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a b s t r a c t

Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma
reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, tempera-
ture, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo-initiator
introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry
reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome.
Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to
800 nm min�1 could be achieved with low roughness and high anisotropy.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

SU-8 is an epoxy based, photo sensitive polymer developed by
IBM in the late 1980s [1]. SU-8 negative photo resist is derived
from EPONTMresin [2], where the monomer consists in average of
eight epoxy groups and eight aromatic benzene groups as indi-
cated by the name. The viscous polymer contains between 5%
and 10% photo-initiator enabling cross linking by standard I-line
lithography. The photo-initiator used for the SU-8 resin is based
on triarylsulfonium–hexafluoroantimonium, adding fluorine, sul-
fur, and antimony to the carbon, hydrogen, and oxygen from the
monomers as elements in the SU-8 resin.

SU-8 in microtechnology was developed for use in LIGA1 [3]
where the polymer is used to define a structured mold. Furthermore,
SU-8 was interesting as etch mask, due to the patterning by standard
photolithography. The chemical resistance of SU-8, however, compli-
cates the removal of the resist in both applications, with plasma re-
moval as one of the only reliable option. Therefore, the most

thoroughly discussed subject in SU-8 etching is complete removal
of SU-8 after its use as masking material.

More recently, SU-8 has been used as a device layer rather than
a sacrificial layer. Fabrication of devices in SU-8 can in general be
accomplished by photo-lithography, for a large number of applica-
tions. Lab on a chip (LOC) systems with microfluidic channels made
in SU-8 [4,5], have advantages such as biological compatibility and
easy fabrication. Devices for optical applications such as polymer
waveguides [6] and optical transducers [7] have been shown. Fur-
thermore, the mechanical properties of SU-8 make it an obvious
choice for cantilever sensors [8].

Plasma treatment of all of these devices can be used for several
purposes. Probably the most relevant cases of plasma treatment of
SU-8, in addition to removal, is functionalization or activation of a
surface. This can for example be used to tune the hydrophobicity of
a surface or change the surface termination to alter the bonding
capabilities [9]. For some applications further patterning of the
SU-8 after the initial photo-lithography in the form of etching
might be interesting. For instance an isotropic etch can be used
to increase the aspect ratio or decrease the line width of litho-
graphically defined structures.

In the scarce literature on SU-8 etching available, most authors
agree on the need for fluorine in the plasma chemistry. However,
there has not been offered a satisfying explanation for this
observation.

Dentinger et al. [10] presented a study on different methods for
SU-8 removal, including removal using solvents, chemical removal
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in different plasma etching configurations, and other more exotic
methods. For our study the chemical removal in any type of plasma
setting is interesting. Both, results from reactive ion etching (RIE)
as well as downstream chemical etching (DCE) can increase the
understanding of the different mechanism involved in the process.
Etch rates of 1–4 lm min�1 were obtained in RIE using a mixture of
CF4/O2 in approximately equal proportions [10].

In DCE, Dentinger et al. observed that only 2–4% of CF4 was
needed to obtain etch rates as high as 10 lm min�1. However, to
obtain such high rates the temperature was elevated to 275 �C.
Such high temperatures will introduce thermal stress in the poly-
mer, increasing the risk of cracking and peeling. It will also cause
compatibility problems with some materials in practical applica-
tions. Furthermore, surface contamination with antimony was ob-
served after complete SU-8 removal. Dentinger et al. ascribed the
surface antimony contamination to residues left from the photo
initiator.

The influence of fluorine on etching of cured SU-8 is also dis-
cussed by Hong et al. [11] and Mischke et al. [12]. Mischke et al.
used CF4 just as Dentinger et al. did, while Hong et al. added SF6

as fluorine source to the plasma. Hong et al. limit the discussion
to etch rate and anisotropy without discussing chemical composi-
tion. However Mischke et al. [12] used Energy-dispersive X-ray
spectroscopy (EDX) on etched SU-8 surfaces to identify antimony
and fluorine in addition to the expected carbon and oxygen. Mis-
chke et al. conclude that fluorine is introduced by the etch chem-
istry, neglecting the fact that the photo initiator in SU-8 is
triarylsulfonium hexafluorantimonium which includes SbF6

+ ions.
De Volder et al. [13] used plasma etching to produce nanowires

in SU-8. Their process is basically an oxygen plasma etch where
they also see an accumulation of antimony at the surface; the anti-
mony is believed to act as local masking agent and starting point of
the nanowires. X-ray photoelectron spectroscopy (XPS) analysis of
the surface shows up to 19%atom antimony surface concentration in
their experiments. Similar to Mischke et al. no external source for
antimony was present, and the antimony must hence originate
from the SU-8 photo-initiator. For removal of SU-8 this will result
in rough surfaces and low etch rates and should be avoided.

