircraft engine cycles. 

Stirred reactor models, in which the turbulent flow is sufficiently idealised and the time-

dependent chemistry of pollutant formation may be computed exactly, therefore 

represent a robust compromise between the empirical and CFD-based options. 

The concept of stirred reactors was widely studied during the early 1970s and 

1980s mainly with the objective of establishing a better understanding of the process of 

formation of the different pollutants emitted from gas turbine combustors. During the 

last decade, stirred reactors models [41-44] have been mainly utilised in the 

development of computational models to predict trends in the level of emissions 

produced by gas turbine combustors currently in service. The model proposed by Visser 

and Kluiters [42] was set up by defining a series of perfectly-stirred reactors (PSR), 

which modelled combustion, mixing, steam/water injection, and their effects on 

emission formation using semi-empirical models for the reaction kinetics. Subsequently, 

Shakariyants et al. [43] extended this combustor model through the inclusion of other 
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constant pressure and temperature subject to the constraint of conservation of elements. 

The combustion heat release is obtained from the equilibrium calculations. This 

assumption is supported by previous research work [48], in which good agreement was 

found between the temperature and completeness of combustion profiles obtained from 

both kinetic schemes and equilibrium models. 

Most exhaust pollutants of interest – in particular those emitted from gas turbines, 

where the residence times are relatively short, and which are being studied in this work 

– are not in local chemical equilibrium. In making quantitative estimates of exhaust 

pollutant levels it is therefore necessary to include more detailed representations of 

finite rate chemistry. Thus the PSR model includes kinetics calculations of NOx, CO, 

UHC, and soot/smoke. All the other species are assumed to be in chemical equilibrium. 

Similarly, the kinetics of radical formation is neglected and equilibrium radical 

concentrations prevail. Once the gas conditions, flow rates at the inlet and exit of the 

PSR, and its length are known, the PSR residence time is calculated and utilised for the 

integration of the reaction rates of the pollutants being analysed. Since the 

concentrations of these pollutants are very low, when compared to those corresponding 

to the combustion products in chemical equilibrium, it is assumed that the heat release is 

not affected by their formation. Finally, the exhaust pollutant levels together with the 

combustion products in equilibrium at the exit of a given PSR are supplied as inputs to 

the downstream reactors utilised in a multi-reactor arrangement. 

3.3.2  
Series of Perfectly-Stirred Reactors (PSRS) Model 

Models of this type were first developed by Hammond and Mellor [48-50] during 

the early 1970s. In order to obtain a variation in the residence time distribution, plug 

flow reactors used normally to model the combustor secondary and dilution zones were 

replaced by a sequence of perfectly-stirred reactors (PSRS) of finite and equal volume. 

The semi-continuous air addition permits closer approximations of the airflow 

distribution computed using turbulent jet mixing phenomena. Thus, the PSRS reactor 

model developed consists of a series of perfectly-stirred reactors in which each 

individual PSR has its own discrete amount of air and fuel addition; that is, its own 

equivalence ratio or mixture fraction. The number of reactors that can be incorporated 
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into a PSRS reactor is user-specified, and it depends on the level of discretisation 

required in the volume of any particular combustor region. In practice, when these 

reactors are utilised, the number of perfectly-stirred reactors in each PSRS is increased 

until an independence of the results to this parameter is achieved. 

3.3.3  
Partially-Stirred Reactor (PaSR) Model 

It was already indicated that for the modelling of gas turbine combustors, the PSR 

approach on its own is not an appropriate model because it does not represent even 

macro-level inhomogeneities inside the combustor. Consequently, a partially-stirred 

reactor (PaSR) model was developed in such a way that variations in gas composition, 

temperature and residence time, which influence directly the rates of pollutant 

formation, in particular NOx formation, are described statistically; however, only gross 

flow features at the reactor exit are predicted. Following [45,51], in the PaSR model it is 

assumed that mixing is complete to a scale which is small compared with the combustor 

dimensions, but not on a molecular scale. Hence, within the zone there exists a number 

of well stirred eddies or fluid elements which have different residence times. Then, 

considering that the eddy size is small compared with the combustor dimensions, the 

distribution of fuel among the eddies can be approximated by a Gaussian (normal) 

distribution about the overall mean value, whose (standard) deviation represents how 

completely the flow inside the reactor is mixed [51]. 

Following this approach, the mixture fraction, f, 

݂ ൌ
ሶ݉ ௙

ሶ݉ ௙ ൅ ሶ݉ ௔
ൌ ൬1 ൅

1
߶. ௦ܴܣܨ

൰
ିଵ

 (3-1) 

is assumed to be normally distributed about the mean value and with a given (standard) 

deviation. The nature of the Gaussian distribution is such that its probability density 

function (PDF) only tends to zero as f tends to ±∞; however, in practice the mixture 

fraction only varies from 0 to 1. In this work a ‘Clipped Gaussian’ distribution (Figure 

3-3) has been adopted. 
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Figure 3-3. Gaussian vs. Clipped Gaussian distribution 

As illustrated in Figure 3-3, a Clipped Gaussian function is basically a 

renormalised, truncated Gaussian function. The characteristic parameters of the Clipped 

Gaussian distribution, i.e., mean value and deviation (variance), are determined 

iteratively from those ones corresponding to the Gaussian (normal) distribution. The 

main advantage of using a Clipped Gaussian function is that the mixture fraction PDF 

integral from 0 to 1 (Clipped Gaussian distribution) is equal to the corresponding 

integral over the range ±∞ (Gaussian distribution). Additional details about Clipped 

Gaussian functions can be found in [52]. 

Before using the PaSR as described so far, it is necessary to know the value of the 

(standard) deviation corresponding to the Gaussian distribution of the mixture fraction, 

so that it is possible to calculate the mean value and deviation (variance) of the Clipped 

Gaussian distribution. In this sense, Fletcher and Heywood [51] introduced a parameter 

called ‘mixing’ (or ‘unmixedness’ as it is sometimes referred to) parameter (S), defined 

as the (standard) deviation of the mixture fraction divided by its mean value, Eq. (3-2), 

which is a measure of the uniformity of turbulent mixing within the reactor, with S = 0 

corresponding to the completely mixed case. 

ܵ ൌ
ߪ
௠݂

 (3-2) 



Emissions Prediction Model 40 

 

Sturgess [53,54] indicates that the mixing parameter can be established 

empirically by matching modelling predictions to measured emissions data, and that its 

values would be expected to differ from combustor to combustor, depending on 

combustor primary zone details, that is where this type of reactors are intended to be 

used. However, he argues that since the functions of the primary zone are the same in 

any combustor, it could be anticipated that combustors belonging to same class (swirl-

stabilised annular combustors for instance) might have similar values of S. From the 

results of a sensitivity study carried out, Allaire et al. [41] concluded that the emissions 

of NOx and CO are strong functions of S, particularly idle CO. Thus, in their study [41] 

they varied the mixing parameter at each power setting in the engine certification data in 

such a way to minimise an objective function, which measured the difference between 

the emission indices of NOx and CO predicted and those corresponding to the engine 

certification data. 

As pointed out by other authors [41], unmixedness is difficult to estimate because 

there are a number of issues (fuel physical state, instantaneous mixing of gases and air, 

incomplete kinetic modelling, unmixedness itself, etc.) that are not accounted for 

following this approach, but which can be compensated by this parameter. In this work 

it is not intended to use the mixing parameter as a correction factor for everything the 

model does not capture properly. Thus, as illustrated in Figure 3-4, some sort of generic 

correlation between the mixing parameter and the reactor equivalence ratio has been 

utilised. For comparison purposes, this figure also shows values of the mixing 

parameter obtained by Sturgess [53] for the case of swirl-stabilised annular combustors, 

and those used by Allaire et al. [41] in their analysis of a single-annular combustor. 

However, the reader must bear in mind that there is no such a generic correlation 

between the mixing parameter and the equivalence ratio, as highlighted in [53]. This 

correlation should be therefore verified each time that a particular engine/combustor 

configuration is being modelled. 

Finally, it is important to emphasise that in order to both keep the model 

developed as simple as possible, and avoid an increase in the level of uncertainties in 

the results obtained (originated from assumed values for certain parameters that are not 

available in open literature), some phenomena that occur inside the combustor such as 
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fuel evaporation, combustion unsteadiness, and flow recirculation, among others, have 

not been included in the emissions model described in the present work. 

 
Figure 3-4. Unmixedness vs. Equivalence ratio (Sturgues, 1998 [53]; Allaire et al. [41]) 

3.4  
Pollutant Formation Modelling 

In this section, the algorithms utilised for modelling the formation of the four 

pollutants of interest, namely NOx, CO, UHC, and soot/smoke, in each of the three 

types of generic reactors described previously are summarised. 

3.4.1  
Oxides of Nitrogen (NOx) 

The oxides of nitrogen – nitric oxide (NO) and nitrogen dioxide (NO2), 

collectively referred to as NOx – are one of the pollutants that have generated most 

concern during the last years. This is mainly due to fact that, even though NOx 

emissions from aircraft engines reach their maximum value during take-off and climb-

out, a large part of the total amount of NOx emitted by a long range aircraft – up to 80% 

as indicated in previous works [55] – is released at high altitudes, where aircraft are the 

main if not the only ones responsible for the emission of this type of pollutant. Most of 

the NO formed in combustion subsequently oxidises to NO2 [56]. But at elevated 

temperatures, NO2 removal is rapid, due to the presence of high radical concentrations, 

and NO2 will be converted back to NO [57]. Consequently in most flames, formation of 
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NOx is based on NO formation. NOx can be produced by four mechanisms [56]: (i) 

thermal NO, (ii) nitrous oxide (N2O) mechanism, (iii) prompt NO, and (iv) fuel NO. 

3.4.1.1  
Thermal NO and N2O Mechanism 

Thermal NO is produced by the oxidation of atmospheric (molecular) nitrogen in 

high temperature regions of the flame and in the post-flame gases [56]. In this work, the 

thermal NO formation rate is predicted according to the extended Zeldovich mechanism 

[51, 56-58]: 

ଶܰ ൅ ܱ ՞ ܱܰ ൅ ܰ R1 (3-3) 

ܰ ൅ ܱଶ ՞ ܱܰ ൅ ܱ R2 (3-4) 

ܰ ൅ ܪܱ ՞ ܱܰ ൅  R3 (3-5) ܪ

and the N2O contribution to the formation of NO according to [51,59]: 

ܪ ൅ ଶܱܰ ՞ ଶܰ ൅  R4 (3-6) ܪܱ

ܱ ൅ ଶܱܰ ՞ ଶܰ ൅ ܱଶ R5 (3-7) 

ܱ ൅ ଶܱܰ ՞ ܱܰ ൅ܱܰ R6 (3-8) 

Then in order to calculate the thermal NO formation rate from the mechanisms 

described above, it is necessary to determine the concentrations of molecular oxygen 

(O2), molecular nitrogen (N2), oxygen (O), hydroxyl radical (OH), hydrogen (H), 

nitrogen (N), and N2O. Thus, in accordance with previous works [45,51,59], assuming 

that (i) the concentrations of O2, N2, O, OH, and H are given by their equilibrium values 

at the local temperature, pressure, and mixture fraction (NO formation reactions slower 

than energy-releasing reactions), and (ii) the concentrations of N and N2O are in steady 

state (N and N2O formation rates faster than NO formation rate), a rate equation that 

computes the changes in NO mass fraction (YNO) can be written as (see details in 

Appendix B): 

݀ ேܻை

ݐ݀ ൌ
ഥேைܯ2
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൅
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1 ൅ ଶܭ

ൠ (3-9) 
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In Eq. (3-9), α is defined as α = [NO]/[NO]e. In this work, α is calculated using 

actual values of NO concentration from a previous calculation step (i.e., upstream 

reactors). Ri denotes in turn a ‘one way equilibrium’ reaction rate. For instance, from 

Eq. (3-3), R1 = k1f[NO]/[NO]e, where k1f is the forward reaction rate coefficient. In this 

study, the rate coefficients have been taken from Miller and Bowman [58]. Additionally 

K1 and K2 are defined as K1 = R1/(R2 + R3) and K2 = R6/(R4 + R5). The last term on the 

right hand side of Eq. (3-9) represents the N2O contribution to the NO rate formation. 

For typical gas turbine operating conditions, this term is generally negligible [45]. Eq. 

(3-9) as shown is directly utilised in the reactor models described above. 

3.4.1.2  
Prompt NO 

What characterises prompt NO formation is the fact that it is formed at a rate 

faster than that calculated from the thermal NO mechanism described before. Three 

sources of prompt NO in hydrocarbon fuel combustion can be then identified [57]: (i) 

non-equilibrium O and OH concentrations, which accelerate the rate of formation of 

NOx through the thermal NO mechanism; (ii) the Fenimore prompt NO mechanism 

(reaction of hydrocarbon radicals with molecular nitrogen); and (iii) reaction of O atoms 

with N2 to form N2O, and subsequently NO. In this study, the rate of NO formation 

through this mechanism (prompt NO) is estimated according to a modified version of 

the global kinetic parameter derived by De Soete [60], and following the approach 

utilised in [61] (considering Jet-A as the fuel in this particular case, which can be 

represented by C12H23): 

݀ ேܻை

ݐ݀ ൌ ቆ
ഥேைܯ
ߩ ቇ ௣݂௥݇ᇱ௣௥ሺሾܱଶሿ௘ሻ௔ሾ ଶܰሿ௘ሾܥଵଶܪଶଷሿ݁݌ݔ ൬

െ36499.507
ܶ ൰ (3-10) 

where, 

௣݂௥ ൌ 4.75 ൅ ݔ0.0819 െ 23.2߶ ൅ 32߶ଶ െ 12.2߶ଷ 

݇ᇱ௣௥ ൌ 6.4 ൈ 10଺ ൬
0.0820575ܶ

ܲ ൰
௔ାଵ

 
(3-11) 
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ܽ ൌ

ە
ۖ
۔

ۖ
ۓ 1.0, ܺைమ ൑ 4.1 ൈ 10ିଷ

െ3.95 െ 0.9 ln ܺைమ , 4.1 ൈ 10ିଷ ൏ ܺைమ ൑ 1.11 ൈ 10ିଶ

െ0.35 െ 0.1 ln ܺைమ , 1.11 ൈ 10ିଶ ൏ ܺைమ ൏ 0.03
0.0, ܺைమ ൒ 0.03

 

In equations (3-10) and (3-11) fpr is a correction factor that incorporates the effect 

of fuel type, and a is the oxygen reaction order which is calculated as a function of the 

oxygen mole fraction (ܺைమ). Additional details of these equations can be found in [61]. 

Since aviation fuels (kerosenes and other light distillate fuels) do not contain significant 

levels of fuel-bounded nitrogen, the contribution of Fuel NO to the NO rate formation 

will be insignificant. Thus, the NOx formed by the Fuel NO mechanism has not been 

included in this work. 

3.4.2  
Carbon Monoxide (CO) 

As highlighted in [54,56], much of the CO arises from incomplete combustion of 

the fuel. When temperatures are very high, CO emissions will be high due to 

dissociation of carbon dioxide (CO2). For short-residence times and/or low reactant 

temperatures, they will also be high due to incomplete combustion. The modelling of 

CO emissions in this work is carried out assuming that during combustion all fuel first 

reacts instantaneously to CO and water (H2O), and then the CO conversion (oxidation) 

proceeds through [62,63]: 

ܱܥ ൅ ܪܱ ՞ ଶܱܥ ൅  R7 (3-12) ܪ

From Eq. (3-12), assuming equilibrium conditions for OH and H, and taking into 

account carbon atoms conservation, similarly to what was considered in [62], the rate of 

CO oxidation can be written as (for more details, see Appendix C): 

݀ ஼ܻை

ݐ݀ ൌ െ݇଻௙ ቆ
ഥ஼ைܯ
ߩ ቇ ሾܱܪሿ௘ ቊ1 ൅

ሾܱܥሿ௘
ሾܱܥଶሿ௘

ቋ ሺሾܱܥሿ െ ሾܱܥሿ௘ሻ (3-13) 

where k7f represents the forward reaction rate constant of Eq. (3-12) – reaction R7. 

Equation (3-13) is integrated along all the reactors used to model a particular 

combustion chamber, in a similar way to the case of NOx emissions.   
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3.4.3  
Unburned Hydrocarbons (UHC) 

The reaction kinetics of UHC and soot/smoke, and consequently their modelling, 

are much more complex than for CO and NOx formation. Thus, in this work only 

simplified expressions for the formation rate of these pollutants will be used to predict 

their emission levels. The modelling of the UHC is performed following the 

methodology described in [64]. It is assumed that the fuel initially reacts according to: 

ଶଷܪଵଶܥ ൅ 6ܱଶ ՞ ܱܥ12 ൅  ଶ R8 (3-14)ܪ11.5

The quasi-global reaction rate for Eq. (3-14) – reaction R8, 

݀ ஼ܻభమுమయ
ݐ݀ ൌ െ2 ൈ 10ହ ൥

൫ܯഥ஼భమுమయ൯
଴.ହ

ഥைమܯ
൩

                     ൈ ൬
9ܶ
1000 െ

1
2൰ܲ

଴.ଷ
ைܻమ݁݌ݔ ൬

െ6914.947
ܶ ൰ ൫ ஼ܻభమுమయ൯

଴.ହ
 

(3-15) 

is then integrated along all the reactors used to simulate a given combustor chamber, 

starting at an initial concentration corresponding with the fuel entering to the first 

reactor(s). Additional details about the UHC kinetic model can be found in Appendix D. 

3.4.4  
Soot/smoke 

The production of soot, which if it is not subsequently oxidised will be emitted 

through the combustor exhaust as smoke, is mainly the result of incomplete conversion 

of carbon elements in the fuel to CO and CO2 [45]. In gas turbine combustors it is 

produced in the richest parts of the combustion zone, and it is undesirable not only from 

an environmental point of view, but also because it is the principal source of thermal 

radiation to the combustor liner. Although the details of the mechanism remain poorly 

understood [40,45], the main processes involved in soot formation and oxidation can be 

characterised by four steps: particle nucleation, surface growth, coagulation, and 

oxidation. The two first stages constitute the soot formation processes, which are 

followed by the soot oxidation process in which the soot is burned to form gaseous 

products such as CO and CO2. Soot consists mostly of carbon (about 96%), and a 

mixture of hydrogen, oxygen, and other elements [56]. Thus the soot density is 
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generally accepted between 1800-2000 kg/m3 which is close to graphite density. In this 

study, the soot formation process is modelled according to an empirical expression 

suggested by Rizk and Mongia [65]. Thus the rate of soot formation (Sf), in m3 soot/s, is 

expressed as (omitting the term for soot oxidation): 

௙ܵ ൌ 1.4887 ൈ 10ିସ ൬
߶. ௦ܴܣܨ

ሶ݉ ௔ܶ
൰ ܲଶሺ18 െ ௖௢௡௧ሻଵ.ହܪ ൬

ሶ݉ ௚೟
௦௢௢௧ߩ

൰ (3-16) 

In the soot oxidation process, the major oxidation species are considered to be 

oxygen molecules (O2) and hydroxyl radical (OH). The rate of soot oxidation ( ைܹమ
ᇱ ), in 

kg soot/m2.s, due to O2 is determined from the Nagle and Strickland-Constable formula 

[66]: 

ைܹమ
ᇱ ൌ 12 ቊቈݔ௦ ቆ

݇஺݌ைమ
1 ൅ ݇௓݌ைమ

ቇ቉ ൅ ൣ݇஻݌ைమሺ1 െ  ௦ሻ൧ቋ (3-17)ݔ

where, 

௦ݔ ൌ ൮
1

1 ൅ ்݇
݇஻݌ைమ

൲ (3-18) 

The temperature dependence in Eq. (3-17) occurs via the reaction rate constants 

kA, kB, kZ, and kT, which in this study they are taken from [67]. Expressing Eq. (3-17) as 

a function of the surface area of the aerosol it becomes [68] (see details in Appendix E), 

ைܹమ ൌ .ଵ/ଷߨ 6ଶ/ଷ. ௩݂
ଶ/ଷ. ܰଵ/ଷ.ܹᇱ

ைమ/ߩ௦௢௢௧ (3-19) 

Following the same approach used in [68], the role of OH radical attack is 

evaluated from the kinetic theory of collision rate. Then the OH oxidation of soot is 

expressed as [68], 

ைܹு ൌ 10.14. .ߠ ௩݂
ଶ/ଷ. ܰଵ/ଷ. ܺைு. ܶିଵ/ଶ (3-20) 

where θ is the collision efficiency which has been chosen to be 0.2 in this study. The 

overall rate of soot oxidation is the sum of the terms given by equations (3-19) and 

(3-20), in m3 soot/m3.s. 

In order to predict the level of soot produced during combustion according to the 

methodology described, it is necessary to determine first two parameters: the particle 
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number density (N) and the soot volume fraction (fv). As pointed out in [68], it is 

possible to neglect the variations in number densities, N, and to adopt a suitable average 

number density (of the order of 1018 m-3). This parameter is user-specified in this work. 

The soot volume fraction (fv) required during the combustor simulations is computed as 

the difference between the amount of soot formed and oxidised in the previous 

calculation step. Finally, the soot volume fraction at the end of the combustor chamber 

is utilised to calculate the particulate mass loading (PML), which is converted 

subsequently into Smoke Number (SN) using the correlation presented in [69], and 

reproduced in Appendix E for the sake of completeness. 

3.5  
Model Overview 

Before describing the application of the emissions prediction model developed to 

general case study, it is worth highlighting the main characteristics of the model, in 

terms of model architecture, programming language, etc. A schematic representation of 

the emissions model and its main modules is shown in Figure 3-5. In this figure only the 

main interactions (represented by arrows) among the modules are illustrated. The model 

has been coded using Fortran 90 as the main programming language. Even though a 

procedural language (Fortran 90) was utilised, modularity and extensibility features 

were considered as the main factors determining the general architecture of the model. 

This was motivated by the fact that, in future, novel concepts of aircraft gas turbine 

combustors will need to be accommodated. 

As illustrated in Figure 3-5, the emissions model comprises five main modules 

(bigger rectangles in Figure 3-5). The main module is the ‘Emissions_Index’ module. 

This module drives the computation process and, among other things, it reads data from 

the input file and writes results to the different output files. The ‘Emissions_Index’ 

module uses (i.e., makes calls to) subroutines from the ‘Chamber’ module, in which the 

different combustion chamber configurations (currently, only conventional combustor 

configurations are available) has been coded. The ‘Region’ module contains several 

subroutines that model the different regions of combustion chambers, such as primary, 

intermediate, and dilution zone. These subroutines are used by the ‘Chamber’ module. 

The ‘Reactor’ module contains, in turn, the subroutines developed for modelling the 
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3.6  
Case Study 

3.6.1  
General Description 

It is clear that, in order to demonstrate that the methodology developed for gas 

turbine emissions prediction is robust, an extensive validation process of the algorithms 

implemented should be carried out using detailed gas turbine data. Unfortunately, such 

data is considered sensitive information by industry and can not be found in the public 

domain. In order to provide insight into the results that can be obtained using this 

methodology, a general case study involving the simulation of a typical two-spool high 

bypass ratio turbofan (with separate exhausts) using a (Rich-burn Quick-mix Lean-burn, 

RQL) conventional combustor was analysed (GE CF6-80E1 engine data available in the 

public domain was used for the simulations). This particular aircraft engine was selected 

for the present analysis because other researchers [42,43] in the past have utilised 

engines belonging to the same family. 

All the engine simulations were performed using TurboMatch [70], and 

incorporated data from the open literature [71,72]. Thus, Figure 3-6 shows the predicted 

engine power at static sea-level conditions as a function of the fuel flow supplied. The 

respective values associated with the engine certification data [73] are also included in 

this figure for comparison purposes. The conventional combustor used in the particular 

engine simulated in this case study is modelled following a similar approach to that 

utilised by Rizk and Mongia [74] for simulating conventional combustors. 

Accordingly, Figure 3-2 illustrates the reactors arrangement utilised in this 

particular case. Note that, unlike the Rizk and Mongia’s work, in this work the first part 

of the combustor primary zone, which simulates the initial mixing and reaction of the 

fuel with the nozzle and swirler air – called flame front (FF), is modelled using a 

partially-stirred reactor (PaSR), which takes into account inhomogeneities in this 

combustor region. In turn, the second part of the combustor primary zone, called 

primary zone (PZ), the combustor intermediate (or secondary) zone (IZ), and the 

combustor dilution zone (DZ) are modelled by a sequence of perfectly-stirred reactors 

(PSRS). 
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Figure 3-6. Fuel flow vs. Power setting (ICAO Databank [73]) 

Other details involved in the combustor modelling are similar to those considered 

in reference [74]. Thus, each of the combustor regions upstream the DZ (FF, PZ, and 

IZ) is simulated by two generic reactor models in parallel that occupy the core and near-

wall (NW) regions of each of these zones. At the end, the outcomes of both core and 

near-wall reactors mix together to form a single PSRS, which models the combustor 

DZ. Since it was not possible to obtain detailed engine/combustor data for carrying out 

these case study simulations, estimates of the same were performed based on 

information publicly available. Table 3-1 summarises the combustor data utilised in the 

combustor simulations carried out in this general case study. 

Table 3-1. GE CF6-80E1 combustor data 

Zone FF PZ IZ DZ 
Flow Area [m2] 0.21 0.21 0.21 0.21 

Length [m] 0.031 0.031 0.094 0.094 
Air inflow fraction 0.20 0.20 0.20 0.40 

     
When simulating a conventional combustor using the reactors arrangement shown 

in Figure 3-2, in reference [74] three arbitrary model parameters were defined: F1 

(fraction of fuel reaching the near-wall mixing zone), F2 (proportion of the swirler and 

dome air that goes into the PaSR reactor - lean blowout reactor in the original work), 

and F3 (fraction of the burning gases admitted into the second near wall reactor). In 

addition to these three parameters, in this work two new ones, F4 and F5, were defined. 
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F4 and F5 represent the fraction of air initially assigned to the PZ and IZ that goes into 

their near-wall reactors, respectively. 

A sensitivity analysis of the influence of these arbitrary parameters on the level of 

emissions produced by this particular combustor was carried out. Details of the results 

obtained from this sensitivity analysis can be found in Appendix F. Table 3-2 shows the 

values of the model parameters utilised for producing the emission results presented in 

this work. These values were selected in such a way to minimise the difference between 

the level of emissions predicted using the model developed and the corresponding one 

associated with the engine certification data [73]. A summary of the results obtained 

taking into account the considerations described above is presented in the following 

section. 

Table 3-2. Model parameters – Combustor configuration 

F1 F2 F3 F4 F5 
0.15 0.60 0.15 0.20 0.20 

     

3.6.2  
Results and Discussion 

The main results obtained in this case study, which basically involves a 

verification exercise of the emissions prediction model developed, are summarised in 

this section. Firstly the evolution of some characteristic parameters including 

equivalence ratio, temperature, and residence time along the combustor axial direction 

is presented. Then predicted levels of the combustor exhaust emissions in terms of 

emissions indices (EI) are shown. 

3.6.2.1  
Axial Position 

All results shown in this section relate to the variation of the main characteristic 

parameters of the combustor along its axial direction (Figure 3-7 to Figure 3-9), and 

correspond to the case in which the engine is operating at full power conditions. Thus, 

in Figure 3-7 variations in equivalence ratio and mixture fraction along of the 

combustor axial direction can be observed. As a consequence of the combustor airflow 

partition, and the assumed values for the model parameters (F1 – F5), it can be observed 
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from this figure that the core equivalence ratio in the PZ is relatively high, which creates 

a relatively low core temperature, as can be observed in Figure 3-8. One of the 

consequences of this relatively low core temperature might be the underestimation of 

the level of NOx produced, due to the direct dependence of this pollutant to high 

temperatures. However, according to the model requirements, this should not really 

represent a problem as long as the emissions trends are representative. 

 
Figure 3-7. Equivalence ratio and Mixture fraction vs. Axial position 

 
Figure 3-8. Temperature and Density vs. Axial position 
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In Figure 3-8 it is also possible to see the inverse relationship between 

temperature and density, the higher the temperature, the lower the density. Certainly, 

density is very important because it is directly related to the combustor residence time 

and, consequently, to the level of the pollutants formed inside gas turbine combustors. It 

is important to emphasise that, in order to calculate the weighted average of the 

parameters that characterise the inlet conditions to the combustor DZ, the mass flow rate 

of the combustion gases has been utilised. This last aspect is clearly observed in Figure 

3-9, which shows the evolution of the combustor residence time along the combustor 

axial direction. 

 
Figure 3-9. Total residence time vs. Axial position 

3.6.2.2  
Emission Indices 

The predictive capability of the emissions model developed is illustrated in Figure 

3-10 to Figure 3-13, which show the levels of NOx, CO, UHC, and soot/smoke 

produced by the engine as a function of its power setting. From these figures it is 

possible to conclude that in general the trends observed in practice are well reproduced 

for the four pollutants being modelled. However, as already mentioned, due to all the 

complexity involved in modelling the kinetics of UHC and soot/smoke, considerable 

uncertainty surrounds the prediction of these two pollutants. By contrast, the modelling 

of NOx and CO formation is more secure and the emissions trends predicted are 

considered reliable. 
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Figure 3-10. NOx emissions vs. Power setting (ICAO Databank [73]) 

 
Figure 3-11. CO emissions vs. Power setting (ICAO Databank [73]) 

As can be observed in Figure 3-10, for the conventional combustor simulated in 
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outlet temperature (COT) and residence time (tres) as a function of the engine power 

setting. 

 
Figure 3-12. UHC emissions vs. Power setting (ICAO Databank [73]) 

 
Figure 3-13. Soot/smoke emissions vs. Power setting (ICAO Databank [73]) 
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include recirculation zone patterns have been made. Arbitrary factoring of residence 

time in the absence of more detailed flow field information from measurement or CFD 

computations would appear inappropriate. Extension of the models to potential future 

aircraft gas turbine combustors, based on novel concepts such as those of Lean Direct 

Injection (LDI) and Lean Pre-vaporised Premixed combustion (LPP), will involve the 

introduction of further generic reactor models incorporating, for example, fuel droplet 

evaporation and flame stability considerations. 

 
Figure 3-14. Combustor outlet temperature (COT) and Residence time (tres) vs. Power setting 

As mentioned previously, the ultimate goal of the emissions prediction model 

described in this chapter involves its use in efficient optimisation processes. These 

processes will be carried out with the objective of evaluating and optimising both 

aircraft flight trajectories and aircraft engine cycles. It is expected that these 

optimisation processes eventually allow the determination of ‘greener’ aircraft 

trajectories and engine cycles, which help to minimise the impact of commercial aircraft 

operations on the environment. The following chapters describe the application of the 

emissions prediction model described for these purposes. 
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4  
Trajectory Optimisation 

This chapter is focused on optimisation problems and, in particular, on those main 

aspects that characterise trajectory optimisation problems. The first sections discuss 

general aspects of optimisation, as well as a general classification of the different 

optimisation problems that can be found in practical applications. Aircraft trajectory 

optimisation problems are then classified according to their main features. This is 

followed by a description of the main numerical techniques that can be utilised for 

solving this particular type of optimisation problems. The description presented is only 

a summary of the main features that characterise these techniques. For further 

information about them the reader may refer to the books by Walsh [75], Schwefel [76], 

Bunday [77], Fletcher [78], Everit [79], Krotov [80], and Rao [81]. Finally, the last 

section briefly describes part of the past experience on optimisation problems through 

the presentation of a summary of some of the research work developed about this 

subject at both Cranfield University, and other research organisations. 

4.1  
General Aspects of Optimisation 

Optimisation can be seen as the process of obtaining the best result or the best 

possible solution under any given set of circumstances. Thus optimisation can be 

defined as the science of determining the best solutions to certain mathematically 

defined problems, which are often representations of physical reality [78].  

Alternatively, it can be defined as the process of finding the conditions that yield the 

maximum or minimum value of a given function [81]. From a mathematical point of 

view there is no reason in considering both maximisation and minimisation, since the 

maximisation process of a given function is equivalent to the minimisation process of 

the negative of the same function. Thus only one the two processes, maximisation or 

minimisation, could be used to describe a general optimisation process. 
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As expected, there is no a single method available for efficiently solving all 

optimisation problems. Thus a number of optimisation methods have been developed in 

the past, many of which are customised for a specific problem. One particular group of 

optimisation methods is the optimum seeking methods, also known as mathematical 

programming techniques, which are generally studied as a part of operations research. 

Operations research is the branch of mathematics concerned with both the application of 

scientific methods and techniques to decision making problems, and the establishment 

of the best or optimal solutions [81]. Table 4-1 shows a particular classification of the 

methods of operations research according to Rao [81], in which it is possible to observe 

the most important mathematical programming techniques developed so far. 

Mathematical programming techniques are particularly important because they 

determine the minimum of a function of several variables under a prescribed set of 

constraints. Stochastic process techniques and statistical methods, in turn, are used to 

analyse, respectively, problems described by a set of random variables and experimental 

data [81]. In this chapter, a particular emphasis is placed on some of the main 

mathematical programming techniques and their suitability to aircraft trajectory 

optimisation problems. 

Table 4-1. Methods of operations research [81] 

4.1.1  
Optimisation Problem Statement 

There are different ways of stating an optimisation problem which mainly depend 

on its type and method utilised to obtain its solution. Thus, from a generic point of view, 

Mathematical Programming Techniques Stochastic Process Techniques Statistical Methods
Calculus methods Statistical decision theory Regression analysis
Calculus of variations Markov processes Cluster analysis, pattern recognition
Nonlinear programming Queuing theory Design of experiments
Geometric programming Renewal theory Discriminate analysis (factor analysis)
Quadratic programming Simulation methods
Linear programming Reliability theory
Dynamic programming
Integer programming
Stochastic programming
Separable programming
Multiobjective programming
Network methods: CPM and PERT
Game theory
Simulated annealing
Genetic algorithms
Neural networks
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an optimisation or a mathematical programming problem – constrained problem – can 

be stated as follows [81]: 

Find 

ܺ ൌ

ە
۔

ۓ
ଵݔ
ଶݔ
ଷݔ
ڭ
௞ۙݔ
ۘ

ۗ
 (4-1) 

which minimises f(X), subject to ‘c’ constraints 

݃௝ሺܺሻ ൑ 0, ݆ ൌ 1,2,3, … ,݉
݄௟ሺܺሻ ൌ 0, ݈ ൌ ݉ ൅ 1,݉ ൅ 2,… , ܿ

 (4-2) 

where X is an k-dimensional vector called the design vector, f(X) is called the objective 

function, and gj(X) and hl(X) are known as inequality and equality constraints, 

respectively. Additionally, the number of variables k and the number of constraints m 

and/or c do not need to be related in any way. 

During the design process any engineering system or component is defined by a 

set of quantities which can be viewed as either fixed or variable. All quantities that are 

treated as variables in the design process are called design or decision variables and 

collectively represent the design vector X. In practice, the design variables cannot be 

chosen arbitrarily; rather, they have to satisfy certain specified requirements. The 

restrictions that must be satisfied to produce an acceptable design are collectively called 

design constraints. Thus the design constraints are intended to limit the range of the 

design variables within values, which are meaningful for the problem being analysed. 

As highlighted in [81], conventional design procedures aim at finding an 

acceptable design which merely satisfies the requirements of the problem. However, in 

general, there will be more than one acceptable design, and the purpose of optimisation 

is to choose the best one of the many acceptable designs available. Thus a criterion has 

to be chosen for comparing acceptable designs and for selecting the best one. The 

criterion, with respect to which the design is optimised, when expressed as a function of 

the design variables, is known as the criterion or merit or objective function [81]. The 

choice of the objective function is governed by the nature of problem, and it is 

straightforward in most design problems. However, there may be cases where the 

optimisation with respect to a particular criterion may lead to results that may not be 
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satisfactory with respect to another criterion. Therefore the selection of the objective 

function can be one of the most important decisions in the whole optimum design 

process [81]. 

4.1.2  
Classification of Optimisation Problems 

There are several criteria and methodologies for classifying and solving 

optimisation problems, respectively [75-81]. Here, in order to identify the main features 

of trajectory optimisation problems, the different classifications of optimisation 

problems will be briefly reviewed. Thus, optimisation problems can be classified 

according to the following criteria [81]: 

• Existence of constraints: (i) constrained or (ii) unconstrained, depending on 

whether or not constraints exist in the problem. 

• Nature of the design variables: (i) parameter or static optimisation problems, 

where the objective is to find values to a set of design parameters that 

minimises some prescribed function of these parameters subject to certain 

constraints; and (ii) trajectory or dynamic optimisation problems, where the 

objective is to find a set of design parameters, which are all continuous 

functions of some other parameter, that minimises an objective function 

subject to a set of constraints. 

• Physical structure of the problem: (i) optimal control and (ii) non-optimal 

control problems. This is further discussed at the end of this section. 

• Nature of the equations involved (objective function and constraints): (i) 

linear, (ii) nonlinear, (iii) geometric, and (iv) quadratic programming 

problems. In particular, if any of the functions among the objective and 

constraint functions is nonlinear, the problem is called nonlinear 

programming (NLP) problem. 

• Permissible values of the design variables: (i) integer programming 

problems, where some or all of the design variables are restricted to take on 

only integer values; and (ii) real-valued programming problems, where all 

the design variables are permitted to take any real value. 
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• Deterministic nature of the variables: (i) deterministic programming 

problems, in which all of the parameters involved are deterministic; and (ii) 

stochastic programming problems, in which some or all of the parameters 

involved are probabilistic (nondeterministic or stochastic). 

• Separability of functions: (i) separable or (ii) non-separable programming 

problems, depending on whether or not the objective function and the 

constraints are separable. And, 

• Number of objective functions: (i) single or (ii) multi-objective 

programming problems, depending on the number of objective functions 

utilised. 

Since trajectory optimisation problems are usually treated as optimal control 

problems [82], it is important to highlight how an optimisation problem is stated from 

the point of view of the optimal control theory. An optimal control problem is a 

mathematical programming problem which can be formulated as a collection of stages, 

where each stage evolves from the preceding stage in a prescribed manner [81]. It is 

usually described by the control (design) variables, which define the system and govern 

the evolution of the system from one stage to the next; and by the state variables, which 

describe the behaviour or status of the system in any stage. Thus, the problem involves 

determining a set of control variables such that the total objective function (performance 

index, PI) over all the stages is minimised subject to a set of constraints on the control 

and state variables. An optimal control problem can be stated as follows [81]: 

Find 
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subject to the constraints: 
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,௜ݔ௜ሺݍ ௜ሻݕ ൅ ௜ݕ ൌ ,௜ାଵݕ ݅ ൌ 1,2, … , ݏ
݃௝൫ݔ௝൯ ൑ 0, ݆ ൌ 1,2, … , ݏ
݄௟ሺݕ௟ሻ ൑ 0, ݈ ൌ 1,2, … , ݏ

 (4-5) 

where xi is the ith control variable, yi the ith state variable, and fi the contribution of the ith 

stage to the total objective function; gj, hl, and qi are functions of xj, yl and xi and yi, 

respectively, and s is the total number of stages. 

