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Abstract 8 

Four alternative cases for water supply were environmentally evaluated and compared based on the 9 

standard environmental impact categories from the life-cycle assessment (LCA) methodology extended 10 

with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of 11 

Denmark with high population density and relatively low available water resources. FWI was applied at 12 

local groundwater catchments based on data from the national implementation of the EU Water 13 

Framework Directive. The base case of the study was the current practice of groundwater abstraction 14 

from well fields situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting 15 

from several blocks in the city; Today’s groundwater abstraction with compensating actions applied in 16 

the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of 17 

well fields further away from the city; And seawater desalination. The standard LCA showed that the 18 

Rain & stormwater harvesting case had the lowest overall environmental impact (81.9 µPET/m3) 19 

followed by the cases relying on groundwater abstraction (123.5-137.8 µPET/m3), and that desalination 20 

had a relatively small but still important increase in environmental impact (204.8 µPET/m3). Rain & 21 

stormwater harvesting and desalination had a markedly lower environmental impact compared to the 22 
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base case, due to the reduced water hardness leading to e.g. a decrease in electricity consumption in 23 

households. For a relevant comparison, it is therefore essential to include the effects of water hardness 24 

when comparing the environmental impacts of water systems of different hardness. This study also 25 

emphasizes the necessity of including freshwater withdrawal respecting the relevant affected 26 

geographical scale, i.e. by focusing the assessment on the local groundwater catchments rather than on 27 

the regional catchments. Our work shows that freshwater withdrawal methods previously used on a 28 

regional level can also be applied to local groundwater catchments and integrated into the standard LCA 29 

as an impact category. When standard LCA is extended to include impacts of freshwater withdrawal, 30 

rain & stormwater and seawater (0.09-0.18 compared to 11.45-17.16 mPET/m3) were the resources 31 

resulting in least overall environmental impact. 32 

Keywords 33 

Life-cycle assessment; Freshwater withdrawal impact; Groundwater abstraction; Rain & stormwater 34 

harvesting; Desalination; Water hardness  35 
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1 Introduction 36 
Conflicts over water have been occurring since the beginning of time. Even though the Danish capitol 37 

Copenhagen is usually not considered as being in water shortage, water use is currently sowing the 38 

seeds of dispute. Industry, agriculture and urban water supply are the main activities responsible for 39 

withdrawing water from the natural environment. The purity of groundwater is acknowledged in the 40 

region and most water consuming activities are based on this resource.  41 

The European Water framework directive (EU-WFD) is being implemented in the EU-Member States by 42 

the River Basin Management Plans which among other parameters regulate the water flow 43 

requirements for water flows and the utilizable amount of water in each freshwater (ground and surface 44 

water) compartment (European Union, 2000). The implementation has revealed that groundwater is not 45 

an abundant resource as often believed (European Environment Agency, 2007), and the water utility 46 

HOFOR has been forced to seek new water resources or new approaches to sustain the water 47 

withdrawal permissions in order to supply the City with sufficient water for urban purposes. This has led 48 

to the identification of 4 relevant cases for water supply which fulfill the EU-WFD and which either alone 49 

or as a mix can constitute the future water supply.  50 

In this study we performed an environmental evaluation of the 4 cases for water supply since 51 

environmental performance is a well established criterion and should per se be included in any 52 

evaluation of future supply options and in our search for the optimal water supply option. One way to 53 

evaluate the environmental performance is to use life-cycle assessment (LCA) which has proven its 54 

strengths for evaluating water systems environmentally by using a “cradle-to-grave” approach (Lundie 55 

et al., 2004; Lyons et al., 2009; Godskesen et al., 2011; Schulz et al., 2012). LCA can also include effects 56 

of reduced water hardness in the households which are relevant when evaluating water systems of 57 

different water hardness (Godskesen et al., 2012). However, the impacts of a product or system on 58 

freshwater resources are not included in the current typical LCA practice. Many have previously 59 
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expressed the volume of freshwater withdrawn for water supply (Sharma et al., 2009; Lundie et al., 60 

2004) e.g. by water foot-printing (Hoekstra et al., 2011) where water is considered a resource for man 61 

rather than an environmental media with environmental impacts when withdrawn. Recently methods 62 

have been suggested to integrate freshwater use into the LCA methodology by treating freshwater 63 

withdrawal as an environmental impact category with an impact on the freshwater environment (Muñoz 64 

et al., 2010; Milà-i-Canals et al., 2009; Lévová & Hauschild, 2011; Zelm et al., 2010; Pfister et al., 2009; 65 

Kounina et al., 2012).  66 

In our study we adopted the method of Lévová & Hauschild (2011) for integrating freshwater 67 

withdrawal into the standard LCA and further developed it by applying the method to the local level of 68 

groundwater compartments via regulations and data in the national implementation of the EU-WFD. We 69 

chose the method because it has modest data requirements that can be fulfilled both at regional and 70 

local scale. It calculates the characterization factor (CF) which is a part of the freshwater withdrawal 71 

impact (FWI) based on water resource measures (Milà-i-Canals et al., 2010; Muñoz et al., 2010; Pfister et 72 

al., 2009) as opposed to native species occurrence (Zelm et al., 2010). We also applied normalization 73 

and weighting according to the local level and in accordance with the LCA methodology converting 74 

freshwater withdrawal impact to the same metric as the standard environmental LCA categories. Our 75 

method only considers freshwater withdrawal as an impact since saline water is not in shortage. Most of 76 

the Earth’s water is present in the oceans as saline water and only 2.5% is freshwater. Icecaps and 77 

glaciers make up 69% of Earth’s freshwater leaving 31% as directly available ground and surface water 78 

