1 2	International Journal of Food Microbiology, Volume 124, Issue 1, 10 May 2008, Pages 98-102.
3	
4	
5	Title:
6	
7	Comparing the antimicrobial effectiveness of NaCl
8	and KCl with a view to salt/sodium replacement
9	
10	
11	
12	Authors: Eva Bidlas ¹ and Ronald J.W. Lambert ^{2*}
13	
14	
15	¹ Quality & Safety Department, Nestlé Research Centre, Vers-chez-les-Blanc, Lausanne,
16	Switzerland 1000.
17	² Cranfield Health, Cranfield University, Cranfield, Bedfordshire, UK, MK43 0AL
18	
19	
20	
21	
	Running title: Salt replacement
22	Running title: Salt replacement

24 Abstract

25	A study using a small range of pathogenic bacterial species (Aeromonas hydrophila, Enterobacter
26	sakazakii, Shigella flexneri, Yersinia enterocolitica and 3 strains of Staphylococcus aureus) has
27	shown that potassium chloride has an equivalent antimicrobial effect on these organisms when
28	calculated on a molar basis. Combined NaCl and KCl experiments were carried out and data
29	analysed using a modification to the Lambert and Lambert (2003) model for combined inhibitors
30	(J. Appl. Microbiol. 95, 734–743) and showed that in combination KCl is a direct 1:1 molar
31	replacement for the antimicrobial effect of common salt. If this is a general finding then, where salt
32	is used to help preserve a product, partial or complete replacement by KCl is possible.
33	
34	
35	

36 Keywords: Predictive modelling, hurdles, salt, potassium chloride, NaCl, KCl

37 **1. Introduction**

Salt (NaCl) is generally added to foodstuffs to 1. improve taste and 2. as a preserving 38 agent. Indeed, historically, salt was among the very few effective preserving methods 39 known. With the advent of refrigeration, better processing, packaging, transport and 40 storage, there is less need for high salt levels to maintain product integrity. Furthermore, 41 42 consumers want products with reduced sodium levels (e.g. due to its relationship with hypertension), but where salt has been added as a preservation hurdle, removal or 43 reduction of the salt will reduce shelf-life and could affect safety in more microbiologically 44 45 fragile products.

46

47 The most obvious replacement for salt (NaCl) in food products is potassium chloride (KCl). Strong, Foster and Duncan (1970) reported that for the growth of *Clostridium* 48 *perfringens*, solute identity had a bearing on the amount of growth for a given a_w, with 49 50 KCl having a demonstrably greater effect than NaCl. Beuchat (1974), however, reported that at equivalent aw NaCl and KCl had equivalent effects against Vibrio 51 52 *parahaemolyticus*; it was reported that in fermented meat products, the replacement of NaCl with KCl did not affect the degree of inhibition and or inactivation, but did alter the 53 taste of the foodstuffs (Gimeno, Astiasaran, and Bello 1999; Gimeno, Astiasaran, and 54 55 Bello 2001). More recently, Boziaris, Skandamis, Anastasiadi, and Nychas (2007) have reported that equal-molar concentrations of NaCl or KCl exerted similar inhibitory effects 56 57 against Listeria monocytogenes in terms of lag phase duration, growth or death rate and 58 that NaCl can be replaced by KCl without risking the microbiological safety, with respect to L. monocytogenes, of the product. They also stated that in order to confirm this 59 observation as general, a greater number of organisms needs to be studied. 60

In the work reported herein, we simply wanted to answer the following question: can KCl
be a direct or partial replacement for NaCl? Since the area of investigation is potentially
vast, we concentrated our initial efforts on a few species of pathogenic bacteria with which
we already had extensive modelling expertise on and which complimented other published
work.