4.2  
Trajectory Optimisation Problem 

According to the classification of optimisation problems given in the previous 

section, an aircraft trajectory optimisation problem can be classified as: 

• Constrained – design constraints will be used to limit the range of the design 

variables, 

• Dynamic – each design variable will be a function of one or more 

parameters (e.g., time), 

• Optimal control – a number of stages, where each stage evolves from the 

preceding one in a prescribed manner, will be involved, 

• Nonlinear – the function (s) relating inputs (design variables) and outputs 

(objective function) is (are) unknown and it (they) is (are) presumed to be 

nonlinear, non-smooth, and non-differentiable,    

• Real-valued – most of the design variables will be permitted to take any real 

value, 

• Deterministic – most of the parameters involved are deterministic, 

• Non-separable – objective functions and constraints are non-separable, and 

• Multi-objective – more than one criterion (objective function) will need to 

be satisfied simultaneously. 

In addition, the problem can also be classified as multi-modal, as the space is 

unknown, but it is assumed that there are several local minima (or maxima). It can also 

be classified as multi-dimensional since a number of parameters will be involved during 

the optimisation process. 
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4.3  
Numerical Methods for Trajectory Optimisation 

The most important mathematical programming techniques that can be used for 

finding the minimum of a function of several variables under a prescribed set of 

constraints are indicated in Table 4-1. The classical methods of differential calculus 

when used in conjunction with Lagrange multipliers and Kuhn-Tucker conditions can 

be used to identify the constrained optimum point of a function of several variables. 

However, these methods lead to a set of nonlinear simultaneous equations that may be 

difficult to solve [81]. In turn, the techniques of nonlinear, linear, geometric, quadratic, 

or integer programming, which most of them are numerical techniques involving 

iterative processes, can be used for the solution of the particular class of problems 

indicated by the name of the technique. 

The last group of techniques shown in Table 4-1 (simulated annealing, genetic 

algorithms, and neural network methods) is a relatively new class of mathematical 

programming techniques, which have come into prominence during the last two 

decades. These techniques are inspired by nature and mimic aspects and/or processes 

that can be observed in natural environments, such as annealing, evolution, adaptation, 

and learning. Since it is not the objective of this work to describe in detail all methods 

that could be used for solving aircraft trajectory optimisation problems, only the main 

features of the most important ones, grouped according to Schwefel [76] – hill climbing 

methods, random search methods, and evolutionary methods, will be presented here. 

4.3.1  
Hill Climbing Methods 

These methods are most frequently applied in engineering design, and they are 

characterised by their manner of searching for a maximum (optimum), which 

corresponds closely to the intuitive way a sightless climber might feel his way from a 

valley up to the highest peak of a mountain [76]. These methods can be applied in one-

dimensional and multi-dimensional problems. The methods used for solving one-

dimensional problems can be classified as simultaneous and sequential methods. 

Simultaneous methods carry out a number of simultaneous trials in order to determine 

the value of the objective function at those points, and they declare then the point with 
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the smallest (largest) value the minimum (maximum). In sequential methods, in turn, 

the trials for determining a minimum are made sequentially, and intermediate results are 

retained, which are used to locate the next trial more favourably. Techniques used for 

solving one-dimensional problems are important because they constitute the basis of 

many of the multi-dimensional strategies currently available. In a general sense, multi-

dimensional methods extend the basic ideas used in one-dimensional optimisation 

techniques to several dimensions. These methods can be classified as [76]: direct search 

methods (coordinate method, pattern search, Rosenbrock method, simplex, and complex 

method, among others), gradient methods, and Newton methods. 

Direct search methods only use the values of the objective function during the 

optimisation process, i.e., they do not construct a model of the objective function; 

instead, the directions and to some extent the step lengths are fixed heuristically, or by 

other means, rather than in an optimal way [76]. The attraction of these techniques, 

which sometimes are called trial-and-error methods, lies in their simplicity and the fact 

that they have proved successful in practical applications. Examples of these methods, 

which are useful when the path followed to determine an optimum value is irrelevant, 

include those methods known as ‘hill climbing search’ and ‘simulated annealing 

search’, which are described by Russell and Norvig in reference [83]. 

The hill-climbing search algorithm is simply a loop that continually moves in the 

direction of increasing value, i.e., uphill, which terminates when it reaches a "peak" 

where no neighbour has a higher value [83]. Unfortunately, the hill climbing search 

method often gets stuck when it finds local maxima, because it does not have anywhere 

else to go. This problem appears due to fact that the hill-climbing algorithm never 

makes "downhill" movements towards states with lower values. In the simulated 

annealing search method, this problem of getting stuck on local maxima is corrected to 

some extent. This is done through the introduction of random walks that allows 

transitions out of local maxima and makes the algorithm more efficient and complete. 

The name of this method is derived from the simulation of thermal annealing of 

critically heated solids, where a slow and controlled cooling of a heated solid ensures 

proper solidification with a highly ordered, crystalline state that corresponds to the 

lowest internal energy [81]. 
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During the optimisation process, gradient methods such as the steepest descent 

and conjugate gradient use not only the value of the objective function, but also its first 

partial derivative. They assume that the objective function is continuously 

differentiable. Thus all hill climbing techniques which use search directions based on 

the first partial derivatives of the objective function are called gradient methods [76]. 

Due to fact that the gradient represents a local property of a function, to follow its path 

exactly would mean determining a curved trajectory in the n-dimensional space. 

However, this problem which is more complicated than the original optimisation one is 

only approximately soluble numerically [76]. In practice, a number of gradient methods 

exist which differ in the level of discretisation utilised, and thereby with respect to how 

exactly they follow the gradient trajectory. 

Newton methods, in addition, make use of the second partial derivatives of the 

objective function. These strategies exploit the fact that, if a function can be 

differentiated any number of times, its value at a given point can be represented by a 

Taylor series constructed at another point. The optimisation process is carried out in 

several steps involving the calculation of the objective function’s first and second 

derivatives, and the inversion of the Hessian matrix. Thus if the objective function is 

quadratic, then the optimisation process can be carried out in a single step involving the 

calculation of its first and second derivatives, and the inversion of the Hessian matrix. If 

this is not the case, the optimisation process will become an iterative one. Newton 

methods can present convergence problems, as in the case in which the Hessian matrix 

is singular (non invertible). The success (or failure) of finding the optimum value 

depends on the starting point, which in turn requires a good knowledge of the objective 

function and the search space. All variants of Newton methods focus on increasing the 

reliability of the Newton iteration without sacrificing the high convergence rate. 

Exceptions to this rule constitute the quasi-Newton methods, which do not evaluate the 

Hessian matrix explicitly, and the modified Newton methods for which first and second 

derivatives must be provided at each point [76]. 
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4.3.2  
Random Search Methods 

According to Schwefel [76], random search methods are those methods in which 

the parameters vary according to probabilistic, instead of deterministic, rules. Since 

these methods search for the optimum along random directions, which are not oriented 

with respect to the structure of the objective function, their use implies, in general, a 

higher cost because they do not take optimal single steps. However, the advantage is 

that these methods can be applied in every case [76]. These methods are utilised in 

situations in which many deterministic optimisation algorithms do not have the desired 

success. These situations include those ones in which (i) the partial derivatives of the 

objective function are discontinuous, (ii) the finite step lengths are greater than a narrow 

valley (the geometric picture of a minimisation problem), and (iii) the calculated or 

measured values are subject to stochastic perturbation (e.g., rounding errors in 

computational optimisation). Many of the deterministic optimisation methods described 

in the previous section, such as the hill climbing search and simulated annealing search 

methods, use random decisions at some stage to avoid premature termination of the 

search for an optimum. Consequently, a detailed description of the main random search 

methods currently available will not be presented here. For further information about 

these (random search) methods the reader may refer to the books by Schwefel [76] and 

Russell and Norvig [83]. 

4.3.3  
Evolutionary Methods 

Evolutionary techniques are inspired by nature and mimic biological structures 

and processes that can be observed in natural environments with the object of solving 

technical problems. They are based on Darwin’s principles of species evolution: the 

reproduction cycle, the natural selection, and the diversity by variation [84]. The most 

important evolutionary methods are: evolutionary programming, evolution strategies, 

genetic programming, and genetic algorithms. Since, by definition, different species do 

not exchange genetic material, evolutionary programming methods explicitly try to 

model organic evolution at the level of evolving species without making use of any kind 

of recombination [84]. Evolution strategies, on the other hand, contain an element of 
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recombination between solutions, in a similar manner to real numbered genetic 

algorithms. Genetic algorithms will be discussed later in this chapter. In genetic 

programming, in turn, the Darwinian principle of reproduction and survival of the 

fittest, and the genetic operation of sexual recombination are utilised to create a new 

offspring population of individual computer programs from the current population of 

programs [85]. 

Similarly to the other evolutionary techniques, genetic algorithms (GAs) are based 

on the principles of natural genetics and natural selection. Thus, the basic elements of 

natural genetics – reproduction, crossover, and mutation – are used in the genetic search 

procedure. Among all evolutionary techniques, GAs are probably the methods with the 

most widespread use, and they have had a significant impact on optimisation [83]. Ways 

in which GAs differ from traditional methods of optimisation include [81]: (i) a 

population of points is utilised for starting the procedure instead of a single design 

point, (ii) GAs use only the values of the objective function, i.e., the derivatives are not 

used in the search procedure, (iii) in GAs the design variables are represented as strings 

of binary (or real) variables that correspond to the chromosomes in natural genetics, (iv) 

the objective function value corresponding to a design vector plays the role of fitness in 

natural genetics, and (v) in every new generation, a new set of strings is produced by 

using randomised parents selection and crossover from the old generation. In general, 

the evolutionary methods described, in particular GAs, are extremely robust which 

make them well suitable for problems in which the functions relating inputs to outputs 

are unknown and may have an unexpected behaviour; and where standard nonlinear 

programming techniques would be inefficient, computationally expensive, and in most 

cases, find a relative optimum that is the closest to the starting point [81]. 

4.4  
Selection of the Trajectory Optimisation Technique 

Betts [82] considers evolutionary methods – including GAs and other techniques 

involving some sort of stochastic process during the optimisation process – as not being 

appropriate for trajectory optimisation problems and as being computationally inferior 

when compared to methods using gradient information. Even so, it appears that 

evolutionary techniques, in particular GAs, may indeed prove very suitable candidates 
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for solving the aircraft trajectory optimisation problem. A number of reasons to support 

this point of view are presented below: 

• GAs do not use specific knowledge of the optimisation problem domain. 

Instead of using previously known domain-specific information to guide 

each step, they make random changes to their candidate solutions and then 

use the fitness function to determine whether those changes produce an 

improvement. This is an important aspect because, with multi-model 

integration, for aircraft trajectory optimisation, the functions relating inputs 

to outputs are unknown. Since GAs optimisation routines are both model 

and problem independent, and they allow the users to run different models 

(simultaneously if required) for simulating different disciplines (such as 

aircraft and engine performance, emissions formation, etc.), they appear to 

be the ideal candidate. 

• GAs perform well in problems for which the fitness landscape is complex 

(discontinuous and multi-modal, i.e., many local optima), and in which a 

number of constraints and objectives (multi-objective) are involved. 

• GAs are well suited to solving problems where the space of all potential 

solutions is large (which is a particular characteristic of nonlinear 

problems). 

• GAs use a parallel process of search for the optimum, which means that 

they can explore the solution space in multiple directions at once. Thus, if 

one path turns out to be a dead end, they can easily eliminate it and progress 

in more promising directions, thereby increasing the chance of finding the 

optimal solution. 

From the four main evolutionary algorithms briefly described, GAs have been 

chosen because of their large number of previous successful applications worldwide, 

including those ones described in the works developed by Gulati [86], Rogero [87], 

Sampath [88], and Whellens [89]. However, it is important to highlight that the 

hybridisation of GAs with other optimisation techniques has not been discarded. This is 

due to fact that although GAs are an extremely efficient optimisation technique, they are 

not the most efficient for the entire search phases [87]. Thus, in future, hybrid 

optimisation methods will be considered as they have the potential to improve the 
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performance in a given search phase. Examples of these techniques constitute those 

ones associated with the use of both a random search phase during the beginning of the 

optimisation process – to increase the quality of the initial population, and a hill 

climbing phase at the end of the optimisation – to refine the quality of the optimum 

point once the global optimum region has been found. 

4.5  
Past Experience on Optimisation Problems 

In this section a review of the main studies carried out at Cranfield University and 

by other research organisations about optimisation problems using GAs and other 

techniques is presented and described in some detail. These studies constitute the basis 

of the algorithm for aircraft trajectory optimisation utilised in this work, and whose 

results will be detailed in the following chapters. 

A GAs-based optimisation technique for fault diagnostics of engines that are 

relatively poorly instrumented, i.e., having fewer measurements than performance 

parameters being determined, is presented by Gulati [86 ]. The lack of information due 

to the fewer measurements resulted in the need of using engine multiple operating 

points for carrying out the fault diagnostics processes. Thus, in the fault diagnostics 

processes carried out by Gulati, each engine operating point involved the use of one 

objective function (to be minimised) relating actual and simulated engine 

measurements. The use of multiple operating points implied therefore solving a multi-

objective optimisation problem. 

Consequently, the main issues addressed during Gulati’s work were related to the 

choice of the engine operating points, as well as the type of multi-objective optimisation 

technique to be used by the GAs-based optimiser. After implementing and testing other 

techniques, one based on the concept of Pareto optimality was selected and utilised for 

solving the multi-objective optimisation problem as it produced the best results. When 

tested on a number of engine types, the methodology and tool developed during this 

work demonstrated its ability to accurately identify faulty components and quantify the 

fault, as well as to carry out sensor fault detection, isolation, and accommodation 

processes. 
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Rogero [87] describes the development and application of a novel combustor 

preliminary design methodology which provides a partial automation of the combustor 

design process. The methodology is presented in the form of a design optimisation tool 

which was developed based on GAs. The problem posed by the optimisation of the 

combustor preliminary design was considered as being mainly constrained, multi-

objective, multi-modal, nonlinear, and non-differentiable. Taking into account these 

problem characteristics, GAs were selected as the technique for solving the optimisation 

problem due to their robustness and suitability for this type of problems. The capability 

of the optimisation tool developed was validated against different optimisation problems 

with known solutions, and the results demonstrated excellent optimisation performance 

especially for high-dimensional problems. The optimisation tool was then applied to 

several combustor design test cases, where it demonstrated its capability to successfully 

achieve the required performance targets and to optimise some key combustor 

parameters such as liner wall cooling flows and NOx emissions. Since it proved its 

usefulness in other applications, including wing profiles optimisation and combined 

cycle power plants performance optimisation, Rogero concluded that the methodology 

(and tool) developed could be applied for a wide range of engineering domains. 

The development and implementation of an integrated faults diagnostics model 

based on GAs is described by Sampath [88]. (i) The use of response surfaces for 

computing objective functions and increasing the search space exploration while easing 

the computation burden, (ii) the heuristic modification of GAs parameters through the 

use of master-slave configurations, and (iii) the use of elitist model concepts to preserve 

the accuracy of the solution, constitute the three main aspects that characterise 

Sampath’s model. Initially, a faults diagnostics system using basic GAs approaches was 

developed, and although the system detected component and instrumentation faults with 

a reasonable accuracy, it took a relatively long time for obtaining the solutions. Thus 

enhancements on the original system were introduced in three areas: search accuracy, 

convergence speed, and search space (hybrid model). 

The model accuracy was improved through the use of the concept of elitism 

(preservation of best solutions from the earlier generations), and the introduction of a 

master-slave configuration (continuing monitoring of the performance of a slave GAs 

model). Convergence speed was increased by using embedded expert systems, which 
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were implemented to guide genetic operators more directly towards better strings; and 

response surfaces, which through the construction of approximate models of the 

objective function reduced the number of full-cost functions evaluations. Finally, the 

optimisation of the search space was carried out through a hybridisation of the GAs 

model. Thus a problem specific search technique (nested neural network) was utilised to 

act as a pre-processor of the GAs model and to determine a sub-region in the search 

space where the optimum solution is likely to be found. From the simulations carried 

out, it was concluded that the hybrid model developed improved the accuracy, 

reliability, and consistency of the results obtained. Additionally, it also resulted in a 

significant reduction in the computational time. 

Whellens [89] investigated the feasibility, applicability, and value of a novel 

methodology for the preliminary design of aero engines, which involved the 

consideration of a number of disciplines including performance, gaseous emissions, 

noise, weight, and operating costs, among others. The investigation of this novel 

methodology was carried out through the development of a “pilot” MDO tool and its 

subsequent use in three case studies: (i) turbofan optimisation for minimum global 

warming potential (GWP), (ii) intercooled recuperated turbofan optimisation for 

minimum mission fuel burn, and (iii) environmental trade-offs for turbofans. In that 

work, a detailed description of the analysis tools developed for the modelling of the 

disciplines indicated above is presented, together with the GAs-based optimisation 

technique developed for performing the different MDO processes. 

The main results of the work developed by Whellens [89] indicated that a turbofan 

optimised for minimum cruise GWP has a lower OPR and TET than one optimised for 

minimum cruise SFC, subsequently resulting in a fuel-inefficient engine. Also, the 

results showed that the advantage of intercooled recuperated turbofans when compared 

to conventional ones is dependent on the thrust range of the engine. More specifically, 

the advantages of using intercooled recuperated systems are larger for smaller engine 

sizes. According to Whellens, the reason behind this finding is that the smaller the 

engine size, the lower the engine OPR, and the higher the effectiveness of the 

recuperator. Regarding the optimisation processes performed in order to analyze the 

environmental trade-offs for turbofans, the results indicated that, in general, increasing 

bypass ratio (BPR) and decreasing OPR is the best way of complying with the 
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regulations, while maintaining acceptable levels of fuel burn or stage cost performance. 

From the results, the author concluded that the positive experience with the pilot MDO 

suggests that an automated methodology for preliminary design of aero engines is 

feasible, applicable, and valuable; and that the next step would constitute the 

development of a full-scale MDO tool for similar purposes. 

An algorithm for trajectory optimisation based on direct methods is described by 

Hargraves and Paris [90]. Trajectory optimisation problems considered in that work 

involved those ones described by a sequence of vehicle/flight stages. In their approach, 

which in a fundamental sense involved the reduction of the optimal control problem to a 

NLP problem, they used linear interpolation for the control variables, a third-order 

Hermite interpolation for the state vector, and employed a collocation scheme to satisfy 

the differential equations involved. Several test cases were solved using the authors’ 

optimisation package NPDOT (Nonlinear Programming for Direct Optimisation of 

Trajectories). NPDOT was validated against CTOP (Chebyshev Trajectory 

Optimisation Program), and provided comparable performance with respect to 

computational time. The authors concluded that the method developed was found to be 

superior to other procedures in terms of cost and robustness. 

Schultz [91] describes a method for computing optimal three-dimensional aircraft 

trajectories based on Euler-Lagrange optimisation theory and energy state 

approximations. The optimum controls were found by either maximising or minimising 

a modified Hamiltonian containing two adjoint variables. The solution was then 

computed by iteration of these two variables. Since the convergence of the solution was 

sensitive to the values of these parameters, an iteration method was utilised to reduce 

this sensitivity. Schultz’s work concludes by showing results of the application of the 

methodology proposed to a number of cases studies involving the computation of 

optimal three-dimensional trajectories, minimum time to a given fixed position. 

The application of a direct transcription method, which combines a nonlinear 

programming algorithm with a discretisation of the trajectory dynamics, to the optimal 

design of a commercial aircraft trajectory, subject to realistic constraints on the aircraft 

flight path, is described by Betts and Cramer [92]. The applications were characterised 

by a relatively large number of trajectory phases involving nonlinear path constraints. 

The systems of differential algebraic equations, formed when the path constraints were 
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adjoined to the state equations, were solved using the transcription method. The tabular 

data utilised in the optimisation processes describing aircraft aerodynamics and 

propulsion was treated using tensor product B-spline approximations of order 3. In 

order to illustrate the usefulness of the methodology proposed, several optimisation 

processes involving a number of typical mission profiles, including minimum fuel, 

maximum range, and minimum take-off weight, were analysed and their results 

presented. From the results obtained, the authors concluded that the methodology 

presented is efficient and robust; and that, at the same time, it permits flexibility in the 

specification of both the problem constraints and the mission profile. 

A survey of numerical methods to solve trajectory optimisation problems is 

presented by Betts [82]. The optimisation problem is there formulated as an optimal 

control problem involving a number of phases or stages. All methods described exploit 

gradient information and involve application of Newton’s methods in order to determine 

the optimum value. They are classified as either indirect or direct methods. Indirect 

methods solve an optimal control problem by applying explicitly the optimality 

conditions stated in terms of the adjoint differential equations, the maximum principle, 

and the associated boundary conditions. Thus they require the analytical computation of 

the gradient and then the location of a set of variables such that the gradient is zero. In 

contrast, direct methods convert the original optimal control problem into a NLP 

problem which is solved directly using mathematical programming techniques. Thus 

they do not require an analytic expression for the necessary conditions and typically do 

not require initial guesses for the adjoint variables. One of the last paragraphs of Betts’ 

work deals with trajectory optimisation methods based on GAs. Interestingly, Betts 

classifies evolutionary methods, including GAs, simulated annealing, and other 

techniques involving some sort of stochastic process during the optimisation process, as 

not being appropriate for trajectory optimisation problems and as being computationally 

inferior when compared to methods using gradient information. 

Finally, a general method for the evaluation of theoretical optimal laps for a 

transient vehicle model is presented by Casanova [93], and applied to finding the 

minimum lap time for a Formula One racing car. The minimum time vehicle 

manoeuvring problem is formulated as an optimal control problem, and it is solved 

using mathematical programming techniques. It is indicated in Casanova’s work that 
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novel techniques were used to solve the resulting nonlinear programming problem, 

which enabled to achieve an effective optimisation with satisfactory accuracy, 

robustness, and computational efficiency. Car and circuit models were set up, and 

optimisation processes were carried out to analyse the sensitivity of the vehicle 

performance and configuration to the vehicle design parameters. The author of that 

work concluded that the methodology developed accurately quantifies the vehicle 

performance in terms of manoeuvring time; and that the optimal solution was in 

excellent agreement with the dynamics properties of the model of the vehicle. 

4.6  
Commercially Available Tools for Trajectory Optimisation 

In order to evaluate its mathematical performance, it is expected that the results 

obtained using the optimisation algorithms developed and/or adapted in this work are 

compared, at some stage, against other optimisation algorithms results. In this work, 

these other optimisation algorithms have been taken from commercially available 

software packages. There are a number of optimisation algorithms (i.e., optimisers) 

suitable for carrying out aircraft trajectory optimisation processes. A detailed 

description of all these optimisers and/or tools is beyond the scope of this work. Thus, 

in the last section of this chapter, only the main features of two of the most ‘important’ 

ones, Matlab [94] and Isight [95], will be described. From these two optimisers and/or 

tools, only one of them, Matlab [94], has been utilised in this work for verification 

and/or validation purposes of the optimisation algorithms developed and/or adapted. 

The other one, Isight [95], is expected to be used in future for verifying and/or 

validating further developments of these optimisation algorithms.    

As already mentioned, the commercial software Matlab [94] (and its associated 

optimisation algorithms) has been utilised for verifying and/or validating the 

optimisation algorithms developed and/or adapted in this work. This commercially 

available tool has been chosen because it is probably one of the most popular 

computational programs worldwide. Matlab optimisation toolboxes include several 

algorithms for solving a wide range of constrained and unconstrained continuous and 

discrete problems [94]. In addition to the traditional optimisation techniques, Matlab 

also includes optimisation algorithms based on GAs, direct search, and simulated 
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annealing. These algorithms can be used for problems that are difficult to solve with 

other techniques, such as those characterised for having objective functions that are 

discontinuous, highly nonlinear, stochastic, or having unreliable or undefined 

derivatives [94]. Its relative ease of use made it the ideal candidate for the initial 

comparisons with the optimisation algorithms utilised in this work. 

Isight is also a commercial optimiser used by academia and industry. Isight has 

also been integrated as part of the TERA [96,97] concept conceived by Cranfield 

University. TERA is a multi-disciplinary optimisation tool which increases the visibility 

of the risks and enables the user to compare and rank competing power-plant schemes 

on a formal and consistent basis. The TERA has been and is currently being deployed 

successfully on several European Union collaborative projects to assess the potential of 

geared turbofan concepts, intercooled and recuperated concepts, and open rotor 

concepts, among others. Isight provides users with a wide range of flexible tools for 

creating simulation process flows, involving not only other commercial packages but 

also internally developed programs, in order to automate the exploration of design 

alternatives and identification of optimal performance parameters [95]. In addition, in 

order to enable an effective and thorough exploration of the design space, Isight also 

allows the user to perform design of experiments, optimisation, and approximations 

[95]. Finally, it is important to emphasise that, for verifying and/or validating further 

developments of the optimisation algorithms developed and/or adapted in this work, 

other well known optimisers such as Isight [95] are expected to be used in future. 

 



  

 

5  
Genetic Algorithms-based Optimiser 

Since the optimisation algorithms utilised in the present research project are based 

on genetic algorithms (GAs), basic concepts associated with this optimisation technique 

are initially presented in this chapter. The only objective of reviewing these GAs 

concepts is to establish the necessary basis for understanding the main characteristics of 

the GAs-based optimiser utilised in this work. Thus only the main features that 

characterise this optimisation technique are presented in this chapter. For further 

information about GAs in general the reader may refer to the books by Quagliarella 

[84], Goldberg and Sastry [98], Luger [99], Haupt and Haupt [100], Callan [101], 

Goldberg [102], Gen and Cheng [103], and Goldberg [104]. The last part of this chapter 

provides a short description of the main characteristics of the GAs-based optimiser 

utilised in the present research project. The description presented highlights the main 

modifications introduced in the past in a general-purpose GAs library in order to adapt it 

to engineering design optimisation problems thereby maximising its performance. 

5.1  
Genetic Algorithms 

Genetic algorithms (GAs) are a stochastic approach utilised for optimisation and 

search processes based on the mechanisms of natural selection and Darwin’s main 

principle: survival of the fittest [84]. Among all evolutionary techniques, GAs are 

probably the most widely known methods currently. They also have perhaps the most 

widespread use. Their applications include, among others, game playing, classification 

tasks, engineering design, and computer programming [101]. This section is focused on 

GAs and their utilisation for finding (optimum) solutions to optimisation problems from 

the point of view of engineering design. Thus, the main mechanisms involved during an 

optimisation process using GAs are first summarised, and the main features 

characterising these mechanisms are then described in detail. 
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5.1.1  
Genetic Algorithms Mechanisms 

The mechanics of finding solutions to optimisation problems using GAs can be 

summarised as follows [102]. Let’s suppose that one wants to find a ‘solution’ to a 

given ‘problem’. In order to apply a genetic algorithm to that problem, the first step is to 

‘encode’ the problem as an artificial ‘chromosome’ (or chromosomes). There are 

different encoding methods available, for instance, binary encoding, integer encoding, 

real-number encoding, etc. Another step in solving the problem is to establish a way of 

differentiating good solutions from bad solutions. This typically involves the use of 

mathematical models that help to determine what good a solution is (standard notion of 

‘objective’ function [102]). Independently of the way in which good solutions are 

identified, it is necessary to have something that determines a solution’s relative ‘fitness 

to purpose’, and whatever it is will be used by the genetic algorithm to guide the 

evolution process of future generations. 

Having done that, the next step involves the evolution process of the solutions. 

This process starts by creating an initial ‘population’ of encoded solutions. There are 

two common ways of creating the initial population, randomly or by using good 

potential solutions previously determined. Regardless of the initialisation process, the 

idea is that the genetic algorithm searches from a population of solutions, not a single 

one. Once the initial population is created, ‘selection’ and ‘genetic operators’ will 

process the population iteratively until a given ‘stopping criterion’ is (or given ‘stopping 

criteria’ are) satisfied. At the end, the final population will contain, hopefully, better 

solutions than those present in the initial population. 

There are a variety of operators utilised in optimisation processes involving GAs, 

but the common ones are (i) selection, (ii) recombination (crossover), and (iii) mutation. 

Selection allocates more offspring to better individuals (principle of survival of the 

fittest imposed). There are different ways of carrying out the selection process; but, 

regardless of selection method utilised, the whole idea is to prefer better solutions to 

worse ones. However, simply selecting the best solutions from a previous generation is 

not enough, thus some means (e.g., recombination and mutation) of creating new and 

probably better individuals (potential solutions) need to be utilised. 
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Recombination (or ‘crossover’ as it is also commonly referred to) combines parts 

of parental solutions to form new and possibly better offspring. In other words, it 

recombines traits of two or more parents in order to create new individuals. As 

explained in the following sections, there are many ways of performing a recombination 

process; but, regardless of the methodology, the main idea is to create offspring that are 

not identical to any particular parent. A similar situation occurs in the mutation process. 

However, what differentiates mutation from recombination is the fact that mutation acts 

by modifying a single individual. 

Let P(t) define a population of candidate solutions,  ௜ܺ
௧, at generation t: 

ܲሺݐሻ ൌ ሼ ଵܺ
௧, ܺଶ௧, … , ܺ௡௧ሽ (5-1) 

A general structure of GAs-based optimisation processes, which summarises the 

GAs mechanics described previously, is as follows [102,103]: 

begin 

    set generation t = 0; 

    initialise the population P(t); 

    evaluate fitness of each member (1 → n) of the population P(t); 

    while (not termination condition) do  

         select members from population P(t) based on fitness; 

         produce offspring from selected members using genetic operators; 

         evaluate fitness of offspring; 

         replace, based on fitness, candidates of P(t) with offspring; 

         set generation t = t + 1 

    end 

end 

(5-2) 

Finally, it is important to highlight that there are two important issues associated 

with search strategies, in particular with GAs [103]: exploiting the best solution and 

exploring the search space. In GAs, the genetic operators essentially carry out a blind 

search, while selection operators hopefully direct the genetic search toward the desirable 

area of the search space. When developing GAs-based optimisation tools for real 

applications, a general principle is to have a good balance between exploitation and 
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exploration of the search space. This idea of exploitation versus exploration is directly 

related in literature [105] to other two factors used in genetic search: population 

diversity and selection pressure (selection pressure or selective pressure is defined as the 

ratio of the probability that the most fit chromosome – chromosome with maximum 

fitness – is selected as a parent to the probability that the average chromosome is 

selected [100]). 

Whitley [105] argues that the only two primary factors in genetic search are 

population diversity and selection pressure, which are inversely related. Increasing 

selective pressure results in a faster loss of population diversity, and maintaining 

population diversity offsets the effect of increasing selective pressure. Since it has a 

strong influence on GAs performance, the selection pressure needs to be controlled as 

directly as possible. A selection pressure which is too high might result in a premature 

convergence of the optimisation process; and, conversely, a selection pressure which is 

too low will not direct the optimisation strongly enough and genetic drift (changes in 

gene frequencies in a population resulting from chance rather than selection – it can lead 

to extinction of genes and reduction of genetic variability in the population [100]) might 

appear in the population [104]. In practice, different techniques are utilised to keep the 

selection pressure relatively constant during the whole optimisation process. The 

following sections describe in more detail particular aspects that characterise GAs-based 

optimisation processes. 

5.1.2  
Problem Encoding 

As indicated in the previous section, one of the first things to do in order to apply 

a genetic algorithm to a given problem is to encode it as an artificial chromosome or 

chromosomes. Over the last decades, different encoding methods have been created in 

order to allow an effective implementation of GAs for particular problems. One way of 

classifying the encoding methods is according to the type of symbol used as the alleles 

(values) of a gene. According to this, encoding methods can be classified as [103]: 

binary encoding, real-number encoding, integer encoding, and general data structure 

encoding. 
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Binary encoding is the typical encoding method utilised with GAs. In this type of 

encoding, binary strings composed of 0s and 1s are used to represent the genes of a 

chromosome. Binary encoding for engineering optimisation problems is known to have 

severe drawbacks due to the existence of Hamming cliffs [103]. The problem of 

Hamming cliffs is associated with the fact that under certain conditions the distance 

between two values in the phenotype space (solution space) may be completely different 

to the corresponding one in the genotype space (coding space). Thus two neighbouring 

values in the phenotype space may be completely distant in the genotype space. In these 

particular situations, in order to cross the Hamming cliff, it would be necessary to 

change simultaneously a large number of bits. As a consequence of this the probability 

that crossover and mutation occurs is considerably reduced.  

Real-number encoding is more appropriate for engineering optimisation problems, 

since the parameters involved are usually expressed as real numbers. This type of 

encoding avoids all difficulties associated with the use of a binary (discrete) encoding 

when optimising ‘continuous’ search spaces. The fact that the topological structures of 

the phenotype and the genotype space are identical for real-number encoding allows 

easy formation of the genetic operators utilised in the process. Currently it is widely 

accepted that real-number encoding performs much better than binary encoding for 

function optimisation and constrained optimisation problems [103]. Integer or literal 

permutation encoding, in turn, is best used for combinatorial optimisation problems; 

while that data structure encoding is suggested for more complex real-world problems, 

where it is necessary to capture the nature of the problem [103]. 

5.1.3  
Problem Initialisation 

A GAs-based optimisation process is in essence an evolutionary process which 

starts with an initial population of encoded solutions and searches for better ones. This 

implies that an initial population of solutions need to be created at the beginning of the 

process. The initial population of solutions (chromosomes) can be created by randomly 

choosing values for the genes from the search space, or by using good potential 

solutions that have been previously determined. The origin of these good potential 

solutions can be diverse. They could be obtained from a previous optimisation process 
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carried out using GAs or other optimisation techniques, an identification process 

performed based on prior knowledge about how the optimum solutions might look like, 

or any other process using defined criteria for identifying good potential solutions. 

Regardless of the methodology utilised for determining the initial population of 

solutions, what is really important is the fact that the optimisation process starts from a 

population of solutions and not from a single one. 

5.1.4  
Selection and Genetic Operators 

The operator selection and the two genetic operators, crossover (recombination) 

and mutation, constitute the main operators utilised in GAs. These operators process the 

population of solutions iteratively until a termination condition is satisfied. At the end 

of the process, it is expected that the final population contain better solutions than those 

ones present in the initial population. These three main GAs operators are briefly 

described next. 

5.1.4.1  
Selection 

The principle of survival of the fittest imposed in GAs implies discarding the 

chromosomes with the lowest fitness at each generation. This process is carried out 

through the selection operator which allocates more offspring to better individuals. 

Selection provides the driving force in GAs: with too much force, the genetic search 

will converge prematurely; and with too little force, the evolutionary process will take 

longer than necessary [103]. Selection operators are used for two different purposes, for 

selecting parent chromosomes (which will be used as parents to create offspring through 

the use of genetic operators), and for inserting new offspring into the population. There 

are different ways of carrying out the selection process. Gen and Cheng [103] describe 

several selection methods developed over the past two decades. Two common selection 

methods utilised to select parent chromosomes are ‘roulette wheel selection’ and 

‘stochastic universal sampling’ (SUS). 

Roulette wheel selection is the best known selection method. In this method, an 

area proportional to its fitness is allocated to each chromosome on a virtual roulette 

wheel. The selection process is carried out by spinning the wheel a number of times 
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equal to the number of chromosomes to be selected (each time a single chromosome is 

selected). One drawback associated with this selection method is related to the fact that 

it has a tendency to select a large number of copies of the best chromosome, which can 

lead to loss of diversity. This problem of selecting a large number of copies of the best 

chromosome is corrected to some extent when using the SUS selection method. In the 

SUS method, like in the roulette wheel selection, a chromosome occupies an area on the 

wheel proportional to its fitness. However, instead of spinning the wheel several times 

for selecting chromosomes, a single spin of the wheel identifies all parent selections 

simultaneously. This is possible because there is another wheel on the outside of the 

roulette wheel containing a number of equally spaced pointers equal to the number of 

chromosomes to be selected [101]. 

There are also different methods or strategies for inserting offspring into the 

population. Two common methods are the ‘tournament selection’ and the ‘ranked 

selection’ methods (more appropriate names for these methods in the particular case of 

inserting offspring into the population would be ‘tournament replacement’ and ‘ranked 

replacement’). The tournament selection method randomly chooses a set of 

chromosomes and selects the best chromosome from that set [103]. In other words, it 

promotes a tournament among a given number of chromosomes randomly chosen 

(usually two or three), and the winner of the tournament (chromosome with the highest 

fitness) is selected for further processing. In this way, the pool of selected chromosomes 

which comprises tournament winners has a higher average fitness than the average 

population fitness. Ranked (or ranking) selection, on the other hand, uses only a ranking 

of chromosomes to determine survival probability (chromosomes fitness values are not 

utilised) [103]. Thus, in order to carry out the selection process using this method, the 

population is first sorted according to their fitness values (from the best to the worst 

chromosome), and a probability of selection is then assigned to each chromosome 

according to its ranking, but not according to its fitness. 

5.1.4.2  
Crossover (Recombination) 

As implied previously, the selection mechanism exploits accumulated information 

to guide the search process towards optimum solutions by allocating more offspring to 

the fittest chromosomes; whereas, genetic operators explore new regions of the search 
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space. It is important that the disturbance produced by the genetic operators on the 

search is minimum; but, at the same time, it is also important that the genetic operators 

are able to efficiently sample other regions of the search space [101]. Crossover or 

recombination is a genetic operator that combines traits of two or more parental 

solutions to form new and possibly better offspring. Depending on the type of encoding 

used in the process, different methods of performing a recombination process can be 

utilised. 

For search processes involving binary encoding, there are four recombination 

methods commonly utilised: ‘single-point crossover’, ‘double point crossover’, ‘multi-

point crossover’, and ‘uniform crossover’. In the single-point crossover only one 

crossover position is randomly selected, and the binary strings are exchanged between 

the parental chromosomes about this point, thereby producing two new offspring. 

Similarly, in the double point crossover and the multi-point crossover two crossover 

positions or multiple crossover positions are randomly selected and binary strings are 

exchanged between the parental chromosomes about these crossover points. The 

uniform crossover is, in turn, a generalisation of the multi-point crossover. In this 

method every locus of the parental chromosomes is a potential crossover point. The 

recombination process is carried out creating randomly a crossover mask containing the 

information about which parent will provide the offspring with the required bits. 

Alternative crossover techniques are used in optimisation processes involving 

real-number encoding. These techniques include, among others, ‘weighted averaging 

crossover’, ‘blend crossover’ (BLX), and ‘simulated binary crossover’ (SBX). Of 

course, the simplest way of producing an offspring from two parental chromosomes is 

by averaging or blending them. This is the principle behind the weighted averaging 

crossover. It is clear that in real coded chromosomes, each chromosome is represented 

as a vector of real numbers. Then, for a problem with ‘k’ design variables (or genes), 

the real-number vector (chromosome) will be given by: 

ܺ ൌ ሼݔଵ, ,ଶݔ … ,  ௞ሽ (5-3)ݔ

Gen and Cheng [103] defines an ‘arithmetic crossover’ as the combination of two 

vectors, X1 and X2, as follows: 

ଵܺ
ᇱ ൌ ଵߣ ଵܺ ൅  ଶܺଶ (5-4)ߣ
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ܺଶᇱ ൌ ଵܺଶߣ ൅ ଶߣ ଵܺ 

where the multipliers λ1 and λ2 (subject to the condition λ1 + λ2 = 1) represent the 

weights randomly selected during the crossover process. Depending on the permissible 

values of the multipliers λ1 and λ2, different sub-types of crossover methods can be 

derived. The (weighted) averaging crossover, as defined by Davis in reference [106], 

corresponds to the special case in which λ1 = λ2 = 0.5. The averaging crossover suffers 

from contraction effects due to the fact that it allows the creation of offspring only along 

the line generated between the two parental chromosomes. This problem is solved to 

some extent by utilising a blend crossover (BLX), which uses exploration factors (α) 

that increase the exploration capability of the crossover operator. 