(Gleick, 2000). It is our hope that in future environmental evaluations of water consuming products or 79 

systems, freshwater withdrawal will be given the attention it deserves, and this is our suggestion of how 80 

to address it.  81 
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The aim of this study is to compare the environmental impact of 4 cases for water supply and include 82 

the impacts of freshwater withdrawal. 83 

2 Material and methods  84 

2.1 Life-cycle assessment 85 
A standard LCA (ISO, 2006) generally consists of 4 phases: 1. Goal and scope definition, 2. Inventory 86 

analysis, 3. Impact assessment and 4. Interpretation. Prior to the LCA we went through each phase in 87 

relationship to our study.   88 

2.1.1 Goal and scope definition 89 
The defined goal was to assess the environmental impacts of 4 cases for water supply all tailored to 90 

fulfill the requirements of the EU-WFD. Thereby the goal allowed for ranking the cases according to their 91 

environmental performance. The functional unit was production of water which fulfilled the EU-WFD’s 92 

water flow requirements for water courses where freshwater was withdrawn and replacing 1 m3 of 93 

potable drinking water as produced today. The produced water could be potable or non-potable 94 

depending on the use of the drinking water that it replaces. 95 

The system boundaries were the same for all cases (Figure 1): 1) Intake, withdrawal or harvest of water 96 

from a source which was groundwater, rain & stormwater or seawater; 2) Treatment facilities such as 97 

waterworks, desalination plant and rainwater basins, pumps, electricity consumption and auxilliary 98 

chemical consumption during water treatment were included; 3) Distribution to consumers’ taps via  99 

piped distribution system including the effects in the households caused by an altered water quality e.g. 100 

reduced water hardness for the 2 cases with lower concentration of calcium and magnesium; 4) 101 

Transport of wastewater to the wastewater treatment plant (WWTP) for treatment via the City’s 102 

combined sewer system before discharging to the sea (Øresund). Only electricity consumption at the 103 

WWTP was included since other impacts from this activity are of minor importance (Lundie et al., 2004; 104 
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Danva, 2010) and since the discharged water was assumed to contain the same pollutants for all cases 105 

and hence would not affect the comparison of the cases. An average grid mix was developed for 106 

electricity consumption based on electricity production data from 2010 in Denmark consisting of 56% 107 

hard coal, 23% wind power, 20% natural gas and 1% heavy fuel oils.  In the sensitivity analysis it was 108 

investigated how an alternative energy mix according to Danish governmental predictions on future 109 

scenarios for electricity mix would affect the results. Table 1 and section 2.3 contain details of each case. 110 

2.1.2 Inventory 111 
On the input side, the life-cycle inventory consisted of materials, chemicals and energy input primarily 112 

based on data from the water utility in Copenhagen (HOFOR) and otherwise most accurate data 113 

estimations from literature. All material and energy inputs were determined based on the functional 114 

unit. The PE database as offered by PE Consulting group was used and when pre-developed processes 115 

were not found of sufficient accuracy processes were developed according to local data estimations, e.g. 116 

electricity mix for Denmark. 117 

2.1.3 Impact assessment 118 
The LCA was performed with the GaBi 4.4 software developed by PE International according to the ISO 119 

14044 standard procedure (ISO, 2006) with the exception that a weighting step was performed. Impacts 120 

were assessed with the EDIP 1997 method which is a standardized LCA method initially developed for 121 

the Environmental Design of Industrial Products (Wenzel et al., 1997) but also found applicable for 122 

services such as drinking water supply (Godskesen et al., 2011). The impact assessment covered the 123 

steps classification and characterization, normalization and weighting. Classification meant sorting all 124 

substance flows in the LCA according to their impacts on the environment. In the characterization step 125 

the intensity of the impacts was determined by multiplying the quantities of a substance flow by its 126 

characterization factor (CF), which expresses the potential impact of the flow on a per unit level. 127 

Normalization brought all impact scores on a common scale by dividing each of them by the 128 



7 
 

corresponding normalization reference representing an average European citizen’s annual contribution 129 

within each impact category. Hereby all the impacts were expressed in person equivalents, representing 130 

the impact of consuming 1 m3 water relative to a person’s total annual impact on the environment. The 131 

result of the LCA is presented in impact categories within the EDIP method which is a midpoint method 132 

(Hauschild & Potting, 2005). Finally, the normalized impact scores were weighted using weighting 133 

factors that for the environmental impacts are based on the distance from current levels of impact to 134 

the European or Global politically set targets within each impact category (Stranddorf et al., 2005). For 135 

resource impacts the weighting is based on the scarcity of the resource. After weighting, all 136 

environmental impacts can be summed and so can all resource impacts. The weighting expresses the 137 

environmental impacts in targeted person equivalents (PET) - the annual impact that can be caused by 138 

an average citizen in accordance with the current political targets. The resource impacts are expressed 139 

as person reserves (PR) - the amount of the resource available in the currently known extractable 140 

reserves per person in the world today. We based the comparison of the 4 cases on 4 environmental 141 

impact categories: Global warming, Acidification, Nutrient enrichment and Photochemical ozone 142 

formation. Likewise, 3 chemical related toxicity categories were included: Chronic ecotoxicity in water, 143 