68 2. Materials and methods

69

70 2.1. Culture Preparation

71 Aeromonas hydrophila (ATCC 7092), Enterobacter sakazakii (1387-2NL), Staphylococcus aureus (ATCC 6538, ATCC 25923 (labeled as ST121 in this report), ST55 (isolated from 72 73 pasta)), Yersinia enterocolitica (ATCC 9610) or Shigella flexneri (ATCC 12022) was grown overnight in a flask containing 80 ml tryptone soya broth (TSB; Oxoid CM 129) 74 shaking at 30°C. The cells were harvested, centrifuged to a pellet (512g, 10 mins, 15°C), 75 76 washed and re-suspended in peptone water (0.1%). A standard inoculum was produced by 77 diluting the culture to an OD of 0.5 at 600nm. This standardized culture was then further diluted in TSB to produce the starting inoculum (approx 1×10^5 CFU ml⁻¹ in the microtitre 78 79 plate).

80 2.2. Experimental method

Experiments were carried out either using half-fold dilutions using the method of <u>Lambert</u>
<u>& Pearson (2000)</u> or by using linear dilutions from stock solutions of sodium chloride or
potassium chloride for the effect of individual inhibitors or the method of <u>Lambert and</u>
<u>Lambert (2003)</u> for combined inhibitors.

85 2.3. Data analyses and model fitting

The data obtained from the Bioscreen are tables of optical density (OD) and time. The time to detection was defined as the time to produce an OD =0.2 at 600nm. The assumption being made was that at an OD =0.2, each well had identical numbers of microorganisms. Furthermore, microscopic checks were performed to see if cell elongation occurred at the highest salt levels used: no such elongation was observed. Data were transformed to the

91 reciprocal in order to stabilise data variance. Wells which showed no visible growth during
92 the period of the experiment were removed from the analysis (censored data).
93 Previous publications (e.g. Lambert and Bidlas 2007) had used a general model for the
94 fitting of time to detection data (TTD). A modified form of this model, which allows for a
95 definitive MIC for individual inhibitors - the linear-exponential model (E-L), was used to
96 analyse the data obtained, Eq.(1).
97 If
$$[x] = 0$$
, RTD = P₀
98
99 Else if $[x] < [P_1]$,
101 then $RTD = P_0 \exp\left(-\left(\frac{[x1]}{P_1}\right)^{P_1}\right)$ (1)
102 Else, $RTD = \frac{P_0}{e} (1 - P_2(\log_e[x] - \log_e P_1))$
103
104 Where $[x]$ is the concentration of the inhibitor, P_i are experimental parameters and e
105 is the exponential, RTD is the reciprocal of the time to detection (min⁻¹).
106
107 The minimum inhibitory concentration was calculated from the parameter values obtained
108 for each inhibitor using
109 $MIC = P_1 \exp\left(\frac{1}{P_2}\right)$ (2)

110 For combined inhibitors (combinations of NaCl and KCl) the model of Lambert

111 and Lambert (2003) was modified in a similar way to Eq.(1) allowing a definitive growth-

no growth boundary to be constructed for combinations, Eq.(3)

113

$$\begin{cases}
if \qquad \sum_{i=1}^{n} [x_i] = 0, RTD = P_0 \\
else \ if \\
\ln[EffC] < 0 \\
then \qquad (3) \\
RTD = P_0 \exp(-[EffC]^{P_c}) \\
else \\
RTD = \frac{P_0}{e} (1 - P_c \ln[EffC])
\end{cases}$$

114 Where $[EffC] = \sum_{i=1}^{n} \left(\frac{[x_i]}{P_{2i-1}} \right)^{P_{2i}}$ and P_c is the multinomial exponent for the combined system

115 (Lambert and Lambert 2003).

116 Data were fitted to the equation using non-linear regression using the minimised sum of

117 squares as the search criterion. Analyses were done using the JMP Statistical Software

118 (SAS Institute Cary, NC).

120 3. Results

121 *3.1. Growth inhibition by sodium chloride and potassium chloride*

Three species – the Gram negatives *E. sakazakii* and *A. hydrophila* and the Gram positive *S. aureus* are used below to highlight the results obtained. Three strains of the latter organism were used, due to the importance of humectant activity to control the growth of this organism. The results from these and the other two organisms examined in this study are summarised in <u>Table 1</u>.