The BLX crossover, which was introduced by Eshelman and Schaffer [107], 

randomly creates offspring within a hyper-rectangular region defined by the parental 

points [103]. Assume a one-dimensional case (one variable) with two parental points p1 

and p2 (p1 < p2), and exploration factors 0 < α1, α2 < 1. For this case, the BLX randomly 

chooses a point in the range [p1 – α1(p2 – p1), p2 + α2(p2 – p1)] in order to generate a 

given offspring [103]. A special situation is that of α1 = α2. In this case, the BLX 

crossover operator is called BLX-α. It has been reported [107] that BLX-0.5 (α = 0.5) 

performs better than other BLX operators with other different α values. 

The simulated binary crossover (SBX) was developed by Deb and Agrawal [108]. 

This crossover operator utilises a probability of creating an arbitrary child solution from 

a given pair of parental solutions similar to that used in binary crossover operators. This 

crossover operator is mainly characterised by the use of both (i) a spread factor (β) 

(defined as the ratio of the absolute differences of the children points to that of the 

parental points [108]) that controls the spread of the children with respect to that of their 

parents, and (ii) a distribution function to perform the crossover processes of the 

parental solutions. When compared to other real-coded crossover operators such as 

BLX-0.5, the SBX operator has demonstrated a better performance [108]. 

5.1.4.3  
Mutation 

Mutation is the second genetic operator used by GAs to explore the search space. 

What differentiates mutation from recombination or crossover is the fact that mutation 
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acts by modifying only a single chromosome. In a fundamental sense, a mutation 

process allows the whole search space to be sampled before the process converges 

(prematurely). This is done by forcing the algorithm to explore other areas of the search 

space by randomly introducing changes, or mutations, in some of the variables 

comprising a given chromosome [100]. For binary coded problems, this process is 

carried out by simply changing bits from 0 to 1, and vice versa. However, for 

continuous GAs the mutation process is a little bit more complicated than that. Typical 

mutation operators for real-number encoding include the following: ‘uniform mutation’, 

‘creep mutation with and without decay’, ‘non-uniform mutation’, and ‘dynamic 

vectored mutation’ (DVM). 

For a given parent X, Eq. (5-3), if the element (gene) xi of it is selected for 

mutation, a random change of the value of this selected gene within its domain, given 

by a lower LBi and upper UBi bound, will result in the following transformation:   

ሼݔଵ, ,ଶݔ … , ,௜ݔ … , ௞ሽݔ ՜ ሼݔଵ, ,ଶݔ … , ,௜ᇱݔ … , ,௞ሽݔ ,௜ݔ ௜ᇱݔ א ሾܤܮ௜,  ௜ሿ (5-5)ܤܷ

This process is referred to by some authors [109] as a random mutation method. 

Uniform mutation involves, in turn, a process in which the values of xi
’ are drawn 

uniformly randomly from [LBi, UBi] [110]. A position wise mutation probability is 

usually utilised with this mutation method.         

Non-uniform mutation was introduced by Michalewicz [109]. In this method, the 

value of xi
’ is randomly selected from the following two options:  

௜ᇱݔ   ൌ ௜ݔ ൅ ∆ሺݐ, ௜ܤܷ െ  ௜ሻݔ

௜ᇱݔ ൌ ௜ݔ െ ∆ሺݐ, ௜ݔ െ  ௜ሻܤܮ
(5-6) 

The function ( )yt,∆  returns a value in the range [0,y], which approaches to 0 as t 

increases (t represents the generation number). This property causes the mutation 

operator to search the space uniformly initially (when t is small), and very locally at 

later stages [109]. The function ( )yt,∆  is defined as: 

∆ሺݐ, ሻݕ ൌ .ݕ ቆ1 െ ቀଵିݎ
௧

௧೘ೌೣ
ቁ
್

ቇ (5-7) 

where r is a random number from [0,1], tmax the maximum generation number, and b a 

parameter determining the degree of non-uniformity. 
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Creep mutation basically operates by adding or subtracting a random number to a 

gene of the chromosome selected for mutation. In the way that it is described in 

reference [106], the mutation of a given gene, xi, is limited to a creep range centred on 

its original value. Thus, a mutated gene, xi
’, is computed according to: 

௜ᇱݔ ൌ ௜ݔ ൅ ሺ2ݎ െ 1ሻ∆௠௔௫ (5-8) 

where, 

∆௠௔௫ൌ .ߜ ሺܷܤ௜ െ  ௜ሻ (5-9)ܤܮ

In Equations (5-8) and (5-9), ∆௠௔௫ is the maximum size used for the creep 

mutation, δ the range ratio, and r a random number from [0,1]. The level of disruption 

produced by the mutation process is controlled by the creep size δ. 

In the creep mutation with decay method, the creep size is altered as a function of 

the stage of the search process, according to [87]: 

௧ାଵߜ ൌ .௧ߜ ሺ1 െ  ሻ (5-10)ߛ

where γ represents the creep decay rate (t is the generation number). This type of 

implementation allows the use of large values of δ in the beginning of the search 

process and small ones at the end; balancing in this way the exploration and exploitation 

capabilities required during the process.  

Dynamic vectored mutation (DVM) is a method proposed by Rogero in reference 

[87]. This mutation operator was developed in an attempt to solve some limitations 

present in other operators. It allows mutation in all directions of a multi-dimensional 

search space and not only along a single dimension axis. This method can be 

summarised as follows. 

Consider the chromosome X given by Eq. (5-3) as a k-dimensional vector. From 

this vector (chromosome), a displacement vector Vd of magnitude m and random 

direction is created, whose end point determines the mutated chromosome. The next 

step involves the computation of the maximum magnitude of Vd, max∆ , that would result 

in a solution within the boundaries of the genes. The magnitude m of Vd is then 

allocated with a probability inversely proportional to its value m and bounded by max∆ . 

Thus, the magnitude m is calculated as: 
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݉ ൌ ܽ.  ሻ (5-11)ߟҧሺߚ

where a is constant factor, and β defined according to (similarly to the polynomial 

probability distribution used by Deb and Agrawal [108]): 

ሻߟҧሺߚ ൌ ൬
1

1 െ ൰ݎߙ
ሺଵିఎሻം

 
(5-12) 

In Eq. (5-12), η is the search (optimisation) process completion ratio, γ the 

iteration dependency factor that controls the function curvature (depending of the value 

of η), and α calculated as follows: 

ߙ ൌ 1 െ ൬ሺ1 ൅ ܽ. ∆௠௔௫ሻ
ିቀ ଵ
ଵିఎቁఊ൰ (5-13) 

According to the way in which the DVM operator was derived, the probability of 

creating a mutated chromosome is reduced as the distance from the original point 

(parental chromosome) increases; and the line of iso-probability approximates to a 

hyper-sphere in k dimensions. Its capability of reaching the whole search space 

constitutes the main characteristic of the DVM operator. 

5.1.5  
Constraints Handling 

As highlighted in the literature [87], many engineering optimisation problems are 

controlled by three main factors: explicit constraints, implicit constraints, and 

performance parameters. Explicit constraints are constraints imposed on the input 

parameters. In order to take into account these constraints, therefore, it is not necessary 

to evaluate the chromosome (s). It implies that a good representation of the optimisation 

problem (e.g., appropriate selection of the design variables) could eliminate the need of 

this type of constraints. Implicit constraints, which are constraints imposed on the 

problem performance parameters, require on the other hand the evaluation of the 

chromosome in order to determine the value of the parameters they constrain. This type 

of constraints will be addressed in some detail in this section. Performance parameters, 

which will need to be optimised in a given problem, are addressed in turn in Section 

5.1.6. 
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As implied above, implicit constraints (which will be hereafter simply referred to 

as ‘constraints’) can not be directly computed from the input variables. Thus it is 

necessary to evaluate the chromosome in order to determine the value of the parameter 

being constrained by a given constraint. Over the past few decades, different techniques 

have been developed in order to deal with this type of constraints, and, in this section, 

the most important ones are briefly reviewed. 

Since GAs basically find the optimum of an unconstrained problem, modifications 

to the approach utilised when dealing with this type of problems need to be introduced 

when analysing constrained ones. However, some difficulties appear when GAs are 

applied to constrained problems, because the genetic operators used in the search 

process often produce unfeasible offspring. At this point, it is important to highlight 

that, in general, a search space (S) contains two subspaces: feasible (F) and unfeasible 

(U). These subspaces do not need to have any type of association each other. When 

dealing with search or optimisation problems, one looks for feasible optimum solutions. 

However, during the process one has to deal with several feasible and unfeasible 

solutions at the same time; and, as emphasised in the literature [103,111], handling 

unfeasible solutions is far from trivial. 

Gen and Cheng [103] indicate that the existing constraint handling techniques 

used in constrained problems can be roughly classified as: rejecting methods, repairing 

methods, and penalty methods. Rejecting methods simply discard the unfeasible 

chromosomes created throughout the evolutionary process. Since these methods just 

eliminate the unfeasible solutions without giving any indication of the search space 

feasible regions, the performance of the search process is poor. Thus, these methods use 

the simplest but also the least effective way of dealing with the problem. Repairing 

methods, in turn, involve the use of repair procedures which are utilised for creating 

feasible chromosomes from unfeasible ones. 

The penalty approach, which involves the application of a penalty to the objective 

function for any violation of the constraints, is perhaps the most common technique 

used for constrained optimisation problems [103]. This method transforms the original 

constrained problem into an unconstrained one by penalising unfeasible solutions. 

However, the big issue with this technique is how to determine the penalty term or 
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penalty function, which effectively allows the search process to be guided towards more 

promising areas of the search space. 

In general, there are two ways of constructing an evaluation function, )(Xeval , 

with a penalty term [103]: 

ሺܺሻ݈ܽݒ݁ ൌ ݂ሺܺሻ ൅  ሺܺሻ (5-14)݌

or, 

ሺܺሻ݈ܽݒ݁ ൌ ݂ሺܺሻ.  ሺܺሻ (5-15)݌

In Equations (5-14) and (5-15), X represents a given chromosome, f(X) the 

objective function, and p(X) the penalty term. The permissible values of p(X) depend on 

both the type of problem (maximisation or minimisation), and the form in which the 

evaluation function is expressed (addition Eq. (5-14) or multiplication Eq. (5-15)). 

Penalty functions can be of two types: constant penalty and variable penalty. In 

the constant or fixed penalty approach, the same penalty is imposed to each member of 

the population failing to satisfy the constraints [87]. This approach is known to be less 

effective for complex problems, and therefore the tendency is to use variable penalty 

techniques. The variable penalty technique contains, in general, two parts [103]: (i) a 

variable penalty ratio, which can be adjusted according to both the degree of violation 

of the constraints, and the stage (iteration number) of the search process; and (ii) a 

penalty amount for the violation of the constraints. 

 As highlighted in the literature [103], there are no general guidelines for 

designing and constructing an efficient penalty function. This process is usually quite 

problem dependent. Thus, as described in reference [111], over the years several and 

sophisticated penalty functions, specific to the problem and the optimisation algorithms 

utilised, have been developed. However, the most difficult part when following this 

approach is usually determining suitable penalty parameters needed to guide the search 

process towards the constrained optimum [112]. The need of these penalty parameters 

arises from the fact that it is necessary to have objective function and constraint 

violation values of the same order of magnitude. 

One particular implementation of the penalty approach is the constraint handling 

method developed by Deb [112]. Deb’s approach is based on three criteria: (i) any 

feasible solution is preferred to any unfeasible solution, (ii) among two feasible 
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solutions, the one having better objective function value is preferred, and (iii) among 

two unfeasible solutions, the one having smaller constraint violation is preferred. Thus, 

because solutions are never compared in terms of both the objective function value and 

the level of constraint violation, penalty parameters are not needed in this method. 

Unfeasible solutions are compared only in terms of their constraint violation and the 

population of solutions in a given generation. On a number of test problems, Deb’s 

method [112] has shown better efficiency and robustness than other methods developed 

previously. 

5.1.6  
Objective Handling 

As highlighted in Chapter 4, optimisation can be seen as the process of finding the 

conditions that yield the optimum value of a given function under any set of 

circumstances. In other words, it can be seen as the process of finding solutions over a 

set of possible choices which allow the optimisation of certain criteria. When there is 

only one criterion to consider, the process is known as single-objective optimisation 

process; and, when there is more that one criterion that must be treated simultaneously, 

as multi-objective optimisation process [103]. In many real applications, multiple and 

conflicting objectives need to be tackled simultaneously, while satisfying several 

constraints. 

The optimisation of an aircraft trajectory for both minimum environmental impact 

and minimum fuel burned constitutes a typical example of a multi-objective 

optimisation problem. Consider that the release of certain pollutants, such as NOx, 

affects the environment more drastically as the aircraft flight altitude increases. Then, 

when optimising for minimum environmental impact, the optimisation process will 

result in a solution in which the aircraft will fly as low as possible. In order to minimise 

the fuel burned, in turn, the optimisation process will result in a solution in which the 

aircraft will fly as high as possible. As it can be realised in this example, the two 

objectives considered create a conflict in the aircraft operation (flight altitude). Thus, 

multi-objective optimisation problems usually receive a different treatment to that 

received by single-objective ones. 
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In order to have a better idea of how multi-objective optimisation problems are 

dealt with in practice, it is necessary first to understand what ‘nondominated’ solutions 

mean. When dealing with single-objective optimisation problems, an attempt to obtain 

the best solution is carried out. However, in multi-objective optimisation problems, 

there is not necessarily a single ‘best’ solution with respect to all objectives [103]. Thus, 

a solution can be the best according to a given objective; but, at the same time, it could 

be the worst according to the other ones considered in the analysis. Therefore, for this 

type of problems, there usually exist a set of solutions which cannot be simply 

compared with each other, because it would require additional information regarding the 

priority of the objectives. For these solutions, called ‘nondominated’ solutions or 

‘Pareto optimal’ solutions, no improvement in any objective function is possible 

without penalising at least one of the objective functions involved [103]. 

In order to select a nondominated solution as the solution for a given multi-

objective optimisation problem, additional information related to the priority or 

preference of the several objectives needs to be provided. In general, these preferences 

represent an emphasis on particular objectives according to their relative importance 

determined either arbitrarily or based on prior knowledge of the problem being 

analysed. Once the preferences have been established, it is possible to order the 

solutions present in a given nondominated set, and then obtain from that set the final 

solution to the problem. This final solution is usually called the ‘best-compromised’ 

solution. There are basically two methodologies that can be followed when dealing with 

multi-objective optimisation problems [103]: (i) generating approaches, and (ii) 

preference-based approaches. 

Generating approaches, which are used when no prior knowledge about the 

objectives preference structure is available, identify an entire set of Pareto solutions or 

an approximation of the same. Preference-based approaches, in turn, attempt to obtain a 

compromised or preferred solution. These approaches are used when the relative 

importance of the objectives is known and quantifiable. Traditionally, the methods 

utilised for solving multi-objective optimisation problems involve the reduction of the 

multiple objectives to a single one, and the use of conventional techniques to solve the 

single-objective optimisation problems generated from this process. Typical examples 
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of these techniques include the weighted-sum approach, the compromise approach, and 

the goal attained or target vector optimisation method. 

The weighted-sum approach basically assigns weights to each objective function 

in order to combine them into a single-objective function. The weights utilised can be 

seen as representations of the relative importance of the objectives involved in the 

problem. If all the weights used for creating the single-objective function are positive, 

the optimum solution to the problem is a nondominated one [103]. In the compromise 

approach, in turn, solutions closest to the ‘ideal point’ (point composed by the optimum 

value of each objective function determined independently) are identified [103]. Since 

the ideal point is usually not attainable, a compromise among the objectives must be 

achieved in order to determine an alternative solution. The fact that an alternative 

solution is used instead of the ideal one results in a ‘regret’, which is quantified in terms 

of the distance of the alternative solution to the ideal one. Thus, in this method, a regret 

function is minimised in order to obtain a compromised solution. During the process, 

the regret function tries to impose the same level of importance to each objective 

function. However, different degrees of importance can be also utilised by using a 

vector of weights, as used in the weighted-sum approach. The target vector optimisation 

method will be separately dealt with in Section 5.1.6.1. 

A typical example of the generating approaches is the Pareto approach. In this 

method, it is assumed that no information about the preference among objectives is 

available; and that for each objective function, the greater the value, the better. One 

particular GAs-based implementation of the Pareto approach for solving multi-objective 

optimisation problems is the Pareto ranking [103]. This method involves sorting the 

population based on Pareto ranking, and assigning selection probabilities to individuals 

according to this ranking. The ranking procedure is as follows: (i) assign rank 1 to all 

nondominated individuals and remove them from contention; (ii) find the nondominated 

individuals from the remaining ones, assign rank 2 to them, and remove them from 

contention; and (iii) follow the same process until the entire population is ranked. 

Following this procedure, all nondominated solutions are assigned an identical fitness 

value, which provides them an equal reproduction probability. 

Finally, it is important to highlight that there are some problems associated with 

generating techniques that are not observed with most preference-based approaches. 
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One of these problems is the judgment that a decision-maker has to make in order to 

select a solution from an entire set of Pareto solutions. With a small number of criteria, 

two or three, this (solution) selection process can be carried out relatively easily. 

However, for more than three criteria, this process becomes both complicated 

(increasing in difficulty almost exponentially with the number of objectives), and also 

computationally expensive and very difficult to visualise graphically [103]. 

5.1.6.1  
Target Optimisation 

The target vector optimisation method (or ‘optative’ [113] or ‘goal attained’ 

method as it is also sometimes referred to) essentially involves the minimisation of the 

difference between the values of the performance parameters controlling a given 

optimisation problem and their corresponding target values. In order to clarify how this 

method works, it is first necessary to state a multi-objective optimisation problem as 

follows (similarly to the problem statement used in Chapter 4): 

Find 
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which optimise F, given by, 

ܨ ൌ ൛ ଵ݂ሺܺሻ, ଶ݂ሺܺሻ, … , ௣݂ሺܺሻൟ (5-17) 

and subject to ‘c’ constraints 

݃௝ሺܺሻ ൑ 0, ݆ ൌ 1,2,3, … ,݉
݄௟ሺܺሻ ൌ 0, ݈ ൌ ݉ ൅ 1,݉ ൅ 2,… , ܿ

 (5-18) 

In equations (5-16) - (5-18), X is a k-dimensional vector called the design vector, 

F the multi-objective function (p objectives or criteria), and gj(X) and hl(X) the 

inequality and equality constraints, respectively. 

Thus, the target optimisation method, initially presented by Wienke [113] and 

extended by Rogero [87] for the case of engineering optimisation problems, can be 

regarded as the process of optimising a set of k design variables X, such that the set of p 

performance parameters F approaches a set of p targets F* (F* = {f1*, f2*,..., fp*}), 
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while satisfying the following lower and upper performance parameters boundaries: LB 

≤ F ≤ UB. In this way, the optimisation of each performance parameter fi corresponds to 

achieving a target fi*. The set of targets F* comprises the finite targets T* and the 

optimisation (minimisation or maximisation – non-finite) targets O* (F* = T* + O*). 

Following this approach, the quality of a given design is defined by three factors [87]: 

range error factor, target achievement factor, and optimisation factor. 

The range error factor, Re(X), measures the level of satisfaction of the range 

constraints, and it is defined as a function of the normalised distance between F and the 

nearest point from [LB, UB]: 
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(5-20) 

According to this definition, the range error factor varies between 0 and 1. It is 

equal to 1 when all range constraints are satisfied (X ∈F), and it tends to 0 when the 

performance parameters correspond to design variables belonging to the extreme of the 

unfeasible search space (X ∈U). Here, again, S represent the whole search space, F the 

feasible search space, and U the unfeasible one (S = F + U). 

The target achievement factor, Ta(X), measures, in turn, the degree of achievement 

of the targets. It is defined as a function of the normalised distance between F and T*. 

Thus, for finites targets (fi and fi* ∈  T*), Ta is determined as: 
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(5-22) 

Based on this definition, the target achievement factor is equal to 0 if all targets 

are achieved exactly, and it tends to 1 when the values of the performance parameters 

are well out of range. 
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The optimisation factor, O(X), provides an indication of the direction to be 

followed by the optimisation process: maximisation or minimisation. This factor is 

selected in such a way that a poor performance towards the minimisation or 

maximisation of the performance parameters results in values of O(X) that tend to 1, and 

a good performance results in values that tend to +∞.  

For a given optimisation problem when both finite and non-finite targets 

(performance parameters involving maximisation and/or minimisation) are present, the 

optimisation objectives (non-finite targets) have the priority over the targets (finite 

targets). In these cases, the target optimisation is just utilised to push (using a small 

pressure) the unaffected performance parameters towards their target values [87]. Thus, 

for a general multi-objective case, the fitness function is defined as: 

ሺܺሻݏݏ݁݊ݐ݅ܨ ൌ ൜ܱ
ሺܺሻ െ ௔ܶሺܺሻ, ܺ א ݈ܾ݁݅ݏܽ݁ܨ

ܴ௘ሺܺሻ, ܺ א  ݈ܾ݁݅ݏ݂ܷܽ݁݊
(5-23) 

Further details about this particular implementation of the target vector 

optimisation method are described in reference [87]. 

5.1.7  
Stopping Criteria 

As any other evolutionary algorithm, a GAs-based search algorithm (or a GAs-

based optimisation one) evolves solutions from generation to generation selecting and 

reproducing parents until a stopping criterion is (or stopping criteria are) met. Three 

termination criteria are most frequently utilised: maximum number of generations, 

maximum number of evaluations (i.e., maximum number of chromosomes or potential 

solutions to be evaluated during a given search or optimisation process), and maximum 

fitness value. Alternative stopping strategies involve concepts such as population 

convergence criteria (e.g., sum of deviations among individuals smaller than a specified 

threshold), and lack of improvement in the best solution over a given number of 

generations [103]. Several of these strategies are not exclusive and can be used in 

conjunction with each other. 
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5.1.8  
Other Concepts in Genetic Algorithms 

In this section, several other concepts that are usually utilised to improve the 

performance of GAs are briefly described. 

5.1.8.1  
Elitism 

Elitism simply means that one or more of the best individuals (i.e., most fitted 

chromosomes) generated within a given generation are propagated into subsequent 

generations. In general, this technique guarantees the genetic material present in the best 

individuals is not lost in between the generations. However, the elitism concept must be 

utilised carefully, because, as pointed out by Goldberg [102], its overall effect is 

difficult to quantify. On one hand, it can help the mixing process by ensuring that the 

best individuals are available to create better ones. However, it can also negatively 

affect the selection process by favouring the selection of elite individuals, thereby 

reducing diversity and increasing the tendency of premature convergence. Results 

suggest that elitism improves local search at the expense of global perspective [104]. 

5.1.8.2  
Adaptive Genetic Algorithms 

As mentioned in Section 5.1.1, the success of a GAs-based search process is 

characterised by a good balance between exploitation and exploration in the search 

space. This balance is strongly dependent on key GAs factors such as population size, 

crossover ratio, and mutation ratio, among others. Thus, an adaptive GAs-based search 

process is one where these key GAs factors are dynamically varied according to the 

progress of the search or optimisation process. Since the use of GAs for searching 

optimum solutions involves an intrinsically dynamic and adaptive process, the use of 

fixed parameters (which occurs in most standard applications involving GAs) is in 

contrast to the evolutionary nature of the algorithm. Thus, it is natural to try to modify 

or adapt key GAs parameters as the search process progresses. The adaptation of the 

GAs parameters can be mainly carried out in three ways [103]: (i) deterministic, by 

using a determinist rule to modify a given parameter (e.g., by using a rule that gradually 

decreases the mutation rate as the generation number increases); (ii) adaptive, by taking 
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feedback information from the current state of the search; and (iii) self-adaptive, by 

using a self-adaptive mechanism which enables GAs parameters to evolve within the 

evolutionary process. 

A particular implementation of adaptive GAs is described by Sampath in 

reference [88]. According to Sampath’s implementation, the process starts in a similar 

fashion as a standard GAs-based search process, but after a few generations, some GAs 

key parameters are controlled based on other statistical ones. The process is 

characterised by the use of a ‘master-slave’ configuration, which consists of a ‘master’ 

GAs-based controller that monitors the functioning of a ‘slave’ GAs-based model. The 

master evaluates the performance of the slave GAs at each generation. This evaluation 

is carried out based on the monitoring of several statistical parameters, including (i) the 

population diversity factor, which measures the population diversity during a given 

generation; (ii) population size factor, which controls the size of the population at each 

generation; (iii) population mean fitness factor, which measures the mean fitness of the 

population; and (iv) fitness improvement factor, which measures the performance of the 

GAs-based search process. 

5.1.8.3  
Genetic Algorithms Hybridisation 

Hybrid GAs are GAs combined with other search or optimisation techniques. As 

they incorporate what is best in its competitors, they are expected to perform better than 

traditional GAs for particular applications. Hybridisation of GAs is carried out because, 

as highlighted by Davis [106], traditional GAs, although robust, are generally not the 

most successful search or optimisation algorithms for any particular domain. This 

reflects a natural phenomenon, which relates to the fact that individuals that do well 

across a variety of environments are never the best in any particular environment. One 

of the most common ways of hybridising GAs is by incorporating local search 

techniques to the main GAs search or optimisation process. Following this approach, 

GAs are utilised to perform global exploration among populations, while local search 

methods are used to perform local exploitation around chromosomes [103]. In other 

words, GAs find the region where the optimum is located, and then the local 

optimisation techniques take over to find the optimum value. 
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GAs hybridisation can be carried out in a variety of ways, including the following 

[100,103]: (i) incorporating heuristics into the initialisation in order to generate a well-

adapted initial population; (ii) running GAs until it slows down, letting then a local 

search technique continue the process; (ii) after every certain number of generations, 

running a local search method on the best solution or solutions and adding the resulting 

chromosomes to the population; and (iv) adding a local search heuristic to the GAs 

basic loop, which working together with crossover and mutation operators carries out 

quick and localised search processes thereby improving offspring before returning them 

for evaluation. The complementary properties of GAs and local search techniques allow 

hybrid GAs to usually perform better than either method in isolation. 

It is worth emphasising that GAs can be hybridised with several other techniques, 

including expert systems (which guide genetic operators more directly towards better 

strings), response surfaces (which construct objective function’s approximate models to 

reduce full-cost functions evaluations), and neural networks (which act as pre-

processors of GAs determining sub-regions in the search space where the optimum is 

likely to be found). However, for the sake of brevity, these other types of GAs 

hybridisation will not be discussed in this work. 

5.2  
Optimiser Development 

In order to carry out the processes of evaluation and optimisation of 

environmentally friendly aircraft propulsion systems, it was decided to either develop 

and implement an optimisation tool, or modify and adapt an existing one capable of 

performing these tasks. Thus, different numerical methods that could be used for this 

purpose were firstly reviewed, and a suitable optimisation technique was initially 

selected (see further details in Chapter 4). A familiarisation process with several 

programming languages, including FORTRAN, C/C++, and Java, was also carried out. 

The next step in the development of the optimisation algorithms (optimiser) 

involved reviewing the track record of optimisers developed by Cranfield University for 

a range of applications, and identifying a candidate which could be used as a suitable 

‘starting point’. This led to the decision to use the GAs-based optimisation routines 

developed by Rogero [87,114] as the basis for the development of the optimiser utilised 
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in this work. Rogero’s optimiser, which was developed for carrying out optimisation 

processes of combustor preliminary designs, already includes several algorithms for 

each of the main phases (selection, crossover, and mutation) involved in the 

optimisation process using this technique. However, there are additional enhancements 

that can be introduced in future to further improve the quality of the optimiser. These 

improvements include the use of adaptive GAs (e.g., ‘master-slave’ configurations), 

which would allow the use of optimum GAs parameters (e.g., population size, crossover 

ratio, and mutation ratio, etc.) during the optimisation processes; and also the inclusion 

of the concept of Pareto optimality (Pareto fronts), which would improve its capabilities 

when performing multi-objective optimisation processes. These improvements can be 

introduced based on successful past experiences of these concepts as part of previous 

optimisers [86,88] developed by Cranfield University. 

The optimisation algorithms are constantly evolving and additional capabilities 

and/or refinements will be implemented in the future. Consequently, only a brief 

description of the main aspects characterising the current status of these optimisation 

algorithms is presented here. The optimiser used in this study has been implemented 

with a high degree of modularity, intended to support large changes and extensibility 

features. The code has been developed using Java as the main programming language. 

The fact that Java is platform independent brings a significant advantage when working 

on a heterogeneous set of computers, especially the advanced support for networking 

and graphics [114]. Even though Java is considered as being slower than fully compiled 

languages such as C/C++, this is not considered to be a major drawback, since 

distributed processing can counter the slower execution time of Java programmes. 

The core of the optimiser has been developed following the basic structure of 

‘SGA Java V1.03’ from Hartley [115], a Java implementation of the ‘simple GA’ 

(SGA) from Goldberg [104]. However, the original model has been recoded and 

extensively modified to both adapt it to engineering design optimisation problems and 

maximise its performance. The main modifications performed are related to the 

improvement of the optimisation performance, through an adaptation of the application 

domain, and improvements in both the technique and the genetic operators utilised 

during the optimisation process. 
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Since the application domain considered during the optimiser development was 

engineering design, the chromosome modules have been developed in such a way to 

support real-number parameter encoding in conjunction with a definition of the 

allowable range for the parameters (genes). In addition, algorithms for keeping a 

historical record of all created chromosomes and for preventing the creation of duplicate 

ones have been implemented. Regarding the improvement of the GAs technique, 

concepts such as elitism (preservation of the genetic material of the best members 

through generations), steady state replacement (partial replacement of the newly 

generated chromosomes to avoid the loss of potentially good genetic material), and 

fitness scaling (use of techniques to maintain the selection pressure relatively constant 

along the whole optimisation process – trade-off between premature convergence and 

genetic drift), have been introduced. 

Another phase of the optimisation performance improvement involved the 

implementation of more advanced and efficient GAs operators (mutation, crossover, and 

selection) [87]. Accordingly, in addition to the standard random mutation operator, 

other mutation operators such as creep mutation with and without decay, and dynamic 

vectored mutation (DVM) have been implemented in the optimiser. When utilised, the 

decay rate reduces the mutation range as the GAs population ages, resulting in a broad 

capability to explore during the optimisation initial stages and to carry out fine local 

searches in later stages. DVM allows in turn mutation in all directions and not only 

along a dimension axis. Additionally, this operator is able to reach the whole search 

space and is not biased [87]. 

Since real-number encoding was selected as the default encoding for the 

optimisation processes, several crossover techniques (suitable for this type of encoding) 

have been implemented in the optimiser, including the weighting averaging crossover 

method (children are a weighted average of two parent points), the blend crossover 

BLX-α method (weighting averaging with exploration capabilities), and the simulated 

binary crossover SBX method (creation of solutions within the whole search space). All 

crossover operators implemented include features for consanguinity prevention (i.e., 

duplicate chromosomes are not allowed). Selection operators implemented in the 

optimiser include, among others, a modified roulette wheel selection operator (with 

limitations on the number of instances of a chromosome), and the stochastic universal 
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sampling SUS technique (which minimises the bias and drift connected with the 

repeated spinning of the wheel). The tournament replacement and the ranked 

replacement have been improved and implemented in the optimiser as replacement 

operators. 

One aspect that characterises the optimisation process of practical engineering 

problems is the large number of parameters that must be accommodated. This is 

particularly true when optimising aircraft propulsion systems, especially, when aircraft 

trajectory optimisation problems are dealt with. For these particular problems, in order 

to describe properly a given flight path, a number of flight segments, each involving 

several design variables and constraints (e.g., altitude, speed, etc.), need to be utilised. 

Thus, the optimiser (as highlighted by Rogero in reference [114] when describing the 

optimisation routines utilised as the basis for the optimiser described here) uses a unique 

optimisation method based on Wienke’s idea of target vector optimisation [113] (more 

details about this method can be found in section 5.1). In this method, designers can 

define, for each parameter, a target to be attained, a range within which this parameter 

should remain, and the requirement to maximise or minimise the given parameter. 

Consequently, the quality of the design is determined by the achievement of the targets, 

the possibility of the violation of ranges, and the optimisation of the selected 

parameters. This approach enables designers to have total control over the optimisation 

process with neither having to know very much about the optimisation algorithms nor 

having to devise a fitness function [114]. Finally, it is important to emphasise once 

again that the optimisation algorithms utilised in this research project are currently in 

development, and they may be changed in future. Thus, the optimisation results 

presented in the following chapters were obtained using the current version of the 

optimiser, whose main characteristics are summarised above.   

 



  

 

6  
Evaluation and Optimisation of Propulsion Systems 
Part A: Aircraft Trajectory Optimisation 

This chapter describes the first part of the main results obtained from the 

processes of evaluation and optimisation of environmentally friendly aircraft propulsion 

systems. Initially, general aspects about atmospheric parameters, aircraft speeds, and 

computational models utilised, among others, are highlighted. Aircraft propulsion 

systems are then optimised from the point of view of the operation of the propulsion 

system. More specifically, aircraft flight trajectories are optimised considering that the 

aircraft/engine configuration is unchanged, i.e., aircraft/engine configuration already 

designed and in operation. The main results of these optimisation processes are finally 

presented and discussed. 

6.1  
General Considerations 

This section describes general concepts about atmospheric parameters and aircraft 

speeds. It also briefly summarises the methodology adopted for the optimisation of 

aircraft trajectories and the computational models involved. 

6.1.1  
Atmospheric Parameters 

The performance of aircraft is directly related to the conditions of the medium 

(i.e., atmosphere) in which aircraft fly. The earth’s atmosphere is a sequence of thick 

layers that have almost the same chemical composition, but their own approximately 

constant temperature gradient (negative of their lapse rate) [116]. Commercial aircraft 

operations usually take place in the lowest layer, called ‘troposphere’, which extends up 

to an altitude of approximately 11,000m. The second layer, called ‘stratosphere’, which 

has essentially the same chemical composition as the troposphere, extends from 
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11,000m to approximately 20,000m, and it is currently being routinely accessed by 

passenger jet aircraft [116]. 

There are three main parameters that characterise the atmosphere: temperature (T), 

pressure (P), and density (ρ). Air can be largely considered as an ideal gas, and as such 

it obeys the ideal gas low, 

ܲ ൌ  (6-1) ܴܶߩ

or, in terms of ρ, 

ߩ ൌ
ܲ
ܴܶ (6-2) 

In equations (6-1) and (6-2), R represents the specific gas constant. Atmospheric 

density plays an important role due to fact that several parameters characterising the 

performance of an aircraft, such as lift, drag, thrust, etc., directly depend on it.   

Consider for simplicity that the atmosphere is in equilibrium, that is, the pressure 

is the same in all directions. Then, the pressure on the bottom of an imaginary circular 

cylinder composed of air (height dh and vertical axis) is given by [116]: 

ܲ ൌ െ(6-3) ݄݀݃ߩ 

where g is the acceleration of gravity. This hydrostatic relation, together with the ideal 

gas law, Eq. (6-1) or (6-2), allow the calculation of the vertical distribution of two of the 

three main atmospheric parameters (T, P, and ρ) given the corresponding (vertical) 

distribution (actual or assumed) of the third one. The International Standard Atmosphere 

(ISA) model [117] is one of several atmospheric models available in the public domain 

that provides the vertical distribution of this third parameter, which in turn allows the 

computation of the corresponding vertical distributions of the other two ones. Table 6-1 

gives the ISA model defining parameters corresponding to the troposphere. There, α 

represents the standard constant temperature lapse rate, and the subscript ‘0’ indicates 

sea level conditions (0.0m). 

Table 6-1. Defining parameters for ISA troposphere (adapted from [116]) 

T0 
[°C] 

P0 
[N/m2] 

ρ0 
[kg/m3] 

α 
[°C/m] 

g 
[m/s2] 

15.0 101,325.0 0.21 0.00650 9.80665 
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Thus, using the ISA model in conjunction with both the ideal gas law and the 

hydrostatic relation presented in Eq. (6-3), it is possible to compute the vertical 

distribution of the three main parameters that characterise the atmosphere, as illustrated 

in Figure 6-1. In this figure, it is possible to observe the progressive drop in (relative) 

temperature from sea level up to the tropopause (atmospheric boundary between the 

troposphere and the stratosphere), as well as the reduction of relative density and 

relative pressure from sea level up to 15,000m. The ratios of T, P, and ρ to their 

corresponding sea level standard values are known as θ (theta), δ (delta) and σ (sigma), 

and they are defined as: 

ߠ ൌ
ܶ
଴ܶ (6-4) 

ߜ ൌ
ܲ
଴ܲ
 (6-5) 

ߪ ൌ
ߩ
଴ߩ

 (6-6) 

The values of these ratios are shown in Figure 6-1 as a function of the 

geopotential altitude (acceleration of gravity constant). 

 
Figure 6-1. Standard atmospheric parameters vs. Altitude 
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As observed in Figure 6-1, the atmospheric temperature decreases as the altitude 

increases. In other words, it generally gets colder at higher altitudes. There is no simple 

explanation about this fact. One idea about this issue takes into consideration the 

presence of CO2 and H2O (vapour) in the atmosphere [116]. It is believed that lower 

level CO2 and H2O heat up, from the earth, the gases present at the lowest part of the 

atmosphere. As altitude increases, this radiation diminishes as the lower gases have 

absorbed much of it. Moreover, as the amount of these gases decreases with the increase 

in altitude, the higher level CO2 and H2O gases radiate into space. This means that 

radiation is lost and the higher gases cool. All these phenomena result in what is well 

known and accepted, that is, as altitude increases temperature generally decreases. For 

completeness, Figure 6-1 also includes the variation of the relative speed of sound as a 

function of altitude. Due to the direct relationship between speed of sound, a, and 

atmospheric temperature (for a gas with a given composition, a depends only on 

temperature), 

ܽ ൌ ඥ(6-7) ܴܶߛ 

the speed of sound (relative or absolute) behaves, as expected, similarly to the 

temperature as altitude changes. In Eq. (6-7), γ is the ratio of specific heats of the gas. 

6.1.2  
Aircraft Speeds 

Another reason why the main characteristics of the atmosphere have been 

emphasised in the previous section is because several aircraft cockpit instruments, such 

as airspeed indicators, have atmospheric parameters as inputs. Since the speed of the 

aircraft has been used as one of the main design variables for optimising aircraft 

trajectories, a particular emphasis will be placed on airspeed indicators and the 

airspeeds (aircraft speeds measured in relation to the air mass it flies in) that they 

indicate. 

Figure 6-2 shows a schematic representation of an airspeed indicator (based on a 

Pitot-static tube), which illustrates the main input and output of the indicator. In Figure 

6-2, PT represents the total or stagnation pressure (i.e., pressure of air at rest), P the 

static pressure, q the dynamic pressure, and IAS the Indicated Airspeed. In 
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incompressible flow, the dynamic pressure represents the pressure developed by the 

forward motion of a body and it is given by [116,118-120]: 

ݍ ൌ
1
2 ܸߩ

ଶ
 (6-8) 

where V is the True Airspeed (TAS) of the body relative to the air. 

