Dielectric GaAs Antenna Ensuring an Efficient Broadband Coupling between an InAs Quantum Dot and a Gaussian Optical Beam

Munsch, Mathieu; Malik, Nitin S.; Dupuy, Emmanuel; Delga, Adrien; Bleuse, Joel; Gerard, Jean-Michel; Claudon, Julien; Gregersen, Niels; Mørk, Jesper

Published in: Physical Review Letters

Link to article, DOI: 10.1103/PhysRevLett.110.177402

Publication date: 2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Dielectric GaAs Antenna Ensuring an Efficient Broadband Coupling between an InAs Quantum Dot and a Gaussian Optical Beam

Mathieu Munsch, Nitin S. Malik, Emmanuel Dupuy, Adrien Delga, Joël Bleuse, Jean-Michel Gérard, and Julien Claudon

CEA-CNRS-UJF Group, Nanophysique et Semiconducteurs, CEA, INAC, SP2M, F-38054 Grenoble, France

Niels Gregersen and Jesper Mørk

Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, 2800 Kongens Lyngby, Denmark

(Received 20 September 2012; published 24 April 2013)

We introduce the photonic trumpet, a dielectric structure which ensures a nearly perfect coupling between an embedded quantum light source and a Gaussian free-space beam. A photonic trumpet exploits both the broadband spontaneous emission control provided by a single-mode photonic wire and the expansion of this mode within a conical taper. Numerical simulations highlight the performance and robustness of this concept. As a first application in the field of quantum optics, we report the realization of an ultrabright single-photon source. The device, a high aspect ratio GaAs photonic trumpet containing a few InAs quantum dots, demonstrates a first-lens external efficiency of 0.75 ± 0.1 and an external coupling efficiency to a Gaussian beam as high as 0.58 ± 0.08.

DOI: 10.1103/PhysRevLett.110.177402

Optical waveguides that define a single-mode electromagnetic environment around a quantum light emitter are currently attracting a large amount of interest [1–6]. Compared to microcavities [7–9], their broad operation bandwidth considerably alleviates the fabrication constraints of bright sources of single photons and entangled photon pairs. Reversibly, these systems can also mediate strong nonlinear interactions between single photons, with direct applications to photonic quantum logic [10–14]. In most cases, the guided mode supported by such structures has to match a specific free-space mode, preferentially Gaussian. This property, which has attracted little attention so far, is desirable when feeding single photons into a single-mode optical fiber for quantum encrypted communications [15] or implementing an optical switch at the single-photon level [16]. The scalable interconnection of spin photon interfaces to realize a quantum network is also very demanding in terms of control over the far-field emission [17–20].

In this context, fiber-like photonic wires are simple dielectric waveguides with appealing performances [5,6,21,22]. For an emitter with a transverse optical dipole, they offer an efficient spontaneous emission (SE) control [23,24] (including polarization [25]) combined with low optical losses. A first step toward the control over their far-field emission has already been demonstrated [5,26] through the integration of a metal-dielectric mirror below the wire [27] and a needle-like tapering of its upper end [28]. Such a taper expands the guided mode outside the wire to obtain a directive far-field emission. However, as shown below, the emission remains poorly matched to a Gaussian free-space beam and is sensitive to minute geometrical details, thus compromising the device fabrication yield.

In this Letter, we solve these issues by expanding the guided mode inside a vertical conical taper. The resulting structure—a photonic trumpet—offers a unique combination of broad operation bandwidth, high extraction efficiency, and clean Gaussian far-field emission. In addition, the taper performance is very tolerant against geometrical changes, which alleviates fabrication constraints and ensures reproducible performances. After presenting theoretical design guidelines, we demonstrate the fabrication of such high-aspect ratio structures. As a first application in the field of quantum optics, we realize a very bright single-photon source with a first-lens external efficiency of 0.75 ± 0.1 and a record-high external coupling efficiency to a Gaussian beam of 0.58 ± 0.08.

We first consider an infinitely long vertical wire made of GaAs—a high index material (n = 3.45)—immersed in air or vacuum (n_{ext} = 1). The wire features a circular section of diameter d and embeds on its axis a single quantum dot (QD), with a free-space wavelength \(\lambda = 950 \text{ nm} \). The QD is modeled by a pointlike emitter with two transverse, orthogonal linear optical dipoles. We introduce \(\beta \), the fraction of SE coupled to the family of fundamental guided modes (HE_{11}). It comprises an upward and a downward propagating mode, each one doubly polarization degenerated. The mode lateral confinement is quantified by the effective surface \(S_{\text{eff}} = \int \int n(x, y)^2 |E(x, y)|^2 dx dy / [n(0, 0)^2 |E(0, 0)|^2] \), where \(E \) is the electric field amplitude. As seen in Fig. 1(a), \(S_{\text{eff}} \) reaches a minimum value of \((0.18 \lambda)^2 \) for \(d_1 = 240 \text{ nm} \). For an on-axis emitter, \(\beta \) is then equal to 0.96 and exceeds 0.9 over a 250 nm broad operation bandwidth [23]. However, the tightly confined HE_{11} photons leaving a real, finite wire through a flat top facet are scattered to high angles into free space, which prevents the efficient collection of light with standard...
staper can be understood by inspecting Fig. 1(a). For a needle.