127

128 3.2 Enterobacter sakazakii

Optical density/incubation time data were collected using half-folded dilutions of NaCl or
KCl. When analysed using the modified RTD model there was an excellent fit; Figure 1

131 shows the results for the effect of KCl on the RTD. At KCl concentrations less than 1×10^4

132 mg $l^{-1}(1 \%)$, there is little effect on the rate to detection, i.e. shows uninhibited growth.

133 Above 1%, inhibition increases and above 1.2×10^5 mg l⁻¹ (12%) KCl no growth was

134 observed.

135

136 <u>Table 1</u> gives the experimental parameters found in percent and in mol l^{-1} . In terms of mol

137 I^{-1} the MIC of NaCl and KCl are within the 95% confidence interval of the mean

138 (calculated from the parameters P_1 and P_2) given for each humectant. Figure 2 compares

the observed and fitted data for both the NaCl and KCl inhibition. From these results, when

140 expressed in mol l^{-1} , there is no evidence that NaCl and KCl have different inhibitory

141 effects against *E. sakazakii*. It was also found that in both cases there was evidence of a

- threshold concentration of approx. 0.1M added salt before any observation of growth
- 143 inhibition.

145 *3.3. Staphylococcus aureus*

146	Comparison of NaCl and KCl were carried out on three strains of S. aureus (two standard
147	strains and a factory isolate). Figure 3 shows the results of both experiments in terms of
148	mol l^{-1} for strain ST121. The time to detection was transformed using the natural logarithm.
149	The curvature observed in Fig. 3 is typical for salt inhibition. Similar results were found
150	for the other two S. aureus strains examined.
151	
152	It can also be observed from the figure that as conditions become more harsh, the
153	variability (or observed error) in the time to detection also increases, even although the
154	logarithm transformation has been used. There is a general observation throughout
155	predictive microbiology that the variance increases as conditions become harsher and
156	without variance stabilisation the accuracy of models is reduced the closer they approach
157	the MIC of the preservative. In this particular case the reciprocal transformation performs
158	better than the logarithmic.

159

160 3.4. Combination NaCl and KCl experiments

161 If the hypothesis that NaCl and KCl are mutually replaceable is correct, then the 162 antimicrobial effect of combinations of NaCl and KCl should be predictable. If the 163 calculation is performed using a combined humectant concentration in terms of mol⁻¹ then 164 the modelling is facile. If, however, the separate identities are kept, then a complication 165 arises due to the non-unity dose response. Previous work done on combined hurdles has 166 used the following equation to describe the effect on RTD (Lambert and Bidlas 2007)

167
$$RTD = P_0 \exp\left(-\left(\sum_{i=1}^n \left(\frac{[x_i]}{P_{2i-1}}\right)^{P_{2i}}\right)\right)$$
(4)

168 For combined NaCl and KCl equation (4) will only give an approximation to the observed pattern of inhibition because the parameter P_{2i} for both humectants is approximately 2 and 169 the above equation ignores the binomial expansion of the combined response. Equation (4), 170 which takes this into account was used to examine the observed RTD data for A. 171 172 hydrophila from a chequerboard of NaCl/KCl mixtures (observed data Figure 4, modelled 173 data Figure 5). There is a very good fit of the model to the observed data. Figure 6 shows a 174 plot of the observed and modelled RTD against the Effective Concentration; that the EffC is made up from any combination of NaCl and KCl and that the observations all lie on or 175 176 close to the modelled line is a simple graphical representation to show that there is no synergy between the two inhibitors, since any 'true' synergy would cause a mismatch. 177 178 Further, the predicted values for the combined experiment (as opposed to the direct 179 modelling of the observed data) are given in Table 2 for both the A. hydrophila and the identical E. sakazakii experiments. The predicted parameters are in agreement with those 180 181 modelled from the observed data.