 
Figure 6-2. Schematic representation of an airspeed indicator [116] 

As illustrated in Figure 6-2, the IAS is the airspeed read directly from the airspeed 

indicator on an aircraft at any given flight condition and altitude. There are a number of 

factors that contribute to the difference between the value of IAS read from the indicator 

and the actual speed of the aircraft relative to the air, TAS. These factors include, 

among others, instrument error, position error, compressibility effects, and density 

effects [119]. According to the level of correction applied to the IAS, other different 

airspeed terms can be obtained, as shown in Figure 6-3.  

 
Figure 6-3. Airspeed indicator corrections [116] 

In Figure 6-3, CAS is the Calibrated Airspeed, which means IAS corrected for 

position, installation, and instrument error; and EAS is the Equivalent Airspeed, which 

in turn means CAS corrected for compressibility effects. By definition, at standard sea 

level conditions both EAS and CAS are equal to the TAS [118]. The EAS establishes 

equivalence of the dynamic pressure at sea level and at altitude [119], that is, it 

represents the speed of an aircraft flying at a given altitude such that its dynamic 

pressure is equivalent to the corresponding pressure at sea level. Thus, from Eq. (6-8),   

ݍ ൌ
1
ܸߩ2

ଶ ൌ
1
ܵܣܧ଴ߩ2

ଶ
 (6-9) 

the TAS can be related to the EAS by, 

PT

P

PT – P = q
Air Speed 
Indicator IAS

TASEASCASIAS Corrected for instrument & 
position error

Corrected for 
compressibility

Corrected for air 
density



Evaluation and Optimisation of Propulsion Systems – Part A 107 

 

ܸ ൌ ܵܣܶ ൌ
ܵܣܧ

ට ߩ
଴ߩ

ൌ
ܵܣܧ
ߪ√  (6-10) 

There are other aircraft speeds such as Ground Speed (GS), which is the speed of 

the aircraft over the ground, and flight Mach number (M). The flight Mach number is 

the ratio of the aircraft TAS to the ambient speed of sound, a, 

ܯ ൌ
ܵܣܶ
ܽ ൌ

ܵܣܶ
ඥ(6-11) ܴܶߛ 

Utilising equations (6-10) and (6-11) the flight Mach number can be correlated to 

the EAS as follows:  

ܯ ൌ
ܵܣܶ
ܽ ൌ

ܵܣܶ
ඥܴܶߛ

ൌ
ܵܣܧ

ඥ(6-12) ߪܴܶߛ 

In the trajectory optimisation processes carried out in this work, the aircraft 

trajectories have been defined as a function of the aircraft flight altitude and one or 

more of the following airspeed parameters: TAS, Mach number, and EAS. Due to the 

direct relation among these airspeed parameters (e.g., Eq. (6-12)), a brief discussion 

about them is presented next. As illustrated in Figure 6-4, keeping the TAS constant 

results in a non-linear decrease in EAS as altitude increases as a consequence of the 

non-linear decrease in density observed (Figure 6-1). Since Mach number is inversely 

proportional to temperature, as altitude increases it also increases up to the Tropopause 

where it remains constant with respect to altitude. This reflects an opposite behaviour to 

that shown by the temperature (Figure 6-1). 

Variations (increases) in altitude whilst holding EAS constant result in non-linear 

increases in both TAS and Mach number as shown in Figure 6-5. The main driving 

factors in this case are the temperature and density (both in the troposphere and only 

density in the stratosphere), which decrease as altitude increases. In turn, a constant 

Mach number results in decreases in both TAS (due to the decrease in temperature) and 

EAS (due to the decrease in temperature and density) as altitude increases (Figure 6-6). 

The invariance of the temperature with altitude in the stratosphere (Figure 6-1) results in 

the discontinuous variation in Mach number (Figure 6-4) and TAS (Figure 6-6) 

observed. 
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Figure 6-4. Airspeed variations for constant True Airspeed (TAS) 

 
Figure 6-5. Airspeed variations for constant Equivalent Airspeed (EAS) 

Finalising this section, Figure 6-7 exemplifies the constriction of the speed range 

with altitude for a given civil aircraft. In this figure, Vstall represents the stall speed, Vcrit 

the critical speed, and VNE the never-exceed speed (as before, V is the aircraft true 

airspeed, TAS). The stall speed is the minimum flight velocity at which steady sustained 

flight is possible, and it depends mainly on the altitude and the maximum lift coefficient 

[119]. The critical speed is directly related to the critical Mach number, which is the 

Mach number at which the flow somewhere on the aircraft surface first reaches the 
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sonic speed [120]. The never-exceed speed is the maximum speed at which an aircraft 

can operate. This speed is determined by the structural limits of the aircraft, and it 

depends for a given aircraft and gross weight on the flight altitude [121]. 

 
Figure 6-6. Airspeed variations for constant Mach number (M) 

 
Figure 6-7. Civil aircraft speed range 

In Figure 6-7 it is possible to observe that the curves corresponding to the stall 

speed and critical speed intersect at about 12,000m. At this altitude the aircraft could no 

longer fly, because if the speed is reduced it would stall, and if the speed increases it 
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lim
ௗ௫՜଴

ܨ ௥ܰ௘௤ ሺ݄ሻ (6-13) 

whereby variations in atmospheric parameters with altitude (h) are accurately, and 

smoothly, represented. Large ground range step sizes, dx, result in finite and discrete 

altitude steps and affect the accurate representation of an actual optimal trajectory 

(Figure 6-9). In general, APM uses end-points to compute performance. The user must 

declare a trajectory segment in terms of ground range and altitude intervals whereby a 

constant flight path angle is then defined. Flight conditions are then assumed to be 

constant over that segment. Aircraft weight and segment speeds are also necessary 

inputs. The aircraft modelled in this research project corresponds to a typical mid-sized, 

single-aisle, twin turbofan airliner with a maximum take off weight (MTOW) of about 

72,000kg and a seating capacity of approximately 150 passengers. 

The performance of the engines was simulated using TurboMatch [70], the in-

house Cranfield University gas turbine performance code that has been refined and 

developed over a number of decades. TurboMatch can be used to simulate the 

performance of an extensive range of both Aero and Industrial engines cycles ranging 

from a simple single shaft turbojet to complex multi-spool turbofans with mixed 

exhausts and complex secondary air systems. It can also be utilised to simulate the 

performance of novel and conceptual cycles including wave rotors, pulse detonators, 

constant volume combustion systems, distributed propulsion systems and intercooled 

and recuperated cycles. Performance simulations range from simple steady state (design 

and off-design point) to complex transient performance computations. 

According to the methodology developed in this work for optimising aircraft 

trajectories, the engine operating conditions are determined based on net thrust required 

for flying a given trajectory segment (FNreq), which is computed a priori by the APM. 

However, due to the fact that the engine performance model used here (TurboMatch) 

currently does not take thrust as an input, an iterative process has been designed and 

implemented with TurboMatch in order to carry out the optimisation processes. As 

illustrated in Figure 6-10, this iterative process basically involves three steps: (i) an 

initial guess of the turbine entry temperature (TET), based on the flight conditions, 

thrust required, and nozzle area (Anoz); (ii) execution of TurboMatch for this guessed 

TET; and (iii) comparison of the calculated thrust with the required one. At the end of 
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incorporating the processes of mixing, combustion heat release, and pollutant formation. 

To take into account inhomogeneities in gas composition and temperature which 

influence directly the rates of pollutant formation, a stochastic representation of 

turbulent mixing in the combustor primary zone is utilised. In the following sections the 

results of the trajectory optimisation processes performed using the three models 

described previously will be summarised. 

6.1.4  
Aircraft Trajectory Definition 

When optimising aircraft trajectories in this work, the first step involved the 

definition of the aircraft trajectory to be optimised. In other words, the definition of the 

problem that represent to optimise a given aircraft trajectory. Since all the optimisation 

processes carried out involved only vertical profiles, only three parameters were used to 

define a given aircraft trajectory: flight altitude (h), aircraft speed (TAS, EAS, or M), 

and range (R) – the horizontal distance flown by the aircraft. Figure 6-11 shows a 

schematic representation of a generic aircraft trajectory, which was divided in four 

segments. The intention in this work was to optimise aircraft trajectories between city 

pairs; therefore, the range was generally kept constant during the optimisations. Thus, in 

general, only altitude and aircraft speed were varied (i.e., used as design variables) 

when computing optimum aircraft trajectories according to a given optimisation 

criterion or optimisation criteria. 

There are two important aspects to emphasise when describing the way in which 

aircraft trajectories were defined in this work. (i) Each trajectory segment was defined 

by both its initial and final states (in terms of altitude and speed), and its corresponding 

horizontal distance flown, range (which was usually kept constant during the 

optimisation process). (ii) It was possible to use different aircraft speeds (TAS, EAS, or 

M) to define different trajectory segments along the same aircraft trajectory. This means 

that, for instance, the first three segments of the aircraft trajectory illustrated in Figure 

6-11 could have been flown at constant or variable EAS, and the last segment at 

constant Mach number. 
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Figure 6-11. Generic definition of aircraft trajectories 

This flexibility in the definition of the aircraft trajectory problem allowed the 

realistic representation of flight procedures utilised currently in practice. An example of 

these procedures constitutes the typical climb profile of commercial aircraft. The 

referred climb is divided in four segments: (i) climb from 1,500ft to 10,000ft at constant 

EAS and restricted to 250kts EAS; (ii) acceleration at 10,000ft (level flight) to 320kts 

EAS; (iii) climb from 10,000ft at constant EAS (320kts) up to the height at which the 

cruise Mach number is achieved; and (iv) climb from this altitude at constant Mach 

number (cruise M) up to the top of climb (TOC) altitude. All these details involved in 

the modelling of aircraft trajectories were taken into account in this work through the 

particular trajectory definition utilised. Of course, during the evaluation and 

optimisation of the aircraft trajectories, continuity in altitude and aircraft speeds 

between segments was guaranteed when required. 
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6.1.5  
Optimisation process 

The methodology followed for optimising a given trajectory in terms of sequence 

of computations is described in this section. The optimiser (optimisation algorithms) 

developed and/or adapted in this work, which was (were) used for carrying out the 

optimisation processes in this research, will be called hereafter ‘Polyphemus’† 

(oPtimisatiOn aLgorithms librarY for PHysical complEx MUlti-objective problemS). In 

the case studies described in the following sections, Polyphemus first randomly changes 

the values of the design variables (altitude and/or aircraft speed in one or more 

trajectory segments) in order to create a group of potential solutions. For a given 

potential solution, making use of the initial aircraft weight the APM carries out the 

computations related to the first segment of the aircraft trajectory, determining in this 

way the thrust required, flight time, etc. TurboMatch subsequently uses the flight 

conditions and the thrust required to determine the engine operating point, thereby 

establishing the engine fuel flow and other engine parameters related to the combustor 

(air) inlet conditions. Hephaestus then makes use of the combustor inlet conditions and 

combustor geometric details (such as length and area) to calculate the emission indices 

corresponding to the main pollutants of interest. Based on the fuel flow and flight time, 

the fuel burned during the first trajectory segment, and the new aircraft weight (that is, 

the initial weight less fuel burned), are calculated. The computations then continue in a 

similar fashion for all the remaining trajectory segments. When all the segments are 

computed, among other calculations, the total flight time, fuel burned, and gaseous 

emissions produced during the whole aircraft trajectory are computed. This process is 

                                            
 

 

 

 

 
† Polyphemus is a Greek mythological figure, whose name means ‘famous’. Polyphemus was a 

member of a race of (one-eyed) giants called ‘cyclopes’. In the optimisation context, POLY (phemus) 
means that the optimiser is applicable to MANY types of optimisation problems. Additionally, the fact 
that Polyphemus was a giant implies that the optimiser can be used to solve large and complex 
optimisation problems.    
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repeated for all the potential solutions, and for the all the generations of potential 

solutions that Polyphemus utilises in order to determine an optimum trajectory 

according to criteria initially specified by the designer. The results which follow were 

obtained following this procedure. 

6.2  
Aircraft Trajectory Optimisation Case Studies 

In this section the main results of the different aircraft trajectory optimisation case 

studies obtained using Polyphemus are described. In all these case studies aircraft flight 

trajectories have been optimised considering that the aircraft/engine configurations are 

unchanged, i.e., aircraft/engine configurations already designed and in operation. The 

main design variables utilised involved parameters associated with flight altitude and 

aircraft speed. The minimisation of the total flight time, fuel burned, and NOx emitted 

have been considered as the main objective functions. 

6.2.1  
Summary of Case Studies 

Several aircraft flight profiles have been optimised mainly to assess the 

mathematical performance of Polyphemus. Accordingly, several cases studies, each of 

them involving the optimisation of a given aircraft flight profile, have been separately 

analysed. A brief description of these case studies is presented below: 

• Case Study 1: Simple Climb Profile Optimisation. This case involved the 

optimisation of the climb phase of a typical aircraft flight profile. Only 

explicit constraints were utilised. Additionally, it was assumed that each 

climb segment is flown at constant Mach number (step M changes between 

segments). 

• Case Study 2: Climb Profile with Speed Continuity Optimisation. In this 

second case, step changes in aircraft speed were avoided through the 

specification of speeds at the beginning and end of each climb segment. 

Consequently, continuity in aircraft speed was guaranteed. The climb profile 

optimised corresponded to that one used in the first case study. 
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• Case Study 3: Implicitly Constrained Climb Profile Optimisation. In the two 

first case studies, only explicit constraints were utilised. In this third case 

study, an implicit constraint was included. The climb profile optimised was 

the same as in the second case study. 

• Case Study 4: Full Flight Profile Optimisation. In this fourth case study, a 

flight profile involving climb, cruise, and descent was optimised. Explicit 

and implicit constraints were utilised. The optimisation approach utilised in 

this case was similar to that one used in the third case study. 

• Case Study 5: Full Flight Profile Multi-objective Optimisation. Multi-

objective optimisation processes were performed in this fifth case study. 

The flight profile optimised was the same as in the fourth case study, but 

this time the optimisation involved more that one objective function. 

• Case Study 6: Full Flight Profile Range Optimisation. This last case study 

was analysed in order to illustrate other uses of Polyphemus. Given an 

aircraft flying directly from city A to city B, it involved the determination of 

the location of an intermediate stop (to be used for refuelling purposes, for 

instance), which is optimum according to given criteria. 

6.2.2  
Case Study 1: Simple Climb Profile Optimisation 

6.2.2.1  
General Description 

It is clear that in order to demonstrate the suitability of an optimiser for optimising 

aircraft trajectories, an extensive validation process of the algorithms implemented need 

to be carried out using as test cases different analytical problems with known optimal 

values. In the case of Polyphemus, this part of the validation process has already been 

performed (see reference [87]) and is therefore not repeated here. In this work, the 

mathematical performance of Polyphemus is analysed when possible through 

comparisons of the results obtained using this optimiser and other commercially 

available optimisation algorithms [94]. Thus, in order to provide some insight into the 

results that can be expected using Polyphemus, this optimiser was firstly deployed on a 

single flight phase of a typical aircraft flight profile (climb). The same flight constraints 
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defining the flight path were then used with other optimisation algorithms from a 

commercially available software package [94]. This provided a means of quantitative 

comparison of the performance of the different algorithms and techniques, which was 

the main scope of this first case study. 

In general, in the case studies analysed in this work (including this first case), the 

aircraft flight profile has been divided into only a small number of segments. This 

afforded greater visibility on the characteristics of the performance of Polyphemus 

when assessing results. This would have proved more difficult if the trajectory had been 

divided into a greater number of segments. These hypotheses are a simplification of real 

cases but provide numerical solutions that are used to commission the methodology. In 

order to obtain meaningful results in terms of actual optimal trajectories, the flight path 

needs to be divided into a much larger number of segments, each small enough so that 

the errors associated with the assumptions made within each segment will be 

cumulatively insignificant. 

Consequently, in this first case study, the flight profile in question was divided 

into only four segments; similar to the generic flight profile exemplified in Figure 6-11. 

The four climb segments were defined by arbitrarily defining segment lengths (range, 

R), with the overall climb being defined by the cumulative range, start and end altitudes, 

and Mach numbers (ISA, international standard atmosphere, assumed). During the 

optimisation processes, the intermediate Mach numbers (initial Mach number in 

segments 2 and 3) and altitudes (initial altitude in segments 2, 3 and 4) were allowed to 

vary in such a way as to minimise the total flight time, fuel burned, and NOx emissions. 

This, of course, resulted in step Mach number changes between segments, which, in 

effect, represent an effective average value over the relevant segment.   

It is relevant to note that, since the main objective of this first case study was the 

evaluation of the mathematical performance of Polyphemus rather than the generation 

of realistic trajectories, only a minimum number of (explicit) constraints were 

introduced. These were related to the range of permissible values of the design variables 

(h and M). The lower and upper bounds for these permissible ranges were set at 457m 

(1,500ft) and 10,668m (35,000ft) respectively for h (which correspond to the start and 

end altitudes) and 0.38 and 0.80 respectively for Mach number. 
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In this work, the flight path angle (FPA) was not used as a design variable or 

performance parameter in any of the optimisation processes performed. Consequently, 

this parameter was not used in the optimisation processes as either an explicit or implicit 

constraint. However, in order to compute only trajectories that closely represent actual 

ones, its permissible values were limited to a range previously defined. The FPA 

limitation was carried out inside the framework illustrated in Figure 6-8. However, the 

modelling of this limitation was not part of any of the three computational models used 

in this work and also schematically represented in this figure. In future, it is expected 

that this FPA constraint and other operational and physical ones constitute a different 

model which is used to compute accurate and realistic trajectories. Thus, in this work 

when dealing with trajectory segments belonging to climb (e.g., this first case study) 

and cruise phases, the lower and upper bounds of the FPA permissible range were 

specified as being equal to 0 and 7.5deg, respectively. In turn, for the case of trajectory 

segments belonging to descent phases, the corresponding range was set up as -7.5 and 

0deg. 

Table 6-2 defines, in terms of altitude (h), Mach number (M), and ground range 

(R) covered, the start and end points of the four segments of an arbitrary climb profile 

used as the reference (baseline) trajectory in this case study. In this table it is possible to 

observe that Segment 2 depicts a section at constant altitude, which is often encountered 

in situations such as in ATC (air traffic control) restrictions. For completeness, Table 

6-2 also summarises the design variables utilised in this first case study, as well as the 

ranges of permissible values considered. 

Table 6-2. Case Study 1 – Baseline trajectory and design variables 

Seg. 
No. 

hi 
[m] 

hf 
[m] 

M 
[--] 

R 
[km] 

Design 
Variables 

1 457 3048 0.38 20 -- 
2 3048 3048 0.46 10 0.38 ≤ M ≤ 0.80, 457 ≤ hi ≤ 10668 
3 3048 7000 0.58 60 0.38 ≤ M ≤ 0.80, 457 ≤ hi ≤ 10668 
4 7000 10668 0.80 100 457 ≤ hi ≤ 10668 
      

The other two optimisation algorithms against which the current algorithm was 

compared in this case study were taken from a commercial software package [94]. One 

of these two algorithms corresponded to a direct search method and, more specifically, 

to a pattern search algorithm called mesh adaptive search (MADS). Following this 
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approach, at each step, the algorithm searches a set of points looking for one where the 

value of the objective function is lower than the value at the current point. If it finds a 

point that improves the current objective function, the new point becomes the current 

point at the next step of the algorithm [94]. The second optimisation algorithm used 

from the referred commercial software was one that follows the same optimisation 

approach as Polyphemus, i.e., GAs 

6.2.2.2  
Results 

The baseline climb profile for this case study as well as the optimal trajectories 

computed using Polyphemus and the commercial optimisers [94] are illustrated in 

Figure 6-12 for comparison purposes. Both Polyphemus and the optimisation algorithms 

from the commercial package yielded very similar results, as can be observed in Figure 

6-12 and detailed quantitatively in Table 6-3, which shows the gains  in terms of 

reduction of climb flight time (~ -16%) and fuel burn (~ -6%). Even though this first 

optimisation case study (climb profile) corresponded to a hypothetical one, the 

reasonable agreement among the optimisers (average discrepancies ~2%) confirmed the 

validity of the approach and provided the necessary motivation for continuing with the 

development of Polyphemus and carrying out the other optimisation case studies 

described in the following sections. 

 
Figure 6-12. Case Study 1 – Comparison of optimisation algorithms 
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Figure 6-13 shows in turn the reference climb profile used in this case study and 

the optimum trajectories obtained using Polyphemus from the minimisation of the total 

flight time, fuel burned, and NOx emissions produced during the whole climb profile. 

The results associated with these optimum trajectories when translated into quantitative 

terms (Table 6-4) show significant reductions (relative to the baseline trajectory) in the 

total climb flight time (~ -16%), fuel burn (~ -6%), and NOx emissions produced (~ -

43%). The nature of these results is briefly discussed next. 

Table 6-3. Case Study 1 – Optimisation algorithms results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

Time – Polyphemus -16.2 50.5 
Time – MADS [94] -16.3 52.6 
Time – GAs [94] -16.3 53.0 
Fuel – Polyphemus 3.7 -6.7 
Fuel – MADS [94] 3.1 -6.7 
Fuel - GAs [94] 4.7 -6.0 

   

 
Figure 6-13. Case Study 1 – Baseline vs. Optimum trajectories 
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which was fixed at 0.38 and 0.80 in the first and four segment, respectively, and free to 

rise to 0.8 in the remaining middle two. Polyphemus also suggests that the aircraft 

should fly at low altitudes for as long as possible before climbing rapidly to the target 

end altitude (Figure 6-13). 

This is mathematically correct, since the speed of sound is the highest at sea levels 

(see Figure 6-1), thus enabling the aircraft to fly faster (maximisation of TAS) if it could 

actually achieve M 0.8 at this level.  In practice, however, this solution is not realistic, 

not least because the never exceed speed (VNE) is much lower than Mach 0.8 at sea 

level, thus restricting large transport category aircraft from approaching such high Mach 

numbers. Nevertheless, it is an interesting solution, confirming that the optimiser is 

working correctly in the absence of M (or TAS) constraints. 

Table 6-4. Case Study 1 – Optimum trajectories results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

NOx Emitted 
[%] 

Time – Polyphemus -16.2 50.5 694.2 
Fuel – Polyphemus 3.7 -6.7 -19.3 
NOx – Polyphemus 17.1 -1.1 -43.6 

    

 
Figure 6-14. Case Study 1 – Mean Mach number at each climb segment 
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is conceptually correct (given the design of the reference trajectory).  It is interesting to 

note that the fuel optimised trajectory proposes second and third segments affording a 

greater fuel burn (relative to the baseline – Figure 6-15) in order to gain height which, 

then, subsequently yields a lower fuel burn in the last segment and an overall lower fuel 

burn for the climb profile as a whole. 

Initially from what can be observed in Figure 6-13 in terms of flight profile, one 

could conclude that the trajectories optimised for minimum fuel burned and NOx 

emissions are similar. However, there are significant differences between these two 

trajectories. The main one is related to the fact that the NOx emissions optimised 

trajectory is flown at relatively lower Mach numbers than the fuel burned optimised one 

(see Figure 6-14). These lower Mach numbers result in lower engine thrust settings, i.e., 

the thrust required to fly a given segment is lower, which in turn result in lower engine 

TET values. This effect is shown in Figure 6-16. 

 
Figure 6-15. Case Study 1 – Fuel burned at each climb segment 
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profile. It is relevant to note in this discussion that the level of NOx formed at 

temperatures near to and above 1,700-1,800K increases exponentially with temperature. 

Figure 6-17 summarises (graphically) the main results obtained when computing 

the three optimum trajectories analysed above. One aspect to highlight in Figure 6-17 is 

the level of gaseous emissions, in terms of NOx, CO2, and H2O, of the optimum 

trajectories relative to the reference climb trajectory. As expected, the variations in CO2 

and H2O are directly proportional to the variations in the amount of fuel burned (species 

in chemical equilibrium). However, as observed in Figure 6-17, the aircraft trajectory 

optimised for flight time significantly increases the amount of NOx emissions. One of 

the main factors responsible for this significant increase in NOx, besides the increase in 

fuel burn, is the increase in TET (Figure 6-16) resulting from the higher thrust settings. 

Another interesting observation in Figure 6-17 is the increase in total flight time 

obtained for the trajectory optimised for minimum NOx emissions. Although this 

parameter increases, the total fuel burned slightly decreases as a consequence of the 

lower thrust settings (i.e., lower engine fuel flow relative to the baseline trajectory). 

Additional details about the results analysed in this first case study can be found in 

references [124,125]. 

 
Figure 6-16. Case Study 1 – TET at each climb segment 
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summarised in the cases studies described in the following sections, complexities (in 

terms of operational constraints, number of segments, number of trajectory flight 

phases, etc.) were included gradually. This gradual addition of complexities to the case 

studies analysed afforded again greater visibility of the mathematical performance of 

Polyphemus when assessing results. This would have proved more difficult if the 

analysis had been initiated with very complex trajectories. Accordingly, several 

trajectory optimisation processes were performed, and their main results are 

summarised in the following case studies. 

 
Figure 6-17. Case Study 1 – Optimum trajectories results (relative to baseline) 
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introduced in this case enabled to represent more realistically climb profiles described 

by commercial aircraft.      

In terms of number of segments, segment lengths, and initial and final climb 

altitudes, the climb profile optimised in this second case study is identical to the one 

used in the first case study, whose generic representation is illustrated in Figure 6-11. 

As in the first case, ISA conditions were assumed and the FPA was limited to values 

between 0 and 7.5deg. During the optimisation processes, only the initial aircraft speed 

(EAS) in segment 1 and the initial altitude in segment 3 were varied in such a way so as 

to minimise the total flight time, fuel burned, and NOx emissions produced. The 

arbitrary climb profile used as the reference trajectory in this second case study can be 

described as follows: 

• 1st segment: Climb at constant EAS, 250kts EAS or 128.6m/s, from 1,500ft 

(457m) up to 10,000 ft (3,048m) 

• 2nd segment: Acceleration at 10,000ft (level flight) to 320kt EAS (164.6m/s)  

• 3rd segment: Climb at constant EAS (320kts) up to 25,341ft (7,724m), 

where (cruise) Mach number is equal to 0.8 

• 4th segment: Climb at constant M (0.80) up to 35,000ft (10,668m) 

Table 6-5 defines, in terms of altitude (h), aircraft speed (M or EAS), and ground 

range (R) covered, the start and end points of the four segments of the climb profile 

used as the baseline trajectory. In this table it is interesting to note the way in which the 

aircraft speeds are defined, i.e., different trajectory segments have (when required) 

different speed regimes (segments 1 and 3 are flown at constant EAS, segment 2 at 

variable EAS, and segment 4 at constant M). This is a typical example of the flexibility 

in the definition of the trajectory optimisation problem as discussed in the beginning of 

this chapter. Due to the direct relationship between Mach number and EAS (Eq. (6-12)), 

for a given M the EAS is only a function of altitude. Then, defining M and EAS in the 

start of segment 4 (or at the end of segment 3) as being equal to 0.8 and 320kts 

(164.6m/s), respectively, the corresponding altitude was determined (7,724m in this 

particular case). This altitude (also shown in Table 6-5) was kept constant during the 

optimisation processes. 

The design variables utilised in this second case study are also indicated in Table 

6-5 for completeness. The lower and upper bounds of the range of permissible values of 
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the initial EAS in segment 1 correspond to, respectively, the aircraft stall speed (89.0m/s 

EAS for the particular aircraft being simulated), and the maximum EAS permissible 

below 10,000ft (according to ATC restrictions), i.e., 250kts EAS or 128.6m/s. In turn, 

the range of values in which the initial altitude in segment 3 can be varied when 

optimising the trajectories was established in such a way to avoid the aircraft losing 

altitude during the climb process. 

Table 6-5. Case Study 2 – Baseline trajectory and design variables 

Seg. 
No. 

hi 
[m] 

hf 
[m] 

Mi 
[--] 

Mf 
[--] 

EASi 
[m/s] 

EASf 
[m/s] 

R 
[km] 

Design 
Variables 

1 457 3048 -- -- 128.6 128.6 20 89.0 ≤ EASi ≤ 128.6 
2 3048 3048 -- -- 128.6 164.6 10 -- 
3 3048 7724 -- -- 164.6 164.6 60  3048 ≤ hi ≤ 7724 
4 7724 10668 0.80 0.80 -- -- 100 -- 
         
The trajectories optimised in this case study essentially followed the climb 

schedule described previously for the baseline trajectory. However, in the optimisation 

process the initial EAS (and consequently the final one) in segment 1 and the initial 

altitude in segment 3 were varied within the ranges of their permissible values indicated 

in Table 6-5, in such a way so as to determine optimum trajectories which minimise the 

total flight time, fuel burned, and NOx emissions produced. The following section 

summarises the main results obtained. 

6.2.3.2  
Results 

Similarly to the first case study, the numerical performance of Polyphemus was 

also analysed in this case through comparisons of the results obtained using this 

optimiser with those obtained using the MADS algorithm [94]. The climb profile 

utilised as baseline in this case study as well as the optimum trajectories computed using 

Polyphemus and the commercial optimiser [94] are shown in Figure 6-18. Figure 6-19 

illustrates, in turn, a magnification of the second and third segments shown in Figure 

6-18, which allows a clearer visualisation of the nature of the optimum trajectories 

determined. 

As can be observed in Figure 6-19, both Polyphemus and MADS [94] yielded 

again very similar results (average discrepancies less than 3%). Table 6-6 summarises 
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these results in quantitative terms. From this table it is possible to see that all optimum 

trajectories computed originated reductions in the total climb time (~ -2.2%), fuel 

burned (~ -0.3%), and the level of gaseous emissions produced, in terms of NOx 

emissions (~ -3.5%). 

 
Figure 6-18. Case Study 2 – Comparison of optimisation algorithms 

 
Figure 6-19. Case Study 2 – Comparison of optimisation algorithms magnified 
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In order to have a clear view of the results obtained using Polyphemus, Figure 

6-20 shows the detail of segments 2 and 3 of the reference climb profile used in this 

case study as well as of the optimum trajectories computed with this optimiser. 

Interestingly, in Figure 6-20 it is possible to see that in order to minimise the total flight 

time Polyphemus suggests that the aircraft should fly segments 2 and 3 at higher 

altitudes than the baseline trajectory. At first sight, it would appear contradictory to 

what it is expected according to the results obtained in the first case study. This and 

other aspects will be further analysed next. 

Table 6-6. Case Study 2 – Optimisation algorithms results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

NOx Emitted 
[%] 

Time – Polyphemus -2.2 0.8 40.0 
Time – MADS [94] -2.2 0.8 40.2 
Fuel – Polyphemus -0.8 -0.3 -1.0 
Fuel – MADS [94] -0.6 -0.3 -1.3 
NOx – Polyphemus 6.2 3.7 -3.6 
NOx – MADS [94] 6.2 3.6 -3.5 

    

 
Figure 6-20. Case Study 2 – Baseline vs. Optimum trajectories (magnified) 
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segment at the highest EAS permissible (Figure 6-22), which was fixed at 128.6m/s; 

and starts the third segment at the highest altitude permissible (4,365m), which 

corresponds to the highest FPA permissible (7.5deg). This is conceptually correct 

because (i) in the first segment, for a given altitude, TAS increases with the increase in 

EAS (Eq. (6-10)); and (ii) in the beginning of third segment, for a given EAS, TAS 

increases as altitude increases (Figure 6-5). For completeness, Figure 6-23 shows the 

flight Mach number variation along the whole climb profile. As can be confirmed from 

this figure, Mach number step changes are not present anymore in this second case 

study. 

 
Figure 6-21. Case Study 2 – True airspeed (TAS) 
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(∆Eୟୡ) required plus the path dependent energy (E୮ୟ୲୦) required to impart that change, 

as follows: 

௥௘௤ܧ ൌ ∆Eୟୡ ൅ E୮ୟ୲୦ (6-14) 

In the particular case in which the aircraft energy end states (initial and final 

kinetic and potential energies) is constrained, neglecting for a moment the aircraft mass 

changes, the total aircraft kinematic energy change (∆Eୟୡ) is fixed. For example, a 

climb from 10,000ft to 25,000ft with initial and final speeds 250kts and 300kts, 

respectively, requires a fixed kinematic energy change. The climb is performed however 

against dissipative forces, such as aerodynamic drag, which have a path-dependence 

when determining the energy dissipated. An aircraft climbing over a long path length at 

high drag dissipates more energy than another one flying a shorter path at lower drag. In 

this example, the minimisation of the path dependent energy is then responsible for the 

minimisation of the total energy required by the aircraft to fly the referred climb profile.  

 
Figure 6-22. Case Study 2 – Equivalent airspeed (EAS) 
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initial speed constraint is eliminated, ∆Eୟୡ is minimised when the initial kinetic energy 

is maximised. This particular situation has a close relationship with the flight profile 

optimised in this second case study, i.e., the initial and final altitudes of the climb 

profile and the final aircraft speed are fixed. Consequently, in order to minimise the 

total energy required to climb, the initial kinetic energy needs to be maximised. It 

implies in turn the maximisation of the initial aircraft speed, i.e., TAS. This TAS 

maximisation leads to a situation in which the aircraft flies the first segment at the 

highest EAS permissible as observed in Figure 6-22. 

According to the analysis carried out above, for the specific climb profile 

optimised in this case study, one would therefore expect the minimum fuel burn to 

occur when the aircraft begins the climb at the highest permissible speed and climbs 

with minimum drag along the shortest path. This is not realistic however, as these flight 

conditions (altitude and speed) will generally not correspond to those conditions leading 

to the minimisation of the total energy required to climb (minimum drag path, minimum 

SFC engine operating point, etc.). A trade-off must therefore be established at some 

stage. The fuel optimised trajectory computed in this case study is a typical example of 

the referred trade-off. Figure 6-24 illustrates then the fuel burned associated with the 

baseline trajectory as well as the three optimum trajectories computed in this case study. 

 
Figure 6-23. Case Study 2 – Flight Mach number 
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The original assumption was that the aircraft mass (including fuel on-board) 

remains constant throughout each segment, and therefore the whole climb profile. This 

has a direct impact upon the aircraft drag, thrust required and the total kinematic energy.  

In reality, as the aircraft climbs and fuel is burned, the mass reduces. The effect of 

assuming a constant mass is to over-estimate the drag, thrust required and total energy 

as the time variable evolves. One of the main factors driving the minimisation of the 

fuel burned during a given flight profile is the aircraft mass changes. Therefore, by 

accounting for the change in aircraft mass as a function of fuel burn a more accurate 

model of the climb may be established. 

 
Figure 6-24. Case Study 2 – Fuel burned at each climb segment 
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almost constant engine TET values, as a result of the relatively low engine thrust 

settings used to fly a given trajectory. These low thrust settings are usually obtained by 

reducing the aircraft speed which result in increases in the total flight time. Even though 

the increase in the flight time has a direct influence on the total amount of fuel burned 

and, consequently, on the level of gaseous emissions produced, during the optimisation 

process there is a tendency to reduce the aircraft speed because the fuel burned is a 

secondary factor when computing NOx emissions. In other words, when determining 

NOx emissions optimised trajectories is more important to reduce TET than fuel burned. 

Consequently, as illustrated in Figure 6-17 and Figure 6-26, respectively, trajectories 

optimised for minimum NOx emissions can decrease or increase the total fuel burned 

along a given trajectory.   

 
Figure 6-25. Case Study 2 – TET at each climb segment 
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minimum flight time significantly increases the amount of NOx emissions. This result is 

directly related to the large amount of thrust being required to fly the second climb 

segment, where the aircraft climb and accelerates at the same time. Of course, this large 

requirement in engine thrust translated into high TET values (Figure 6-25), and, 

consequently, into significant increases in the level of NOx emissions produced (Figure 

6-26). 

 
Figure 6-26. Case Study 2 – Optimum trajectories results (relative to baseline) 
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optimisation) in order to determine the value of the parameters they constrain. A 

complete optimisation problem includes both explicit and implicit constraints. For the 
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two past case studies, only explicit constraints were utilised through restrictions 

explicitly imposed on the design variables (input parameters). However, real 

engineering optimisation problems always include implicit constraints. Therefore, in 

this third case study constraints of this type have been included. 

The climb profile optimised in this third case study, including its baseline, is 

exactly the same as in the second case study (see Table 6-7). However, this time two 

new design variables and an implicit constraint were added, and optimum trajectories 

(which minimise total flight time, fuel burned, and NOx emissions produced) were 

determined. All design variables utilised in this third case study are indicated in Table 

6-5. As observed in this table, two of them, the initial EAS in segment 1 and the initial 

altitude in segment 3, are the same as in the previous case study. However, the upper 

limit of the range of permissible values of the initial altitude in segment 3 was reduced 

to 4,400m (which corresponds approximately to the highest FPA permissible, 7.5deg) to 

decrease the computational time involved when computing the optimum trajectories. 

The other two design variables used in this third case study related to the final 

EAS in segment 2 and initial altitude in segment 4 (Table 6-7). In other words, during 

the optimisation, after flying the first trajectory segment the aircraft was allowed to 

accelerate to a given EAS (segment 2), to climb at constant EAS (using the previous 

segment final EAS) up to an altitude where (cruise) Mach number is about 0.8 (segment 

3), and finally to climb at constant M from this altitude to 35,000ft (segment 4). The 

lower and upper bounds of the range of permissible values of the final EAS in segment 

2 corresponded to the equivalent airspeeds that yield Mach numbers of about 0.8 at the 

lowest and highest permissible altitudes associated with the beginning of segment 4. In 

turn, the range of values in which the initial altitude in segment 4 can be varied when 

optimising the trajectories was established in such a way to avoid the aircraft losing 

altitude during the climb process. 

Table 6-7. Case Study 3 – Baseline trajectory and design variables 

Seg. 
No. 

hi 
[m] 

hf 
[m] 

Mi 
[--] 

Mf 
[--] 

EASi 
[m/s] 

EASf 
[m/s] 

R 
[km] 

Design 
Variables 

1 457 3048 -- -- 128.6 128.6 20 89.0 ≤ EASi ≤ 128.6 
2 3048 3048 -- -- 128.6 164.6 10 133.8 ≤ EASf ≤ 221.2 
3 3048 7724 -- -- 164.6 164.6 60 3048 ≤ hi ≤ 4400 
4 7724 10668 0.80 0.80 -- -- 100 3048 ≤ hi ≤ 10668 
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As mentioned before, in addition to these design variables, an implicit constraint 

was utilised in this case study. This implicit constraint was related to the flight Mach 

number in segment 4. Accordingly, the allowable range of this parameter was 

established as being ± 0.5% of its nominal value, 0.8 in this case. Obviously, it was not 

possible to use this parameter as an explicit constraint because Mach numbers were not 

used as design variables in this case study. There are different ways of handling implicit 

constraints as explained in Chapter 5. However, most of the constraint handling 

techniques currently utilised involve some sort of penalisation to the unfeasible 

solutions, which varies mainly according to level of violation of the constraints. In this 

way, the probability of generating solutions that do not respect the constraints of the 

problem is greatly reduced. Consequently, well designed optimisation algorithms in 

general produce only optimum solutions that fulfil the constraint requirements of the 

optimisation problem. The following section summarises the main results obtained as 

part of this third case study. 

6.2.4.2  
Results 

In a similar fashion to the first two case studies presented before, the numerical 

performance of Polyphemus is also analysed through comparisons of the results 

obtained using this optimiser and one of the other two commercially available 

optimisation algorithms (GAs [94]) utilised before. This commercial algorithm was 

selected because of the inability of the one used in the previous case study (MADS 

algorithm [94]) to optimise complex problems involving several design variables and 

implicit constraints. The climb profile taken as baseline in this case study as well as the 

optimum trajectories computed using Polyphemus and the commercial optimiser [94] 

are shown in Figure 6-27.  