The presence of antimony in plasma treated surfaces is a prob-
lem for biological applications since antimony is toxic. This does
not only apply to samples structured by plasma etching, but also
surfaces cleaned or primed in an oxygen plasma will have in-
creased concentrations of antimony in the surface after a shallow
etch. Small amounts of antimony may not be critical since the tox-
icity is weaker than e.g. that of arsenic [14,15]. However, since
etching generates thin hairlike structures it can be assumed that
the antimony present in the surface is on nanometer scale, for
which Bregoli et al. [16] has evaluated the toxicity and found it poi-
sonous. It is important to minimize the antimony concentration to
achieve relevant results for biological experiments performed on
SU-8 chips.

In this work we will discuss structuring of SU-8 in an ICP-RIE
oxygen plasma with varying SF6 content. Control of antimony con-
centration and surface roughness will be discussed, together with
measurements of etch anisotropy and rate. We will in more detail
discuss the influence of antimony on the surface quality obtained
and link it to the etch chemistry.

2. Experimental

All SU-8 etching experiments were done in a turbo pumped,
inductively coupled plasma (ICP) system, Advanced Silicon Etcher
(ASE HC250M) from STS, refitted for polymer etching. The system
is fitted with two RF power supplies; the main power supply, the
Coil Power, controls the intensity of the plasma, while the

secondary power supply, the Bias Power, controls the ion energy
of the ion flux to the etched substrate. In the experiments reported
here, the feed gasses oxygen (O2) and sulfur hexafluoride (SF6)
were used at flow rates controlled using mass flow controllers.
The pressure in the etch chamber is controlled by a throttle valve
and measured using a pressure gauge. All sample preparation
and characterization except XPS was carried out in a cleanroom
environment.

Since plasma etching, in general, is a very complicated process
involving many parameters, Design of Experiments (DoE) was used
to reduce the number of experiments necessary to identify the
most important parameter relations in etching of SU-8.

2.1. Design of experiments

The number of experiments conducted was reduced by select-
ing the four most important parameters for variation, Table 1 while
the remaining parameters were kept constant. The O2 flow rate
(QO2

) was keep constant at 99 sccm, while the SF6 flow rate
(QSF6

) was varied between 0 and 20 sccm. The pressure in the etch
chamber was controlled to keep the gas density stable. Since the
pressure has a pronounced effect on etch characteristics, the pres-
sure (p) was varied between 20 and 40 mTorr. It should be noted
that the system was run in automatic pressure control mode,
which continuously adjusts the throttle valve to keep a constant
pressure during etch. The coil power (PC) was fixed at 1000 W,
while the bias power (PB) was varied between 0 and 30 W. Finally,
the substrate chuck temperature (T) was controlled between 10
and 50 �C. This design resulted in a full factorial screening in four
parameters, where three center points were used to check for qua-
dratic curvature, where the quadratic term of a parameter is
needed to generate a valid model. The total number of experiments
in this setup is 19, which were processed for 20 min each. The
experiments in the design were carried out in random order.

After completion of the first set of experiments it was evident
that curvature was present in the response. To enable data analysis
and generation of a valid model for the system, the curvature was
addressed by adding eight face centered points with two additional
center points to the design. A face centered point is a center point
with one parameter value at min or max. The ten extra experi-
ments were also carried out in random order, and the center points
were used to check for variations between the two sets of experi-
ments. The final dataset comprises the 19 initial experiments com-
bined with the 10 additional, giving a total of 29 experiments to
characterize.

2.2. Sample preparation

Samples were prepared by spinning 25 lm SU-8 2075 resist on
100 mm silicon wafers with a 2 lm thick thermal silicon dioxide
followed by 1 h of baking on a hotplate at 50 �C [17]. The samples
were exposed with 150 mJ cm�2 at the I-line, through a test mask
with line arrays of different widths, and baked for 2 h at 50 �C on a
hotplate, followed by development in PGMEA. Finally, to
completely crosslink the polymer, samples were flood exposed

Table 1
Parameters used for DoE design. Center denotes the value used for center points and
face centered points.