182 4. Discussion

183 This work focuses on the ability of potassium chloride to replace salt as an antimicrobial 184 humectant. From this study KCl is a direct 1:1 molar replacement for the antimicrobial effect of common salt. This study enhances the work done by Boziaris et al. (2007) and 185 delivers the same conclusion for a larger spectrum of pathogens. There is still, however, 186 187 clarification required for some of the other common pathogens as the paper by Strong et al. (1970) would suggest. There is also one point which needs to be made: there is no 188 differentiation in this hypothesis of the equivalence of KCl and NaCl for the antimicrobial 189 190 effect to be due to the chloride ion. The use of calcium chloride and other similar salts 191 would immediately differentiate these two possibilities. 192 193 The model and the definition used for the effective concentration are direct applications of 194 the Gamma hypothesis (Zwietering, Wijtzes, De Wit and Van't Riet 1992) - that individual 195 inhibitors act independently against the growth of microorganisms. Recently, attempts had 196 been made to expand the hypothesis to include the possibility of factor interaction, based 197 on the observation of the shape of the Growth/No growth boundary for combined antimicrobials (Augustin and Carlier 2000; Le Marc, Huchet, Bourgeois, Guyonnet, Mafart 198 and Thuault 2002). The model described here adequately describes the shape of these 199 200 G/NG boundaries without recourse to altering the Zwietering hypothesis. 201 202 Figure 7 shows the calculated Growth/No Growth boundary for combinations of NaCl and

203 KCl for the organisms studied. From equation (3) when the effective concentration is

greater than 1, the linear function takes over the description of the level of inhibition. For a

205 given RTD this describes a contour for a twin-mix of inhibitors, a surface for ternary-

206 mixes and hypersurfaces for mixtures with greater numbers of components. The RTD = 0

207 contour, i.e. the absolute growth/no growth boundary is given by

$$RTD = 0 = \frac{P_0}{e} (1 - P_c \ln[EffC])$$

$$\therefore$$

$$EffC = Exp(1/P_c)$$

For any combination of inhibitors where the calculated effective concentration is equal to Exp($1/P_c$), this combination will define a point on the MIC contour (surface, etc). Any combination with *EffC* > Exp($1/P_c$) lies in a NG zone, and any with *EffC* < Exp($1/P_c$) lies in a G zone. For a given organism, conditions beyond the calculated boundary line will result in no growth. If total salt concentrations, for a given product, are within a boundary line, then other preservative factors (e.g. temperature or weak acid preservatives) have to be used to ensure no growth.

216

Most antimicrobial hurdles examined previously such as pH and weak acids give a linear relationship between the log of the time to detection and the concentration, hence the dose response parameter $P_2 \cong 1$ (Lambert and Bidlas 2007). Combinations of such hurdles will also give $P_c \cong 1$. The humectants used in this study, NaCl and KCl are unusual in that the dose response of each was approximately 2. Dose responses of other antimicrobials can vary substantially e.g. phenolics have dose responses (or dilution coefficients) >6, (Lambert and Johnston 2000; Lambert and Lambert 2003).

224

Modelling offers a cost-effective approach to understanding the microbial growth response in foods. Indeed Zwietering (Zwietering et al.1996) has said that using a model to predict the consequences of changing a formulation on microbial growth is a factor of 1000 quicker than attempting a large scale storage trial. Of course the formulator needs access to the model in the first place and must also have an idea of its robustness. However, the use of mathematical models can help to reduce the need for storage trials, challenge tests, product reformulations and process modifications, which are labour intensive, time

- 232 consuming and expensive. The above example of NaCl vs. KCl is an example whereby a
- 233 relatively rapid method of obtaining relevant information in conjunction with a robust
- 234 model leads to a simple algorithm for NaCl replacement, allowing a product developer to
- 235 gain insight perhaps 1000 times faster.