As can be observed in Figure 6-27 and quantitatively in Table 6-8, both 

Polyphemus and the GAs-based optimisation algorithm from the commercial package 

yielded similar results (average discrepancies ~ 3%). Even so, in terms of flight altitude, 

the third segment of the minimum flight time optimum trajectories present a 

discrepancy of about 800m (Figure 6-27). One of the sources of this discrepancy may be 

associated with the fact that the commercial optimiser was not fully converged when 

these results were taken. However, no attempts to identify the exact sources of this 
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discrepancy have been made. From Table 6-8 it is possible to see that the three optimum 

trajectories computed originated significant reductions in the total climb time (~ -11%), 

fuel burned (~ -5%), and level of NOx emitted (~ -12%). In order to highlight the results 

obtained using Polyphemus, Figure 6-28 illustrates the reference climb profile used in 

this case study and only the optimum trajectories computed with this optimiser.       

 
Figure 6-27. Case Study 3 – Comparison of optimisation algorithms 

Table 6-8. Case Study 3 – Optimisation algorithms results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

NOx Emitted 
[%] 

Time – Polyphemus -11.6 26.1 245.3 
Time – GAs [94] -10.8 21.9 249.6 
Fuel – Polyphemus 6.6 -5.0 0.4 
Fuel – GAs [94] 5.1 -4.7 -2.2 
NOx – Polyphemus 9.6 -0.3 -12.8 
NOx – GAs [94] 9.9 -0.4 -11.9 
    

The results obtained in this third case study are similar to those obtained in the 

first case study analysed in this chapter. Thus, when minimising the time spent during 

climb, i.e., maximising TAS (Figure 6-29), Polyphemus suggests a solution where the 

aircraft flies the first segment at the highest EAS permissible (Figure 6-30), which was 

fixed at 128.6m/s. This is conceptually correct because in the first segment, due to the 

flight altitude is fixed, TAS increases with the increase in EAS (Eq. (6-10)). The 
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optimiser also suggests that the aircraft should accelerate in the second segment to the 

highest EAS permissible, fixed at 221.2m/s; and fly the following segments at low 

levels as long as possible before climbing rapidly to the target end altitude (Figure 

6-28). This is again mathematically correct because, firstly, as previously indicated, 

once established the flight altitude the TAS increases with the increase in EAS; and, 

secondly, for a given Mach number the TAS increases with the decrease in altitude 

(speed of sound is the highest at sea levels – Figure 6-1). Clearly, the influence of the 

third and fourth segments on the total climb time is more important than that one 

associated with the second segment. Otherwise, the initial altitude in segment 3 would 

be the highest permissible. Obviously, this does not happen in this case as it can be 

observed in Figure 6-28. For completeness, Figure 6-31 shows the flight Mach number 

variation along the whole climb profile. 

 
Figure 6-28. Case Study 3 – Baseline vs. Optimum trajectories 

In general, Figure 6-28 and Figure 6-29 show that, in order to reduce the climb 

fuel burned, Polyphemus suggests flying mostly slower and higher than the reference 

trajectory. In particular, as illustrated in Figure 6-30, it suggests flying the first segment 

at the highest EAS permissible (fixed at 128.6m/s). This is exactly the same situation 

encountered in the second case study. Thus, in order to minimise the total energy 

required to climb, the total aircraft kinematic energy change needs to be minimised. 

Since the aircraft kinematic energy change is minimised when the initial kinetic energy 
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is maximised, it implies in turn the maximisation of the initial aircraft speed, i.e., TAS. 

This TAS maximisation leads to a situation in which the aircraft flies the first segment 

at the highest EAS permissible (Figure 6-30). Figure 6-32 illustrates the fuel burned 

associated with the baseline trajectory as well as the three optimum trajectories 

computed in this case study. 

 
Figure 6-29. Case Study 3 – True airspeed (TAS) 

 
Figure 6-30. Case Study 3 – Equivalent airspeed (EAS) 
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As highlighted in the previous case study, one of the main factors driving the 

minimisation of the fuel burned during a given flight profile is the aircraft mass 

changes. There are different factors that affect the fuel burned and, consequently, the 

changes in the aircraft mass. The aircraft speed and the flight altitude constitute two of 

these main factors. Reducing the speed and increasing the altitude reduce drag and, 

consequently, the thrust required to fly a given segment. This lower thrust requirement 

translates into a lower engine thrust setting, and, consequently, a lower fuel burn. 

However, neither altitude nor speed can be increased or decreased arbitrarily. A speed 

reduction implies in general an increase in flight time, which can negatively affect the 

total fuel burned. In addition, in order to achieve quickly higher altitudes, higher engine 

thrusts, meaning higher thrust settings, will be also required. These higher thrust 

settings will require higher fuel flows, which negatively affect the fuel being burned 

during the process. 

 
Figure 6-31. Case Study 3 – Flight Mach number 

Therefore, a compromise between aircraft flight altitude and speed, which directly 
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baseline) in order to gain height which, then, is translated into a lower fuel burn in the 

last segment and an overall lower fuel burn for the whole climb profile. In Figure 6-30 it 

is possible to see that, as expected, the (third segment) EAS associated with the baseline 

trajectory is in between those equivalent airspeeds corresponding to the minimum flight 

time and fuel burned optimised trajectories. This is an expected result because 

commercial aircraft usually fly (segment 3) at this speed, which is determined mainly 

from the optimisation (minimisation) of the aircraft direct operating cost (DOC) that 

involves both fuel burn and flight time. 

 
Figure 6-32. Case Study 3 – Fuel burned at each climb segment 

Regarding the trajectory optimised for minimum NOx emissions, from Figure 

6-28 and Figure 6-29 one can see that this trajectory is also flown mostly slower and 

higher than the baseline trajectory utilised. In principle, this trajectory looks very similar 

to the fuel optimised one. Thus, in general, this lower speed and higher altitude lead to 

reductions in the thrust required to fly the climb segments. These lower thrust 

requirements are in turn translated into lower engine TET values (Figure 6-33), which in 

turn result in reductions in the level of NOx emissions. Similar to the first two case 

studies analysed, Figure 6-33 also shows that in order to minimise NOx emissions the 

aircraft describes a trajectory in such a way that the engine TET remains almost 

constant (~ 1,400-1,500K) along the whole climb profile. This fact confirms the rule of 

thumb mentioned in the previous case study, in which it was indicated that NOx 
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emissions optimised trajectories utilise relatively low and almost constant engine TET 

values, as a result of the relatively low engine thrust settings utilised. 

 
Figure 6-33. Case Study 3 – TET at each climb segment 

Finally, Figure 6-34 summarises the main results obtained when computing the 

three optimum trajectories analysed in this third case study. As before, in this figure it is 

possible to see that the variations in CO2 and H2O (species in chemical equilibrium) are 

directly proportional to the variations in the amount of fuel burned. Figure 6-34 also 

illustrates that even though the NOx emissions optimised trajectory increases total flight 

time the total amount of fuel burned is slightly reduced. As indicated before, this is a 

direct consequence of the lower engine thrust settings utilised. In Figure 6-34 it is also 

worth noticing that the aircraft trajectory optimised for minimum flight time 

significantly increases the amount of NOx emissions. This result is partially due to the 

large amount of thrust required to increase both the aircraft kinetic energy in segment 2 

and the potential energy in segment 4. This higher requirement in engine thrust 

translated into higher TET values (Figure 6-33), and, consequently, into significant 

increases in the level of NOx emissions (Figure 6-34). To conclude it is important to 

highlight that the three case studies analysed until now provide the required basis for 

analysing more complex trajectories. Thus, the following cases studies will involve the 

optimisation of whole aircraft trajectories, and their results will enable a better 
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understanding of the capabilities of Polyphemus for carrying out aircraft trajectory 

optimisation processes. 

 
Figure 6-34. Case Study 3 – Optimum trajectories results (relative to baseline) 

6.2.5  
Case Study 4: Full Flight Profile Optimisation 

6.2.5.1  
General Description 

After dealing with climb profiles involving complexities gradually introduced, the 

next step involved naturally the optimisation of whole aircraft trajectories. Thus, this 

fourth case study summarises the main results obtained from the optimisation of whole 

flight profiles. Similar to the previous case studies, in order to afford greater visibility 

on the characteristics of the performance of Polyphemus when assessing results, the 

whole flight profile was divided into only a small number of segments, and involved 

only three of the main flight phases encountered in aircraft trajectories: climb, cruise, 

and descent. Consequently, as schematically represented in Figure 6-35, in this fourth 

case study, the flight profile was divided into only eight segments. Climb: segments 1 to 

3; cruise: segments 4 and 5; and descent: segments 6 to 8. 
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Figure 6-35. Schematic representation of full flight profile 

As implied above, for the sake of clarity and simplicity, the aircraft trajectory 

flight phases involving take-off and approach/landing have been not included in the 

analyses carried out in this case study. In a similar fashion to previous analyses, ISA 

conditions were assumed and the FPA was limited to values between 0 and 7.5deg 

during climb and cruise, and -7.5 and 0deg during descent. Accordingly, optimum 

trajectories which minimise the total flight time, fuel burned, and NOx emissions 

produced were computed. 

The arbitrary full flight profile used as the reference or baseline trajectory in this 

fourth case study can be described as follows: 

• 1st segment: Climb at constant EAS, 250kts EAS or 128.6m/s, from 1,500ft 

(457m) up to 10,000 ft (3,048m) 

• 2nd segment: Acceleration at 10,000ft (level flight) to 320kt EAS (164.6m/s)  

• 3rd segment: Climb at constant EAS (320kts) up to 25,341ft (7,724m), 

where (cruise) Mach number is equal to 0.8 

• 4th segment: Cruise at 25,341ft (level flight) at constant M (0.80) 

• 5th segment: Cruise at 25,341ft (level flight) at constant M (0.80) 

• 6th segment: Descent at constant EAS (320kts) from 25,341ft (7,724m) to 

10,000 ft (3,048m) 

• 7th segment: Deceleration at 10,000ft (level flight) to 250kt EAS (128.6m/s)  

• 8th segment: Descent at constant EAS, 250kts EAS or 128.6m/s, from 

10,000 ft (3,048m) to 1,500ft (457m) 
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Table 6-9 summarises the values of the main parameters (altitude, aircraft speed, 

and ground range covered) that characterise the eight-segment trajectory described 

above, which was utilised as the baseline trajectory in this fourth case study. All design 

variables used in this case study are also indicated in Table 6-9. As observed in this 

table, the first three design variables (initial EAS in segment 1, final EAS in segment 2, 

and initial altitude in segment 3) correspond to the same variables used in the previous 

(third) case study. However, the lower and upper bounds of the range of permissible 

values of the final EAS in segment 2 have been slightly modified. In this case, they 

correspond to the equivalent airspeeds that yield Mach numbers of about 0.8 at the 

lowest and highest permissible altitudes associated with the beginning of segment 4. In 

turn, the range of values in which the initial altitude in segment 4 can be varied when 

optimising the trajectories was established in such a way so as to allow the aircraft 

cruising at altitudes between 20,000ft (6,096m) and 40,000ft (12,192m). 

The last two design variables and their associated ranges of permissible values 

were established similarly to the corresponding ones used during the climb phase. Thus, 

the upper limit of the range of permissible values of the initial altitude in segment 7 was 

established as being equal to 4,400m (which corresponds approximately to the highest 

FPA permissible, -7.5deg). In turn, the lower and upper bounds of the range of 

permissible values of the initial EAS in segment 8 corresponded to the aircraft stall 

speed (89.0m/s EAS), and the maximum EAS permissible below 10,000ft (250kts EAS 

or 128.6m/s according to ATC restrictions), respectively. 

Table 6-9. Case Study 4 – Baseline trajectory and design variables 

Seg. 
No. 

hi 
[m] 

hf 
[m] 

Mi 
[--] 

Mf 
[--] 

EASi 
[m/s] 

EASf 
[m/s] 

R 
[km] 

Design 
Variables 

1 457 3048 -- -- 128.6 128.6 20 89.0 ≤ EASi ≤ 128.6 
2 3048 3048 -- -- 128.6 164.6 10 117.1 ≤ EASf ≤ 184.6 
3 3048 7724 -- -- 164.6 164.6 160 3048 ≤ hi ≤ 4400 
4 7724 7724 0.80 0.80 -- -- 230 6096 ≤ hi ≤ 12192 
5 7724 7724 0.80 0.80 -- -- 230 -- 
6 7724 3048 -- -- 164.6 164.6 140 -- 
7 3048 3048 -- -- 164.6 128.6 20 3048 ≤ hi ≤ 4400 
8 3048 457 -- -- 128.6 128.6 70 89.0 ≤ EASi ≤ 128.6 
         
Similar to the implicitly constrained climb profile optimised in the previous case 

study, in addition to these design variables, an implicit constraint was also utilised in 
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this fourth case study. This implicit constraint was related to the flight Mach number in 

segment 4, whose value was also used in segment 5. Accordingly, the allowable range 

of this parameter was established as being ± 0.5% of its nominal value, 0.8 in this case. 

As emphasised before, it is not possible to use this parameter as an explicit constraint 

when the same is not utilised as a design variable. Based on these considerations, 

optimum whole flight profiles minimising the total flight time, fuel burned, and NOx 

emissions produced have been computed in this fourth case study, and the following 

section summarises the main results obtained. 

6.2.5.2  
Results 

In a similar manner to the climb profiles studied before, the numerical 

performance of Polyphemus is again analysed through comparisons of the results 

obtained using this optimiser and one of the other two commercially available 

optimisation algorithms (GAs [94]) utilised previously. The whole flight profile used as 

baseline in this case study as well as the optimum trajectories computed using both 

Polyphemus and the commercial one [94] are shown in Figure 6-36. 

 
Figure 6-36. Case Study 4 – Comparison of optimisation algorithms 
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similar results (average discrepancies ~ 1%). Similar to other cases studies analysed 

previously, from Table 6-10 it can be seen that the three optimum trajectories computed 

originated significant reductions in the total climb time (~ -5%), fuel burned (~ -17%), 

and level of NOx emitted (~ -34%). In order to highlight the particular results obtained 

using Polyphemus, Figure 6-37 shows the reference trajectory used in this case study 

and only the optimum trajectories computed with this optimiser. 

Table 6-10. Case Study 4 – Optimisation algorithms results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

NOx Emitted 
[%] 

Time – Polyphemus -5.2 14.5 126.7 
Time – GAs [94] -5.2 14.0 123.4 
Fuel – Polyphemus 8.8 -17.2 -24.7 
Fuel – GAs [94] 8.3 -17.3 -26.3 
NOx – Polyphemus 9.8 -13.3 -35.1 
NOx – GAs [94] 9.9 -13.0 -33.4 

    

 
Figure 6-37. Case Study 4 – Baseline vs. Optimum trajectories 

In order to have a better understanding of the nature of the optimum trajectories 

computed in this case study, each of them will be analysed briefly and separately. 

Firstly, minimisation of total flight time implies, as highlighted before and illustrated in 

Figure 6-38, maximisation of TAS. Thus, when determining the minimum flight time 

optimised trajectory, Polyphemus suggests a solution where the aircraft flies the first 
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and the last segments at the highest EAS permissible (Figure 6-39), which was fixed at 

128.6m/s due to ATC restrictions. This is conceptually correct because the first and last 

segments are flown at fixed altitudes, where TAS increases with the increase in EAS, 

Eq. (6-10).  

 
Figure 6-38. Case Study 4 – True airspeed (TAS) 

Polyphemus also suggests that the aircraft should accelerate in the second segment 

to the highest EAS permissible (fixed at 184.6m/s), and start the third segment as high 

as possible and as low as possible the fourth one (Figure 6-37). This is again 

mathematically correct because, firstly, TAS increases with the increase in both flight 

altitude and EAS (segments 2 and 3); and, secondly, for a given Mach number the TAS 

increases with the decrease in altitude (speed of sound is the highest at sea level – 

Figure 6-1) – segments 4 and 5. As a consequence of the larger distance covered by the 

cruise segments 4 and 5, their influence on the total flight time is more important than 

that associated with the third and sixth segments. This is reflected by the fact that the 

aircraft has a tendency to cruise at low altitude levels as observed in Figure 6-37. For 

completeness, Figure 6-40 shows the flight Mach number variation along the whole 

flight profile. As can be verified in this figure, all trajectories computed fulfilled the 

requirement of the implicit constraint imposed (flight Mach number at cruise ~ 0.8). 
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Regarding the fuel optimised trajectory, Figure 6-37 and Figure 6-38 show that in 

order to reduce the total fuel burned the optimiser suggests flying mostly slower and 

higher than the reference trajectory. In particular, as illustrated in Figure 6-39, it 

suggests flying the first segment at the highest EAS permissible (fixed at 128.6m/s). 

This situation is similar to those ones encountered in the last two case studies. As 

already mentioned, in order to minimise the total fuel burned during the flight profile, 

the total energy required during the process must be minimised. It implies in turn the 

minimisation of aircraft kinematic energy change. Since in this fourth case study the 

initial and final altitudes are the same, it means that the overall change in kinetic energy 

must be minimised (neglecting for simplicity the aircraft mass changes). It implies, 

consequently, the maximisation of the initial aircraft speed and the minimisation of the 

final one (in terms of TAS). 

 
Figure 6-39. Case Study 4 – Equivalent airspeed (EAS) 

Accordingly, the TAS maximisation makes that the aircraft flies the first segment 

at the highest EAS permissible as shown in Figure 6-39 (for a given altitude, TAS 

increases with the increase in EAS). Additionally, Figure 6-39 also shows that even 

though the aircraft arrives to the end point at a low speed, this does not correspond to 

the lowest EAS permissible (fixed at 89.0m/s). It is believed that the one reason behind 

this is related to the fact that in general reducing speed means increasing flight time, 
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which also negatively affects the fuel burn. Consequently, it seems that this result is a 

compromise between two factors, one that has a tendency to reduce the aircraft speed, 

minimisation of the overall change in kinetic energy; and the other to increase this 

speed, in order to reduce the flight time, and consequently the fuel burn. Another aspect 

that may be influencing this particular result (EAS in segment 8) is the path dependent 

energy, which has a direct relationship with the aircraft speed and which also needs to 

be minimum. 

 
Figure 6-40. Case Study 4 – Flight Mach number 

In the foregoing analysis, the aircraft mass changes were neglected as indicated. 

However, in order to understand the nature of fuel optimised trajectories, these aircraft 

mass changes can not be ignored. This is because aircraft mass changes are one of the 

main factors driving the minimisation of the fuel burned during a given flight profile 

optimisation process. In the analysis presented in the previous case study, it was pointed 

out that there are two main parameters that affect the fuel burned and, consequently, the 

changes in the aircraft mass: the aircraft speed and the aircraft flight altitude. These two 

parameters directly or indirectly affect, in turn, other parameters such as drag, thrust 

required (to fly a given segment), flight time, and engine thrust setting (consequently, 

fuel flow, TET, etc.), among others. It implies that a fuel optimised trajectory represents 

in fact a trade-off among all these parameters, some of which conflict with each other. 
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Therefore, during the optimisation process, a compromise between aircraft flight 

altitude and speed, which directly affect the changes in the aircraft mass, is achieved at 

some stage, and the result of this compromise is characterised by the fuel optimised 

trajectory determined. Figure 6-41 illustrates the fuel burned associated with the 

baseline trajectory as well as the three optimum trajectories computed in this fourth case 

study. In this figure it is interesting to note that the fuel optimised trajectory proposes a 

second segment affording a greater fuel burn (relative to the baseline) in order to gain 

height which, then, in conjunction with the lower aircraft speeds is translated into a 

lower fuel burn in the subsequent segments and an overall lower fuel burn. 

 
Figure 6-41. Case Study 4 – Fuel burned at each flight segment (segments – climb: 1-3; cruise: 

4-5; descent: 6-8) 

For the flight profile optimised for minimum NOx emissions, from Figure 6-37 

and Figure 6-38 it is possible to see that this trajectory is flown similarly to the fuel 

optimised one, i.e., mostly slower and higher than the baseline trajectory utilised. The 

relative lower speed and higher altitude utilised to fly this trajectory originate in general 

reductions in the thrust required to fly the trajectory segments. These lower thrust 

requirements are in turn translated into lower engine TET values (Figure 6-42), which 

ultimately result in reductions in the level of NOx emissions produced. Figure 6-42 also 

illustrates that from all TET values associated with the three optimum trajectories 

determined and the reference trajectory, the TET values corresponding to the NOx 
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emissions optimised trajectory are the lowest ones. This is expected, of course, because 

this parameter has a direct influence on the level of NOx emissions produced by gas 

turbine combustors. 

 
Figure 6-42. Case Study 4 – TET at each flight segment (segments – climb: 1-3; cruise: 4-5; 

descent: 6-8) 

As customary in the case studies analysed, closing this section Figure 6-43 shows 

a comparison of the main results obtained when computing the three optimum 

trajectories determined in this fourth case study. As expected, this figure illustrates that 

the variations in CO2 and H2O (species in chemical equilibrium) are directly 

proportional to the variations in the amount of fuel burned. Figure 6-43 also shows that 

even though the NOx emissions optimised trajectory increases total flight time the total 

amount of fuel burned is largely reduced. As pointed out before, this is a consequence 

of the lower engine thrust settings utilised to fly this trajectory. Similar to the first three 

case studies, Figure 6-43 shows that the aircraft trajectory optimised for minimum flight 

time significantly increases the amount of NOx emissions. This result is partially due to 

the large amount of thrust required to increase the aircraft kinetic and potential energy 

in segment 2. The relatively high engine thrust required in this second segment resulted 

in a high engine TET value (~ 1,900K), as observed in Figure 6-42. Due to NOx 

emissions increases exponentially with temperature at such high TET values, this fact 

led to the significant increases in the level of NOx emitted observed in Figure 6-43. 

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8

Tu
rb

in
e 

En
try

 T
em

pe
ra

tu
re

 [K
]

Flight Segment

Baseline

Time - Polyphemus

Fuel - Polyphemus

NOx - Polyphemus



Evaluation and Optimisation of Propulsion Systems – Part A 154 

 

 
Figure 6-43. Case Study 4 – Optimum trajectories results (relative to baseline) 

Finally, it is important to emphasise that this fourth case study completes the set 

of main case studies analysed in this work in order to both assess the suitability of 

Polyphemus for carrying out this type of tasks, and comply with one of the objectives of 

this research project, which relates to the optimisation of aircraft propulsion systems 

from the point of view of their operation. Thus, the last two cases studies analysed in 

this chapter are only a complementary part to what was described before. These cases 

are presented as an attempt to illustrate other uses of Polyphemus, as well as to facilitate 

the setting of the optimisation processes described in the following chapter. 

6.2.6  
Case Study 5: Full Flight Profile Multi-objective Optimisation 

6.2.6.1  
General Description 

It was indicated before that the evaluation and optimisation of propulsion systems 

are carried out in this work from two different perspectives, operation and preliminary 

design. As part of the optimisation based on the operation of the aircraft propulsion 

systems, aircraft flight trajectories have been optimised as described in this chapter. 

From the propulsion system design point of view, engine cycle optimisation-type 

processes have been performed, and their main results will be presented in the following 
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chapter. However, in order to perform this last task, i.e., to optimise the preliminary 

design of aircraft propulsion systems, it was necessary to define a reference aircraft 

trajectory to be used during the optimisation processes. Three different options for this 

reference trajectory were initially considered: (i) an arbitrary trajectory; (ii) one of the 

optimum trajectories computed in the fourth case study described above; and (iii) an 

optimum trajectory determined from a multi-objective optimisation process involving 

the objectives utilised in the previous case studies. From these three options, the first 

two were discarded mainly because of the lack of criteria or basis for selecting, first, an 

arbitrary trajectory, and, second, one of the optimum trajectories computed in the last 

case study. Thus, it was decided to carry out multi-objective optimisation processes in 

order to determine a suitable multi-objective optimum reference trajectory for the 

engine design optimisation assessments. The main outcomes from these processes are 

summarised in this fifth case study. 

As highlighted in Chapter 5, two broad strategies can be adopted when dealing 

with multi-objective optimisation problems, generating approaches and preference-

based approaches. Generating approaches such as the Pareto method, on one hand, are 

used when no prior knowledge about the objectives preference structure is available, 

and they allow the identification of an entire set of Pareto solutions or an approximation 

of the same. Preference-based approaches such as the weighted-sum approach and the 

target vector optimisation method, on other hand, attempt to obtain a compromised or 

preferred solution, utilising in the process a known and quantifiable relative importance 

of the objectives involved. 

Polyphemus utilises an approach for the handling of optimisation objectives based 

on the target vector optimisation method. Thus, when dealing with multi-objective 

optimisation problems using Polyphemus, target values (previously determined) for 

each of the objectives involved need to be specified in order to carry out the 

optimisation process. The differences between the values of the objective functions at a 

given stage and their target values are used during the optimisation process to internally 

compute the objectives preference structure, which ultimately determines the optimum 

solution to be obtained. This means that the values indicated as targets of the objectives 

are the main drivers of the optimisation process, and they ultimately determine the 

direction in which the optimisation process has to proceed. It implies that, in turn, 
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different target values of the objective functions can yield different optimum results. 

Even though these different optimum solutions are still valid results, sometimes this is 

not the best way forward when optimising multi-objective problems, because these 

different solutions represent only a single point in the solutions Pareto front. However, 

no attempts to introduce more complex multi-objective handling capabilities to 

Polyphemus have been performed in this research project, because it constitutes part of 

future developments. 

Accordingly, in this case study multi-objective optimisation processes involving 

the determination of optimum full flight profiles which minimise, first, flight time and 

fuel burned; and second, flight time, fuel burned, and NOx emissions, have been carried 

out using Polyphemus. The full flight profile optimised in this case is identical to that 

one used in the previous case study, in terms of reference trajectory, number of 

segments, design variables, explicit and implicit constraints, etc., and its details will not 

be described again. The only difference was related to the optimisation objectives 

utilised. As indicated above, two multi-objective optimisation processes were 

performed, one involving the simultaneous minimisation of flight time and fuel burned, 

and the other included in addition the level of NOx emitted. The values of minimum 

flight time, fuel burned, and NOx emitted computed during the single-objective 

optimisation processes carried out in the previous case study were utilised in this case as 

the target values of the objectives required. The following section summarises the main 

results obtained from the referred multi-objective optimisation processes. 

6.2.6.2  
Results 

The flight profile used as baseline in this case study (which is equal to that one 

used in the previous case study), as well as the optimum trajectories computed from the 

multi-objective optimisation processes carried out using the current optimiser are shown 

in Figure 6-44. For comparison purposes this figure also shows the results obtained 

from the single-objective optimisation processes performed in the last case study, i.e. 

Case Study 4 (dashed lines). From Figure 6-44 it is possible to observe that the multi-

objective results show an expected behaviour, in terms of flight altitude. When 

optimising for flight time and fuel burned, the optimum trajectory determined is flown 

at an altitude that is in between those altitudes corresponding to the minimum flight 
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time and minimum fuel burned computed separately in the previous case study. 

Similarly, the flight time, fuel burned, and NOx emitted optimised trajectory is flown at 

high altitudes because the minimisation of NOx emissions requires such high altitudes 

(see Figure 6-37 and Figure 6-44). This last trajectory is flown slightly higher than the 

previous one because in this case there are two objectives (fuel and NOx) pushing the 

solution to high altitude regions, whereas the time and fuel optimised trajectory has only 

one objective (fuel) producing the same effect.  

 
Figure 6-44. Case Study 5 – Single-objective (dashed lines) vs. Multi-objective optimisation 

(continuous lines)  

Highlighting the particular multi-objective optimisation results obtained using 

Polyphemus, Figure 6-45 shows the reference trajectory used in this case study and only 

the multi-objective optimum trajectories determined. Table 6-11 summarises, in turn, 

the results associated with these optimum trajectories when translated into quantitative 

terms. Since, in general, minimum flight time is synonymous with low flight altitudes 

(Figure 6-37 and Figure 6-44), the optimum results determined in this case study 

resulted in an increase in flight time, instead of a decrease in it, as can be verified in 

Table 6-11. This is mainly due to the fact that the optimum trajectories computed are 

flown at relatively high altitudes (Figure 6-45) and low aircraft speeds (Figure 6-46) 

when compared to the reference trajectory utilised. These relative low aircraft speeds 
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are also reflected, naturally, in the relative low equivalent airspeeds and Mach numbers 

observed in Figure 6-47 and Figure 6-48, respectively. 

The total fuel burned and NOx emissions produced were favoured, of course, with 

the relative high altitudes and low aircraft speeds associated with the two optimum 

trajectories computed in this case study. Thus, as shown in Table 6-11, these parameters 

show large reductions when compared to the baseline trajectory. As emphasised before, 

these high altitudes and low speeds lead to a reduction in drag, which is translated into 

lower thrust requirements, and, consequently, into lower fuel flows and turbine entry 

temperatures. As shown in this case, these lower fuel flows result in general in lower 

fuel burns. Similarly, because of the direct relationship between TET and NOx emitted, 

these low TET values yield significant reductions in the level of NOx emissions. Figure 

6-49 illustrates the fuel burned for both the baseline trajectory and the two multi-

objective optimum trajectories computed in this case study. It is important to note in this 

figure that the optimised trajectories propose a second segment (or second and third 

segments) affording a greater fuel burn (or greater fuel burns) relative to the baseline, in 

order to gain height (and reduce drag) which, then, in conjunction with the lower 

aircraft speeds is translated into lower fuel burns in the subsequent segments and overall 

lower fuel burns. 

 
Figure 6-45. Case Study 5 – Baseline vs. Optimum trajectories 
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Figure 6-46. Case Study 5 – True airspeed (TAS) 

Table 6-11. Case Study 5 – Optimum trajectories results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

NOx Emitted 
[%] 

Time & Fuel 2.8 -11.9 -5.6 
Time & Fuel & NOx 7.2 -15.0 -33.2 

    

 
Figure 6-47. Case Study 5 – Equivalent airspeed (EAS) 
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Figure 6-48. Case Study 5 – Flight Mach number 

 
Figure 6-49. Case Study 5 – Fuel burned at each flight segment (segments – climb: 1-3; cruise: 

4-5; descent: 6-8) 

Regarding the low turbine entry temperatures mentioned before, which lead to 

reductions in the level of NOx emitted, Figure 6-50 illustrates that the TET values 

associated with the optimum trajectory computed including NOx emissions as one of its 

objectives are, in general, the lowest ones. This behaviour is expected, of course, 

because this parameter has a direct influence on the level of NOx emissions produced by 
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gas turbine combustors. Closing this section, Figure 6-51 shows graphically a 

comparison of the main results obtained when computing the two multi-objective 

optimum trajectories analysed in this fifth case study. Once again, this figure shows that 

the variations in CO2 and H2O (species in chemical equilibrium) are directly 

proportional to the variations in the amount of fuel burned. Figure 6-51 also shows that, 

even though the optimum trajectories determined increase the total flight time, the total 

amount of fuel burned is largely reduced, which is a consequence of the lower engine 

thrust settings utilised to fly these trajectories. 

 
Figure 6-50. Case Study 5 – TET at each flight segment (segments – climb: 1-3; cruise: 4-5; 

descent: 6-8) 

Finally, it is important to highlight once again that these multi-objective 

optimisation processes discussed in this case study were not performed to test the 

capabilities of Polyphemus, but to determine a reference trajectory which is used to 

optimise the preliminary design of aircraft propulsion systems. Accordingly, based on 

the results obtained from the multi-objective optimisation processes, it was decided to 

use the three-objective (flight time, fuel burned, and NOx emitted) optimised trajectory 

as the baseline trajectory for carrying the engine cycle optimisation assessments 

mentioned. The main reason behind this choice is related to the fact that both current 

aircraft cruise at similar altitudes, and this trajectory was obtained using all three 

objectives utilised in the cases studies described previously. The main results obtained 
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from these engine cycle optimisation-type processes will be described in the following 

chapter. 

 
Figure 6-51. Case Study 5 – Optimum trajectories results (relative to baseline) 

6.2.7  
Case Study 6: Full Flight Profile Range Optimisation 
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General Description 

In this last case study, in order to illustrate other uses of Polyphemus, the range of 
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be briefly described as follows. First, imagine that there is an aircraft that flies between 

two cities (from point A to point B) without any stop (direct flight). Second, imagine 

that one wants to use the same aircraft/engine configuration to fly the same route, but 

this time having one stop for refuelling purposes. Finally, imagine that it is wanted to 

know the distance between the trajectory starting point (point A) and this intermediate 

stop (refuelling point), which is optimum according to given criteria. This last case 

study involved, then, the determination of the optimum distance between point A and 
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Similar to previous case studies, in order to afford greater visibility on the 

characteristics of the optimiser performance when assessing results, the number of 

segments characterising the whole flight profile (climb, cruise, and descent only) has 

been kept as small as possible in this case. Thus, as schematically represented in Figure 

6-52, for this case study, the flight profile was divided into only ten segments: climb, 

segments 1, 2, 6, and 7; cruise, segments 3 and 8; and descent, segments 4, 5, 9, and 10. 

As before, for simplicity, the aircraft trajectory flight phases involving take-off and 

approach/landing have been not included in the optimisation processes. In addition, ISA 

conditions have been assumed and the FPA has been limited to values between 0 and 

7.5deg during climb and cruise, and -7.5 and 0deg during descent. Accordingly, 

optimum trajectories which minimise the total flight time, fuel burned, and NOx 

emissions produced were determined.    

 
Figure 6-52. Schematic representation of flight profile for range optimisation 

The arbitrary flight profile used as the reference or baseline trajectory in this last 

case study can be described as follows: 

• 1st segment: Climb at constant EAS, 250kts EAS or 128.6m/s, from 1,500ft 

(457m) up to 10,000 ft (3,048m) 

• 2nd segment: Simultaneous acceleration to 320kt EAS (164.6m/s) and climb 

from 10,000 ft (3,048m) up to 25,341ft (7,724m), where (cruise) Mach 

number is equal to 0.8 

• 3rd segment: Cruise at 25,341ft (level flight) at constant M (0.80) 

• 4th segment: Simultaneous deceleration to 250kt EAS (128.6m/s) and 

descent from 25,341ft (7,724m) to 10,000 ft (3,048m) 
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• 5th segment: Descent at constant EAS, 250kts EAS or 128.6m/s, from 

10,000 ft (3,048m) to 1,500ft (457m) 

• 6th segment: Climb at constant EAS, 250kts EAS or 128.6m/s, from 1,500ft 

(457m) up to 10,000 ft (3,048m) 

• 7th segment: Simultaneous acceleration to 320kt EAS (164.6m/s) and climb 

from 10,000 ft (3,048m) up to 25,341ft (7,724m), where (cruise) Mach 

number is equal to 0.8 

• 8th segment: Cruise at 25,341ft (level flight) at constant M (0.80) 

• 9th segment: Simultaneous deceleration to 250kt EAS (128.6m/s) and 

descent from 25,341ft (7,724m) to 10,000 ft (3,048m) 

• 10th segment: Descent at constant EAS, 250kts EAS or 128.6m/s, from 

10,000 ft (3,048m) to 1,500ft (457m) 

In Table 6-12 the values of the main parameters (altitude, aircraft speed, and 

ground range covered) that characterise the ten-segment reference trajectory described 

above are summarised. All design variables used in this last case study are also 

indicated in this table. As observed in this Table 6-12, the lower and upper bounds of 

the range of permissible values of the three design variables associated with the initial 

EAS in segments 1, 5, and 10 corresponded to, respectively, the aircraft stall speed 

(89.0m/s EAS), and the maximum EAS permissible below 10,000ft (250kts EAS or 

128.6m/s according to ATC restrictions). The lower and upper bounds of the range of 

permissible values of the final EAS in segments 2 and 7 corresponded to the equivalent 

airspeeds that yield Mach numbers of about 0.8 at the lowest and highest permissible 

altitudes associated with the beginning of segments 3 and 8. In turn, the range of values 

in which the initial altitude in segments 3 and 8 can be varied when optimising the 

trajectories was established in such a way to allow cruise altitudes between 20,000ft 

(6,096m) and 40,000ft (12,192m). 

Finally, as mentioned before, the range of segment 3 (R3) was also used as a 

design variable in this case study. The limits in which this design variable can vary were 

established in such a way to avoid segments 3 and 8 having a zero length. It means that 

only segments 3 and 8 had a variable range during the optimisation processes. 

Consequently, in order to keep fixed the distance separating the initial city pair (point A 
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to point B), when optimising R3, R8 (range of segment 8) was calculated as the 

difference between 1200km (sum of reference values of R3 and R8) and the value of R3 

randomly generated.    

Table 6-12. Case Study 6 – Baseline trajectory and design variables 

Seg. 
No. 

hi 
[m] 

hf 
[m] 

Mi 
[--] 

Mf 
[--] 

EASi 
[m/s] 

EASf 
[m/s] 

R 
[km] 

Design 
Variables 

1 457 3048 -- -- 128.6 128.6 30  89.0 ≤ EASi ≤ 128.6 
2 3048 7724 -- -- 128.6 164.6 150  117.1 ≤ EASf ≤ 184.6 

3 7724 7724 0.80 0.80 -- -- 600 6096 ≤ hi ≤ 12192;     
10 ≤ R3 ≤ 1190 

4 7724 3048 -- -- 164.6 128.6 150 -- 
5 3048 457 -- -- 128.6 128.6 70 89.0 ≤ EASi ≤ 128.6 
6 457 3048 -- -- 128.6 128.6 30 -- 
7 3048 7724 -- -- 128.6 164.6 150 117.1 ≤ EASf ≤ 184.6 
8 7724 7724 0.80 0.80 -- -- 600 6096 ≤ hi ≤ 12192 
9 7724 3048 -- -- 164.6 128.6 150 -- 

10 3048 457 -- -- 128.6 128.6 70 89.0 ≤ EASi ≤ 128.6 
         

In a similar fashion to the implicitly constrained case studies analysed before, 

implicit constraints were also utilised in this last case study. These implicit constraints 

were related to the flight Mach number in segments 3 and 8. Accordingly, the allowable 

ranges of this parameter were established as being ± 0.5% of its nominal value, 0.8 in 

this case. Once again, it was not possible to use this parameter as an explicit constraint 

because it was not used as a design variable. Accordingly, optimum aircraft trajectories 

minimising the total flight time, fuel burned, and NOx emitted were computed, and the 

following section summarises the main results obtained.  

6.2.7.2  
Results 

The reference flight profile and the optimum trajectories computed in this last 

case study using Polyphemus are shown in Figure 6-53. Table 6-13 summarises, in turn, 

the results associated with these optimum trajectories when translated into quantitative 

terms. In terms of flight altitude, Figure 6-53 shows that the results obtained in this case 

are similar to those ones obtained in previous case studies. However, in Figure 6-53 it is 

also possible to see that the three optimum trajectories computed maximised the 

distance covered by segment 3. In other words, the optimisation processes led to the 



Evaluation and Optimisation of Propulsion Systems – Part A 166 

 

maximisation of R3 and, consequently, to the minimisation of R8. In implies that (given 

the conditions imposed), in order to minimise the total flight time, fuel burned, or NOx 

emitted, the intermediate stop should be as near as possible to the original trajectory end 

point (point B). Saying differently, it implies that it is better to fly the whole trajectory 

without any stop than using an intermediate one. A brief analysis of the main reasons 

behind this finding is presented next. 