Qualitatively, the striking contrast between the two tapers
result in free-space emission before reaching the taper end.
other hand, for the same angle range, the needle taper
already suffers from significant nonadiabatic losses, which

d
NA

ination of the mode using a

HE11

photonic trumpet ensures a nearly perfect adiabatic expan-

ds

To investigate the propagation of HE11 along a tapered
section, we introduce the modal transmission $T_{\text{HE}_{11}}$. This
quantity is plotted against the taper angle α for representa-
tive needle and trumpet linear tapers in Fig. 1(b). A
photonic trumpet ensures a nearly perfect adiabatic expan-
sion of HE11 for $\alpha < 5^\circ$, leading to $T_{\text{HE}_{11}} > 0.994$. On the
other hand, for the same angle range, the needle taper
already suffers from significant nonadiabatic losses, which
result in free-space emission before reaching the taper end.

FIG. 1 (color online). Fundamental guided mode in a tapered
wire. (a) Effective surface (S_{eff}) of the mode HE11 guided by a
cylindrical wire of diameter d (double log scale, operation
wavelength $\lambda = 950$ nm). The dashed lines are guides for the
eye, indicating the slope of log(S_{eff}) vs log(d) in the “small”
and “large” diameter range. (b) Modal transmission of HE11
($T_{\text{HE}_{11}}$), plotted against the tapering angle α for two representa-
tive tapers. For the photonic trumpet, d_2 is set to 1.5 μm; in the
needle taper, $d_3 = 166$ nm is chosen to ensure the same collec-
tion of the mode using a NA = 0.75 lens. Typical electrical field
profiles are also shown (amplitude of the discontinuous compo-
nent). The dots appearing in (a) correspond to d_1, d_2, and d_3.

optics. To solve this issue, the mode size should be
increased either through a decrease or increase in d, result-
ing, respectively, in needlelike and trumpetlike tapers
Fig. 1(a)].

To investigate the propagation of HE11 along a tapered
section, we introduce the modal transmission $T_{\text{HE}_{11}}$. This
quantity is plotted against the taper angle α for representa-
tive needle and trumpet linear tapers in Fig. 1(b). A
photonic trumpet ensures a nearly perfect adiabatic expan-
sion of HE11 for $\alpha < 5^\circ$, leading to $T_{\text{HE}_{11}} > 0.994$. On the
other hand, for the same angle range, the needle taper
already suffers from significant nonadiabatic losses, which
result in free-space emission before reaching the taper end.
Qualitatively, the striking contrast between the two tapers
can be understood by inspecting Fig. 1(a). For a needle
taper S_{eff} scales as $d^{-5.5}$, whereas for the trumpet S_{eff}
scales as $d^{-0.9}$. Along the taper, the rate of change in
diameter is governed by α. For a given α, a weaker
dependence of S_{eff} on d thus implies slower changes in

the mode profile during its propagation, which eases the
adiabatic transformation of HE11. In a trumpet with
$\alpha > 5^\circ$, HE11 experiences an increasing coupling to higher
order guided modes. The propagation dynamics is then
more complex, but $T_{\text{HE}_{11}}$ still exceeds 0.95 for α as large
as 15°. Such a tolerance on α considerably alleviates the
fabrication constraints.

We now discuss the performances of a $h = 12$ μm high
trumpet taper emitting into a lens with a numerical aperture
(NA) of 0.75, which corresponds to the experimental real-
ization detailed in the second part of the Letter. Given the
high value of $T_{\text{HE}_{11}}$, the far-field emission is essentially
governed by the scattering of HE11 when it reaches the top
facet. Since its diameter d_2 can be accurately controlled by
a standard fabrication process, this ensures reproducible
taper performances. To suppress the top facet reflectivity,
we cover it with a dielectric layer having a $\lambda/4$ optical
thickness and an index $n_{ar} = 1.99$, which is close to the
optimal one ($\sqrt{n_{ext}} = 1.86$). For $d_2 > 1.5$ μm, the facet
reflectivity is then smaller than 10^{-2}. We consider two
figures of merit for the taper: the total transmission T
into the collection lens and the transmission T_g to a
Gaussian beam, using the same lens. Figure 2(a) shows T
and T_g plotted against α and the corresponding d_2. The
taper reflectivity being negligible, T depends essentially on
the divergence of the output beam, and exceeds 0.96 for
$d_2 > 1.5$ μm. Regarding the coupling to a Gaussian beam,T_g increases with d_2 to reach an optimal $T_g = 0.97$ for
$d_2 = 2.6$ μm. Above this diameter, which corresponds to $\alpha = 11.5^\circ$, T_g undergoes a slight oscillating decrease due
to the onset of mode conversion inside the taper. For

