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ABSTRACT

This paper presents an experimental and analytical study of crack shape

evolution in steel specimens under cyclic loading. It is widely known that the

introduction of compressive residual stresses by cold working the surface can be highly

beneficial in improving the fatigue performance of structural components. Although it

is recognised that relaxation of surface compressive residual stress can reduce the

potential benefits, the effects of residual stress on crack shape evolution are often

overlooked. A recently developed technique termed controlled stitch cold working,

which applies differing intensities of compressive residual stress at specific regions in a

structure, is shown in the paper to considerably influence fatigue crack propagation by

containing crack propagation in one primary direction.
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NOMENCLATURE

a Crack Depth

c Crack half-length

K Stress Intensity Factor (SIF)

RMS Root Mean Square

S Crack Surface

T Plate Thickness

Y Normalised SIF or Y geometry correction factor

φ Crack front angle

INTRODUCTION

The benefits of compressive residual stresses in enhancing fatigue performance

are well known. Screw thread roots, shaft fillets and many other machine details are

routinely cold rolled for this reason, and improvements in resistance to fatigue crack

initiation by a factor of up to five fold are not uncommon [1 -3]. Features of residual

stresses in metals are that they are often transient in nature and can relax under cyclic

loading and at high temperature. The magnitude of residual stress a material can
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contain is related to its yield strength, thus high strength materials can contain higher

residual stresses and, in theory, can therefore benefit more from cold working treatment.

A previous paper [4] introduced the idea of controlling fatigue crack propagation

through “stitch cold rolling”. The study was at the time in its infancy. This present

paper reports further tests including one on a cracked specimen approaching 1 x 107

cycles, still exhibiting a slow linear crack growth rate. It also presents an analytical

fracture mechanics approach that sets the basis for prediction of fatigue crack growth in

anisotropic materials such as a surface cold worked component.

ANALYTICAL FRACTURE MECHANICS STUDY

Firstly, to briefly describe the context for the work, it should be appreciated that

crack shape can be just as influential on crack propagation as applied load magnitude

[5]. To illustrate this, Figure 1 below shows the well known Newman Raju flat plate

surface crack Stress Intensity Factor (SIF) solution [6] around a crack front under

tension, plotting Normalised SIF (or Y Factor) against crack angle (0 → π) for a range 

of crack shapes (crack aspect ratio).
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Figure 1. Newman Raju SIF Solutions [6] for different Shaped Cracks

At the crack deepest point (φ/2) a very long crack with an aspect ratio of a/c =

0.2 has a high SIF compared with the value at the surface point. This crack therefore

tends to grow faster at the deepest point meaning the crack aspect ratio becomes higher

as the crack grows. A shorter crack of the same depth, say a/c = 0.6 has a far lower SIF

at its deepest point, but still this is higher than the SIF at the surface. Taking the other

extreme, a semi-circular crack (a/c = 1.0) has a higher SIF at the surface than at its
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deepest point meaning it extends faster at the surface under cyclic fatigue loading

resulting in a semi-ellipse with a lower aspect ratio. These observations are important

for the predication of crack propagation behaviour but also suggest that if a crack shape

can be prescribed or crack growth restricted in one direction, then the crack growth rate

can be controlled.

A powerful method for describing the SIF around a crack front is the RMS SIF

[7] approach. This considers crack growth in two principal directions: 1) in crack

length (c-direction), and 2) in crack depth (a-direction). The RMS or average value for

SIF, Krms, enclosed by the area, S, can be derived from Krmsc in the c-direction and Krmsa

in the a-direction (See Figure 2).
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Figure 2. RMS Stress Intensity Factor

Derivation of the two independent RMS SIFs (Krmsa and Krmsc) with respect to the

changes in shaded areas, S, in a-direction (Sa) and c-direction (Sc) is shown below:
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For the crack depth, or a-direction: For the crack length or c-direction:
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From Cruse and Besuner [7]:
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From Cruse and Besuner [7]:
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Substitute (2) and (3) into Eqn (1): Substitute (7) and (8) into Eqn (6):
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RMS SIF, Krmsa, for the depth direction. RMS SIF, Krmsc, for the length direction.

Evaluating Krmsa and Krmsc in both directions, Krms, Eqn. (11), as an

average SIF for the entire crack front can be determined:
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The Newman and Raju surface crack plate SIF solutions [6] can now be substituted and

crack growth rates for the two directions calculated using the Paris Equation as follows:

For crack depth: m
arms

rms

rms KC
dN

da
)(

(12)

For crack length: m
crms

rms

rms KC
dN

dc
)(

(13)

A schematic of the crack growth evolution routine is shown in Figure 3:

Figure 3. Crack Evolution Computation

The crack shape evolution computation shown above produces a crack

propagation prediction in terms of an a-N and c-N curve and crack aspect ratio

evolution. The program is designed to “loop” for increasing values of crack depth (a)

Assume Starting crack
aspect ratio in depth
(a) and length (c).

N-R SIF at points
along crack front (K)

RMS SIF at deepest
point (Krms a)

Paris Equation, No. of
cycles for a- direction
(N rms for a)

Paris Equation,
Change of crack
length (c rms)

Increase in depth
(a rms)

RMS SIF at surface
point (Krms c)

Growth in a and c-
direction
(a rms) (c rms)
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until it reaches half the plate thickness (T/2) with the corresponding change in crack

length (c).

Figures 4 and 5 below show the prediction for a surface crack in a flat plat under

tension and pure bending respectively. Many researchers have observed the behaviour

illustrated by Figures 4 and 5 that irrespective of the initial or starting crack shape, the

crack tends to an optimum aspect ratio for different types of structural components [8,

9]. This is independent of applied stress range assuming a single crack but can be

affected by material anisotropy and certainly by loading mode (e.g. tension, bending,

shear, etc.,).
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Figure 4. Predicted Crack Shape Evolution under tension.
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Figure 5. Predicted Crack Shape Evolution under bending.