 
Figure 6-53. Case Study 6 – Baseline vs. Optimum trajectories  

Table 6-13. Case Study 6 – Optimum trajectories results (relative to baseline) 

Objective Function/ 
Optimiser 

Flight Time 
[%] 

Fuel Burned 
[%] 

NOx Emitted 
[%] 

Time – Polyphemus -0.9 5.6 20.9 
Fuel – Polyphemus 2.6 -11.7 -26.8 
NOx – Polyphemus 7.3 -7.5 -28.5 

    
Consider for a moment only the fuel optimised trajectory. Then, reducing only the 

value of R3 from the optimum one (approximately equal to the highest permissible 

value, 1190km) to other sub-optimum values such as 900, 600, and 300km, different 

sub-optimum trajectories (e.g., Fuel, R3 = 900km; Fuel, R3 = 600km, etc.) can be 

computed. These new sub-optimum trajectories obtained by modifying only R3 in the 

fuel optimised trajectory are graphically illustrated in Figure 6-54. As expected, the total 
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fuel burned associated with these new sub-optimum trajectories is larger than the 

amount corresponding to the fuel optimised one (Figure 6-55). The main reason behind 

these results is associated with the fact that, as shown in Figure 6-56, as R3 decreases, 

the reduction in the fuel burned in segment 3 is smaller than the increase in the amount 

of fuel that is burned in segment 8. This aspect is clearly observed in Figure 6-56, which 

shows that the sum of the contributions of segment 3 and 8 to the total fuel burned 

increases with the decrease in the range of segment 3 (R3). 

 
Figure 6-54. Case Study 6 – Flight profile (fuel trajectories: optimum vs. sub-optimum) 

There are several factors that lead to the increase in the amount of fuel burned in 

segment 8 is larger that the reduction in this parameter in segment 3 as R3 decreases. 

Two of these main factors are the flight altitude and the aircraft weight in segment 8. 

Because of the lower cruise altitude in segment 8, the aircraft total drag in this segment 

is higher than in segment 3. Consequently, the thrust being required to fly this segment 

is higher. This implies in turn a higher fuel burn. Even though segments 3 and 8 cruise 

altitudes were equal, because of the higher aircraft weight in segment 8 (higher aircraft 

weight means higher lift and, consequently, higher drag and, in turn, higher engine 

thrust setting), the amount of fuel burned in segment 8 would be higher than the 

corresponding one in segment 3. These factors lead to the increase in total fuel burned 

with the decrease in the range of segment 3, as observed in Figure 6-55 and Figure 6-56. 
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Figure 6-55. Case Study 6 – Total fuel burned (fuel trajectories: optimum vs. sub-optimum) 

 
Figure 6-56. Case Study 6 – Relative fuel burned (fuel trajectories: optimum vs. sub-optimum) 

For completeness, Figure 6-57 shows the main parameters characterising the sub-

optimum trajectories discussed before relative to the baseline trajectory considered in 

this case study. The decrease in flight time and increase in NOx emitted as R3 decreases 

observed in Figure 6-57 are a consequence of, respectively, the higher TAS and engine 

thrust setting utilised to fly segment 8 when compared to segment 3. 
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Figure 6-57. Case Study 6 – Fuel optimum and sub-optimum trajectories results 

Similar analyses to that one carried out for the case of the fuel optimised 

trajectory can be performed for the other two cases related to the flight time and NOx 

emissions optimised trajectories. In this sense, Figure 6-58 and Figure 6-59 show, 

respectively, the relative contribution, in terms of flight time and NOx emissions, of the 

trajectory segments to the total flight time and NOx emitted as R3 decreases. As 

illustrated in these figures, the results obtained for the other two optimised trajectories 

(flight time and NOx emissions) follow the same pattern observed in the case of the fuel 

optimised trajectory discussed before. Even though it is not possible to note in Figure 

6-58, there is a small increase in the total flight time as R3 decreases (due to the TAS in 

segment 8 is slightly lower than the corresponding one in segment 3), which yield that 

the value of the optimum R3 tends to the highest permissible one as observed in Figure 

6-53. 
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computed in this case study and the sub-optimum ones determined by reducing the 

range of segment 3 attempted to explain the main reasons why the (computed) optimum 

values of R3 have a tendency to their highest permissible value (Figure 6-53). Thus, no 

further explanations about this point will be given in the remaining of this section. 

 
Figure 6-58. Case Study 6 – Relative flight time (time trajectories: optimum vs. sub-optimum) 
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the highest at sea level – Figure 6-1) – segments 3 and 8. In addition, because of the 

larger distance covered by the cruise segments 3 and 8, they have a larger influence on 

the total flight time than that one associated with the climb segments (2 and 7). This is 

reflected in the fact that the aircraft has a tendency to cruise at low altitude levels, as it 

can be verified in Figure 6-53. For completeness, Figure 6-62 shows the flight Mach 

number variation along the whole aircraft trajectories. This figure shows that all 

trajectories computed fulfilled the requirement of the implicit constraints imposed 

(flight Mach number at cruise, segments 3 and 8, ~ 0.8). 

 
Figure 6-59. Case Study 6 – Relative NOx emitted (NOx trajectories: optimum vs. sub-optimum) 

The results associated with the fuel and NOx emissions optimised trajectories 

obtained in this last case study are similar, in terms of flight altitudes and speeds, to 
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case study analysed in this chapter. Consequently, only a brief description of the results 
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trajectory). In particular, as shown in Figure 6-61, it suggests flying all segments below 

10,000ft at or near the highest EAS permissible (fixed at 128.6m/s). As highlighted 

before, these results are partially due to the minimisation of the overall change in the 

aircraft kinetic energy (maximisation of the initial aircraft TAS) required. 
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Figure 6-60. Case Study 6 – True airspeed (TAS) 

 
Figure 6-61. Case Study 6 – Equivalent airspeed (EAS) 
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the fuel burned associated with one of these compromised trajectories (i.e., fuel 

optimised trajectory), as well as the other two optimum trajectories computed in this last 

case study. In this figure it is interesting to note that the fuel optimised trajectory 

proposes a second segment affording a greater fuel burn (relative to the baseline) in 

order to gain height which, then, originates a fuel burn in segment 3 such that summing 

this amount to the fuel burned in segment 8 produces an overall lower fuel burn (see 

Figure 6-56). 

 
Figure 6-62. Case Study 6 – Flight Mach number 

Similar to the fuel optimised trajectory, the flight profile optimised for minimum 

NOx emissions is flown mostly slower and higher than the baseline trajectory utilised 

(Figure 6-53 and Figure 6-60). In general terms, these relative lower speeds and higher 

altitudes utilised to fly the NOx emissions optimised trajectory result in reductions in the 

thrust required to fly the trajectory segments. These lower requirements in engine thrust 

are, in turn, translated into lower engine TET values (Figure 6-64) and, consequently, 

into lower levels of NOx emissions. In Figure 6-64 it is also possible to see that almost 

all TET values associated with the NOx emissions optimised trajectory are lower than 

those TET values corresponding to the baseline trajectory. This is expected, naturally, 

because TET directly influences the level of NOx emissions produced by gas turbine 

combustors. 

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0 250 500 750 1000 1250 1500 1750 2000

Fl
ig

ht
 M

ac
h 

N
um

be
r [

--]

Ground Range [km]

Baseline

Time

Fuel

NOx



Evaluation and Optimisation of Propulsion Systems – Part A 174 

 

 
Figure 6-63. Case Study 6 – Fuel burned at each flight segment (segments – climb: 1,2,6,7; 

cruise: 3,8; descent: 4,5,9,10) 

Figure 6-65 shows in turn a comparison of the main results associated with the 

three optimum trajectories analysed in this last case study. Once again, it is possible to 

see in this figure that the variations in CO2 and H2O (species in chemical equilibrium) 

are directly proportional to the variations in the amount of fuel burned. Figure 6-65 also 

shows that even though the NOx emissions optimised trajectory increases the total flight 

time, as a consequence of the lower engine thrust settings utilised to fly this trajectory, 

the total amount of fuel burned is also reduced. Similar to other case studies analysed 

before, Figure 6-65 shows that the flight time optimised trajectory produce a relatively 

high increase in the amount of NOx emitted. This result is related to both the increase in 

the total fuel burned, and the relatively high TET values (Figure 6-64) used to fly this 

trajectory. 
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believed that one of the main reasons relates to way in which the initial aircraft weight 

was defined in this case study. 

In this particular case, it was assumed that the initial fuel on board (i.e., fuel at the 

beginning of the original trajectory) was enough for flying from point A to point B (start 

and end points of original trajectory) regardless of the location of the intermediate stop 

point. It means that the initial aircraft weight was always constant at point A. Since the 

main reason for having this intermediate point is for refuelling purposes (i.e., the initial 

fuel on board is not enough for flying the whole original trajectory), it is recognised that 

the approach utilised in this particular case was not entirely realistic. Even so the results 

obtained in this case study are useful since they allow the illustration of other uses of 

Polyphemus, which was the main objective of this case study. These results also open a 

door for deeper analyses to be carried out in future. Consequently, further work should 

include the consideration of an initial fuel on board that varies proportionally to the 

distance to be flown. This is not a trivial task, however, once the fuel to be burned is 

initially unknown; and, in some situations, this is an optimisation parameter. A simple 

approach would involve the use of iterative processes; but of course it might 

considerably increase the computational time. 

 
Figure 6-64. Case Study 6 – TET at each flight segment (segments – climb: 1,2,6,7; cruise: 3,8; 

descent: 4,5,9,10) 
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This case study involving the optimisation of the range of one segment of a given 

aircraft trajectory constitutes the last case study analysed in this chapter. It completes 

the set of case studies analysed in this work as part of the optimisation of aircraft 

propulsion systems from an operational point of view. The following chapter will 

involve the description of cases studies related, again, to the optimisation of aircraft 

propulsion systems, but this time from the point of view of their preliminary design. 

Engine cycle optimisation-type processes will be thus carried out and their main results 

presented and discussed. 

 
Figure 6-65. Case Study 6 – Optimum trajectories results (relative to baseline) 
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7 Evaluation and Optimisation of Propulsion Systems 
Part B: Engine Cycle Optimisation 

The second part of the main results obtained from the processes of evaluation and 

optimisation of environmentally friendly aircraft propulsion systems is detailed in this 

chapter. Initially, general considerations about the different cases studies analysed are 

briefly highlighted. Aircraft propulsion systems are then optimised from the propulsion 

system design point of view. More specifically, aircraft engine cycle optimisation-type 

processes are carried out for a fixed aircraft flight profile (i.e., aircraft trajectory). The 

main results of these optimisation processes are subsequently presented and discussed. 

7.1  
General Considerations 

Reducing the impact of commercial aviation on the environment through the 

introduction of new (mostly innovative) aircraft/engine configurations constitutes an 

alternative for medium and long term. This is because the timescale from new 

aircraft/engine concepts to be brought to operational readiness is a lengthy one. Even so 

it is worth pursuing these avenues because both these technologies are more likely to 

produce more drastic reductions in the environmental impact of commercial aircraft 

operations, and they allow the growth of this industry in a sustainable manner. In the 

particular case of aircraft engines, one of the very first stages of the analysis of new 

engine concepts involves the engine preliminary design. In this stage, based on the 

engine requirements (in terms of thrust, size, weight, performance, etc.), an initial 

estimation of the main parameters that characterise a new engine design is carried out. 

This initial estimation of the parameters characterising the design is directly linked to 

the operating conditions of the working fluid (i.e., pressures, temperatures, mass flow 

rates, etc.) at the engine design point condition. In other words, the thermodynamic 

cycle (and its associated processes) under which the engine operates has a large 

influence on the definition of the configuration of the new designed engine.  
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Thus, in the beginning of the engine design process the designer has essentially 

two options of path to follow. First, the designer can use a conventional design approach 

and find engine parameters (including those main ones that characterise the engine 

cycle) that allow the design of an engine which merely satisfies its requirements; or, 

second, due to the fact that often there will be more than one acceptable design, the 

designer can try to determine the best of the many acceptable designs available. 

Obviously, the determination of the best design involves an optimisation process. This 

is exactly the type of processes that have been performed in this research project. 

Accordingly, in this work engine cycle optimisation-type processes have been carried 

out as an attempt to both illustrate other uses of Polyphemus, and comply with one of 

the objectives of this work initially proposed, rather than determine optimum engine 

cycles which accurately represent real engines utilised in practical applications. The 

following sections briefly describe, among others, the optimisation strategy utilised as 

well as the main parameters used as design variables, constraints, and optimisation 

criteria during the optimisation processes. All optimisation processes carried out 

included these parameters unless otherwise explicitly indicated when describing the 

specific case studies analysed. 

7.1.1  
Optimisation Strategy 

In general, two broad optimisation strategies can be adopted for the optimisation 

of the preliminary design of aircraft/engine configurations. First, both the aircraft/engine 

configuration and its associated flight profile (flight trajectory) can be optimised 

simultaneously. In this approach, the optimisation of the flight profile is usually treated 

as a sub-optimisation process. In other words, during the optimisation process, for each 

aircraft/engine configuration evaluated (potential optimum design) an optimum flight 

profile according to a given criterion (or given criteria) is determined. Depending on 

several aspects such as the fidelity of the computational models utilised in the 

optimisation process (for the simulation of different aircraft/engine disciplines including 

aerodynamics, performance, weight, emissions, cost, etc.), the type of optimisation 

technique utilised, the complexity involved in the definition of the optimisation problem 

(in terms of design variables, constraints, and performance parameters), and the level of 
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discretisation of the flight profile, among others, the determination of an optimum 

design following this optimisation strategy can involve a huge computational time. 

However, due to the simultaneous optimisation of both the aircraft/engine configuration 

and the flight trajectory, this approach allows the production of more representative 

results than the second simplified approach described next.       

 As mentioned above, the second optimisation strategy constitutes a simplification 

of the first one and involves the optimisation of the aircraft/engine configuration 

considering that the aircraft flight profile is fixed. The main advantage of this second 

approach relates to fact that it greatly reduces the computational time involved in the 

optimisation process. As expected, this reduction in the computational time is directly 

proportional to the same aspects indicated previously such as fidelity of the 

computational models, optimisation technique type, trajectory optimisation problem 

complexity, and flight profile discretisation level, among others. In the engine cycle 

optimisation-type processes performed in this work, this second optimisation strategy 

was utilised. The main reason behind this choice is associated with the fact that natural 

limitations in computational time were present during the development of this work. 

This was supported by the fact that optimum trajectories (for a fixed aircraft/engine 

configuration) had already been determined (as described in Chapter 6), and it was not 

the purpose of the case studies analysed in this chapter to optimise other aircraft 

trajectories. 

The main parameters characterising the aircraft trajectory utilised in the 

optimisation processes described in this chapter are highlighted in Table 7-1. This 

aircraft trajectory corresponds to the three-objective (flight time, fuel burned, and NOx 

emitted) optimised trajectory obtained from the multi-objective optimisation processes 

carried out in the fifth case study analysed in the previous chapter (Chapter 6). The 

referred trajectory has been considered fixed and has been used as the baseline 

trajectory for performing the engine cycle optimisation-type processes described in this 

chapter. The following sections outline the main features of the optimisation problem 

analysed in this chapter through a description of the parameters utilised as design 

variables, constraints, and optimisation criteria during the optimisation processes 

performed. 
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Table 7-1. Fixed aircraft trajectory – Characteristic parameters 

Seg. 
No. 

hi 
[m] 

hf 
[m] 

Mi 
[--] 

Mf 
[--] 

EASi 
[m/s] 

EASf 
[m/s] 

R 
[km] 

1 457 3048 -- -- 124.5 124.5 20 
2 3048 3606 -- -- 124.5 134.1 10 
3 3606 10411 -- -- 134.1 134.1 160 
4 10411 10411 0.80 0.80 -- -- 230 
5 10411 10411 0.80 0.80 -- -- 230 
6 10411 3659 -- -- 134.1 134.1 140 
7 3659 3048 -- -- 134.1 128.6 20 
8 3048 457 -- -- 128.6 128.6 70 
        

 

7.1.2  
Computational Models 

For carrying out the engine cycle optimisation-type processes described in this 

chapter the same computational models used for optimising aircraft trajectories (Chapter 

6) have been utilised. This means that the same three computational models 

schematically represented in Figure 6-8, i.e., aircraft performance simulation model 

(APM), engine performance simulation model (TurboMatch), and emissions prediction 

model (Hephaestus), have been also used in this particular case. The main difference 

relates to the fact that, instead of determining characteristic parameters of aircraft 

trajectories that are optimum according to given criteria; in the case studies described in 

this chapter, the main parameters that characterise optimum (according to given 

optimisation criteria) engine cycles have been determined. 

7.1.3  
Design Variables 

In the engine cycle optimisation-type processes carried out in this work, and 

whose main results are summarised in this chapter, the following cycle parameters have 

been utilised as main design variables: overall pressure ratio (OPR), bypass ratio (BPR), 

and turbine entry temperature (TET). These cycle parameters were chosen because they 

characterise the design of any turbofan engine – the particular type of engine (cycle) 

optimised in this work. In the optimisation processes, however, OPR was not directly 

used as a design variable. Instead, it was represented by the other three parameters that 
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characterise OPR in two-spool or three-spool (turbofan) engines: fan pressure ratio 

(FPR), booster or intermediate pressure compressor pressure ratio (IPCPR), and high 

pressure compressor pressure ratio (HPCPR). 

Top of climb (TOC) has been utilised in this work as the design point (DP) 

condition of the engines. Consequently, due to the aircraft trajectory flight phase 

involving take off (TO) was not included in the analyses carried out, an additional 

design variable, TET at TO, was utilised in the optimisation processes. This last design 

variable was included in order to estimate parameters (detailed in the following section) 

which will allow determining whether (or not) a given engine design satisfies the engine 

requirements at TO (off design, OD) conditions. Table 7-2 summarises then the design 

variables (and their corresponding engine condition) utilised in the different case studies 

analysed in this work, unless otherwise explicitly indicated. 

Table 7-2. Summary of design variables 

No. Design 
Variable 

Engine 
Condition 

1 FPR DP 
2 IPCPR DP 
3 HPCPR DP 
4 BPR DP 
5 TET DP 
6 TET TO 
   

 

7.1.4  
Implicit Constraints 

In the different engine cycle optimisation-type processes performed in this work, 

the following implicit constraints were imposed: 

• Thrust Ratio (TR) – The ratio of TO thrust to cruise (TOC in this case) 

thrust. TR is usually a requirement dictated by the airframe on which the 

engine is installed [89]. Even so, in practice some adjustment in TO thrust is 

possible as TO field length varies. Once the aircraft trajectory utilised in the 

optimisation processes did not include the TO phase, it was necessary to use 

this parameter as a constraint in order to guarantee that an optimised engine 

is able to provide the required engine thrust at TO. Thus, in the 
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computations, a lower limit for the TR of 4.5 was utilised. This value 

reflects the performance of a typical turbofan powering a mid-sized, single-

aisle, twin turbofan airliner (MTOW ≈ 72,000kg) and delivering thrust 

levels of about 25kN at TOC and 112.5kN at TO.   

• Compressor Delivery Temperature (CDT) at TO (CDTTO) – This constraint 

reflects the level of technology, in terms of material capability, of the last 

stages of the HPC. This is one of the main limiters to the level of OPR that 

can be achieved in conventional turbofan engines. Excessive values of 

CDTTO would require the use of especial materials for the disc and blades 

of the HPC rear stages (which could increase the engine weight). 

Additionally, they could also cause cooling problems due to the high 

temperatures of the cooling flows used for cooling the high pressure turbine 

(HPT) components. In the optimisation processes carried out in this work, 

an upper limit for the CDTTO of 950K was considered. 

• Blade Height of the last stage of the high pressure compressor (HPC) at TO 

(HBLTO) – Because of some limitations in the aircraft performance model 

utilised, constant overall engine/nacelle dimensions were considered during 

the optimisation processes. This was made possible through the use of a 

fixed overall (engine) inlet mass flow rate at DP. Thus, high values of OPR 

and BPR will require eventually small blades at the rear of the HPC, which 

are known to be characterised by high aerodynamic losses because of the 

low Reynolds numbers, and the comparatively thick boundary layers on the 

annulus walls and high tip clearances [89]. In addition, because of their size, 

small blades may present manufacturing problems. Consequently, it was 

necessary to constraint the HBLTO values. In this work, this parameter was 

estimated assuming a flow Mach number (0.3) and a compressor hub/tip 

ratio (0.9) at the HPC delivery section, and making use of the “swallowing 

function”, Eq. (7-1) [126], which for an isentropic flow and a given gas is 

dependent only on the flow Mach number. In Eq. (7-1), W represents the 

mass flow rate, T the temperature, P the pressure, A the flow area, M the 

flow Mach number, R the specific gas constant, and γ the ratio of specific 
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heats of the gas. In the computations, a lower limit for the HBLTO of 15mm 

was utilised. 
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(7-1) 

 

Table 7-3 summarises the general implicit constraints used in the different engine 

cycle optimisation-type processes carried out in this work, unless otherwise explicitly 

indicated. In this last case, a proper explanation of the additional constraints utilised will 

be provided. 

Table 7-3. Summary of implicit constraints 

No. Implicit 
Constraint Limit 

1 TR ≥ 4.5 
2 CDTTO ≤ 950K 
3 HBLTO ≥ 15mm 
   

 

According to these generic implicit constraints, the fact that the aircraft is able to 

fly the reference flight trajectory using a given engine design is the only criterion 

determining (internally) the validity of that design. Consequently, it is recognised that 

some variations in net thrust at DP and/or TO could exist as a result of the optimisation 

processes. However, considering the main purpose of the engine cycle optimisation-type 

processes performed in this work, it does not constitute a critical aspect. It is worth 

emphasising that these parameters (i.e., net thrust at DP and/or TO) were not initially 

constrained mainly because of the gradual approach, in terms of addition of 

complexities (e.g., number of implicit constraints), followed in this work. 

7.1.5  
Performance Parameters 

Performance parameters are those parameters used for establishing the criterion 

(or criteria) of comparison of several acceptable designs which ultimately allows the 

determination and/or selection of the best design from many acceptable ones. As 

indicated previously, this criterion, with respect to which the design is optimised, when 

expressed as a function of the design variables, is known as the criterion or merit or 
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objective function. Due to some limitations in the optimisation algorithms utilised in 

this work when dealing with multi-objective optimisation problems, only single-

objective engine cycle optimisation-type processes were carried out and their results 

summarised in this chapter. This means that in the optimisation processes only single-

objective functions were utilised. Since they have a direct influence on the 

environmental impact of commercial aircraft operations, two of the three objective 

functions utilised in this case, fuel burned and NOx emitted, were the same as in the case 

of the optimisation of aircraft trajectories (Chapter 6). The third objective function 

involved the specific fuel consumption (SFC) in cruise (Cruise SFC), which was 

computed averaging the SFC corresponding to segments 4 and 5 considered as cruise in 

the reference aircraft trajectory utilised (c.f., Table 7-1). As expected, in this case it was 

not possible to use the flight time as an objective function once the aircraft trajectory 

and flight speeds were fixed, i.e., constant flight time. Based on these considerations, 

several optimum engine cycles minimising separately these three objective functions, 

cruise SFC, fuel burned, and NOx emitted, were determined and the main results are 

summarised in the case studies described in the following sections. 

7.2  
Engine Cycle Optimisation Case Studies 

This section summarises through the use of case studies the main results obtained 

from the different engine cycle optimisation-type processes performed using the 

Polyphemus optimiser. In all case studies analysed it has been considered that the 

aircraft flight profile is fixed. As described in the previous section, the main design 

variables utilised involved characteristic parameters associated with the thermodynamic 

cycle of aircraft engines. The minimisation of cruise SFC, fuel burned, and NOx emitted 

were considered as the objective functions. The methodology followed in terms of 

sequence of computations for optimising a given engine cycle was similar to the 

corresponding one used for optimising aircraft trajectories. 
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7.2.1  
Summary of Case Studies 

It is relevant to note that the main objective of the engine cycle optimisation-type 

processes carried out in this work was the illustration of other uses of Polyphemus, 

rather than the determination of optimum engine cycles which accurately represent real 

engines utilised in practical applications. Thus, simplifications have been introduced 

into all optimisation processes not only when defining the aircraft flight trajectory (e.g., 

small number of trajectory segments, limited number of flight phases, standard 

atmospheric conditions, etc.), but also when modelling the different engine 

configurations (e.g., constant nacelle/engine dimensions and weight, limited number of 

map of characteristics for compressors and turbines, simplified algorithms for pollutant 

formation, etc.). Consequently, when analysing the results obtained from the 

optimisation processes, it is considered that general trends are more reliable than 

absolute values. 

In the engine cycle optimisation-type processes performed, the following main 

hypotheses were utilised: 

• Atmospheric conditions correspond to ISA conditions. 

• Aircraft flight altitudes and speeds are constant at each flight segment, i.e., 

aircraft flight profile is fixed. 

• Aircraft configuration (dimensions, weight, etc.) is fixed. In other words, the 

aircraft is not resized during the optimisation processes. This hypothesis is 

mainly based on the fact that the aircraft performance model utilised can 

handle only fixed aircraft/engine configurations. 

• Aircraft engine (nacelle + engine) dimensions and weight remain constant 

during the optimisation processes regardless of the variations in the engine 

thermodynamic cycle characteristic parameters. This was hypothesised 

partially because engine weight models were not used in this work 

• Total aircraft weight (aircraft empty weight + engine weight + fuel on-

board) at the beginning of the flight profile is constant. It implies that fuel 

on-board is enough for flying the flight profile using any engine design. 

This hypothesis avoids the use of iterative processes during the optimisation 

of the engine cycles.    
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Accordingly, three different cases studies, each of them involving the optimisation 

of a given aircraft engine cycle, were separately analysed. A brief description of these 

case studies is presented below: 

• Case Study 1: Two-Spool Turbofan Optimisation. In the first case study, 

engine cycle optimisation-type processes involving a two-spool turbofan 

engine with separate exhausts were carried out. The two-spool engine 

optimised corresponded to the same aircraft engine utilised for performing 

the aircraft trajectory optimisation processes described in the previous 

chapter. The parameters used as design variables and (implicit) constraints 

in this case corresponded to the same generic ones described in Section 7.1. 

• Case Study 2: Three-Spool Turbofan Optimisation. Optimisation-type 

processes involving a three-spool turbofan engine cycle with separate 

exhausts were performed in the second case study. DP and TO conditions 

corresponded to the same conditions utilised as such in the first case study. 

The three-spool baseline engine was designed by matching the engine 

model performance with the performance of the (two-spool) engine used as 

baseline in the first case study. The design variables and (implicit) 

constraints utilised were also the same generic ones described in Section 

7.1. 

• Case Study 3: Intercooled Recuperated Turbofan Optimisation. In the third 

and last case study, the thermodynamic cycle of an intercooled recuperated 

two-spool turbofan engine with separate exhausts was optimised. DP and 

TO conditions in this case also corresponded to the same conditions used as 

such in the first case study. The intercooled recuperated baseline engine was 

designed by matching the engine model performance with the performance 

of the first case study baseline engine. Besides the generic design variables 

and (implicit) constraints described in Section 7.1, and additional constraint, 

i.e., net thrust at DP, was imposed in this case. 

In addition to the optimisation processes performed as part of the case studies 

mentioned above, in order to compare the three engine cycles analysed in these case 

studies, other optimisation processes were carried out. In these processes, in order to 

allow a fairer comparison among the engine cycles, additional implicit constraints were 
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imposed when required. These constraints related to the net thrust at DP and TO. The 

main results obtained from this comparison process are presented and discussed in the 

last section of this chapter. 

7.2.2  
Case Study 1: Two-Spool Turbofan Optimisation 

7.2.2.1  
General Description 

The first case study analysed in this work related to engine cycle optimisation-

type processes involved the optimisation of a two-spool turbofan engine with separate 

exhausts (Figure 7-1). Table 7-4 details the main parameters characterising the two-

spool engine used as the reference (baseline) engine in this first case study. In this table, 

W represents the overall (engine) inlet (air) mass flow rate. This two-spool engine 

corresponds to the same aircraft engine utilised for performing the aircraft trajectory 

optimisation processes described in the previous chapter. 

 
Figure 7-1. Case Study 1 – Schematic of a two-spool (turbofan) engine with separate exhausts 

In Table 7-4 it is possible to observe that the engine condition used as DP 

condition corresponded to TOC (10,668m [35,000ft], M0.8, ISA), implying in this way 

that TO (Sea Level [S/L], M0.0, ISA+30°C) was treated as an OD engine condition. For 

the design of this baseline engine (Table 7-4), an iterative process involving engine 

simulations at DP and OD point conditions was utilised in order to match the 

performance of the model with data obtained from the public domain for an aircraft 

engine (high BPR, two spool turbofan engine with separate exhausts) used in similar 
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applications. When necessary, educated guesses were made for some characteristic 

parameters (component efficiencies, bleeding flows, pressure losses, etc.), which were 

required for the modelling of the engine. 

The design variables and (implicit) constraints utilised in this first case study, as 

well as their ranges of permissible values considered, are detailed in Table 7-5. As it can 

be observed in this table, these parameters are the same generic ones described as 

design variables and (implicit) constraints in the general considerations section 

preceding these case studies. In Table 7-5, a double hyphen representing a given 

parameter limit (lower or upper bound) indicates that this limit has not been considered 

in the optimisation processes. 

Table 7-4. Case Study 1 – Baseline engine characteristic parameters  

DP: TOC (10,668m [35,000ft], M0.8, ISA) 
Parameter Unit Value 

W [kg/s] 180.0 
BPR [--] 5.46 
FPR [--] 1.80 

IPCPR [--] 1.81 
HPCPR [--] 10.0 

OPR [--] 32.6 
TET [K] 1340 
FN [kN] 25.1 

SFC [mg/Ns] 17.0 
OD: TO (S/L , M0.0, ISA+30°C) 

Parameter Unit Value 
TET TO [K] 1600 
FN TO [kN] 121.4 

   
 

Finally, it is important to highlight that in order to take into account the state of 

the art associated with the design of the main components of aircraft engines, namely 

compressors and turbines, appropriate component efficiencies which attempt to reflect 

the current level of technology in this field have been assumed. These component 

efficiencies at DP remained constant during all optimisation processes performed. The 

polytropic efficiencies assumed were equal to: 0.93 in the particular case of the fan, 

0.91 for the IPC and HPC, 0.88 for the HPT, and 0.90 for the low pressure turbine 

(LPT). Considering what was mentioned above, engine cycle optimisation-type 

processes determining optimum engine cycles which minimise cruise SFC, fuel burned, 



Evaluation and Optimisation of Propulsion Systems – Part B 189 

 

and NOx emitted were carried out in this first case study. The following section 

summarises the main results obtained. 

Table 7-5. Case Study 1 – Design variables and Constraints  

Parameter    
Type 

Parameter 
Name 

Parameter 
Unit 

Lower 
Bound 

Upper 
Bound 

Design Variable FPR [--] 1.1 1.9 
Design Variable IPCPR [--] 2.0 5.0 
Design Variable HPCPR [--] 5.0 20.0 
Design Variable BPR [--] 2.0 15.0 
Design Variable TET [K] 1200 1800 
Design Variable TET TO [K] 1200 1900 

Constraint TR [--] 4.5 -- 
Constraint CDTTO [K] -- 950 
Constraint HBLTO [mm] 15 -- 

     
 

7.2.2.2  
Results 

The main parameters characterising the thermodynamic cycle of the baseline 

engine and those cycles associated with the optimum engines computed in this first case 

study are shown in Figure 7-2. These same parameters when expressed in relative terms 

using the characteristic parameters of the baseline engine are illustrated in Figure 7-3. 

Figure 7-4 shows, in turn, a comparison of the main results associated with these three 

optimised engines determined in this first case study. As it can be observed in this 

figure, the three optimum engines computed originated (relatively) significant 

reductions in cruise SFC (~ -8%), fuel burned (~ -7%), and NOx emitted (~ -70%). In 

order to have a better understanding of the nature of the optimised engines computed in 

this case study, a brief analysis of each of them will be presented separately next. 

As it is well known, the rate of consumption of fuel in an aircraft engine is usually 

expressed in terms of SFC, which is defined as the engine fuel mass flow rate divided 

by the net thrust produced by the engine. Consequently, the minimisation of SFC (or 

cruise SFC in this particular case) implies, for a given net thrust, the minimisation of the 

fuel mass flow rate; or, for a given fuel mass flow rate, the maximisation of the engine 

net thrust. Consider for the sake of simplicity a turbofan with mixed exhausts whose 

BPR and overall inlet air mass flow rate are fixed. Consider as well that one wants to 

minimise the SFC of this turbofan assuming that the engine fuel mass flow rate is 
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constant. An increase in the OPR (by increasing only the compression system pressure 

ratio and keeping for simplicity the FPR constant) results then in an increase in CDT, 

and, consequently, in TET (fixed fuel mass flow rate). Even though this process changes 

the temperature ratios in the compression and turbine systems, because the addition of 

heat (fuel mass flow rate) remains constant, the temperature at the nozzle inlet is also 

constant. However, the pressure at this section (nozzle inlet) increases once the OPR 

increases faster than the turbine expansion ratio does. This increase in nozzle inlet 

pressure yields increases in the net thrust (because of the higher jet gas velocity), and 

consequently, reductions in the engine SFC. Similar trends can be observed in the case 

of turbofans with separate exhausts. Therefore, a way of reducing the SFC in turbofans 

involves the simultaneous increase in OPR and TET. 

 
Figure 7-2. Case Study 1 – Characteristic parameters of engine cycles (baseline and optimum) 

For a given aircraft speed (cruise speed for instance) and fuel type, the SFC of a 

turbofan engine can be also expressed as being inversely proportional to both thermal 

efficiency and propulsive efficiency. It means that increases in these efficiencies yield 

reductions in SFC. Increases in OPR and TET have a favourable effect on thermal 

efficiency. Thus, high values of OPR and TET improve the engine thermal efficiency, 

and, consequently, they reduce its SFC. This is, of course, in accordance with the 

analysis carried out previously for the case of a mixed turbofan.   
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Figure 7-3. Case Study 1 – Relative (to baseline) parameters of optimum engine cycles 

In the previous analysis involving a mixed turbofan, it was assumed, among 

others, that the engine BPR is fixed. Thus, due to that fact that for a given BPR there is 

an optimum FPR which minimises SFC (see reference [127] for discussion about this 

topic), for simplicity in the analysis, it was assumed that only the compression system 

pressure ratio changed. For a given OPR, however, SFC decreases with the increase in 

the BPR of the turbofan engine. This is originated because as BPR rises, the optimum 

FPR decreases, so does (in general) the jet gas velocity, yielding in this way an 

improvement in the engine propulsive efficiency. This increase in propulsive efficiency 

leads to those reductions in SFC observed as BPR increases. 

In the particular turbofan engine being optimised in this case study however, the 

engine BPR cannot be increased indefinitely. The main reason why this cannot happen 

is related to the constraints imposed when defining the optimisation problem. In this 

case, due to fact that the overall inlet air mass flow rate is fixed, increases in BPR imply 

reductions in engine core mass flow rate. This is, in turn, translated into higher OPR 

and/or TET values to cope with the higher work required from the core flow to move 

the larger amount of air that bypasses the core engine. Thus, in this case – as it happens 

when OPR and TET are increased for better thermal efficiency – better compressor and 

turbine materials are required to cope with the increases in both CDT and TET. In 

addition, very high values of OPR and BPR will also require eventually small blades at 
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the rear of the HPC. Therefore, parameters such as the HBLTO need to be checked 

during the engine optimisation processes. 

 
Figure 7-4. Case Study 1 – Optimum engine cycles results (relative to baseline) 

Summarising what was discussed previously, the cruise SFC optimised engine is 

characterised by relatively high values of TET and OPR, which contribute to the 

improvement of the engine thermal efficiency, and, consequently, to the reduction of the 

engine cruise SFC. Regarding the engine BPR, the results suggest that this parameter 

has been increased only to an extent in which the reduced core flow can cope with the 

work required by the fan under conditions of maximum OPR, which seems to have been 

established by restrictions in the maximum value of CDT (at TO) allowed in the 

process. Engine TET, in turn, seems to be a compromise between increasing its value in 

order to augment the engine thermal efficiency and, hence, SFC; and reducing it in 

order to diminish the propulsive efficiency degradations, and, consequently, the 

increases in SFC. All these complex interactions among the main parameters 

characterising the thermodynamic cycle of turbofan engines yielded the results 

discussed above, and particularly illustrated in Figure 7-2 and Figure 7-4. For 

completeness, Figure 7-5 shows the SFC for each segment of the aircraft trajectory. As 

expected, segments 4 and 5 are among the segments with the lowest SFC values. This is 

an obvious result once the cruise SFC optimisation involved the minimisation of a 
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parameter which was computed averaging the SFC corresponding to these two segments 

considered as cruise in the optimisation processes. 

 
Figure 7-5. Case Study 1 – SFC at each trajectory segment 

The results associated with the fuel optimised engine are similar to those ones 

obtained for the case in which the cruise SFC was minimised. This is expected, of 

course, once the objective functions are similar as well. The biggest difference between 

these two functions relates to the fact that, when optimising for minimum fuel burned, 

the SFC corresponding to all trajectory segments is minimised and not only the SFC in 

cruise, as it happens when optimising for minimum cruise SFC. Strictly speaking, 

minimisation of fuel burned implies minimisation of fuel mass flow rate (fixed aircraft 

speeds, and hence segment flight times). However, due to the direct relationship 

between SFC and fuel mass flow rate, minimisation of fuel burned can be also regarded 

as minimisation of SFC at all trajectory segments. Therefore, the main parameters 

driving the cruise SFC optimisation discussed before also play an important role when 

designing a turbofan engine for minimum fuel burned. 

It was mentioned above that one way in which the SFC of a turbofan engine can 

be reduced is by increasing its BPR. It was also highlighted that the BPR cannot be 

indefinitely increased because it has a direct influence on the core flow, and, 

consequently, on the OPR and TET required for its operation in order to deliver the 
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work demanded by the engine fan. Thus, starting from a cruise SFC optimised engine 

(and using the same hypotheses utilised when analysing a mixed turbofan above), if 

OPR is slightly reduced, the net thrust produced by the engine also decreases slightly 

and the (cruise) SFC suffers a small penalty. This small decrease in OPR also results in 

a decrease in CDT (and HBL), and, consequently, in TET. In other words, it creates a 

room for increasing BPR without violating the constraints imposed on CDT (and HBL). 

This type of behaviour is also reflected at OD point conditions, such as TO, which is the 

engine condition associated with some of the main constraints imposed in this work.  

The results obtained in the case of the fuel optimised engine seem to suggest what 

was just mentioned above. The OPR of the turbofan engine is slightly modified 

(reduced), which leads to a small increase in the cruise SFC; and, at the same time, the 

engine BPR is slightly increased, which yields improvements in the engine propulsive 

efficiency and SFC reductions in almost all the remaining segments of the flight 

trajectory. This aspect can be clearly observed in Figure 7-5, which shows that, when 

compared to the cruise SFC optimised engine, the engine optimised for minimum fuel 

burned presents a slightly higher SFC in cruise segments 4 and 5, and lower SFC in the 

remaining segments, except in segment 2. These results are reflected in the fuel that is 

burned at each flight segment, as illustrated in Figure 7-6. In this figure it is possible to 

see that the fuel optimised engine presents the lowest fuel consumption in all trajectory 

segments (except in cruise segments 4 and 5, where the cruise SFC optimised engine 

does), which consequently results in the lowest overall fuel burned. 