236	
-----	--

237 References

238 239	Augustin, J-C. and Carlier, V., 2000. Modelling the growth rate of Listeria
240	monocytogenes with a multiplicative type model including interaction between
241	environmental factors. International Journal of Food Microbiology 56, 53-70.
242	
243	Boziaris, I.S., Skandamis, P.N., Anastasiadi, M. and Nychas, GJ.E., 2007. Effect of
244	NaCl and KCl on fate and growth/no growth interfaces of Listeria monocytogenes
245	Scott A at different pH and nisin concentrations. Journal of Applied Microbiology 102,
246	796-805
247	
248	Beuchat, L.R., 1974. Combined Effects of Water Activity, Solute, and Temperature on
249	the Growth of Vibrio parahaemolyticus. Applied Microbiology 27 (6) 1075-1080.
250	
251	Gimeno, O., Astiasaran, I. and Bello, J., 1999. Influence of partial replacement of NaCl
252	with KCl and $CaCl_2$ on texture and color of dry fermented sausages. Journal of
253	Agricultural and Food Chemistry 47, 873-877.
254	
255	Gimeno, O., Astiasaran, I. and Bello, J., 2001. Influence of partial replacement of NaCl
256	with KCl and $CaCl_2$ on microbiological evolution of dry fermented sausages. Food
257	Microbiology 18, 329–334.
258	
259	Lambert, R.J.W., and Bidlas, E., 2007. An investigation of the Gamma hypothesis: A
260	predictive modelling study of the effect of combined inhibitors (salt, pH and weak

261	acids) on the growth of Aeromonas hydrophila. International Journal of Food
262	Microbiology 115, 12-28.
263	
264	Lambert, R.J.W. and Johnston, M.D. 2000. Disinfection kinetics: a new hypothesis and
265	model for the tailing of log-survivor/time curves. Journal of Applied Microbiology 88,
266	907-913.
267	
268	Lambert, R.J.W., and Lambert, R., 2003. A model for the efficacy of combined
269	inhibitors. Journal of Applied Microbiology 95, 734–743.
270	
271	Lambert, R.J.W. and Pearson, J., 2000. Susceptibility testing: accurate and
272	reproducible Minimum Inhibitory Concentration, MIC, and Non-Inhibitory
273	Concentration, NIC, values. Journal of Applied Microbiology 88, 784-791.
274	
275	Le Marc Y., Huchet V., Bourgeois, C.M., Guyonnet, J.P., Mafart, P. and Thuault, D.
276	2002. Modelling the growth kinetics of <i>Listeria</i> as a function of temperature, pH and
277	organic acid concentration. International Journal of Food Microbiology 73, 219-237.
278	
279	Strong, D.H., Foster, E.F. and Duncan, C.L. 1970. Influence of water activity on the
280	growth of <i>Clostridium perfringens</i> . Applied Microbiology 19 (6) 980-987.
281	
282	Zwietering, M.H., Wijtzes, T., De Wit, J.C. and van't Riet, K., 1992. A Decision
283	Support System for Prediction of the Microbial Spoilage in Foods. Journal of Food
284	Protection 55, 973-979.
285	

- 286 Zwietering, M. H., De Wit, J.C. and Notermans, S., 1996. Application of predictive
- 287 microbiology to estimate the number of *Bacillus cereus* in pasteurised milk at the point
- of consumption. International Journal of Food Microbiology 30, 55-70.