Parameter Min Center Max
Coded value �1 0 1

SF6 flow rate (sccm) QSF6
0 10 20

Pressure (mTorr) p 20 30 40
Bias power (W) PB 0 15 30
Temperature (�C) T 10 30 50
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with 500 mJ cm�2 at the I-line and baked for 15 h at 90 �C in an
oven. The sample patterning by photo lithography facilitated char-
acterization of the subsequent etch. Prior to each etch experiment
the chamber was conditioned using a 20 min chamber clean in an
oxygen plasma with a blank silicon wafer loaded. For the cleaning
process, the chuck temperature was always set at 20 �C. The cham-
ber cleaning process was considered necessary to ensure stable
and predictable conditions in each etch process, since the condition
of the chamber walls might affect plasma etching processes. When
a new substrate was loaded for etching, the temperature was set to
the required value and allowed to stabilize before the etch exper-
iment was started.

2.3. Characterization

Before and after etching, the samples were characterized with
respect to etched depth, structure width, surface morphology,
and composition. The height of the structures was measured before
and after etching using a Dektak 8 stylus profiler from Veeco. Scan-
ning electron microscopy (SEM) images were used to characterize
the structure width and the appearance of the surfaces. The width
of the structures found from SEM images and the known line pitch
in the line array were used to characterize line width reduction
during the etch process. For line width measurements, lines in
the center of the arrays were chosen to eliminate influence of RIE
loading effects on the line width. The roughness was measured
using atomic force microscopy (AFM) after etching.

The surface composition of the samples was characterized using
XPS. The analysis was carried out in a Thermo K-Alpha XPS instru-
ment with a monochromatic Al–Ka-source and charge compensa-
tion. For each sample a binding energy survey from 0 to 1350 eV
was performed followed by detailed spectra analysis in the O1s,
Sb3d, F1s, and C1s binding energy ranges. The atomic concentra-
tions of surface elements were extracted using the software pack-
age Advantage provided by Thermo. In the calculations for the O1s
and Sb3d peaks, the ratio and separation of antimony peaks Sb3d3/

2 and Sb3d5/2 were fixed to 0.577 [18] and 9.34 eV [19], respec-
tively. By doing this it was possible to find the surface concentra-
tions of the four main elements in the surface layer: C, O, F, and Sb.

3. Results and discussion

The etch outcome was evaluated on four different parameters.
Etch rate (r) and anisotropy (A) are important parameters for con-
trolling etch depth and profile in etching. Furthermore, since se-
vere roughening of the surface was observed after etch, root
mean square surface roughness (Rrms) and surface composition
were measured by AFM and XPS. The surface composition was
found as the fractional atomic content of carbon [C], oxygen [O],
fluorine [F], and antimony [Sb] in the polymer surface layer. All re-
sults outlined below are extracted from the total set of 29
experiments.

The DoE was used to find parameters and interactions with a
0.05 level of significance. Parameters with a significant interaction
or quadratic term were always included, even if it’s P-value was
above 0.05. In Table 2 the P-values are listed for the four measured
responses, [Sb], r;A, and Rrms. Some interactions and quadratic
terms were insignificant for all responses and are not included in
the tables. The coefficients of determination (R2) for the final mod-
els are listed in the last row of Table 2.

The etch outcome can be estimated for a response y by a DoE
fitted model as,

yi ¼ bi þ
X

j

bijxj þ
X

j;k

bijkxjxk: ð1Þ

x and y denotes the DoE coded parameters and the response
respectively, and biðjkÞ denotes the estimated coefficients listed in
Table 3. The index i denotes the response, while indices j and k de-
note the parameters.

3.1. Antimony surface concentration

The antimony surface concentration was estimated by XPS
spectra of each sample, see Fig. 1. XPS survey spectra revealed that
C, O, F, and Sb were the only measurable elements in the SU-8 sur-
face layer, which is in agreement with the known elemental com-
position of the photo resist [1], if it is assumed that S reacts in the
plasma and leaves the surface during etch. The detailed spectra
shown in Fig. 1 are therefore shown for binding energies relevant
for these elements. Only traces of antimony were observed in the
surface layer of non-etched SU-8. SU-8 with 5% photo-initiator
contains approximately 0.05%atom antimony which is below the
detection limit. For etched SU-8, the amount of antimony mea-
sured in the surface layer increased significantly, indicating an
antimony accumulation during etch.