Human toxicity via soil and Human toxicity via water. Resource consumption was also evaluated for the 144 

relevant resources. 145 

2.2 Freshwater withdrawal impact 146 
The environmental impacts of withdrawing freshwater are not represented by any of the impact 147 

categories, and in order to support inclusion of these potentially important impacts we modified the 148 

water use impact method developed for industry by Lévová & Hauschild (2011) by applying it to local 149 

groundwater catchments. The method was further integrated into the LCA by adding both a 150 

normalization and weighting step in accordance with the EDIP methodology. This allowed for 151 
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comparison with the already established LCA impact categories since we considered freshwater 152 

withdrawal an environmental impact in accordance with e.g. global warming.  153 

The Freshwater withdrawal impact was reflected in the impact score FWI calculated by multiplying the 154 

volume of water withdrawn by each case (Q, m3) by the characterization factor for the freshwater 155 

withdrawal impact on the ecosystem (CF) representing the sensitivity of freshwater ecosystems towards 156 

freshwater withdrawal on a local level. Within the 4 phases of a standardized LCA the FWI method 157 

involved 3 special considerations since the FWI is not yet standardized: 1) Quantification from a life-158 

cycle perspective of groundwater volume withdrawn to produce the functional unit; 2) Determination of 159 

characterization factors; and 3) Normalization and weighting.  160 

2.2.1 Quantification of freshwater withdrawn 161 
The withdrawal of freshwater (Q) was quantified in the inventory of the LCA. Since this case is about 162 

water production both water withdrawn for water supply and water used throughout the life-cycle was 163 

included. In the city combined sewers lead rain & stormwater to the wastewater treatment plants 164 

where it after treatment is discharged into the Sea. Since the precipitation does not infiltrate and 165 

increase the groundwater recharge the volumes withdrawn for production were not included for cases 166 

based on rain & stormwater as well as seawater.  167 

We assumed that the water used throughout the life-cycle originated from local groundwater. Water 168 

leaving the production or returned to the same local water catchment after treatment was deducted.    169 

2.2.2 Characterization factor 170 
In the characterization step the freshwater use impact was converted into its potential impact on the 171 

freshwater environment.  The Characterization factor (CF) was calculated as follows: 172 

𝐶𝐹 = ( 𝑊𝑈
𝑊𝑅−𝐸𝑊𝑅

)(𝑊𝑅/(2𝑥𝐸𝑊𝑅))     (Lévová & Hauschild, 2011) (1) 173 
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The water use (WU), water resource (WR) and environmental water requirements (EWR), [km3/y], were 174 

extracted from the local EU-WFD plan for areas where HOFOR had well fields and only groundwater was 175 

considered for the CF. A general EWR was stated by the Danish EPA as 65% of WR for the whole country 176 

without consideration of the specific site. This is considered a precautionary decision and primarily 177 

applicable for comparison of exploitation among groundwater catchments (Danish Nature Agency, 178 

2011). This relatively high EWR has been estimated lower (35%) for the surface and groundwater 179 

catchments in the region (Smakhtin et al., 2004). We applied 65% of WR for EWR as the default and 180 

tested the application of a lower EWR in our sensitivity analysis. CFs were calculated for all local water 181 

catchments identified in the EU-WFD plans and a weighted average representing the total abstraction of 182 

HOFOR was calculated according to the volume withdrawn in each region. Hereby CFs were based on 183 

local measures of sensitivity of freshwater withdrawal and FWI was characterized to express the 184 

contribution to the standard environmental impacts from water withdrawal.  185 

2.2.3 Normalization and weighting 186 
The results for FWI were normalized by dividing with the normalization reference for the local area as 187 

water use impacts are generally considered depending on the local conditions (Lévová & Hauschild, 188 

2011). Development of a regional normalization reference was done by multiplying the total water 189 

withdrawal originating from groundwater with the regional CF and dividing by the region’s population 190 

(Statistics Denmark, 2012) thereby obtaining a reference for an average citizen in this area. The total 191 

groundwater withdrawal in the region is reported each year to a national water database (Danish 192 

Geological Survey, 2012) gathering withdrawals from water supplies, industries, agriculture, etc. The 193 

normalization step converted FWI into the common metric PE (person equivalent) as the other 194 

environmental impact categories within the LCA. The last step was weighting where the seriousness of 195 

the impact category is multiplied by a weighting factor. Since there is no weighting factor in the EDIP-196 

method for freshwater withdrawal yet, the minimum importance 1 (representing no political reduction 197 
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targets for the impact) was assumed for FWI. For comparison the weighting for the global warming 198 

impact category is 1.3. The low weight of FWI opens for investigation of the importance of FWI. A lower 199 

weighting can only occur if another approach other than distance to target is applied. The weighting 200 

allows for aggregation of FWI with the other weighted environmental impact categories of the LCA. 201 

2.3 Description of the cases 202 
We identified 4 hypothetical cases for water supply of relevance for Copenhagen in the search for the 203 

optimal water supply technology which fulfills the EU-WFD’s water flow requirements and replaces 1 m3 204 

of potable drinking water as of today. The 4 cases were: A1 rain & stormwater harvesting, A2 205 

compensating actions, A3 new well fields and A4 desalination. The existing system was also included, A0 206 

base case. A0 enabled us to compare the environmental impacts and FWI of the 4 cases with today’s 207 

water production. See Supplementary material I for inventory of LCA and FWI of the 4 cases.   208 

2.3.1 A0 Base case 209 
In 2009 the City of Copenhagen (population of 0.52 million) used a total volume of 29.8 million m3 210 

drinking water. The water is abstracted from groundwater sources located outside the city and requires 211 

only simple treatment at the waterworks in terms of aeration and sand filtration before distribution. 212 