289Tables

Organism	Humostant	$P_1 (mg l^{-1})$	P_1 (mol l ⁻¹)	P ₂	MIC	MIC (mol l ⁻¹)
	Humectant	(SErr)	(SErr)	(SErr)	$(mg l^{-1})$	(95% CI)
E. sakazakii	NaCl	48180	0.824	1.609	80810	1.537
	INACI	(160)	(0.003)	(0.010)	09010	(1.516-1.561)
	KCI	62970	0.845	1.587	110000	1.586
	KCI	(390)	(0.005)	(0.0182)	118200	(1.545 - 1.630)
A. hydrophila	NaCl	32290	0.552	2.080	52220	0.893
(ATCC 7966)	NaCi	(330)	(0.006)	(0.050)	52250	(0.857-0.932)
	VCI	41870	0.562	1.910	70(70	0.948
	KCI	(410)	(0.006)	(0.0395)	/00/0	(0.911-0.987)
Y. enterocolitica	NaCl	32700	0.560	2.034	53460	0.915
(ATCC 9610)	NaCi	(262)	(0.0045)	(0.061)	53400	(0.873-0.961)
	VCI	37930	0.509	1.859	(4050	0.871
	KCI	(172)	(0.0023)	(0.030)	04950	(0.848-0.895)
Sh. flexneri	N ₂ Cl	37040	0.634	2.189	59400	1.000
(ATCC 12022)	NaCI	(170)	(0.003)	(0.036)	58490	(0.977 - 1.025)
	VCI	43410	0.582	1.673	70000	1.0589
	KCI	(291)	(0.004)	(0.031)	/8900	(1.022 - 1.096)
S. aureus 121	N ₂ Cl	89600	1.533	2.190	141500	2.421
	NaCI	(500)	(0.009)	(0.0476)		(2.349 -2.498)
	KCl	114900	1.542	2.114	184400	2.474
		(554)	(0.007)	(0.0366)		(2.411-2.539)
S. aureus 6538	NaCl	88100	1.508	2.176	139500	2.388
	NaCI	(710)	(0.012)	(0.0603)		(2.292 - 2.488)
	VCI	115700	1.552	1.984	191500	2.569
	KCI	(590)	(0.008)	(0.0363)		(2.496-2.645)
S. aureus 55	NaCl	87650	1.500	1.875	149400	2.557
		(470)	(0.008)	(0.0341)		(2.482-2.634)
	VCI	114400	1.534	1.817	198400	2.661
	KU	(800)	(0.010)	(0.0408)		(2.558 - 2.770)

Table 1. Modelled parameters values for NaCl and KCl inhibition for Pathogens used in this
 study

292 293 294 Table 2. Predicted and fitted parameters for the combined experiment of KCl and NaCl evaluated

using equation 3.

Organism		Parameter	Predicted	Fitted		
			value	value		
A. hydrophila	NaCl	P ₁	32290	32880		
	NaCi	P ₂	1.000	1.018		
	KCI	P ₃	41870	43220		
KCI		P ₄	0.918	0.942		
	Combined	Pc	2.080	2.010		
E. sakazakii		P ₁	48180	47670		
	NaCi	P ₂	1.000	1.100		
		P ₃	62970	58880		
	KU	P ₄	0.988	1.033		
	Combined	Pc	1.606	1.526		

295

 P_1 and P_3 values quoted are in mg l^{-1}

297 Legend to Figures298

299	Figure 1. Effect of KCl on the rate to detection of <i>Enterobacter sakazakii</i> in TSB at 30°C.
300	

- 301 Figure 2. Comparison of the observed (symbols) and modelled (solid line) NaCl and KCl
- 302 inhibition of *Enterobacter sakazakii*; □ NaCl; KCL. The models for NaCl and KCl are
- 303 essentially coincident and only that for NaCl is shown.
- 304
- 305 Figure 3. Comparison of the observed $\ln(\text{time})$ to detection (mins) for NaCl (X) or KCl (\bigcirc)
- 306 inhibition of *Staphylococcus aureus* 121(ten replicates per humectant concentration).
- 307

308 Figure 4. Observed RTD for mixtures of NaCl and KCl inhibition of *Aeromonas*

- 309 hydrophila
- 310
- 311 Figure 5. Modelled RTD for mixtures of NaCl and KCl inhibition of Aeromonas
- 312 hydrophila
- 313
- 314 Figure 6. A plot of the effective concentration against the observed (symbols) and
- 315 modelled RTD (solid line) for combinations of NaCl and KCl against Aeromonas
- 316 hydrophila.
- 317

318	Figure 7.	MIC boundaries	for NaCl/KCl	mixtures;	•, Staphylococcus	aureus (Saur121);
-----	-----------	----------------	--------------	-----------	-------------------	-------------------

- 319 O, Enterobacter sakazakii; ■Shigella flexneri; □, Aeromonas hydrophila; ▲, Yersinia
- 320 *enterocolitica*.

Figure 2.