FIG. 2 (color online). Far-field emission. (a) Calculated total
transmission T (dashed line) into a NA = 0.75 lens and trans-
mission to a Gaussian beam T_g (solid line). The evaluation is
conducted for a 12 μm high photonic trumpet with various taper
angle α (and thus different top diameter d_2). The same quantities
for a needle taper are shown in (b). Experimental realizations:
noodle tapers, upward open triangles (Ref. [5]); upward solid
triangles (Ref. [22]); and photonic trumpet, downward open
triangles (this work).
comparison, Fig. 2(b) shows \(T \) and \(T_g \) for a needle taper. Clearly, the maximum \(T_g \) in a trumpet exceeds by a factor > 2.2 the value achievable with the sharpest needle taper (\(T_g = 0.43 \)). This improvement essentially stems from the very favorable profile of \(\text{HE}_{11} \) when it exits the top facet of a trumpet [see inset in Fig. 1(b)].

Coming back to the emitter, symmetry imposes that half of the photons are emitted in the \(\text{HE}_{11} \) mode propagating downward. A mirror inserted below the trumpet reflects them back into the wire with an amplitude modal reflectivity \(r \). Locating the emitter at an antinode of the resulting standing wave pattern enhances the SE rate into \(\text{HE}_{11} \) and optimizes the first lens external efficiency \(\epsilon \). For an emitter with a perfect radiative yield, \(\epsilon = \frac{2(1+|r|^2)}{2(1+|r|^2)}T \) [26]. The external coupling efficiency between the emitter and the Gaussian beam \(\epsilon_g \) is obtained from the same formula, using \(T_g \) instead of \(T \). As detailed in Ref. [27], a planar gold-silica mirror offers a modal reflectivity \(|r| > 0.95 \) for the wire diameters of interest. For an on-axis emitter \(\beta = 0.96 \), leading to \(\epsilon_g = 0.95 \times T_g \). Considering the high value for \(T_g \) reached with a trumpet taper, this strategy offers a close to ideal coupling between a localized quantum emitter and a directive Gaussian beam. Noteworthy, thanks to the pronounced inhibition of the coupling to the nonguided modes, \(\beta \) is relatively robust against a misalignment between the emitter and the wire axis [23]. Thus, this broadband strategy is particularly relevant for self-assembled InAs QDs, which are fast and stable quantum light emitters but intrinsically suffer from spatial and spectral randomness [29]. Following Ref. [23], in a single-mode wire, one randomly located QD out of 15 experiences \(\epsilon_g > 0.90 \times T_g \) and one QD out of 5 experiences \(\epsilon_g > 0.80 \times T_g \).

In the following we demonstrate the high performance of photonic trumpets through the realization of an on-demand, ultrabright single-photon source. The device, shown in Fig. 3(b), is a 12 \(\mu \)m high cone with a tapering angle \(\alpha = 6.5^\circ \). Its top facet features a diameter \(d_2 = 1.55 \) \(\mu \)m and is covered by a Si\(_{3}\)N\(_{4}\) antireflection coating (\(n_{\text{air}} = 1.99 \), thickness: 115 nm). The bottom part of the trumpet presents a diameter in the 200–240 nm range, corresponding to the optimum field confinement. The structure is connected to a gold-silica planar mirror and embeds a few (~ 5 – 10) InAs self-assembled QDs, located 110 nm above the mirror. The structure has been processed out of a planar sample grown by molecular beam epitaxy, using a top-down approach described in the Supplemental Material [30]. In particular, the trumpet is defined with a carefully optimized plasma etching, so as to obtain the right balance between physical sputtering and chemical etching. The scanning electron micrograph large view in Fig. 3(a) illustrates the reproducibility of the fabrication; the zooms in Figs. 3(b) and 3(c) show the excellent control over the trumpet geometry, notably on the planar mirror. Despite their high-aspect ratio, these structures are robust enough to be manipulated in the lab without specific precaution. The final processing step, which involves wetting and dewetting by a liquid solution, constitutes in itself a stringent test for the structure resistance.