During aeration CH4 and H2S were emitted and these are included in the LCA. The water abstraction, 213 

treatment and distribution consume only 0.27 kWh per m3 drinking water.  Since the groundwater 214 

originates from chalk aquifers the hardness is 362 mg/L as CaCO3 and categorized as very hard drinking 215 

water (US Geological Survey, 2012). Actual data on materials and consumptions for water supply were 216 

used in the assessments. After use drinking water is considered as wastewater and is transported via 217 

combined sewers to the WWTPs where it was treated before discharged to the Sea (Øresund). Electricity 218 

consumption for wastewater transportation was based on average consumption in the period 2007-09 219 

and processes at WWTP on consumptions from 2005-09 (Danva, 2010).  220 
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2.3.2 A1 Rain & stormwater harvesting 221 
In the A1 case rain and stormwater is considered harvested from an urban area of 68,500 m2 (roof area 222 

20,200 m2; main road area 8,500 m2) populated by 1,000 residents and 200 employees. Rainwater is 223 

collected from the roofs and led to an underground basin (750 m3). Stormwater from the main road is 224 

collected in large pipes (Ø1,000 mm) and led to a basin established in connection with a clarifier and 225 

pumping station controlling the flow. The clarifier separated oils from the water before it passes through 226 

a dual porosity filter. In dual filtration stormwater floats by gravity on a solid phase consisting of layers 227 

of CaCO3 particles resulting in suspended solids, heavy metals and PAHs in the stormwater being 228 

adsorbed and thereby removed (Jensen, 2009). Afterwards the treated stormwater is mixed with 229 

rainwater and stored in a basin. Prior to distribution to the same residential and office buildings as 230 

where collected the water is UV-treated. The water is of non-potable quality and is used for flushing 231 

toilets and washing clothes. The area is as most parts of Copenhagen drained by combined sewers and 232 

the decoupling of the rain and stormwater is a significant environmental advantage of A1 as electricity 233 

consumption for transport and treatment of wastewater is reduced. Rainwater is soft but since it passed 234 

through a filter of CaCO3 particles the resulting hardness of the non-potable water was 145 mg/L as 235 

CaCO3 (Jensen, 2009). This hardness is lower than in the drinking water in the base case (A0). Effects of 236 

changed hardness levels in the households were included in the LCA, i.e. decreased consumption of 237 

laundry detergent and electricity and prolonged service life of washing machine and toilets (Godskesen 238 

et al., 2012).  239 

2.3.3 A2 Compensating actions 240 
Compensating actions (case A2) cover various initiatives implemented to fulfill the requirements for 241 

water flows in watercourses to maintain the current abstraction volume as described by the 242 

implementation of EU-WFD. In this study compensating actions included abstraction of groundwater, 243 

transfer of water from lakes to watercourses and reestablishment of wetlands from forest land (Table 244 

1). Besides the various compensating actions A2 included all processes in the base case (A0). Regarding 245 
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calculation of the characterization factor (CF) it was assumed that HOFOR obtained permissions for 246 

groundwater withdrawal equivalent to the permissions before EU-WFD resulting in a CF at 247 

approximately 1.  248 

2.3.4 A3 New well fields 249 
The new well site case (A3) is also equivalent to the base case with addition of a 20 km longer pipeline 250 

from well fields to the waterworks. In A0 water is transported 5 km from well fields to waterworks. The 251 

longer distance means increased energy consumption. Regarding FWI we assumed we could find well 252 

fields with a surplus of available groundwater according to the EU-WFD within this distance. Therefore, 253 

CF was estimated to 1. 254 

2.3.5 A4 Desalination 255 
Copenhagen is situated at the entrance to the Baltic Sea (Øresund) and desalination of seawater is an 256 

option. The treatment plant is considered to be located 5 km south of the city. First, water is filtrated 257 

mechanically (150μm) to remove large particles, a coagulant is added and pH adjusted and the water is 258 

ultra filtrated where 10% of the water is lost and returned to Øresund after extraction of dry material. 259 

An anti scaling agent is added before the water passes through a 2 step reverse osmosis membrane and 260 

hydrochloric acid and sodium hydroxide are dosed regularly to clean membranes from fouling. Finally 261 

calcium hydroxide is added and the water UV treated (Rygaard, 2010). The water has a hardness of 108 262 

mg/L as CaCO3 when distributed as drinking water and the positive effects in the households due to the 263 

lower hardness were included in the LCA as for Case A1. The effects for A4 are besides the ones 264 

mentioned for A1 decreased electricity consumption when heating water (washing machine, coffee 265 

maker and kettle), decreased consumption of soap for personal hygiene, etc. (Godskesen et al., 2012), 266 

see Table 1 for all included effects.  267 
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2.4 Sensitivity Analysis 268 
Selected parameters were changed to check the robustness of the results for standard LCA impact 269 

categories and FWI and are described in Table 2.  270 

  271 
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3 Results and Discussion 272 

3.1 Standard LCA 273 
Selected inventory data for the 4 cases (A1-A4) and base case (A0) show relatively similar electricity 274 

consumptions during use stage (Table 3) for A0, A2 and A3 (3.73 – 4.44 MJ/m3) whereas it was lower for 275 