The XPS measurements of surface elements showed that the
antimony surface concentration was highly dependent on the SF6

flow rate to both first and second order. In Fig. 2a it is evident that
the antimony concentration drastically decreased when SF6 was
added to the plasma. The same tendency is obvious on the contour

Table 2
P-values of the DoE fit. Fitting a model for the responses with DoE results in the
following P-values, with parameters that were negligible removed. If no value is given
for a parameter or interaction it was excluded from the model. The four measured
responses are Sb concentration ([Sb]), etch rate (r), anisotropy (A), and root mean
square roughness (Rrms).

Term P ([Sb]) P (r) P (A) P (Rrms)

QSF6 < 10�4 0.6a 0.43a < 10�4

T 0.1a 0.006 – –
PB 0.005 < 10�4 < 10�4 < 10�4

p – < 10�4 0.0001 –

ðQSF6
ÞðTÞ 0.02 – – –

ðQv ÞðPBÞ 0.0007 0.03 0.0005 < 10�4

(QSF6
)2

< 10�4 < 10�4 – < 10�4

ðPBÞðpÞ – 0.0002 0.006 –
(PB)2 – 0.009 0.004 –

R2 0.94 0.97 0.90 0.93

a Included since interactions are significant.

Table 3
DoE fit of dependencies. Fitting a model for the responses with DoE gives the
following dependencies. Values between columns should not be compared. If no value
is given for a parameter or interaction it was excluded from the model. The four
measured responses are Sb concentration ([Sb]), etch rate (r), anisotropy (A), and root
mean square roughness (Rrms).

biðjkÞ [Sb] r A Rrms

(%atom) (l min�1) (nm)

bi 2.5 9.57 0.56 9.47a

biðQv Þ �8.1 �0.08 �0.02 �208
biðTÞ 0.9 0.49 – –
biðPBÞ 1.7 2.93 0.31 144
biðpÞ – �1.25 �0.12 –
biðQSF6

ÞðTÞ �1.4 – – –

biðQv ÞðPBÞ �2.2 0.38 0.11 �166
bQSF6)

2 7.6 �3.8 � 207
biðPBÞðpÞ – �0.77 0.08 –
biðP½ofortt�B½cfortt�Þ2 – �1.05 �0.13 –

a Intercept was negligible, but included in model.
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plots shown in Fig. 2b, independent of the other parameters.
Moreover the [F]/[Sb] ratio, also shown in Fig. 2a, increased from
below one to three or more. This indicates that most fluorine from
the photo initiator desorbed from the surface if fluorine was not
added to the gas phase.

For samples etched at low SF6 flow, the [F]/[Sb] ratio was much
lower than the expected six that should be present considering the
catalyst stoichiometry. The low ratio suggests that the SbF6

+ ion re-
acts in the plasma to form other antimony compounds such as
atomic antimony or antimony oxides. Atomic antimony and anti-
mony oxide both have high boiling points of 1587 and 1425 �C
[20]. Hence low vapor pressures of antimony and antimony oxides
are expected at the processing temperatures used and antimony is
expected to stay on the surface. For samples processed at high SF6

flow rate, fluorinated compounds are expected on the surface.
Antimony trifluoride and pentafluoride have boiling points of 376
and 141 �C [20], and in consequence much higher vapor pressures
at the processing temperatures. Therefore, these compounds are
more likely to evaporate from the surface, resulting in low anti-
mony concentration and a [F]/[Sb] ratio close to the one of the
photo-initiator.

Bias power as well as first order interaction with SF6 flow rate
also had an effect on the antimony surface concentration, with
higher bias power resulting in higher antimony concentrations.
This might be ascribed to ion-enhanced etching [21] with more ac-
tive sites generated on the polymer backbone. Consequently the
polymer etch rate may increase more than the antimony etch rate
resulting in a faster antimony accumulation. However the in-
creased antimony accumulation rate could be alleviated by adding
more SF6 to the plasma.

Antimony surface concentration only showed a small depen-
dency on temperature. The antimony surface concentration in-
creased at elevated temperatures. This may be explained by an
increase in polymer etch rate for higher temperatures. In other
words, the rate of antimony removal is slower than the polymer
etch rate. The pressure was found to not influence the antimony
concentration.

3.2. SU-8 etch rate

Specific etch depths are usually obtained by control of the etch
duration and hence the etch rate must be known. Our experiments
showed a dependency of the etch rate on all parameters, see Fig. 3.