As discussed in Chapter 3, NOx can be produced by four main mechanisms: 

thermal NO, N2O mechanism, prompt NO, and fuel NO. Depending on several factors 

including engine operating conditions and fuel type, one or more of these mechanisms 

can be more relevant than the others when determining the level of NOx emitted. Since 

optimisation problems involving engine cycle parameters is the main discussion topic in 

this chapter, the analyses are mainly focused on the engine operating conditions and 

their influence on the formation of NOx inside the engine combustion chamber. For the 

sake of brevity, only the main parameters directly or indirectly related to the engine 

operating conditions that affect NOx emissions are discussed. These parameters include 

flame temperature, combustor air inlet temperature, and combustor air inlet pressure. 
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Figure 7-6. Case Study 1 – Fuel burned at each trajectory segment 

NOx emissions present an exponential dependence on flame temperature [56], 

especially above around 1,800K, where the thermal NO mechanism is dominant. Under 

these circumstances, a significant amount of NOx is formed in the high temperature 

regions of the flame as well as in the post flame gases. Two of the main factors that 

affect the flame temperature are the fuel-air-ratio (FAR) and the temperature of the 

reactants, in particular, the combustor air inlet temperature. As FAR approaches to its 

stoichiometric value, the flame temperature becomes higher and higher. FAR depends, 

obviously, on the amount of fuel and air entering to the combustor. The amount of fuel 

directly influences, in turn, TET. In other words, under a given set of operating 

conditions, TET determines the amount of fuel required for the normal operation of the 

engine. In general, because of the direct influence of temperature on NOx formation, in 

order to reduce the level of NOx emitted, it is necessary to keep TET as low as possible. 

Combustor air inlet temperature directly influences the temperature of the flame. 

In other words, increases in air inlet temperature produces increases in flame 

temperature as well. This happens because as air inlet temperature increases, the 

combustion efficiency also increases, and, at the same time, the surrounding air/gasses 

do not suck the heat out of the flame as quickly as they would do if they were at lower 

temperatures. This results in higher flame temperatures as air inlet temperature 

increases. Therefore, it is expected that increases in air inlet temperature augment 
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significantly the level of NOx emitted. This is confirmed by the results to be discussed 

later. 

As literature highlights [56], the level of pressure dependence of NOx formation is 

related to the temperature of the flame. Thus, at relatively low temperatures in which 

some of the mechanisms of NOx formation such as prompt NO and N2O mechanism 

predominate, the level of NOx emitted is largely independent of pressure. However, at 

relatively high temperatures in which thermal NOx has a dominant effect, NOx 

formation exhibits a square root dependence on pressure. Therefore, the continuous 

trend toward engines of higher OPR and, consequently, lower SFC, tends to exacerbate 

the NOx problem (at least in conventional aircraft engines), since higher OPR results in 

higher combustor air inlet temperature, and consequently, higher flame temperature and 

NOx emissions. 

Accordingly, a conventional engine optimised for minimum NOx emissions is 

expected to be characterised by both a relatively low (combustor) air inlet temperature 

(i.e., a low CDT and, consequently, a low OPR), and a relatively low (combustor) air 

inlet pressure (i.e., a low OPR). At the same time, the NOx optimised engine is expected 

to be operated using as low TET values as possible. All these aspects are confirmed by 

the results obtained in this first case study for the case in which the engine is optimised 

for minimum NOx emissions. Thus, as it can be observed in Figure 7-2, the NOx 

optimised engine presents the lowest OPR and TET of the three optimum engines 

computed. In addition, the engine BPR is slightly lower than those ones corresponding 

to the other two optimised engines. This allowed that the reduced OPR core flow 

provides the work demanded by the engine fan.  

As expected, the relatively low OPR and TET characterising the NOx optimised 

engine worsened its SFC. This is reflected in the high values of SFC (Figure 7-5), and, 

consequently, fuel burned (Figure 7-6) characterising each aircraft trajectory segment. 

As it can be verified in Figure 7-5 and Figure 7-6, when compared to the other engines 

computed, the engine optimised for minimum NOx presents the highest SFC and fuel 

burned values at each segment of the trajectory. Even so, as illustrated in Figure 7-7, the 

NOx optimised engine TET values at each flight segment are the lowest ones. This, of 

course, translated into low NOx emissions at each flight segment, and, consequently, in 

the lowest overall NOx emissions characterising this optimised engine. On the contrary, 
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as observed in Figure 7-4, the relatively high OPR and TET values characterising the 

cruise SFC and fuel optimised engines produce significant increases in NOx emissions, 

and reductions in fuel burned. 

 
Figure 7-7. Case Study 1 – TET at each trajectory segment 

Closing this first case study, Table 7-6 summarises, quantitatively, the main 

results associated with the three optimum engine cycles analysed in this first case study. 

In this table (and in the subsequent ones utilised in this chapter in order to summarise 

optimum engine cycles results), all parameters correspond to DP conditions. Exceptions 

to this rule are those parameters whose name finishes with ‘TO’ (e.g., CDTTO, 

HBLTO, etc.), which of course correspond to TO conditions. There are two aspects that 

it is worth highlighting in Table 7-6. The first one relates to the IPCPR and HPCPR 

associated with the NOx optimised engine. As observed in Table 7-6, the values of these 

parameters correspond to their respective minimum permissible values – lower bounds 

imposed as explicit constraints (design variables) during the optimisation processes. 

Thus, it seems that the optimisation process, in this particular case, converged when it 

was not possible to further reduce these pressure ratios. FPR could not have been 

reduced arbitrarily, of course, because of its link with BPR, and, consequently, with the 

thrust required to flight the aircraft trajectory. The second aspect regards to the CDTTO 

associated with both cruise SFC and fuel optimised engine cycles. Table 7-6 shows that 
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these two optimum engine cycles present CDTTO values close to the highest 

permissible value (950K). These results suggest that the optimisation of OPR and BPR 

in these engines was mainly driven by the value of the CDTTO parameter, which was 

implicitly constrained in all optimisation processes performed. Similar analyses to those 

ones carried out in this first case study will be performed in the remaining case studies 

described in this chapter. 

Table 7-6. Case Study 1 – Summary of optimum engine cycles results 

Parameter Unit Baseline 
Cycle Optimisation for Minimum: 

Cruise SFC Fuel NOx 
FPR [--] 1.80 1.78 1.70 1.69 

IPCPR [--] 1.8 4.4 2.4 2.0 
HPCPR [--] 10.0 6.1 9.8 5.0 

BPR [--] 5.5 6.4 6.9 6.0 
TET [K] 1340 1477 1432 1398 
TR [--] 4.8 4.5 5.4 5.9 

CDTTO [K] 862 949 948 786 
HBLTO [mm] 23 18 19 30 

OPR [--] 32.6 48.1 40.5 16.9 
FN [kN] 25.1 26.3 23.9 27.7 

      
 

7.2.3  
Case Study 2: Three-Spool Turbofan Optimisation 

7.2.3.1  
General Description 

The two-spool engine analysed in the first case study was an obvious choice once 

this aircraft engine was utilised when performing the aircraft trajectory optimisation 

processes described in the previous chapter. However, in order to select the other 

engines to be evaluated and/or optimised in this chapter, it was necessary to establish a 

basic criterion or criteria for carrying out this selection process. Accordingly, it was 

decided to analyse in the remaining case studies only some of the potential engines that 

could be eventually used in regional aircraft configurations similar to that one being 

studied in this work. Consequently, given the current hard market conditions, it seems 

likely that configurations usually reserved for large aircraft engines, such as three-spool 

configurations, will be also utilised for relatively smaller engines. Thus, in the second 
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case study analysed in this work, engine cycle optimisation-type processes involving the 

optimisation of a three-spool turbofan engine (Figure 7-8) with separate exhausts were 

performed. Table 7-7 details the main parameters characterising the three-spool engine 

used as the reference or baseline engine in this second case study. As it can be verified 

in this table, DP (10,668m [35,000ft], M0.8, ISA) and TO (Sea Level [S/L], M0.0, 

ISA+30°C) conditions in this second case study corresponded to the same conditions 

utilised as such in the first one.   

 
Figure 7-8. Case Study 2 – Schematic of a three-spool (turbofan) engine with separate exhausts 

Table 7-7. Case Study 2 – Baseline engine characteristic parameters  

DP: TOC (10,668m [35,000ft], M0.8, ISA) 
Parameter Unit Value 

W [kg/s] 180.0 
BPR [--] 5.46 
FPR [--] 1.70 

IPCPR [--] 4.38 
HPCPR [--] 4.38 

OPR [--] 32.6 
TET [K] 1412 
FN [kN] 25.2 

SFC [mg/Ns] 17.1 
OD: TO (S/L , M0.0, ISA+30°C) 

Parameter Unit Value 
TET TO [K] 1655 
FN TO [kN] 121.7 
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For the design of this three-spool baseline engine (Table 7-7), an iterative process 

involving engine simulations at DP and OD point conditions was utilised in order to 

match the engine model thrust requirements with those associated with the (two-spool) 

engine used as baseline in the first case study. In addition, when necessary, educated 

guesses were made for some engine characteristic parameters required for the modelling 

of the engine. It is also possible to see in Table 7-7 that, due to fact that the fan and IPC 

may have different rotational speeds, the IPCPR and HPCPR of the designed three-

spool baseline engine are similar. In addition, the values of W, BPR, and OPR are the 

same ones utilised for the design of the two-spool baseline engine used in the first case 

study. 

In a similar fashion to the first case study, Table 7-8 summarises the design 

variables and (implicit) constraints utilised in this second case study, as well as the 

ranges of permissible values considered. As it can be observed in this table, these 

parameters are the same generic ones described as design variables and (implicit) 

constraints in the general considerations section preceding these case studies. In Table 

7-8, a double hyphen representing a given parameter limit (lower or upper bound) 

indicates, as customary, that this limit has not been considered in the optimisation. 

Table 7-8. Case Study 2 – Design variables and Constraints  

Parameter    
Type 

Parameter 
Name 

Parameter 
Unit 

Lower 
Bound 

Upper 
Bound 

Design Variable FPR [--] 1.1 1.9 
Design Variable IPCPR [--] 2.0 15.0 
Design Variable HPCPR [--] 2.0 15.0 
Design Variable BPR [--] 2.0 15.0 
Design Variable TET [K] 1200 1800 
Design Variable TET TO [K] 1200 1900 

Constraint TR [--] 4.5 -- 
Constraint CDTTO [K] -- 950 
Constraint HBLTO [mm] 15 -- 

     
One aspect to highlight in Table 7-8 relates to the ranges of permissible values 

associated with both IPCPR and HPCPR. As it can visualised in this table, when

compared to the first case study (Table 7-5), the ranges of permissible values associated 

with these parameters were slightly modified in order to reflect the fact that these 

parameters may have similar values (i.e., similar order of magnitude). This is a
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consequence of the fact that, in three-spool configurations, the engine fan and IPC 

usually rotate at different rotational speeds. Finally, similarly to the first case study, the 

polytropic efficiencies assumed in this case were equal to: fan 0.93, IPC and HPC 0.91,

HPT 0.88, IPT 0.89, and LPT 0.90. Accordingly, engine cycle optimisation-type 

processes determining optimum engine cycles which minimise cruise SFC, fuel burned, 

and NOx emitted were performed in this second case study, and the following section

summarises the main results obtained. 

7.2.3.2  
Results 

Figure 7-9 (absolute) and Figure 7-10 (relative) illustrate the main thermodynamic 

cycle parameters associated with both the baseline and the optimum engines determined 

in this second case study. In Figure 7-11, in turn, a comparison of the main results 

associated with the three optimised engines computed in this case study is shown. As 

visualised in this last figure, the cruise SFC optimised engine yielded only an small 

improvement in cruise SFC (~ -1.5%), while the other two optimum engines computed 

originated, similarly to the two-spool case, relatively significant reductions in fuel 

burned (~ -8%) and NOx emitted (~ -95%). 

 
Figure 7-9. Case Study 2 – Characteristic parameters of engine cycles (baseline and optimum) 

1412

1512

1465

1255

5.5 5.5 6.6 5.1

32.6

46.6 47.5

6.61.7 1.7 1.5 1.7

0

13

26

39

52

65

1000

1100

1200

1300

1400

1500

1600

Baseline Cruise SFC Fuel NOx

B
PR

, F
PR

, a
nd

 O
PR

 [-
-]

TE
T 

[K
]

TET

BPR

OPR

FPR



Evaluation and Optimisation of Propulsion Systems – Part B 202 

 

From the analyses carried in the first case study, it was concluded that high values 

of OPR and TET are the main characteristics of cruise SFC optimised engines. It was 

also indicated there that there is a tendency to increase BPR in this type of engines. 

However, it seemed that BPR is increased only to a point in which the reduced core 

flow can cope with the work required by the engine fan without violating the constraints 

(e.g. CDTTO, HBLTO, etc.) imposed when defining the optimisation problem. 

Therefore, as it happened in the first case study, the three-spool engine optimised for 

minimum cruise SFC is characterised by relatively high values of TET and OPR (Figure 

7-9), which contribute to the improvement of the engine thermal efficiency, and, 

consequently, to the reduction of the engine cruise SFC. In addition, TET seems to be a 

compromise between increasing its value for a better thermal efficiency and, hence, a 

lower SFC; and reducing it in order to avoid significant reductions in propulsive 

efficiency, and, consequently, increases in engine SFC. 

 
Figure 7-10. Case Study 2 – Relative (to baseline) parameters of optimum engine cycles 

Because BPR increases generally lead to improvements in propulsive efficiency 
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the engine fan under conditions of maximum OPR, which seems to have been 

established by restrictions in the maximum value of CDT (at TO conditions) allowed in 

the process. Similarly to the first case study, the complex interactions among the main 

thermodynamic cycle parameters characterising turbofan engines yielded the results 

obtained in this case, and particularly illustrated in Figure 7-9 and Figure 7-11. For 

completeness, Figure 7-12 shows the SFC for each segment of the aircraft trajectory. As 

expected, segments 4 and 5 (originating cruise SFC) exhibit the lowest SFC values. 

 
Figure 7-11. Case Study 2 – Optimum engine cycles results (relative to baseline) 
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fan (without violating any constraint) at TO conditions. At this point, it is important to 

emphasise, once again, that the restrictions imposed on CDT (and HBL) corresponded 

to TO conditions. Thus, because TO is treated as an OD point condition, it means that 

for a given engine design the engine component characteristics ultimately determine the 

values of CDT (and HBL). In other words, two engine designs having the same OPR, 

TET, BPR, etc., may still have different values of CDT (and HBL) at TO conditions, if 

they use different turbomachinery maps. 

 
Figure 7-12. Case Study 2 – SFC at each trajectory segment 
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burned at each flight segment, as illustrated in Figure 7-13. Similarly to the first case 

study, in this last figure it is possible to see that the fuel optimised engine presents the 

lowest fuel consumption in all trajectory segments (except in cruise segments 4 and 5, 

where the cruise SFC optimised engine does), which yields, consequently, the lowest 

overall fuel burned. 

 
Figure 7-13. Case Study 2 – Fuel burned at each trajectory segment 
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decrease, which allowed that the reduced OPR core flow is able to generate the work 

required for driving the engine fan. 

The significant reductions in OPR and TET observed in the case of the NOx 

optimised engine produced, as expected, huge increases in the engine SFC associated 

with each aircraft trajectory segment (Figure 7-12), and, consequently, in the 

corresponding fuel burned (Figure 7-13). In a similar fashion to the first case study, 

Figure 7-12 and Figure 7-13 show that, when compared to the other engines computed, 

the engine optimised for minimum NOx presents the highest SFC and fuel burned values 

at each segment of the flight trajectory. Even so, Figure 7-14 shows that the NOx 

optimised engine presents the lowest TET values at each flight segment. The relatively 

low values of OPR, TET and BPR characterising the engine optimised for minimum 

NOx are, therefore, mainly responsible for the low levels of NOx emitted at each flight 

segment; and, consequently, for the lowest overall NOx emissions that characterises this 

optimum engine. Unlike this result and similar to what was observed in the first case 

study analysed before, Figure 7-11 illustrates that the relatively high OPR and TET 

values associated with both cruise SFC and fuel optimised engines produce significant 

increases in NOx emissions and reductions in the total amount of fuel burned. 

 
Figure 7-14. Case Study 2 – TET at each trajectory segment 
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Closing this section, Table 7-9 summarises, in quantitative terms, the main results 

associated with the baseline and the three optimum engine cycles analysed in this 

second case study. Similar to first case study, Table 7-9 shows that the NOx optimised 

engine presents IPC and HPC pressure ratios that correspond to their respective 

minimum permissible values – lower bounds imposed as explicit constraints (design 

variables) during the optimisation processes. It suggests in turn that convergence was 

achieved when it was not possible to further reduce these pressure ratios. In this table it 

is also possible to see that both cruise SFC and fuel optimised engine cycles present 

CDTTO values that roughly correspond to their highest permissible value (950K). This 

seems to suggest that the optimisation of these engine cycles was mainly driven by this 

limitation imposed on the CDTTO (implicitly constrained) parameter. Similar analyses 

to those ones carried out in these two first case studies will be performed in the 

following one which involves a more innovative engine cycle. 

Table 7-9. Case Study 2 – Summary of optimum engine cycles results 

Parameter Unit Baseline 
Cycle Optimisation for Minimum: 

Cruise SFC Fuel NOx 
FPR [--] 1.70 1.68 1.53 1.65 

IPCPR [--] 4.4 4.4 3.5 2.0 
HPCPR [--] 4.4 6.2 8.9 2.0 

BPR [--] 5.5 5.5 6.6 5.1 
TET [K] 1412 1512 1465 1255 
TR [--] 4.8 4.5 4.7 6.6 

CDTTO [K] 871 950 949 591 
HBLTO [mm] 23 20 18 47 

OPR [--] 32.6 46.6 47.5 6.6 
FN [kN] 25.2 26.4 21.1 21.6 

      
 

7.2.4  
Case Study 3: Intercooled Recuperated Turbofan Optimisation 

7.2.4.1  
General Description 

As highlighted in literature [128-130], the need of more affordable and economic 

engines along with the gradual tightening of environmental regulations exert constantly 

pressure on the aviation industry for evaluation and future utilisation of novel engine 
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concepts, whose main characteristic are their high efficiency (low fuel consumption) 

and environmental friendliness. In general terms, there are mainly three innovative (or 

unconventional) engine concepts that have been extensively studied in recent years for 

future aircraft applications: intercooled recuperated (ICR) engines, geared turbofans, 

and open rotors. All these three concepts have their advantages and disadvantages. For 

instance, when compared to conventional engines, open rotors are more fuel efficient 

(mainly due to their higher propulsive efficiency), but noise can be a problem; and 

geared turbofans, although having also a higher fuel efficiency and being quieter, the 

additional complexity and weight associated with the use of a gearbox constitute issues 

that need to be addressed carefully. From these three relatively novel engine cycles, due 

to mainly the work developed in the first part of this research project, the ICR engine 

concept was selected for carrying out the optimisation processes performed as part of 

this third and last case study analysed in this chapter.  

In general, in addition to the processes present in conventional aircraft engines, an 

ICR engine involves, as schematically illustrated in Figure 7-15, intercooling and 

recuperation processes. The cooling of the air during the compression process, on one 

hand, reduces the compression work required, which in turn results in an increased 

engine thrust. However, due to fact that as a result of this process the CDT also 

decreases, an additional amount of heat input will be required. Thus, because the 

increase in engine thrust cannot offset this additional amount of heat added, the thermal 

efficiency and fuel consumption are penalised in cycles with intercooling. Recuperation, 

on the other hand, has the effect of increasing the efficiency of the cycle at the expense 

of a small reduction in the engine output. Therefore, when intercooling and recuperation 

are complementarily utilised, their benefits increase and improvements in both engine 

thrust and thermal efficiency can be obtained. All these effects contribute to the reduced 

engine SFC, which is the main characteristic of this type of engines, i.e., ICR engines. 

As expected, ICR engines also present some drawbacks that are worth mentioning 

before describing the specific ICR engine optimised in this case study. The main 

downsides associated with this type of engines relate to the inherent additional 

complexities involved when using the heat exchangers. These include the increase in 

engine weight and more likely in engine dimensions, the additional pressure losses 

caused by the use of the heat exchangers, and the dependence of the intercooling and 
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recuperation systems’ performance on the engine operating conditions. A previous work 

[55] showed that the benefits of the use of ICR engines – in terms of fuel burned and 

gaseous emissions – depend on both the performance of the intercooling and 

recuperation systems (namely heat exchangers’ effectiveness and pressure losses), and 

the changes in engine weight and nacelle dimensions. More specifically, these gains 

decrease as both the referred (intercooling and recuperation systems’) performance 

decreases, and the engine weight and nacelle dimensions increase. Thus, when carrying 

out the optimisation of the particular ICR engine analysed in this case study, some 

simplifications in the modelling of the engine and its associated systems were 

introduced. 

 
Figure 7-15. Case Study 3 – Schematic of an ICR (two-spool turbofan) engine with separate 

exhausts 

In this case study, it was assumed that: (i) the use of the intercooling and 

recuperation systems does not imply variations in the dimensions of the nacelle; (ii) the 

ICR engine is 50% heavier than a conventional one used for similar purposes; (iii) the 

heat exchangers produce additional pressure losses of 3% (each one); and (iv) the heat 

exchangers’ effectiveness is about 90%. The first assumption is coherent with what is 

being considered in all cases studies analysed in this chapter. That is, due to some 

limitations in the aircraft performance model utilised in this work, the overall engine 

dimensions (including nacelle dimensions) remain constant during the optimisation 

processes. The increase in the engine weight was directly translated as an increase in the 

aircraft MTOW. The setting of the pressure losses and effectiveness associated with the 

heat exchangers used in this particular case was carried following a similar 

methodology to that one used in previous studies [129,130]. These assumptions 



Evaluation and Optimisation of Propulsion Systems – Part B 210 

 

attempted to reflect in general a typical scenario where this type of engines might be 

utilised. Taking into account these aspects, an ICR engine, which was used as the 

reference or baseline engine in this third case study, was initially designed. Table 7-10 

details the main parameters characterising this engine. 

Table 7-10. Case Study 3 – Baseline engine characteristic parameters  

DP: TOC (10,668m [35,000ft], M0.8, ISA) 
Parameter Unit Value 

W [kg/s] 180.0 
BPR [--] 5.46 
FPR [--] 1.70 

IPCPR [--] 1.92 
HPCPR [--] 10.0 

OPR [--] 32.6 
TET [K] 1280 
FN [kN] 25.4 

SFC [mg/Ns] 17.2 
OD: TO (S/L , M0.0, ISA+30°C) 

Parameter Unit Value 
TET TO [K] 1510 
FN TO [kN] 120.4 

   
 

As shown in Table 7-10, DP (10,668m [35,000ft], M0.8, ISA) and TO (Sea Level 

[S/L], M0.0, ISA+30°C) conditions in this third case study corresponded to the same 

conditions utilised as such in the first two case studies analysed in this chapter. Similar 

to the second case study, for the design of this baseline ICR engine (Table 7-10), an 

iterative process involving engine simulations at DP and OD point conditions was 

utilised in order to match the engine model thrust requirements with those associated 

with the (two-spool) engine used as baseline in the first case study. As customary, when 

necessary, educated guesses were made for some engine characteristic parameters 

required for the modelling of the engine. In Table 7-10 it is also possible to see that the 

values of W, BPR, and OPR are the same ones (and roughly them in the case of the 

OPR split in the compression system) utilised for the design of the two-spool baseline 

engine used in the first case study. 

Table 7-11 summarises, in turn, the design variables and (implicit) constraints 

utilised in this third and last case study, as well as the ranges of permissible values 

considered. As it can be observed in this table, all these parameters, except one of them, 
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are the same parameters utilised in the optimisation processes of the two-spool engine 

performed in the first case study. The only additional parameter present in this table 

(last row) corresponds to the engine net thrust at DP. The rationale behind the inclusion 

of this constraint is because, for this particular type of optimisation problems, the larger 

the number of (implicit) constraints, the more meaningful the outcomes of the 

optimisation studies. 

Table 7-11. Case Study 3 – Design variables and Constraints  

Parameter    
Type 

Parameter 
Name 

Parameter 
Unit 

Lower 
Bound 

Upper 
Bound 

Design Variable FPR [--] 1.1 1.9 
Design Variable IPCPR [--] 2.0 5.0 
Design Variable HPCPR [--] 5.0 20.0 
Design Variable BPR [--] 2.0 15.0 
Design Variable TET [K] 1200 1800 
Design Variable TET TO [K] 1200 1900 

Constraint TR [--] 4.5 -- 
Constraint CDTTO [K] -- 950 
Constraint HBLTO [mm] 15 -- 
Constraint FN [kN] 25.2 25.7 

     
 

The only criterion determining (internally) the validity of a given engine design 

was so far the ability of the aircraft to fly the (fixed) reference flight trajectory utilised. 

Although respecting all constraints imposed, following this approach however, the 

optimisation processes at some stage could yield unrealistic solutions which present 

very low or very high values of net thrust at DP and/or TO. Therefore, in this third case 

study, in order to reduce the probability of determining such solutions, an additional 

constraint, i.e., FN at DP, was imposed. As illustrated in Table 7-11, the range of 

permissible values in which this constraint was allowed to vary corresponded to ±1% of 

its nominal value (25.4kN, Table 7-10). It is important to highlight that this constraint 

was not included in the two first case studies analysed above mainly because of the 

gradual approach, in terms of addition of complexities, followed in this work. Finally, 

similar to the first two cases studies analysed in this chapter, polytropic efficiencies (fan 

0.93, IPC and HPC 0.91, HPT 0.88, and LPT 0.90) were assumed for the main 

components of the ICR engine. Accordingly, engine cycle optimisation-type processes 

determining optimum ICR engine cycles which minimise cruise SFC, fuel burned, and 
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NOx emitted were performed. The following section summarises the main results 

obtained. 

7.2.4.2  
Results 

The main thermodynamic cycle parameters associated with both the baseline and 

the optimum engines determined in this case study are shown in Figure 7-16. These 

same parameters when expressed in relative terms using the characteristic parameters of 

the baseline engine are illustrated in Figure 7-17. In Figure 7-18, in turn, a comparison 

of the main results associated with the three optimised engines computed in this case 

study is shown. As observed in this last figure, all three optimum engines computed 

yield, similarly to the two-spool case, relatively significant reductions in cruise SFC (~ -

12%), fuel burned (~ -14%) and NOx emitted (~ -65%). A brief analysis of the results 

associated with each of these optimum engines determined in this case study is 

presented next. 

 
Figure 7-16. Case Study 3 – Characteristic parameters of engine cycles (baseline and optimum) 

Based on the analyses of the results associated with conventional (two- or three-

spool) engines carried out above, it was concluded that SFC optimised engines are 
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optimised for minimum cruise SFC because of the intercooling and recuperation 

systems used in this type of engines. As highlighted in references [127,128], unlike 

conventional engines, ICR engines offer higher efficiencies, and hence lower SFC 

values, with lower values of OPR. This is because the larger the difference between the 

temperatures of the hot and cold flows, the more effective the heat exchange process. In 

the case of the recuperation system used in ICR engines, this implies that the larger the 

difference between the turbine exit temperature and CDT, the better. This difference can 

be made larger by increasing the turbine exit temperature, through increases in TET for 

instance; and/or by reducing CDT. Reductions in CDT can be in turn achieved by 

reducing OPR and/or by using intercooling processes. However, due to the fact that 

intercooling on its own results in increases in SFC, a relatively low OPR is one of the 

main characteristics of ICR engines. 

 
Figure 7-17. Case Study 3 – Relative (to baseline) parameters of optimum engine cycles 

Therefore, as it can be observed in Figure 7-16, the ICR engine optimised for 

minimum cruise SFC is characterised by a relatively high value of TET and a moderate 

value of OPR. These two aspects contribute to the improvement of the engine thermal 

efficiency and the effectiveness of the heat exchange processes and, consequently, to the 

reduction of the engine cruise SFC. TET seems to be a compromise between increasing 

its value to improve thermal efficiency and heat exchange’s effectiveness and, hence, 

SFC; and reducing it to avoid significant reductions in propulsive efficiency that can 
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worsen SFC. In addition, because increases in BPR yield improvements in propulsive 

efficiency and, consequently, reductions in SFC, the BPR associated with the cruise 

SFC optimised engine is higher than the baseline engine BPR (Figure 7-16 and Figure 

7-17). Another aspect that may have a certain contribution to the increase in BPR is the 

reduction in compression work originated by both the reduction in OPR and the use of 

an intercooling process. For completeness, Figure 7-19 shows the SFC for each segment 

of the aircraft flight trajectory. As expected, when compared to the corresponding SFC 

values associated with the other engines (baseline and optimum), segments 4 and 5 

(yielding cruise SFC) exhibit the lowest SFC values. 

 
Figure 7-18. Case Study 3 – Optimum engine cycles results (relative to baseline) 

In terms of OPR and TET, the ICR engine optimised for minimum fuel burned is 

similar to the engine designed for minimum cruise SFC (both are characterised by 

relatively high values of TET and moderated values of OPR). This is expected because 

the objective functions utilised in these two cases are similar as well. As already 

highlighted, the big difference between these two functions relates to the fact that, when 

optimising for minimum fuel burned, unlike cruise SFC optimisation (optimisation of 

SFC in cruise only), the SFC corresponding to all trajectory segments is minimised. 

Thus, in general, the main parameters driving the cruise SFC optimisation also drive the 

minimum fuel burned optimisation processes. Therefore, as observed in Figure 7-16, the 
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ICR engine optimised for minimum fuel burned is also characterised by relatively high 

values of TET and BPR, as well as moderate values of OPR. 

 
Figure 7-19. Case Study 3 – SFC at each trajectory segment 

Regarding specifically the engine BPR, when compared to the other optimum 

engines computed in this case study, the results (Figure 7-16 and Figure 7-17) show that 

the engine optimised for minimum fuel burned presents the highest BPR. This 

behaviour can be attributed to the improvements in engine propulsive efficiency (main 

contributors to the reduction in SFC and, consequently, in fuel burned) originated from 

the increases in BPR. These results are consistent with those associated with 

conventional engines, as shown in Figure 7-2 and Figure 7-9. The relatively high value 

of BPR used in this particular optimised engine, together with the relatively high value 

of TET and moderate OPR, originates SFC reductions in almost all segments of the 

flight trajectory. Figure 7-19 shows that this ICR engine, i.e., fuel optimised, presents 

the lowest values of SFC in all trajectory segments, except in cruise segments 4 and 5, 

where the cruise SFC optimised engine does. As expected, these SFC results are 

reflected in the fuel that is burned at each flight segment, as illustrated in Figure 7-20. In 

this last figure it is possible to observe that the fuel optimised ICR engine presents the 

lowest fuel consumption in all trajectory segments, except in those segments where the 
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cruise SFC optimised engine does. This fact of course leads to the lowest overall fuel 

burned that characterises this particular ICR engine. 

 
Figure 7-20. Case Study 3 – Fuel burned at each trajectory segment 

The analyses performed previously about engine cycle optimisation-type 

processes and minimisation of NOx emissions determined that conventional engines 

optimised for minimum NOx emissions are expected to be characterised by relatively 

low values of combustor air inlet temperature, combustor air inlet pressure, and TET. In 

the case of ICR engines, air inlet temperature is mainly related to both CDT (and hence 

to OPR) and TET (through the recuperation system utilised). Air inlet pressure, in turn, 

is directly related to OPR. Accordingly, low values of combustor air inlet temperature 

and pressure mean low values of OPR and TET. Observing the results shown in Figure 

7-16, it is possible to see that relatively low values of OPR and TET is indeed one of the 

characteristics of the engine optimised for minimum NOx emissions. Thus, as shown in 

this figure, the NOx optimised engine presents the lowest OPR and TET of the three 

optimum engines computed. However, when compared to the baseline case, this 

optimum engine presents a slightly higher value of TET. It seems that this value is a 

consequence of the additional constraint (FN at DP) imposed in this case. Even so, the 

NOx optimised engine produces significant reductions (~ -65%) in the level of NOx 

emitted (Figure 7-18). It seems then that OPR has a dominant effect on NOx emissions 
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in this particular case. Regarding the engine BPR, the results show that this parameter is 

roughly the same as in the case of baseline engine and lower than those values of BPR 

corresponding to the other two optimised engines. 

The significant reduction in OPR characterising the NOx optimised engine results 

in relatively high values of SFC at each trajectory segment (Figure 7-19); and, 

consequently, fuel burned (Figure 7-20). Similar to previous case studies, Figure 7-19  

and Figure 7-20 show that, when compared to the other optimum engines determined in 

this case study, the engine optimised for minimum NOx presents the highest SFC and 

fuel burned values at each segment of the flight trajectory. Even so, Figure 7-21 shows 

that this optimised engine presents the lowest TET values at the last trajectory flight 

segments. In the initial ones, its TET values are comparable to those ones associated 

with the baseline engine. These relatively low values of OPR and TET characterising 

the engine optimised for minimum NOx lead to the lowest overall NOx emissions that 

qualify this optimum engine. Unlike this result, Figure 7-18 shows that the relatively 

high TET values associated with both cruise SFC and fuel optimised engines (Figure 

7-16 and Figure 7-21) produce significant increases in NOx emissions. 

 
Figure 7-21. Case Study 3 – TET at each trajectory segment 

Finally, Table 7-12 summarises, quantitatively, the main results associated with 

the baseline and the three optimum engine cycles analysed in this third and last case 
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study. In this table it is possible to see that the NOx optimised engine present IPCPR and 

HPCPR values which correspond to their respective minimum permissible ones – lower 

bounds imposed as explicit constraints (design variables) during the optimisation 

processes – suggesting, in turn, that convergence was achieved when it was not possible 

to further reduce these parameters. Table 7-12 also shows that the optimum engines 

computed present, as expected, FN values which are within their range of permissible 

values (±1% of its nominal value, 25.4kN). Closing this chapter, the following section 

describes a simple comparison of the three engine configurations analysed in this work. 

Table 7-12. Case Study 3 – Summary of optimum engine cycles results 

Parameter Unit Baseline 
Cycle Optimisation for Minimum: 

Cruise SFC Fuel NOx 
FPR [--] 1.70 1.64 1.59 1.65 

IPCPR [--] 1.9 3.2 3.1 2.0 
HPCPR [--] 10.0 5.0 5.3 5.0 

BPR [--] 5.5 7.4 7.9 5.5 
TET [K] 1280 1529 1642 1325 
TR [--] 4.7 5.4 4.7 5.4 

CDTTO [K] 735 870 920 834 
HBLTO [mm] 23 21 21 30 

OPR [--] 32.6 26.4 26.2 16.5 
FN [kN] 25.4 25.6 25.3 25.2 

      
 

7.2.5  
Further Results 

During a typical engine cycle optimisation process, in order to understand the 

influence of particular cycle parameters on the optimum results, initially only a limited 

number of design variables and constraints, as well as objective functions (mostly only 

one) are usually utilised. Design variables and constraints are then gradually added to 

the optimisation processes. Eventually, not only single-objective but also multi-

objective optimisation processes are carried out involving all relevant design variables 

and constraints. This approach allows the understanding of the importance of key 

engine cycle parameters, as well as it enables the determination of realistic optimum 

engine cycles satisfying the engine requirements. 
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The main objective of the optimisation processes performed in the case studies 

described in this chapter was the illustration of other uses of Polyphemus and the 

evaluation of their mathematical performance rather than the determination of realistic 

engine cycles. Thus, in these case studies, only a limited number of design variables and 

constraints, as well as objective functions (single-objective) were utilised. This allowed 

greater visibility about the characteristics of the optimiser performance when assessing 

results. This, of course, would have proved more difficult if a larger number of design 

variables, constraints, and objective functions had been utilised. Consequently, the 

optimisation processes described so far in this chapter constitute typical examples of 

those processes that are carried out only in the initial stages of an engine cycle 

optimisation. When analysing different engine cycles it is important to find a means of 

comparing the different results obtained. Therefore, it has been decided to include in the 

final part of this chapter results showing a comparison of the three engine cycles 

analysed before. This section summarises the results associated with the referred 

comparison process.  

Due to the simplifications introduced when carrying out the engine cycle 

optimisation-type processes described above, mainly in terms of constraints, it has been 

necessary to slightly increase the number of implicit constraints utilised so far for 

performing the comparison of the engine cycles mentioned. The main reason for the 

utilisation of these additional constraints was to allow a fairer comparison process. The 

process of addition of constraints was similar to that one used in the case of the ICR 

engine discussed before. Thus, in the cases of the two- and three-spool engines, the 

additional constraints considered related to the net thrust, FN, at DP and TO. In the case 

of the ICR engine, in turn, because FN at DP had been already considered as a 

constraint, only FN at TO was added. The ranges of permissible values in which these 

two additional constraints were allowed to vary corresponded to ±1% of their 

corresponding nominal values. These nominal values were taken, in turn, from the 

respective values of FN at DP and TO (c.f., Table 7-4, DP: 25.1kN, TO: 121.4kN) 

associated with the baseline two-spool engine, which was also considered as reference 

or baseline engine in this comparison process. For brevity, only one of the three 

objective functions usually utilised in the previous analyses, fuel, was used in the 

single-objective optimisation processes carried out in this work for comparison 
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purposes. All other details associated with the optimisation of each particular engine 

configuration and described in the previous case studies remained the same, and they 

will not be repeated here. The only big difference was associated with the increase in 

the number of implicit constraints as just highlighted.     

The main thermodynamic cycle parameters associated with both the two-spool 

baseline engine and the three engine configurations optimised for minimum fuel burned 

are shown in Figure 7-22. These same parameters when expressed in relative terms 

using the characteristic parameters of the two-spool baseline engine are illustrated in 

Figure 7-23. In Figure 7-24, in turn, the main results associated with the three optimised 

engine configurations are shown. As observed in this last figure, the three-spool fuel 

optimised engine yielded only a relatively small reduction in the total amount of fuel 

burned (~ -1.7%), while the other two optimum engines computed led to relatively 

significant reductions in this parameter, i.e., two-spool ~ -8.7%, and ICR ~ -10.6%. 

 
Figure 7-22. Comparison of engines – Characteristic cycle parameters 

Figure 7-22 illustrates that conventional (two- and three spool) engines are 

characterised by relatively high values of OPR and TET. This is an expected result after 

what was discussed about this type of configurations in the two first case studies 

described in this chapter. Unlike these results, the ICR engine is characterised by a 

moderate value of OPR. However, as it happens in the case of conventional engines, a 
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relatively high value of TET is also a characteristic of minimum fuel burned ICR 

optimised engines. The main reason behind these moderate values of OPR in ICR 

engines, as mentioned before, relates to the presence of the intercooling and 

recuperation systems, which require relatively low values of OPR in order to maximise 

the benefits associated with their utilisation. 