A1 (0.92 MJ/m3) due to avoidance of discharge to the combined sewers in the area and the following 276 

treatment at the WWTP. In contrast, electricity consumption (7.49 MJ/m3) was higher with desalination 277 

which is in accordance with the findings of others (Vince et al., 2008; Lyons et al., 2009). A1 (rain & 278 

stormwater harvesting) had the highest material requirement per functional unit involving 279 

infrastructure elements such as concrete, cast iron and plastics due to the construction of the storage 280 

basins and pipes. The freshwater withdrawn to deliver the functional unit (-0.0014 – 1.0201 m3 281 

groundwater) included only groundwater and not rain, storm- or seawater, leaving freshwater 282 

consumption for A1 and A4 relatively small. In our case study harvested rain & stormwater would have 283 

been included as freshwater withdrawal if it had been infiltrated into the ground (thus being part of the 284 

surface- and groundwater recharge), rather than being led into combined sewers as is the current 285 

practice.  286 

The results of the cases differ markedly for the impact scores for the EDIP impact categories (Table 4) 287 

and show that the rain & stormwater harvesting case (A1) has the lowest total aggregated 288 

environmental impact (81.9 µPET/m3). The cases relying on groundwater abstraction (A0, A2 and A3) 289 

had an environmental impact of 123.5 – 137.8 µPET/m3. A1 had a low environmental impact mainly due 290 

to the role of combined sewers and the positive effects of lower water hardness in the households. 291 

Desalination has the highest total environmental impact score (204.8 µPET/m3), primarily due to the use 292 

of electricity.  293 

The environmental impact category with the highest importance for the 4 cases is global warming 294 

potential (67-80% of the total environmental impacts; Table 4) and this impact over the life cycle of the 295 
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water production originates from different parts when dividing them into infrastructure and electricity 296 

(Fig. 2). The contribution from water treatment is relatively higher for A1 compared to the others. The 297 

cases relying on groundwater abstraction (A0, A2 - A3) show very similar patterns with little contribution 298 

from water production and more than 50% from wastewater transport and treatment. If wastewater 299 

treatment had not been included, these 3 cases would have had the lowest impact, but then the cases 300 

would not have been comparable, since the rain & stormwater harvesting reduced the amount of 301 

wastewater to be treated. This emphasizes the importance of a thorough assessment of proper system 302 

boundaries, functional unit, etc. in the preparation of an LCA (ISO, 2006). 303 

3.1.1 Effects of water hardness 304 
This study shows that a difference in water hardness of 215 mg/L as CaCO3 or higher between the 305 

systems is important to the results of the LCA (Fig. 2, negative values of A1 and A4) which is in 306 

accordance with findings of a previous study (Godskesen et al., 2012). Lower water hardness reduces 307 

global warming impact of the desalination case A4 from 224.7 to 151.4µPET and the total environmental 308 

impact from 336.7 to 204.8µPET (Table 4) equivalent to approximately 40% reduction. In comparison an 309 

increase of environmental impacts of approximately 500% was found by Lyons et al. (2009) when 310 

comparing import of freshwater over a distance of 280 km with desalination. In spite of the energy 311 

requirements of the desalination process, we found an increase of only 60% in total environmental 312 

impacts when comparing desalination with our base case. This relatively small increase is mainly due to 313 

the positive effects of reduced water hardness. 314 

Toxicity impacts of A1 and A4 are relatively low (125.7 and 180.6µPET) primarily due to reduced 315 

consumption of laundry detergent and prolonged service life of household appliances compared to the 316 

base case (Table 4). Also consumption of chromium and copper is reduced due to prolonged service life 317 

of domestic appliances and hence lower consumption of chromium for alloying of steel. These effects of 318 

reduced water hardness are also the reason for the net benefit in freshwater withdrawal of A4 (Table 3) 319 
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since it is assumed that the water extraction for manufacture of the household appliances occurs in the 320 

catchment areas. Thus the systems delivering water with reduced water hardness have relatively lower 321 

impacts regarding toxicity and resource consumptions even though included infrastructure materials or 322 

electricity consumption are higher.  323 

3.2 Freshwater withdrawal impact (FWI) 324 
Characterization factor (CF) for the FWI of groundwater withdrawal of the base case was 1.51. When 325 

either compensating the environment by water transfer to the water scarce watercourses or moving 326 

well fields out where more water is available CF was reduced to 1.38 or 1.00, respectively (Table 5). The 327 

FWIs were higher for the groundwater-based cases (A0, A2 and A3) due to higher freshwater withdrawal 328 

(Q, Table 3). FWI was negative for A4 meaning the case provides a net benefit in freshwater availability. 329 

For comparison the withdrawal-to-availability indicator (WTA) (Milà-i-Canals et al., 2009) was applied. 330 

Table 6 shows that the WTAs of our region’s groundwater resources (0.48-0.61) are similar to WTA for 331 

freshwater resources in Spain (0.33) suggesting that our withdrawal of groundwater is as severe as 332 

withdrawal of freshwater in Spain. 333 

3.2.1 Water stress index 334 
The base of the CF is also called the water stress index (WSI) which is also another way of determining 335 

environmental water balance:  336 

𝑊𝑆𝐼 = 𝑊𝑈
𝑊𝑅−𝐸𝑊𝑅

        (Smakhtin et al., 2004)  (2) 337 

WSI is categorized as presented in Table 7 (Smakhtin et al., 2004). Applying this definition to HOFOR’s 338 

groundwater catchments (1.73) shows that the withdrawal is categorized as environmental water scarce 339 