(a)

(c)

(b)

Fig. 1. XPS measurements on processed SU-8 surfaces. Surveys of all samples
showed that C, O, Sb, and F were the only elements in the polymer surface. The
spectrum analysis showed four different carbon bonds, shown as green curves.
Oxygen and antimony were discerned by fixing the ratio of distance and size
between the Sb3d5/2 peak to the Sb3d3/2 peak to fit the Sb3d5/2 while O2s was fitted
for the remaining area. The oxygen contribution was divided in two types of carbon
bonds. Fluorine spectra are not shown, but two bonds for fluorine were used to find
the total atomic concentration. Etching of both (b) and (c) were done at
PC ¼ 1000 W, PB ¼ 30 W, and QO2

¼ 99 sccm. For (b) p = 20 mTorr, T = 10 �C, and
Q SF6

¼ 0 sccm was used, while for (c) p = 40 mTorr, T = 30 �C and QO2
¼ 17 sccm was

used.

(a)

(b)

Fig. 2. Antimony surface concentration ([Sb]) as a function of relevant etch
parameters. [Sb] and [F]/[Sb] ratio were highly dependent on Q SF6

. (a) Low Q SF6

caused high [Sb] while the [F]/[Sb] ratio became low. (b) [Sb] was primarily
dependent on Q SF6

but also T and PB while p did not show any influence on [Sb].

Fig. 3. Etch rate (r) as a function of etch parameters. Etch rate showed a
dependency on all parameters. Q SF6

and PB both have a strong influence on etch
rate. p also affected the etch rate significantly with higher p resulting in lower etch
rates. T only slightly influences etch rate and does not interact with any of the other
parameters.
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The most notable dependency was on bias power which controls
the ion energy during etch. Increased bias power led to faster etch-
ing, either due to sputtering or more likely ion-enhanced etching
[21]. Supporting the hypothesis of ion-enhanced etching, the gain
in etch rate was more significant for low bias powers.

The SF6 flow rate to the second order, also significantly affected
the etch rate. The response showed curvature with reduced etch
rate for both high and low SF6 flow rates. For low SF6 flow rates
antimony accumulates at the surface, resulting in partial masking
of the surface which reduces the etch rate. The decrease in etch
rate at higher SF6 flow rates might be explained by reactions be-
tween SF5 radicals and O, which will reduce the amount of reactive
oxygen available for the polymer etch.

Higher pressure in general reduced the etch rate. Interaction be-
tween pressure and bias power slightly influenced this tendency.
The change in etch rate due to the interaction was most pro-
nounced at high bias powers, while for lower bias power the effect
of pressure on etch rate decreased. The decreased etch rate at high-
er pressures may be due to dilution of plasma species, decreased
ion sputtering due to lower mean free path and lower ion energy,
or a combination.

Finally, the substrate temperature also influenced the etch rate.
Higher temperature increased the etch rates due to thermal activa-
tion and higher vapor pressures. Temperature was the only param-
eter on which etch rate exhibited a linear dependency within the
parameter space, while all other parameters interacted with bias
power.

In Fig. 3 an overview of the influence of the four parameters on
etch rate is shown. From the graphs it is obvious that high bias
power and medium SF6 flow rate give the highest etch rates.

3.3. Etch anisotropy

In addition to etch rate, control of etch anisotropy is important
for optimal pattern transfer. The etch anisotropy was calculated as
A ¼ 1� rL=r where rL is the lateral etch rate. It was observed that
bias power had the largest effect on the anisotropy of the etch,
see Fig. 4. As expected increased bias power improved the etch
anisotropy due to higher ion energy and thus improved direction-
ality of the etch.

Pressure also influenced etch anisotropy, and a weak interaction
between bias power and pressure was evident. At higher pressures
the etch was more isotropic due to the reduction of the mean free
path in the plasma and hence reduced ion energy and
directionality.

The interaction between the SF6 flow rate and the bias power
was significant. However, as seen in Fig. 4, for both anisotropic
and isotropic etching high SF6 flow rate was optimal. SF6 can intro-
duce more directionality by adding more heavy, charged particles

to the plasma body. However SF6 does not only add charged parti-
cles, but also heavy non charged particles, which limits the direc-
tionality. Hence bias power determines the shift from one regime
to the other. High bias power is necessary to maintain high anisot-
ropy when the SF6 flow rate is increased.

Etch anisotropy did not show any dependency on temperature.