The source is operated at liquid helium temperature, using a microphotoluminescence (\(\mu \text{PL} \)) setup equipped with a commercial microscope objective (NA = 0.75). QD excitation is provided by a pulsed laser, tuned to the absorption continuum of the QD wetting layer, below the GaAs band gap. Figure 4(a) shows the spatial distribution of the QD emission in the top facet plane: it presents a Gaussian shape, which describes satisfactorily \(\text{HE}_{11} \) for this range of lateral confinement. The \(\mu \text{PL} \) spectrum features separated sharp lines, associated with QD excitonic transitions (Fig. 4(b)). In the following, we focus on three lines labeled 1, 2, and 3 (\(\lambda = 902.5 \) nm, 907.1 nm, 935.1 nm) associated with three different QDs. Their spectrally integrated intensities \(I_{\text{int}} \), obtained from a fit to a Lorentzian line shape, are plotted against the pump power in Fig. 4(c). Considering the low power dependence of \(I_{\text{int}} \) and the measured transition decay time \(T_1 \), lines 1 and 3 are attributed to the recombination of an exciton and line 2 to the recombination of a biexciton.

In each case, single-photon emission is assessed with a measurement of the intensity autocorrelation function \(g_2(\tau) = \langle I(t)I(t + \tau) \rangle/\langle I(t) \rangle^2 \), where the brackets represent a time averaging. The measurement is performed under pulsed excitation, using a Hanbury Brown–Twiss setup which employs two silicon avalanche photodiodes (see the Supplemental Material [30]). The raw values of \(g_2(0) \) for lines 1–3 are indicated in Fig. 4(c). They are
smaller than 0.5, proving that the emission is dominated by the radiative recombination of a single electron-hole pair. Compared to our previous work [5], the higher dot density generates a sizeable luminescence background. Its contribution is removed in $g_2^s(0)$, assuming statistical independence between the signal and a Poissonian background. In particular, line 1 exhibits $g_2^s(0) = 0.02$, the signature of a pure single-photon emission.

The first lens external efficiency ϵ of the source was determined through careful calibration of the setup, conducted using a laser tuned to the QD emission wavelength as a reference (see the Supplemental Material [30]). The values that are given in the following include the two QD polarizations, and are corrected from residual multiphoton events. When driven to saturation, line 2 exhibits $\epsilon = 0.75 \pm 0.1$, placing our source among the brightest solid-state single-photon sources [5,31]. The small difference with the maximal theoretical value for the fabricated device ($\epsilon = 0.89$) is attributed to a nonoptimal lateral positioning of the QD and/or a residual fluctuation of its charge state. Furthermore, lines 1 and 3 are also very bright ($\epsilon = 0.61$ and 0.41), illustrating directly the broad operation bandwidth and tolerance with regard to the emitter’s lateral position. Efficiencies in the 0.5–0.6 range were routinely obtained in other devices, further confirming the robustness of this approach.

The external coupling efficiency to a Gaussian beam can be derived from $\epsilon_g/\epsilon = T_g/T$. Using the calculated values $T = 0.96$ and $T_g = 0.75$ together with the measured $\epsilon = 0.75$, one obtains $\epsilon_g = 0.58 \pm 0.08$. This represents a major improvement over the state of the art: $\epsilon_g = 0.25$ for a QD-oxide aperture micropillar cavity [18], 0.30 for a QD-needlelike photonic wire [5], and 0.33 for a QD-etched micropillar [32] (in all cases, ϵ_g is derived from the experimental ϵ multiplied by the calculated mode matching to a Gaussian beam). In the future, T_g could be brought close to 1 by defining a top facet $\sim 1 \mu m$ wider [Fig. 2(a)], either by increasing the taper angle or height. This would also lead to a very directive far-field emission, thus enabling the use of collection optics with a moderate numerical aperture. For example, a 12 μm high trumpet with $d_2 = 2.6 \mu m$ ensures $T_g = 0.93$ into a lens with NA = 0.5.

In conclusion, photonic trumpets offer a unique combination of broad operation bandwidth, high extraction efficiency and Gaussian far-field emission. The expansion of HE11 inside a trumpet taper is also very tolerant against a change in the taper angle. This approach, that also offers a robust SE control, thus ensures reproducible performances. We have also successfully fabricated such high-aspect ratio structures and demonstrated an on-demand ultrabright single-photon source. Regarding advanced quantum light sources, the circular top facet is very convenient to add a top electrode [32,33], which is desirable to provide an electrical charge injection in the QD [34], or to tune its fine spectral properties with an electric field [35,36]. When required, an efficient polarization control could be implemented in a trumpet having an elliptical base [25]. Photonic trumpets thus feature key assets for the future developments of solid-state quantum optics, particularly when several detuned optical transitions are involved.

The authors acknowledge the support of the French Agence Nationale de la Recherche under grant WIFO. The sample fabrication has been performed in the Plateforme Technologique Amont and CEA Léti/DOPT/SIONA clean rooms.

Note added.—After submission of this work, a very bright single-photon source based on a QD inserted in a resonant micropillar cavity has been demonstrated [37]. The device, obtained with a carefully optimized fabrication process, combines a large external efficiency with a directive Gaussian far-field emission.