(Table 5- 7). A WSI of 1 as for A3 implies that on average the actual water use is equivalent to the 340 

utilizable freshwater volume however it still indicates environmental water stress for low flow water 341 

courses in the water catchments. Aggregating catchments for a larger area (Sjælland - Copenhagen and 342 
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nearby rural area bounded by the Sea) still results in water stress (WSI 1.37). Upscaling to national level 343 

or moving to rural areas results in low CFs and WSIs (0.05 – 0.28) indicating withdrawals which are 344 

environmentally safe (Table 6). CF has previously been considered lower (0.04) for the country when 345 

focusing on the entire freshwater resources (ground and surface water) (Lévová & Hauschild, 2011). We 346 

here show the necessity of downscaling since this is where we find the magnitude of the impact on the 347 

local water bodies. We also see the importance of distinguishing groundwater from surface water when 348 

calculating impacts of freshwater withdrawal. Surface water and groundwater are two different 349 

resources which do not present the same scarcity and may not even serve the same users or purposes, 350 

as also discussed by Boulay et al., (2011). Calculations of CF, WTA and WSI are shown in Supplementary 351 

material II.   352 

3.3 LCA and Freshwater withdrawal impact (FWI) 353 
The contribution from FWI to the total environmental impact is substantial (-0.02 – 17.04 mPET) (Fig. 3) 354 

compared to the standard impact categories (0.08 - 0.20 mPET). This is a logical consequence of water 355 

production being the activity which requires the highest withdrawal of groundwater whereas many 356 

other processes in our daily life such as transportation and heating of houses contribute markedly more 357 

to other impact categories e.g. global warming. The average drinking water consumption is 38 m3/p/y 358 

and the annual groundwater withdrawal of the region is 70 m3/p/y since groundwater is also used for 359 

industrial and agricultural purposes. The high impact of FWI underlines the importance of incorporating 360 

impacts on freshwater in the decision making process within the water sector and is in accordance with 361 

the global trend of considering water consumption a matter of high priority (Gleick, 2009; European 362 

Environment Agency, 2012).  363 

We also show that the methods previously used on national levels can be applied to local water 364 

catchments and can be integrated into the standard LCA method as an impact category (Fig. 3) focusing 365 

on the relevant local source. Including the FWI in the LCA (Fig. 3) changed the ranking of the cases 366 
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compared to the ranking by the standard LCA. The rain & stormwater case (A1) continues to have lowest 367 

impact and the desalinated seawater (A4) goes from being the highest environmental burden to the 368 

second lowest when including FWI. The cases relying on groundwater (A0, A2 and A3) obtain a higher 369 

impact due to the heavy withdrawal of groundwater which after delivery and use in the urban area is 370 

treated at the WWTP and discharged into the Sea. If reclaimed wastewater is returned to restore natural 371 

flows it would have changed the impact of the cases.  372 

Sensitivity analysis 373 

The results from the standard LCA and FWI are relatively robust as they do not change much when 374 

altering most of the selected parameters in the sensitivity analysis (Fig. 4). However future predictions 375 

of changes in electricity mix significantly decreased the environmental impacts of a standard LCA when 376 

the renewable share of the energy mix was increased. The sensitivity analysis clearly states that with an 377 

energy mix in 2050 consisting of 100% renewables the A4 desalination of seawater has the lowest 378 

impact compared to groundwater based technologies with high water hardness and no central softening 379 

applied. However, this change in water production will lead to an overall increased energy consumption 380 

which is unfavorable in terms of environmental impacts unless it is based on surplus electricity from the 381 

grid. We also see that in 2050 rain & stormwater harvesting is less favorable due to the electricity 382 

needed to build large concrete basins for storage since our model contains basins constructed with 383 

electricity mix of today. We find that changing the EWR from 65 to 35% halves the impact of the FWI. 384 

EWR is in our study somewhat arbitrary since it has been predetermined by authorities without 385 

considerations of local conditions. However, it does not change the fact that whether EWR is low or high 386 

the FWI category is significantly higher than the standard LCA categories and therefore is essential to 387 

include in our LCA (Fig. 4).   388 
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4 Conclusion 389 
This study extended the standard LCA method with the impact of freshwater withdrawal by further 390 

developing an existing method which was originally developed for assessing industrial freshwater use at 391 

a regional scale. We applied the method to the water supply system of Copenhagen where the EU-WFD 392 

puts restrictions on the available local groundwater resources. The main findings of this work include: 393 

− We developed and implemented a method to integrate freshwater withdrawal impact (FWI) 394 

into the standard LCA by applying a method previously used on national levels to the relevant 395 

local water catchments. The integration emphasizes the high importance of FWI, even when 396 

choosing the weakest weighting according to the distance-to-political-target method, compared 397 

to standard LCA categories especially within the water production sector. 398 

− Integrating freshwater withdrawal impact assessment into the standard LCA categories resulted 399 

in the cases rain & stormwater harvesting (A1) and desalination of seawater (A4) (0.09 and 0.18 400 

mPET/m3) had the lowest impact compared to the cases based on groundwater resources 401 

(11.45-17.16 mPET/m3) and this is due to a scarcity of groundwater considering the amount of 402 

available groundwater and water withdrawal in this region.  403 

− The standard LCA showed that the rain & stormwater harvesting case (A1) has the lowest 404 

environmental impact (81.9 µPET/m3) followed by the cases relying on groundwater abstraction 405 

(123.5-137.8 µPET/m3), and that A4 desalination (204.8 µPET/m3) has a noteworthy increase in 406 

environmental impact. If the rain & stormwater is not harvested it is led to combined sewers 407 

where e.g. energy is consumed to transport and treat the wastewater. Therefore, it is 408 

environmentally beneficial mainly due to energy savings to prevent precipitation from 409 

discharging into the sewers e.g. by harvesting and recycling for non-potable purposes. 410 

− It is also essential to include the beneficial effects of reduced water hardness in households 411 

when comparing the environmental impacts of water supply cases leading to water of different 412 
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hardness. Especially for desalination of seawater the reduced water hardness reduces the 413 

environmental impacts of our standard LCA by approximately 40%.   414 

− The sensitivity analysis indicated that if we have to rethink the water supply in the year 2050 415 

with an electricity mix of 100% renewable sources desalination of seawater (A4) has the lowest 416 

environmental impact when it comes to the standard LCA and FWI, provided that renewable 417 

electricity sources will be able to meet the increased electricity use that would result from a 418 

major shift towards desalination in the drinking water supply. 419 
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WSI Water stress index 
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Table 1. Processes included in the LCA modeling of the cases: A0 Base case; A1 Rain- & stormwater 
harvesting; A2 Compensating actions; A3 Building well fields 20 km further away; A4 Desalination of 
seawater. Processes are structured into the categories Water intake method, Treatment, Distribution 
and effects in the households and Transport and treatment of wastewater. See supplementary material 
for specific data. 