3.4. Roughness

The surface roughness is primarily controlled by the SF6 flow
rate, with decreased roughness as a response to more fluorine in
the plasma. The SF6 flow rate affects the roughness response to
both first and second order. The interaction between the SF6 flow
rate and bias power, and bias power to first order also influenced
the roughness, with increased roughness at higher bias power.
The nature of the dependencies on SF6 flow rate and bias power,
indicates that roughness and antimony surface concentration are
closely linked. In Fig. 5a the roughness is plotted against the anti-
mony concentration, and a clear tendency is detected such that if
the antimony concentration is kept low, the roughness will also
be low.

It is worth noticing that for low roughness the [F]/[Sb] ratio in
the surface layer is high. Comparing the [F]/[Sb] ratio with the Sb
concentration indicates a threshold at which the amount of fluo-
rine in the surface layer is enough to generate volatile antimony
compounds. From Fig. 5a it seems that a ratio of [F]/[Sb] of 3:1 en-
ables the antimony to start leaving the surface. This correlates fine
with the hypothesis that SbF3 and SbF5 may be the volatile com-
pounds formed.

The contour plot in Fig. 5b of the influence of the different
parameters on surface roughness shows the same tendencies as
for antimony concentration. However, the interaction between
bias power and SF6 flow rate is more pronounced for roughness
than antimony surface concentration. From the contour plot it is
clear that the roughness can become quite high. The high surface
roughness was visible with the naked eye as a dull surface, and
in SEM pictures it is readily identified. Fig. 6b shows a sample

Fig. 4. Etch anisotropy (A) as a function of etch parameters. The anisotropy showed
no dependency on the T, whereas the three other parameters all influenced the
outcome. Of notice is the dependency on Q SF6

as both for isotropic and anisotropic
etches high Q SF6

gives the best result.

(a)

(b)

Fig. 5. Root mean square surface roughness (Rrms) as a function of relevant etch
parameters and Rrms and [Sb] concentration correlations. (a) Low [Sb] ensure low
Rrms, note, that to reach low [Sb] [F] has to be relatively high. (b) The roughness
contour shows similar tendencies as the antimony response, however T did not
have and effect on Rrms just as p also does not.
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etched in a pure oxygen plasma; this sample has a high roughness
compared to that of a non-etched sample as shown in Fig. 6a. In
Fig. 6c and 6d two samples etched with optimized parameters
for low roughness are shown. The two etch processes were opti-
mized for different anisotropy; in Fig. 6c the anisotropy is 0.9 while
in Fig. 6d the anisotropy is 0.3. This gives a good indication that rel-
atively smooth surfaces can be obtained with both high and low
anisotropy.

Sidewall and edge roughness as seen in Fig. 6c were linked di-
rectly to the bias power, with generation of edge roughness when
a non zero bias power was applied. The dependency on bias power
suggest that sidewall roughness is an effect of plasma directional-
ity. For highly anisotropic etches antimony fluoride desorption on
vertical surfaces is not assisted by ion bombardment. For samples
etched with no bias power the absence of roughness can be ex-
plained by the lower etch rate for these samples. Samples with
rough sidewalls always showed rough edges.

4. Conclusion

A DoE study of SU-8 plasma etching enabled improved control
of surface properties of the polymer. For a pure oxygen plasma,
high antimony concentration, high roughness, and low etch rate
were observed. The amount of antimony accumulated at the sur-
face could be reduced to a few percent by addition of SF6 to the
oxygen plasma, which directly lowered the surface roughness. Rea-
sonable etch rates up to 0.8 lm min�1 could be obtained at high
anisotropy, while optimizing for an isotropic etch will inevitable
cause a reduction of the etch rate.

The high concentration of antimony accumulated at the surface
must be considered when SU-8 devices are to be used for biological
application. For short plasma treatments the antimony concentra-
tion will not increase much, but if samples are processed for longer
times it will definitely be an issue. For complete removal of the SU-
8 antimony surface accumulation results in a contaminated sur-
face. However, adding SF6 to the plasma chemistry can minimize
the residue level and improve the usability of SU-8 as sacrificial
mask.
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Fig. 6. Surface topology of etched samples. (a) A wafer just after development of the
SU-8 layer. (b) The pure oxygen plasma (PB=30 W, T = 10 �C, p = 20 mTorr,
Q SF6

¼ 0 sccm) causes a high roughness. (c) Optimized etch (PB=30 W, T = 30 �C,
p = 40 mTorr, Qv ¼ 17 sccm) with high anisotropy at reasonable etch rate and with
a smooth surface. (d) Optimized etch (PB ¼ 0 W, T = 10 �C, p = 20 mTorr,
Q SF6

¼ 14 sccm) at low anisotropy with moderate etch rate and a smooth surface.
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