EXPERIMENTAL TEST DETAILS

The test specimens were fabricated from BS EN 10025 Grade 275, a mild steel with a

yield strength of 275MPa [10]. The plates were 790mm in length and 200mm in width;

specimens 1 & 2 had a thickness of 40mm, specimens 3, 4 & 5 were 20mm thick.

Stitch rolling, where the central area of the plate was left unrolled, was performed using

a purpose built cold rolling rig applying a force of 21kN to the roller placed in a

machined notch on the plate surface and forced along the notch by a hydraulic jack.

Several rolling passes were applied, monitoring the applied load carefully during the

rolling process. Table 1 details these and summarises the test parameters.
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Table 1. Test Specimen Details.

Specimen

Plate

Thickness

(mm)

Cold Rolling

Pressure (psi)

No. of

Passes

No. of Re-

roll Passes

(after

initiation)

Unrolled

Length (mm)

Test 1 40 6000 3 3 20

Test 2 40 6000 3 3 40

Test 3 20 6000 4 0 20

Test 4 20 6000 5 0 20

Test 5 20 6000 5 0 40

Tests 1 and 2 were also rolled again following crack initiation as these were the

first tests completed and it was unknown whether the residual stresses due to rolling

would have remained during such a relatively large number of fatigue cycles. Tests 1, 3

and 4 had an unrolled length of 20mm, whereas tests 2 and 4 had a longer 40mm

unprotected length. Table 2 summarises the fatigue test parameters and duration.
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Table 2. Summary of Fatigue Tests.

Specimen

Nominal

Stress

Range

(MPa)

Fatigue

Cycling

Frequency

(Hz)

No. of

Cycles to

Crack

Initiation

Total Test

Cycles

Test 1 122 4 128,000 4,000,000

Test 2 122 4 100,000 4,850,000

Test 3 120 4 345,000 3,718,000

Test 4 120 4 1,161,000 9,380,000

Test 5 120 4 500,000 6,000,000

Crack sizing and monitoring was by Alternating Current Potential Difference

(ACPD) that allowed the depth and length of the cracks to be monitored in a non-

destructive manner during testing. Figure 6 shows the type of data obtained; this

allowed minimal interruption of fatigue cycling so that a large number of fatigue cycles

could be applied.
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Figure 6. Crack Shape Evolution for Test 3.

FATIGUE TEST RESULTS

Figure 7 below shows the fatigue crack growth results for all the tests. None of

the cracks grew through the plate thickness or width, and tests were terminated due to

cracks initiating at other locations (at the specimen edges) or for reasons of time and

project resources.
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Figure 7. Crack Growth Data for all Tests.

Following testing, specimens were cooled in liquid nitrogen and broken open to

observe the fatigue crack surface. Figure 8 below firstly shows a typical crack shape

(beachmarked to highlight the shape evolution) from an artificial starter notch growing

in a semi-elliptical manner. This is contrasted by the crack shape observed from Tests 1

and 2 and to a lesser degree tests 4 and 5. Beach marks on the surfaces of Tests 4 and 5

show similar unusual crack shapes to specimens 1 and 2.
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Figure 8. Fracture Surfaces.
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DISCUSSION

The crack growth data in Figure 7 are clearly unusual not only due to the very slow

crack propagation rates, but also several tests clearly show a retardation effect. All tests

show normal fatigue crack growth until the crack extends out of the unrolled length to

meet with the cold rolled region. Tests 2 & 5 had the longest unrolled length (40mm)

and the results clearly show deeper cracks despite these having two different values of

plate thickness. Neither test showed a clear resumption of growth following arrest but

again it should be noted the tests were terminated prematurely. Test 3 showed similar

behaviour, Tests 1 and 4 clearly show recovery following retardation. These tests

differed in the plate thickenesses but also that Test 1 was rerolled after crack initiation.

Test 4 shows the extrodinary propagation life of greater than 8 x 106 cycles, a

comparative unrolled propagation life would be in the order of 1.5 x 106 cycles using a

Newman Raju based prediction.
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Figure 9. Crack Shape Evolution Data for all Tests.

Figure 9 shows the crack aspect ratio data. If this is compared with Figure 5, it

is appreciated that the crack shapes have in all cases been altered significantly from

their optimum aspect ratio. Under bending these cracks have higher stress at the surface

point as they grow towards the neutral axis. It appears clear for the relatively thin plates

tested that under pure bending, it is unlikely that a crack could be encouraged to grow to

through thickness. This would not be the case under axial tension, and at this point, it is
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hypothesised that axial tension should produce a leak-before–break crack. The

retardation and, in some cases, the crack arrest effect however is remarkable.

CONCLUSIONS AND FUTURE WORK

The following comclusions can be drawn:

 An RMS SIF approach can be used to predict crack growth evolution. In this

paper, has not been compared with the experimental results, as the solution does

not currently model the cold rolling residual stress effects.

 Controlled surface cold working can significantly retard fatigue crack

propagation.

 The effects of cold working were observed for several million cycles at a

nominal cyclic stress close to half yield stress.

 Cracks loaded under bending extended only very slowly in depth when the

length was contained by cold working meaning that through thickness cracks are

unlikely.

Current work at Cranfield University involves axial tests on shot peened and laser

peened specimens. In addition, residual stress measurements are being made and in
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parallel the analytical fracture mechanics model is under development to use SIF weight

functions [11] to incorporate residual stress effects. It is anticipated that experience

with fatigue testing and development of analytical tools will allow the use of

stitch/preferential cold working in structural components to extend life and develop the

concept of controlled failure design.
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