Processes or descriptor of the cases A0-A4 
Water intake method 
 A0  Abstraction of groundwater including establishment of well sites; Electricity for abstraction 

and transport to waterworks (5 km) 
 A1  Harvesting of rainwater (pipes to storage basin) and stormwater (transported and stored in 

large pipe lines) 
 A2  As described for A0; Establishment of wells and pumps pumping ground- and surface water 

into watercourses 3-6 months a year; Re-establishment of wetlands 
 A3  As described for A0; 25 km pipeline for transport of raw water to waterworks 
 A4 Intake of brackish seawater from Øresund 
Water treatment 
 A0 Establishment of waterworks; Aeration and sand filtration at waterworks 
 A1 Rainwater: Storage basin (700 m3); UV treatment. Stormwater: Dual porosity filtration; UV-

treatment 
 A2 As described for A0 
 A3 As described for A0 
 A4 Establishment of desalination plant; Coagulation and acid treatment; Ultra filtration; Reverse 

Osmosis; Remineralization; UV treatment   
Distribution of water and effects in the households 
 A0 Establishment of the existing piped distribution system from waterworks to tap; Water 

hardness 362 mg/L as CaCO3 - effects in households are considered zero-effect  
 A1 Piped distribution system from basin to tap; Water hardness of 145 mg/L as CaCO3 - effects in 

households leading to decreased consumption of laundry detergent, prolonged service life of 
washing machine and toilets 

 A2 As described for A0 
 A3 As described for A0 
 A4 Establishment of the existing piped distribution system from plant to tap; Water hardness of 

108 mg/L as CaCO3 - effects in households leading to decreased consumption of: Soap for 
personal hygiene; Laundry detergent; Electricity consumption (washing machine, coffee 
maker and kettle); Soap for doing dishes by hand and Salt for regeneration of ion exchanger 
fitted on dishwasher; Prolonged service life: Washing machine; Dishwasher; Coffee maker; 
Kettle and Toilets; More energy efficient district heating 

Transport and treatment of wastewater and rain 
 A0, A2, 

A3 & A4  
Pumped via combined sewer system to the wastewater treatment plant before discharged to 
the Sea (Øresund). Energy consumption is included for wastewater processes. 

 A1  Rain- & stormwater is harvested and prevented from entering combined sewer system 
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Table 2. Parameters included in the sensitivity analysis. 

Parameters changed in the 
sensitivity analysis 

Description of the change of parameter 

Electricity mix according to 
future political plans 

In the year 2020 50% of the electricity comes from renewable sources  

 In the year 2050 100% of the electricity comes from renewable sources 
(Energinet.dk, 2010; Danish Ministry of Climate, Energy and 
Building, 2012) 

Use of concrete for  
infrastructure material 

Materials reduced by 50% 

Use of plastic for  infrastructure 
material 

Materials reduced by 50% 

Service life of facilities Reduced by 25% as assets might be changed before necessary 
Harvested volumes of rain- and 
stormwater 

Increased by 10% in accordance with predictions for rainfall (case A1) 

Efficiency of water transport 65% less energy efficient in accordance with estimations of CE for 
aged well fields (case A3) 

Effects of reduced water 
hardness 

Effects in the households reduced by 25%  

Environmental water 
requirements (EWR) 

Reduced from the national figure of 65% (Danish Nature Agency, 
2011) to 35% of WR in accordance with other findings of international 
water catchments (Smakhtin et al., 2004; Pfister et al., 2009) 

 

 

Table 3. Inventory data for selected materials and electricity use for the cases in this study: A0 Base 
case; A1 Rain- & stormwater harvesting; A2 Compensating actions; A3 Building well fields 20km further 
away; A4 Desalination of seawater All parameters are given per functional unit, deliverance of 1 m3 of 
water. 

 A0 
Base case 

A1 
Rain & 

stormwater 

A2 
Compensating 

actions 

A3 
New well 

fields 

A4 
Desalination 

Direct Electricity consumption, MJ (use stage) 
 3.7248 0.9180 3.7559 4.4410 7.4921 
Concrete, kg 
 0.0080 0.4833 0.0080 0.0080 0.0458 
Cast iron & steel, kg 
 0.0143 0.0001 0.0143 0.0143 0.0175 
Plastics, kg 
 0.0009 0.1010 0.0009 0.0009 0.0012 
Freshwater withdrawal, Q (ground and surface water), m3 
 1.0010 0.0006 1.0201 1.0011 -0.0014 
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Table 4. Normalized and weighted impact scores per 1 m3 water delivered by the 4 cases, grouped after 
Environmental impacts, Toxicity impacts and Resource consumption. 