 
Figure 7-23. Comparison of engines – Relative (to baseline) cycle parameters 

Regarding the engine BPR, the results (Figure 7-22 and Figure 7-23) show that 

there is a tendency to increase this parameter in order to reduce the fuel burned. This is 

expected, of course, once increases in BPR lead to improvements in engine propulsive 

efficiency; and, consequently, reductions in SFC. Then, due to the fact that when 

optimising for minimum fuel burned, the SFC corresponding to all trajectory segments 

is minimised (including the SFC in cruise), it is natural to expect that fuel optimised 

engines are characterised by relatively high values of BPR. Thus, as particularly 

observed in Figure 7-23, when compared to the two-spool baseline engine, the three 

optimum engines computed present higher values of BPR. In the particular case of the 

ICR engine, it seems that the reduction in compression work as a result of both the 

reduction in OPR and the use of an intercooling process also contributes to the large 

increase in BPR associated with this engine. 
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Figure 7-24. Comparison of engines – Optimum engine cycles results (relative to baseline) 

Comparing specifically the results corresponding to the three engine 

configurations optimised for minimum fuel burned, it is possible to see from Figure 

7-22 and Figure 7-23 that the conventional engines present OPR and TET values which 

are roughly comparable. The relatively high TET value associated with the ICR engine 

seems to be related to its recuperation system which requires as high TET values as 

possible. In addition, the TET values characterising each engine configuration seem to 

be obtained from a compromise between increasing its value for a better thermal 

efficiency (and heat exchange’s effectiveness in ICR engines) and, hence, a lower SFC; 

and reducing it in order to avoid important reductions in propulsive efficiency, 

worsening in this way SFC. The relatively low value of OPR characterising the ICR 

engine is, of course, a requirement of the intercooling and recuperation systems used in 

this type of engines. Thus, in terms of compression stages and cooling flow, it seems 

that an ICR engine is ‘simpler’ than conventional ones; but it also has of course all the 

other complexities associated with the use of the heat exchangers present in this type of 

engine configurations. 

Looking at the overall results obtained from the optimisation processes the 

conventional three-spool engine optimised for minimum fuel presents, on one hand, the 

smallest reduction in fuel burned (Figure 7-24). Because of the simplifications 
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the reasons behind the differences (in terms of fuel burned reduction) between the 

results obtained for the conventional two- and three-spool engines. Further optimisation 

work involving higher fidelity computational tools able to model, for instance, changes 

in engine weight and dimensions as the engine thermodynamic cycle varies should help 

to clarify this point. The ICR engine, on the other hand, yields the largest reduction in 

this parameter. This last result can be attributed to both the relatively lower SFC 

characterising an ICR engine, and its improved part-load performance. This 

characteristic SFC can also be observed in Figure 7-24. Regarding NOx emissions, 

Figure 7-24 shows that the ICR engine produces a smaller amount of this pollutant 

when compared to the other optimised engines. The relatively low values of OPR 

characterising ICR engines are partially responsible for this relatively low amount of 

NOx emissions. Closing this chapter, Table 7-13 summarises in quantitative terms the 

main results associated with both the two-spool baseline engine, and the three engine 

configurations optimised for minimum fuel burned analysed in this section. 

Table 7-13. Comparison of engines – Summary of optimum engine cycles results 

Parameter Unit Baseline 
Cycle Optimisation for Minimum Fuel 

Two-spool Three-spool ICR 
FPR [--] 1.80 1.70 1.62 1.61 

IPCPR [--] 1.8 2.6 4.3 2.2 
HPCPR [--] 10.0 9.0 6.3 5.3 

BPR [--] 5.5 6.8 5.6 6.4 
TET [K] 1340 1445 1473 1466 

TET TO [K] 1600 1715 1722 1692 
TR [--] 4.8 4.8 4.8 4.8 

CDTTO [K] 862 911 950 884 
HBLTO [mm] 23 20 20 26 

OPR [--] 32.6 39.7 44.0 18.7 
FN [kN] 25.1 24.9 24.9 25.3 

FN TO [kN] 121.4 120.5 120.4 121.1 
      

 

Almost all results illustrated in Table 7-13 were already discussed. Therefore, the 

only aspect to highlight in this table relates to the values of FN at DP and TO. As 

mentioned before, these parameters were used as implicit constraints in this particular 

case. Table 7-13 shows that the optimum engines computed present, as expected, FN 

values which are within their range of permissible values. Finally, the comparison 

process of engine cycles described in this last section closes this chapter dealing with 
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engine cycle optimisation-type processes. This chapter provided a flavour of the type of 

analyses that can be carried out in this field of optimisation of engine cycles using 

optimisation algorithms such as those utilised in this work, i.e., Polyphemus. 

 



  

 

8  
Conclusions and Further Work 

The main conclusions drawn from the present research work as well as some 

proposals for further work are summarised in this chapter. 

8.1  
Conclusions 

The aim of this research work was to develop a methodology to evaluate and 

quantify aircraft/engines design trade-offs originated as a consequence of addressing 

conflicting objectives such as low environmental impact and low operating costs. More 

specifically, in this work it was mainly intended to evaluate and optimise both aircraft 

flight trajectories and aircraft engine cycles taking into account multidisciplinary 

aspects such as performance, gaseous emissions, and economics, among others. It was 

also an objective of this project to use different computational tools currently available 

at Cranfield University, and, when necessary, to develop new computational tools or to 

introduce modifications to the existent ones, in order to perform the tasks proposed in 

this project. 

The main contributions of this work to knowledge broadly comprise the 

following: 

• Development of an environmental-based methodology for carrying out both 

aircraft trajectory optimisation processes, and engine cycle optimisation-

type ones. 

• Development of an advanced, innovative gas turbine emissions prediction 

software suitable to be integrated into multi-disciplinary optimisation 

frameworks, e.g., aircraft trajectory optimisation framework under 

development. 
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• Development and/or adaptation of a suitable optimiser with a library of 

optimisation algorithms (i.e., Polyphemus) to be integrated into multi-

disciplinary optimisation frameworks. 

• Evaluation and optimisation of aircraft propulsion systems from two 

different perspectives, operation (aircraft trajectories) and preliminary 

design (engine cycles). 

• Determination and assessment of optimum and ‘greener’ aircraft trajectories 

and aircraft engine cycles using a multi-disciplinary optimisation tool, 

including, among others, Polyphemus and the gas turbine emissions 

prediction model developed. 

Based on its objectives and contributions, it is concluded that the present research 

project was successfully completed. In general, the development of the research project 

followed its normal path, and all objectives associated with the project, including its 

expected results, were successfully achieved. 

Regarding the specific work developed in this project, it is worth indicating that 

an initial literature review was carried out in the first part of this research work. This 

review was oriented to the establishment of the state-of-the-art of the different 

approaches considered so far to reduce the environmental impact of aircraft operations. 

Literature basically indicates that, in order to reduce the aircraft climate impact, the 

number of aircraft operations must be reduced, the type of aircraft must be changed, 

and/or the aircraft operational rules and procedures must be changed. From a practical 

perspective, it is concluded that a combination of last two alternatives seems to be the 

most feasible route to the achievement of the goal. 

The different processes involving the evaluation and optimisation of 

environmentally friendly aircraft propulsion systems carried out in this work included 

the use of several computational packages/models developed at Cranfield University 

over the years, and eventually other new ones developed according to the need of this 

particular project. In this sense, as part of the familiarisation process with the 

computational tools already available at Cranfield University, simulation processes 

using these tools were initially performed. 

A new computational tool for modelling the formation of pollutants in gas turbine 

combustors was developed and the details of its development and implementation were 
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described in this thesis. Details of both the development of generic reactors models 

intended to simulate particular combustor regions, and the different mechanisms utilised 

to estimate the level of emissions produced from a given combustor, in terms of NOx, 

CO, UHC, and soot/smoke, were described as well. The gaseous emissions prediction 

model developed allows the reliable calculation of emissions trends from current and 

potential future aircraft gas turbine combustors. 

In order to provide insight into the results that can be obtained using the emissions 

prediction software developed, a verification exercise of the model was carried out 

involving the simulation of a typical two-spool high bypass ratio turbofan using a 

conventional combustor. Based on the results obtained from the simulations, it is 

concluded that in general the emission trends observed in practice are sufficiently well 

reproduced, and in a computationally efficient manner for its subsequent incorporation 

in optimisation processes. Additionally, from experience obtained during the 

development of the computational model, it is concluded that it is particularly important 

to represent accurately the different combustor regions in order to obtain reasonable 

results, which present a satisfactory level of agreement with experimental data. 

In order to carry out the processes of evaluation and optimisation of 

environmentally friendly aircraft propulsion systems intended in this work, it was 

decided to develop and implement a suitable optimiser with a library of optimisation 

algorithms, Polyphemus. Different numerical methods that could be used for this 

purpose were firstly reviewed, and a suitable optimisation technique, i.e., Genetic 

Algorithms, was initially selected. In order to have the background required, the main 

principles governing the selected optimisation technique were next reviewed. The 

referred optimisation algorithms were then developed and/or adapted and this thesis 

described their current status. The Polyphemus optimiser was subsequently utilised to 

analyse several case studies involving both aircraft trajectory optimisation processes, 

and engine cycle optimisation-type ones. 

Before carrying out the different aircraft trajectory optimisation processes, an 

appropriate methodology was developed. This methodology mainly involved the 

definition of the aircraft trajectory optimisation problem, and more specifically, the 

identification of the parameters used as design variables, (implicit) constraints, and 

objective functions. Since all optimisation processes performed were limited to vertical 
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profiles, only three parameters, flight altitude, aircraft speed, and range, were used to 

define a given segment-based aircraft trajectory. In the trajectory optimisation 

processes, the range was usually kept constant (optimisation between city pairs). Thus, 

in general, only flight altitude and aircraft speed were used as design variables or 

constraints. Flight time, fuel burned, and NOx emitted were considered as the main 

objective functions.  

The definition of the aircraft trajectory optimisation problem allowed, in turn, the 

identification of both the computational models required for the trajectory optimisation 

processes, and the different parameters to be exchanged among them. After being 

successfully used in several optimisation processes, it is concluded that the trajectory 

optimisation methodology developed was robust and well conceived for the type of 

optimisation processes carried out in this work. In particular, the definition of the 

aircraft trajectory problem was flexible enough, which allowed the realistic 

representation of flight procedures utilised currently in practice. 

In this work, several aircraft trajectory optimisation processes involving both 

climb and whole (climb, cruise, and descent) flight profiles were carried out and their 

main results were presented and discussed. These flight profiles were assessed as part of 

several cases studies where complexities (in terms of operational constraints, number of 

segments, number of trajectory flight phases, etc.) were gradually included. Since, in 

general, the results obtained using Polyphemus and other commercially available 

optimisation algorithms presented a satisfactory level of agreement (average 

discrepancies of about 2%), it is concluded that its development is proceeding in the 

correct direction and should continue in order to improve its capabilities for identifying 

and efficiently computing optimum and ‘greener’ aircraft trajectories, which help to 

minimise the impact of commercial aircraft operations on the environment. 

Regarding the trajectory optimisation results, it is important to start highlighting 

that the main objective of the different case studies analysed was the evaluation of the 

mathematical performance of Polyphemus rather than the determination of realistic 

aircraft trajectories. Accordingly, due to the fact that in general these different case 

studies provided solutions mathematically and conceptually correct, it is concluded that 

the approach utilised in this work for carrying out the aircraft trajectory optimisation 
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processes is a valid one. This of course provides the necessary motivation for continuing 

with the development of Polyphemus. 

A number of optimum vertical aircraft flight profiles which minimise total flight 

time, fuel burned, and NOx emissions were computed in this work. A detailed summary 

of these optimum results is extensive. Thus, only their general trends and the main 

conclusions drawn from them are briefly indicated next. Minimisation of flight time 

means maximisation of true airspeed. For the minimisation of the total flight time, 

Polyphemus suggests then that the aircraft should fly using the highest possible true 

airspeed. In order to minimise the fuel burned during a given flight profile, in turn, the 

total energy required during the process must be minimised. This originates that profiles 

optimised for minimum fuel burned are characterised by relative low speeds and high 

altitudes. Accordingly, in order to reduce the fuel burned, Polyphemus suggests flying 

mostly slower and higher than the minimum time flight profiles. 

Regarding the flight profiles optimised for minimum NOx emissions, it has been 

observed that they are generally flown similarly to the fuel optimised ones, i.e., mostly 

slower and higher than the minimum time flight profiles. Generally the relative lower 

speeds and higher altitudes utilised to fly these trajectories result in reductions in the 

thrust required to fly their segments. These lower thrust requirements are then translated 

into lower engine TET values, which ultimately reduce the level of NOx emissions 

produced. Overall it is concluded that, although the optimum flight profiles determined 

corresponded to hypothetical ones, the results provided numerical solutions that enabled 

the understanding of the performance of Polyphemus, which was the main objective of 

these optimisation processes. 

In this work, as an attempt to illustrate other uses of Polyphemus, different engine 

cycle optimisation-type processes were also performed. These optimisation processes 

were mainly focused on the evaluation of the mathematical performance of Polyphemus 

rather than on the determination of realistic engine cycles. Simplifications were then 

introduced into these processes when both defining the aircraft flight trajectory and 

modelling the different engine configurations analysed. Accordingly, several optimum 

engine cycles minimising separately three objective functions, cruise SFC, fuel burned, 

and NOx emitted, were determined. 
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The optimum engine cycles results show that conventional two- or three-spool 

engines optimised for minimum cruise SFC and fuel burned are characterised by 

relatively high values of TET and OPR. A relatively high BPR is also a characteristic of 

this type of optimised engines. Since these parameters directly influence the level of 

NOx emitted, conventional (two- or three-spool) engines optimised for minimum NOx 

emissions are characterised by relatively low values of OPR and TET. ICR engines 

optimised for both minimum cruise SFC and minimum fuel burned are also 

characterised by relatively high values of TET, but only moderate OPR values. Further 

reductions in OPR characterise minimum NOx emissions ICR optimised engines. 

Regarding BPR specifically, the ICR engine results are consistent with those associated 

with conventional engines. 

The engine cycle optimisation-type processes carried out yielded optimum results 

that reflect the general trends that could be expected when optimising according to the 

objective functions used in this work (i.e., cruise SFC, fuel burned, and NOx emissions). 

It is concluded then that Polyphemus is also suitable for carrying out this type of 

optimisation processes. Thus it is expected that these algorithms can be used in future 

for determining both optimum and ‘greener’ aircraft trajectories, and realistic aircraft 

engine cycles which help to optimise the preliminary design of this type of engines. 

Finally, based on the results obtained from the different evaluation and 

optimisation processes carried out involving aircraft trajectories and engine cycles, it is 

concluded that there is indeed a feasible route to reduce the environmental impact of 

commercial aviation through the introduction of changes in the aircraft operational rules 

and procedures and/or in the aircraft/engine configurations. The magnitude of these 

reductions needs to be determined yet through careful consideration of more realistic 

aircraft trajectories and the use of higher fidelity computational models. In order to 

realistically estimate the magnitude of these reductions, eventually the computations 

will need to be extended to the entire fleet of aircraft. They will also need to include 

different operational scenarios involving partial replacements of old aircraft with new 

environmentally friendly ones. 



Conclusions and Further Work 231 

 

8.2  
Further Work 

Further work needs to be developed in different research areas that are directly or 

indirectly related to the work developed in this research project. From these research 

areas, three of them deserve a special attention: modelling of formation of pollutants in 

gas turbine combustors, development and implementation of optimisation algorithms, 

and evaluation and optimisation of aircraft trajectories and engine cycles. 

Even though the gaseous emissions prediction model developed in this work 

allows the reliable calculation of emissions trends from current and potential future 

aircraft gas turbine combustors, it is possible to improve its capabilities such that its 

absolute results reflect a better level of agreement with experimental data. This can be 

done through the inclusion (in the modelling process) of other phenomena that occur 

inside gas turbine combustors such as flow recirculation and fuel evaporation.  

Flow recirculation patterns can be included through the direct modelling of the 

flow recirculation inside the combustor, or through the use of a stochastic representation 

of the combustor residence time. Either way, it would allow increases in the residence 

time in certain regions of the combustor which, in turn, would reduce the level of 

underestimation observed in some of the results obtained from the simulations. The 

modelling of fuel evaporation on the other hand may allow a more reliable prediction of 

pollutants such as CO and UHC, which are direct or indirect dependent on the level of 

completion of the combustion process. However, simplicity must be always a key 

feature of the model in order to both avoid significant increases in the level of 

uncertainties in the results obtained, and allow the production of results in a 

computationally efficient manner (i.e., model usable in optimisation processes). 

Due to the modular approach followed during its development, the emissions 

prediction model developed can easily be expanded such that it allows the modelling of 

different types of gas turbine combustors, other than conventional ones. This could be 

done through both the incorporation of other generic reactors modelling particular 

regions of gas turbine combustors and/or particular phenomena occurring inside them, 

and the inclusion of features that allow the modelling of different types of fuel. This 

would allow eventually the simulation of combustors utilised not only in aircraft 

engines, but also in gas turbines utilised in industrial applications. For instance, the 
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emissions model can be extended to potential future aircraft gas turbine combustors 

based on novel concepts such as those of Lean Direct Injection (LDI) and Lean Pre-

vaporised Premixed combustion (LPP). 

Regarding optimisation algorithms in general, it is worth highlighting that the 

primary factor driving the initial stages of the development/adaptation of the optimiser 

(or optimisation algorithms) used in this work was its (their) robustness. Thus, since 

GAs are in general more robust than other traditional optimisation techniques, GAs-

based optimisation routines developed in the past at Cranfield University were selected 

as the basis for the development and/or adaptation of Polyphemus. Since the suitability 

of Polyphemus for carrying out different optimisation processes (in particular aircraft 

trajectory optimisation ones) has been proved through the different cases studies 

analysed in this work, the next step in the development of this optimiser is naturally 

related to the improvement of its performance. Since Polyphemus already includes 

several algorithms for each of the main phases associated with a GAs-based 

optimisation, one way of improving the performance of this optimiser would involve the 

incorporation of other more efficient algorithms capable to better perform the same 

tasks as well as result in a lower computational time.  

Other additional enhancements can also be introduced in future to further improve 

the performance of Polyphemus. These improvements include the use of both adaptive 

GAs (e.g., ‘master-slave’ configurations), which would allow the use of optimum GAs 

parameters (e.g., population size, crossover ratio, and mutation ratio, etc.) during the 

optimisation processes; and Pareto optimality-based concepts (Pareto fronts), which 

would improve its capabilities when performing multi-objective optimisation processes. 

Eventually, the GAs-based optimiser used in this work could be hybridised with other 

techniques including expert systems (which guide genetic operators more directly 

towards better strings), response surfaces (which construct objective function’s 

approximate models to reduce full-cost functions evaluations), and neural networks 

(which act as pre-processors of GAs determining sub-regions in the search space where 

the optimum is likely to be found), among others. 

The development and implementation of other optimisation algorithms based on 

different optimisation techniques also constitutes an important aspect that needs to be 

considered. As any optimisation tool, it is important that Polyphemus provides the user 
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with different alternatives of optimisation methods that could be used for a particular 

optimisation problem. Some of these methods will be of course appropriate only for 

specific types of optimisation problems. In these cases however it is likely that these 

methods will produce solutions faster than other more robust ones such as the GAs-

based one currently available. Particular optimisation methods that might be interesting 

to implement are those ones associated with hill climbing approaches. These methods 

could include not only simplified ones which make use of the objective function value 

only (e.g., direct search methods), but also other more complex ones involving partial 

derivatives of the objective function (e.g., gradient and Newton methods). The 

availability of different optimisation methods would allow the comparison of their 

performance when applied to specific optimisation problems. It would provide at the 

same time the required basis for hybridising the current algorithm (i.e., GAs) with these 

other techniques if necessary. It is expected that these hybrid processes are able to yield 

eventually more accurate optimum solutions and in a more computationally efficient 

manner. 

Finally, in regard to the evaluation and optimisation of aircraft trajectories and 

engine cycles, there are two main sub-areas in which further work needs to be 

developed. These areas relate to the definition of the optimisation problem (in particular 

the aircraft trajectory optimisation one) and the computational models utilised in the 

optimisation processes. The way in which the aircraft trajectory problem was defined in 

this work was robust and well conceived for the type of optimisation processes carried 

out here. Its flexibility allowed the realistic representation of flight procedures utilised 

currently in practice. Since in this work only theoretical aircraft trajectories were 

computed, in order to determine more realistic ones, some modifications in the aircraft 

trajectory problem definition need to be introduced. 

These modifications are necessary because the computation of realistic trajectories 

will eventually require a very large number of trajectory segments. According to the 

current approach, this will imply the use of a very large number of design variables, 

which can negatively affect the performance of the optimisation algorithms. Thus, some 

sort of translation module will be required in order to ‘translate’ the parameters directly 

used in the optimisation processes as design variables (or constraints) into those ones 

directly defining the aircraft trajectory (e.g., flight altitudes), and vice versa. This 
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translation process can be carried out using for instance ‘spline’ functions, which 

represent and characterise, partially or entirely, the different flight phases associated 

with aircraft flight profiles. In order to determine optimum and realistic aircraft 

trajectories, this modified approach will also need to be extended eventually from the 

two-dimensional space utilised in this work to the three-dimensional one. 

Once the aircraft trajectory optimisation problem is properly defined, the next step 

may involve the optimisation of other two- and three-dimensional flight profiles 

including not only separate flight phases, but also whole flight profiles; and taking into 

account a number of physical, operational, and environmental constraints. In order to 

carry out these processes, other computational models will also be required. These 

computational packages would model several other aspects related to commercial 

aircraft operations such as aircraft and engine noise, weather conditions, formation of 

contrails, and environmental impact, as well as flight corridors, airports, and ATC 

constraints, among others. In addition, other well known optimisers such as Isight [95] 

could also be utilised for testing and validating the results obtained from the evaluation 

and optimisation processes performed using the optimisation tool in development. 

Similarly, in the case of the evaluation and optimisation of engine cycles, several 

other evaluation and optimisation processes can be carried out including other 

(gradually added) design variables and constraints. New computational models or 

modified ones can also be utilised in these processes. Both an engine weight model, and 

an aircraft performance model taking into account variations in the engine (nacelle) 

size, constitute typical examples of computational models that need to be included when 

optimising engine cycles. Additionally, both the engine (or aircraft/engine) 

configuration and its associated flight profile (flight trajectory) can eventually be 

optimised simultaneously. In other words, during the optimisation processes, for each 

engine (or aircraft/engine) configuration evaluated (potential optimum design), an 

optimum flight profile according to given criteria can be determined. At the end of the 

day, it is expected that following optimisation processes similar to those ones described 

in this work is possible to determine optimum and realistic engine cycles, which 

constitute ‘greener’ engine (cycle) designs that help to reduce the impact of commercial 

aircraft operations on the environment. 
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Appendix B  
Kinetic Model of Thermal NO and N2O Mechanism 

The thermal NO formation rate is predicted according to the extended Zeldovich 

mechanism [51, 56-58]: 

NNOON +⇔+2  R1 (10-1) 

ONOON +⇔+ 2  R2 (10-2) 

HNOOHN +⇔+  R3 (10-3) 

and the N2O contribution to the formation of NO according to [51,59]: 

OHNONH +⇔+ 22  R4 (10-4) 

222 ONONO +⇔+  R5 (10-5) 

NONOONO +⇔+ 2  R6 (10-6) 

Then from Eq. (10-1): 

[ ] [ ][ ] [ ][ ]ONkNONk
dt
Nd

bf .. 211 +−=
 

(10-7) 

[ ] [ ][ ] [ ][ ]ONkNONk
dt
NOd

bf .. 211 +−=
 

(10-8) 

[ ] [ ][ ] [ ][ ]ONkNONk
dt
Nd

bf .. 211
2 −=

 
(10-9) 

[ ] [ ][ ] [ ][ ]ONkNONk
dt
Od

bf .. 211 −=
 

(10-10) 

from Eq. (10-2): 

[ ] [ ][ ] [ ][ ]ONOkONk
dt
Nd

bf .. 222 +−=
 

(10-11) 

[ ] [ ][ ] [ ][ ]ONOkONk
dt
Od

bf .. 222
2 +−=

 
(10-12) 
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[ ] [ ][ ] [ ][ ]ONOkONk
dt
NOd

bf .. 222 −=
 

(10-13) 

[ ] [ ][ ] [ ][ ]ONOkONk
dt
Od

bf .. 222 −=
 

(10-14) 

from Eq. (10-3):  

[ ] [ ][ ] [ ][ ]HNOkOHNk
dt
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bf .. 33 +−=
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dt
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dt
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bf .. 33 −=
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[ ] [ ][ ] [ ][ ]HNOkOHNk
dt
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bf .. 33 −=
 

(10-18) 

from Eq. (10-4): 
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dt
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dt
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(10-21) 
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dt
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bf .. 2424 −=
 

(10-22) 

from Eq. (10-5): 

[ ] [ ][ ] [ ][ ]22525 .. ONkONOk
dt
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bf +−=
 

(10-23) 

[ ] [ ][ ] [ ][ ]22525
2 .. ONkONOk

dt
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2 .. ONkONOk

dt
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(10-25) 
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dt
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(10-26) 

and from Eq. (10-6): 
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(10-30) 

Summing equations (10-8), (10-13), (10-17), (10-29), and (10-30), as well as 

assuming equilibrium concentrations for O2, N2, O, OH, and H, 

[ ] [ ] [ ] [ ] [ ] 022 =====
dt
Hd

dt
OHd

dt
Od

dt
Nd

dt
Od eeeee

 
(10-31) 

the rate of formation of NO is given by:  

[ ] [ ][ ] [ ] [ ] [ ][ ] [ ][ ]
[ ][ ] [ ][ ] [ ] [ ] [ ][ ]NONOkONOkHNOkOHNk
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(10-32) 

Then defining: 

[ ] [ ]eef NONkR .11 =  

[ ] [ ]eef ONkR 222 .=  

[ ] [ ]eef OHNkR .33 =  

[ ] [ ]eef ONHkR 244 .=  

(10-33) 
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[ ] [ ]eef ONOkR 255 .=  

[ ] [ ]eef ONOkR 266 .=  

and, 

[ ]
[ ]eNO

NO
=α

; 

[ ]
[ ]eN

N
=β
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[ ]eON

ON

2

2=γ  (10-34) 

the following terms can be expressed as: 
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(10-36) 
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(10-37) 
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(10-38) 

From equations (10-35) – (10-38) in (10-32): 

[ ] ( ) ( ) 63216321 .2.2. RRRRRRRR
dt
NOd γβαβα +++++++−=

 
(10-39) 

Assuming steady state conditions for N and N2O, 
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(10-40) 

and 
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Therefore: 
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(10-42) 

where 

32

1
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(10-43) 

Substituting Eq. (10-42) in (10-39), one has: 
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(10-44) 

but 

[ ]
NO
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M
YNO ρ

=
 

(10-45) 

therefore, 
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dY NONO
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(10-46) 

In the equations indicated previously, [] represents concentration of species or 

elements, and the subscript ‘e’ represents in turn equilibrium values. 
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Appendix C  
Kinetic Model of Carbon Monoxide (CO) 

The modelling of carbon monoxide (CO) emissions is carried out assuming that 

during combustion all fuel first reacts instantaneously to CO and H2O: 
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(10-47) 

From a volumetric analysis of the combustion products (Eq. (10-47)), the initial 

number of moles, molar fraction, and mass fraction of CO, can be expressed as: 
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(10-48) 

Thus the CO initial concentration is given by, 

CO

CO

M
YCO ρ

=0][
 

(10-49) 

Once the CO initial concentration is established, the CO conversion (oxidation) 

proceeds according to [62,63]: 

HCOOHCO +⇔+ 2  R7 (10-50) 

Then from Eq. (10-50): 
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[ ] [ ][ ] [ ][ ]HCOkOHCOk
dt
COd
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(10-51) 
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Assuming equilibrium conditions for OH and H, 

eOHOH ][][ =  and  eHH ][][ =  (10-55) 

Thus, 
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(10-56) 

Then from Eq. (10-56): 
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(10-57) 

Also, from carbon conservation, 

[ ] [ ] [ ] [ ]ee COCOCOCO 22 +=+  (10-58) 

Finally, from equations (10-55), (10-57), and (10-58) in (10-51), the rate of CO 

oxidation can be written as, in terms of CO concentration: 
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(10-59) 

or, in terms of mass fraction: 
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(10-60) 

Equation (10-59) or (10-60) is integrated (e.g., (10-61)) along all the reactors used 

to model a particular combustion chamber. 
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Appendix D  
Kinetic Model of Unburned Hydrocarbons (UHC) 

Unburned hydrocarbons (UHC) are modelled following the methodology 

described in [64]. It is assumed that the fuel initially reacts according to: 

222312 5.11126 HCOOHC +⇔+  R8 (10-62) 

The quasi-global reaction rate for Eq. (10-62) – reaction R8, 
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(10-63) 

is then integrated – as shown in Eq. (10-64) – along all the reactors used to simulate a 

given combustor chamber. 
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(10-64) 

For determining the UHC initial concentration (or mass fraction, 
02312 HCY ), it is 

assumed that the fuel entering to the first reactor(s) evaporates instantaneously. Then 

through a balance of mass and energy between fuel and air entering to the first 

reactor(s), the UHC initial amount(s) is (are) calculated. 
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Appendix E  
Kinetic Model of Soot/smoke 

Soot formation: 

According to Rizk and Mongia [65], the rate of soot formation (Sf), in mg soot/kg 

gas, is expressed as (omitting the term for soot oxidation): 

( ) 5.12 180145.0 cont
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s
f HP

Tm
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=

&
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(10-65) 

Then dividing this expression by the soot density and multiplying by the total 

mass flow rate of the gas passing through the combustion chamber (and converting the 

units of mass, from mg to kg, and pressure, from kPa to atm), Sf can be calculated as, in 

m3 soot/s:    
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(10-66) 

In equations (10-65) and (10-66), the hydrogen content (Hcont) in a hydrocarbon 

fuel of the form CxHy (e.g., C12H23) is estimated according to: 

( )
( ) ( ) %100% ×

+
==

HC

H
cont MyMx

MyHH
 

(10-67) 

 

Soot oxidation: 

The two major soot oxidation species are considered to be oxygen molecules (O2) 

and hydroxyl radical (OH). The rate of soot oxidation ( '
2OW ), in kg soot/m2.s, due to O2 

is determined from the Nagle and Strickland-Constable formula [66]: 
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(10-68) 

where, 
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(10-69) 

The temperature dependence in Eq. (10-68) occurs via the reaction rate constants 

kA, kB, kZ, and kT, which in this case they are taken from [67]: 
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(10-70) 

Assuming soot particles are of spherical shape and the particle size distribution is 

mono-dispersed, the soot volume fraction (fv), in m3 soot/m3, can be expressed as: 

Ndfv
3

6
π

=
 

(10-71) 

where N is the soot number density (1/m3). Similarly, the total surface area of a cloud of 

N soot particles, As, which is the soot surface area per unit volume of space, is given by: 

NdAs
2.π=  (10-72) 

or in terms of fv: 

3/23/13/23/1 ..6. vs fNA π=  (10-73) 

Then the rate of soot oxidation due to O2 ( 2OW ), in m3 soot/m3.s, is given by: 
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(10-74) 
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Following the same approach used in [68], the OH oxidation of soot is calculated 

as [68], 

213132 .....14.10 −= TXNfW OHvOH θ  (10-75) 

where θ is the collision efficiency (assumed 0.2 in this work). 

The overall rate of soot oxidation is the sum of the terms given by equations 

(10-74) and (10-75), in m3 soot/m3.s. In the equations described above, a suitable 

average value (of the order of 1018m-3) is adopted for N. In turn, fv is computed as the 

difference between the amount of soot formed and oxidised in the previous calculation 

step. 

Smoke number: 

Using the soot volume fraction (fv) at the end of the combustor chamber, the 

particulate (smoke) mass loading (PML) – the mass of particulate per unit of standard 

volume – is calculated as follows, in µg/l: 
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(10-76) 

where the standard pressure (Pstd) and temperature (Tstd) are considered are being equal 

to 1.0atm and 273.15K, respectively. Finally, the PML is converted into Smoke Number 

(SN) using the correlation presented in [69]. For the sake of completeness, this 

correlation is reproduced here in Figure 10-1. 

 
Figure 10-1. SAE Smoke number (SN) vs. Particulate mass loading (PML) [69] 
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High power setting (~100%): 

 
Figure 10-3. Influence of F1 on NOx emission index (EINOx) 

 
Figure 10-4. Influence of F1 on Smoke number (SN) 
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Figure 10-5. Influence of F1 on flame front equivalence ratio (PHI FF), high power 

 
Figure 10-6. Influence of F2 on NOx emission index (EINOx) 
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Figure 10-7. Influence of F2 on Smoke number (SN) 

 
Figure 10-8. Influence of F2 on flame front equivalence ratio (PHI FF), high power 
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Figure 10-9. Influence of F3 on NOx emission index (EINOx) 

 
Figure 10-10. Influence of F3 on Smoke number (SN) 
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Figure 10-11. Influence of F3 on primary zone equivalence ratio (PHI PZ), high power 

 
Figure 10-12. Influence of F4 & F5 on NOx emission index (EINOx) 
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Figure 10-13. Influence of F4 & F5 on Smoke number (SN) 

 
Figure 10-14. Influence of F4 & F5 on primary zone equivalence ratio (PHI PZ), high power 
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Low power setting (~11%): 

 
Figure 10-15. Influence of F1 on CO emission index (EICO) 

 
Figure 10-16. Influence of F1 on UHC emission index (EIUHC) 
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Figure 10-17. Influence of F1 on flame front equivalence ratio (PHI FF), low power 

 
Figure 10-18. Influence of F2 on CO emission index (EICO) 
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Figure 10-19. Influence of F2 on UHC emission index (EIUHC) 

 
Figure 10-20. Influence of F2 on flame front equivalence ratio (PHI FF), low power 
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Figure 10-21. Influence of F3 on CO emission index (EICO) 

 
Figure 10-22. Influence of F3 on UHC emission index (EIUHC) 
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Figure 10-23. Influence of F3 on primary zone equivalence ratio (PHI PZ), low power 

 
Figure 10-24. Influence of F4 & F5 on CO emission index (EICO) 
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Figure 10-25. Influence of F4 & F5 on UHC emission index (EIUHC) 

 
Figure 10-26. Influence of F4 & F5 on primary zone equivalence ratio (PHI PZ), low power 
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Appendix G  
TurboMatch Iterative Process: TET Guess 

As indicated in Chapter 6, in this work when optimising aircraft trajectories the 

engine operating conditions are iteratively calculated based on the net thrust required for 

flying a given trajectory segment. In this appendix, additional details about how to 

estimate the initial turbine entry temperature (TET) guess necessary to start this iterative 

process is described. 

In general, there are three factors that directly affect the level of power (in terms 

of net thrust, FN) produced by an aircraft engine. These are the flight conditions, the 

throttle setting, and the air mass flow passing through the engine. The flight conditions 

can be characterised by both the ambient conditions, directly related to the flight 

altitude, and the speed of the aircraft. Ambient conditions are mainly characterised by 

temperature (Tamb) and pressure (Pamb). Aircraft speed, in turn, is directly related to 

flight Mach number (M). The engine throttle setting controls the amount of fuel 

consumed by the engine, and it has consequently a direct relation to TET. Finally, the 

air mass flow passing through the engine can be associated to the engine nozzle area 

(Anoz). Different approaches can be used to correlate the main parameters that control 

the engine thrust described above. One of them involves the creation of dimensionless 

parameters as illustrated in Figure 10-27.  

 
Figure 10-27. Interrelation of parameters controlling aircraft engine thrust 
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In Figure 10-27 it is possible to observe that if TET and net thrust are transformed 

into dimensionless parameters using the ambient conditions and the nozzle area, several 

curves describing their interrelationship can be obtained, each one related to a particular 

flight Mach number. This expected results come from the fact that, for a given flight 

condition (both ambient conditions and Mach number constant), as TET increases the 

net thrust produced by the engine increases as well (considering that the nozzle area is 

constant). Ideally, it would be desirable to have only one curve describing the 

interrelationship between the dimensionless parameters illustrated in Figure 10-27. That 

would avoid the use of interpolation processes when the flight number is different to 

those values associated with these curves. In this ideal situation, knowing the flight 

conditions and the nozzle area, TET could be readily estimated. Thus, in this work the 

whole exercise involved finding a suitable factor as a function of Mach number, 

ܯݐܿܽܨ ൌ ݂ሺܯሻ, which allows merging all curves shown in Figure 10-27 into a single 

one. 

Different functions for ܯݐܿܽܨ were initially tested without so many encouraging 

results. At the end, a function was devised for this factor which involves the flight Mach 

number at engine design point conditions (MDP), the actual flight Mach number (M), 

and the ratio of the specific heats of the air (γ), as follows: 

ܯݐܿܽܨ ൌ 1 ൅ ቌ൬
ܯ
஽௉ܯ

൰
ሺఊିଵሻ
ଶ
ቍ (10-77) 

When used this ܯݐܿܽܨ in conjunction with the dimensionless parameters 

illustrated in Figure 10-27, all curves corresponding to Mach numbers different from 

zero merge into a single one. However, as shown in Figure 10-28, a Mach number equal 

to zero also has its own curve. In conclusion, the ܯݐܿܽܨ devised does not generate a 

single curve as initially expected; but instead it generates two curves, one corresponding 

to M 0.0 and the other corresponding to Mach numbers different from zero. The fact of 

using two curves instead of one for estimating TET is not really a problem because 

there is no additional computational burden required. It simply means that, depending 

on the values of the flight Mach number, one of the two curves will be utilised. 
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Figure 10-28. Flight Mach number factor (FactM) 

The next step in the process then involved determining the expressions that 

characterise the pair of curves generated. These expressions are illustrated in Figure 

10-29, and explicitly indicated in the following equation,  

ݕ ൌ ൜െ0.464251ݔ
ଶ ൅ ݔ2.774257 ൅ 3.087466, ܯ ൌ 0

ଶݔ0.083974 ൅ ݔ1.825285 ൅ 1.786250, ܯ ് 0 
(10-78) 

 
Figure 10-29. Simplified representation of main aircraft engine parameters interrelation 
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ݔ ൌ
ܰܨ

ሺ ௔ܲ௠௕ כ  ௡௢௭ሻܣ
(10-79) 

and ݕ by, 

ݕ ൌ
ܶܧܶ

ሺ ௔ܶ௠௕ כ  ሻܯݐܿܽܨ
(10-80) 

In order to illustrate the usefulness of the expressions derived, comparisons 

between TET values calculated using Eq. (10-78) and the corresponding ones computed 

using TurboMatch were performed for a variety of flight conditions and engine thrusts. 

Values of Mach number analysed ranged from 0.0 to 0.8, flight altitude from 0.0 to 

10668m, and TET from 1,100 to 1,500K. The results of these comparisons are 

summarised in Figure 10-30, which shows the relative difference (in %) between the 

estimated TET values (TETcal) and those computed by TurboMatch (TET). As it can be 

seen in this figure, the average error associated with the estimation of TET according to 

the expressions derived above, Eq. (10-78), is about 1.5%, which is a more than 

acceptable TET value for starting a iterative process. Finally, it is worth emphasising 

that even though the methodology followed in order to obtain Eq. (10-78) can be 

applied to any aircraft engine, the actual expression derived is only valid for the 

particular engine utilised in the trajectory optimisation processes carried out in this 

work. 

 
Figure 10-30. TET guesses and their associated errors 
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