 A0 
Base case 

A1 
Rain&storm

-water 

A2 
Compensati

ng Actions 

A3 
New well 

fields 

A4 
Desalination 

Environmental impacts, µPET (Person Equivalent Targeted, weighted result) 
Total environmental imp. 123.5 81.9 123.9 137.8 204.8 

Global Warming 82.5 65.5 82.8 91.9 151.4 
Acidification 24.6 10.3 24.7 27.5 36.3 
Nutrient enrichment 14.5 7.6 14.5 16.2 23.6 
Photochem. ozone form. 1.9 -1.5 1.9 2.2 -6.5 

Toxicity impacts, µPET (Person Equivalent Targeted, weighted result) 
Total toxicity imp. 176.0 125.7 180.3 193.7 180.6 

Ecotoxicity water chronic 63.7 24.9 64.8 70.1 85.7 
Human toxicity soil 69.9 69.8 70.3 78.7 58.8 
Human toxicity water 42.4 31.0 45.2 44.9 36.1 

Resource consumption, µPR (Person Reserve) 
Chromium 17.3 -34.1 17.4 17.3 -38.3 
Copper 5.6E-02 -3.0 5.7E-02 6.3E-02 -5.3 
Hard coal 2.6 1.2 2.6 2.9 5.1 
Natural gas 1.7 1.1 1.7 1.9 2.4 

 

Table 5. Freshwater withdrawal impact (FWI) results. The characterization factors (CF) are calculated for 
the groundwater catchments where water is withdrawn. Water stress index (WSI) according to Smakhtin 
et al. (2004). For A4 FWI is -0.026. *WSI is calculated for water used to establish case A1 and A4. 

 Characterization 
factor (CF) 

Freshwater 
withdrawal 

impact (FWI) 
[mPET] 

Water 
stress 
index 
(WSI)  

Alternatives for water supply    

A0, Base case 1.51 17.04 1.73 
A1, Rain-&stormwater harvesting 1.51 0.01 *1.73 

A2, Compensating actions 1.38 15.94 1.55 

A3, New well fields 1.00 11.31 1.00 

A4, Desalination 1.51 <0.00 *1.73 
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Table 6. Calculation of Characterization Factors (CF) (Lévová & Hauschild, 2011) and Withdrawal to 
availability ratio (WTA) (Milà-i-Canals et al., 2009) for water withdrawal scaled according to regional 
groundwater catchments or international regions for freshwater (ground- and surface water). 

 Characterization 
factor (CF) 

Withdrawal to 
availability 

(WTA) 

Water stress 
index (WSI) 

Local groundwater catchments, Urban area  
Copenhagen (CE’s area) (app. 3,000 km2) 1.51 0.61 1.73 
Århus1 (772 km2) 1.36 0.52 1.49 

Local groundwater catchments, Rural area 
Vidå-Kruså 0.38 0.10 0.28 
Bornholm 0.11 0.02 0.05 

Larger scale groundwater catchments    
Sjælland (7,450 km2 incl. Copenhagen) 1.27 0.48 1.37 
Denmark (43,000 km2) 0.34 0.09 0.25 

International regions based on freshwater (Lévová & Hauschild, 2011)  
Denmark 0.04 

0.42 
1.10 

0.04 
0.33 
0.79 

0.07 
Spain 0.52 
Egypt  1.05 

1Århus is the 2nd largest city in Denmark after Copenhagen. 

 

 

Table 7. Categorization of water stress index (WSI) determining the condition of the freshwater system 
(modified according to Smakhtin et al., 2004). 

WSI Categorization 
> 1.0 Environmental water scarce 
0.6 - 1.0 Environmentally water stressed 
0.3 - 0.6 Moderately exploited 
< 0.3 Environmentally safe 

 

Figure 1. System boundaries for all 4 cases illustrating the stages included in the LCA. The study included 
the urban water cycle from water intake and treatment over distribution and effects of water hardness 
to wastewater transport and treatment. 

 

 

Figure 2. Distribution over the life cycle of processes contributing to Global warming potential for the 4 
cases for water supply. 
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Figure 3. Weighted impact results for standard LCA environmental impacts and FWI for the base case 
and 4 alternative cases for water supply. The lower bars are the result from a standard LCA, followed in 
the middle by FWI and at the top the sum of the LCA and FWI. 

 

Figure 4. Results of the sensitivity analysis on Total environmental impact of the 4 cases for selected 
parameters. The parameters “More rain, +10%”; “New well sites, 65% Energy for transportation” and 
“Effects of soft water reduced 25%” were only calculated for A1, A3 and A1 and A4 respectively as the 
parameters only had an effect for these specific cases.   


	articlepostprint
	1 Introduction
	2 Material and methods
	2.1 Life-cycle assessment
	2.1.1 Goal and scope definition
	2.1.2 Inventory
	2.1.3 Impact assessment

	2.2 Freshwater withdrawal impact
	2.2.1 Quantification of freshwater withdrawn
	2.2.2 Characterization factor
	2.2.3 Normalization and weighting

	2.3 Description of the cases
	2.3.1 A0 Base case
	2.3.2 A1 Rain & stormwater harvesting
	2.3.3 A2 Compensating actions
	2.3.4 A3 New well fields
	2.3.5 A4 Desalination

	2.4 Sensitivity Analysis

	3 Results and Discussion
	3.1 Standard LCA
	3.1.1 Effects of water hardness

	3.2 Freshwater withdrawal impact (FWI)
	3.2.1 Water stress index

	3.3 LCA and Freshwater withdrawal impact (FWI)

	4 Conclusion

	Graphical abstract
	Fig1
	Systemboundaries.vsd
	Page-1


	Fig2 Color
	Fig3 Color
	Fig4 Color
	Tables and text for figures_withouttrackchanges

