

Modernizing Bioenergy

Nygaard, Ivan

Publication date: 2012

Link back to DTU Orbit

Citation (APA): Nygaard, I. (2012). Modernizing Bioenergy [Sound/Visual production (digital)]. Workshop on Sustainable Energy for All: Powering Africa, Copenhagen, Denmark, 24/09/2012

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Modernizing Bioenergy

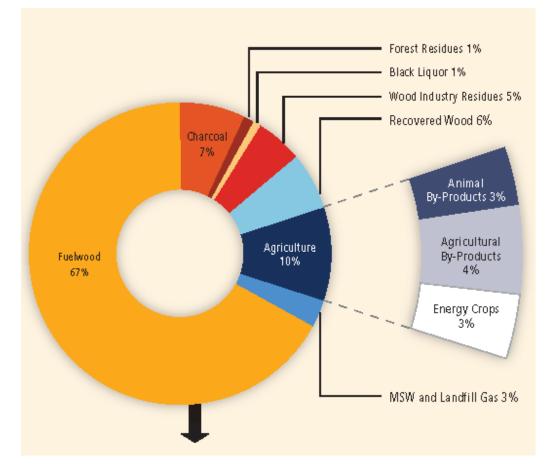
Ivan Nygaard Senior Researcher, PhD Unep Risø Centre

Sustainable Energy for All: Powering Africa Eigtveds Pakhus 24 September 2012

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

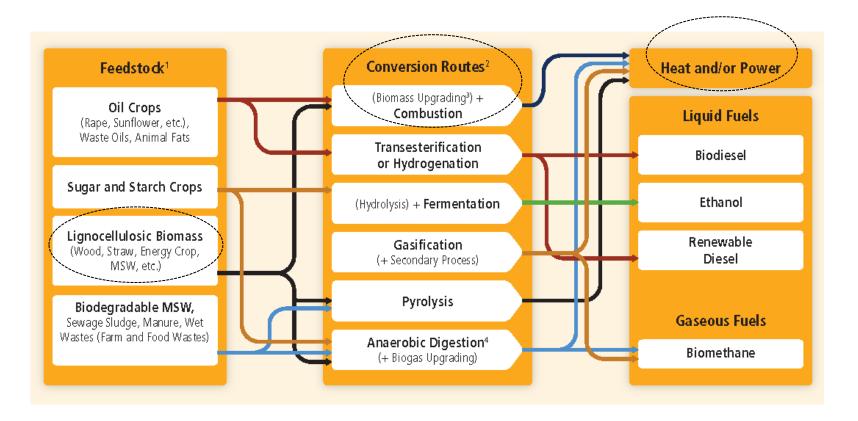
Modernizing bioenergy

- Introduction
 - Resources
 - Technologies
- Cogeneration cases
 - Cogen Malaysia
 - Cogen Africa
 - Rice straw in Mali
- Challenges
- Recommendation



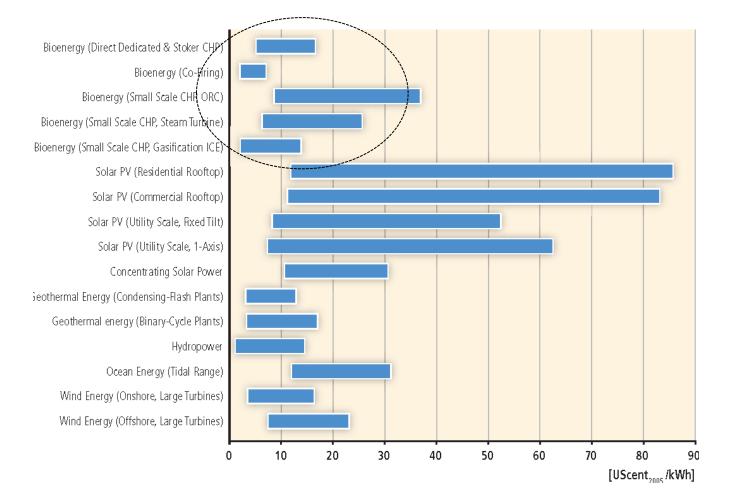
ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Modern vs. traditional biomass


Source: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Biomass technologies



Source: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Production costs for electricity

Source: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011

Technical University

of Denmark

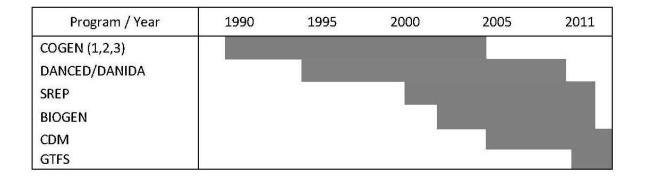
UNEP RISØ centre

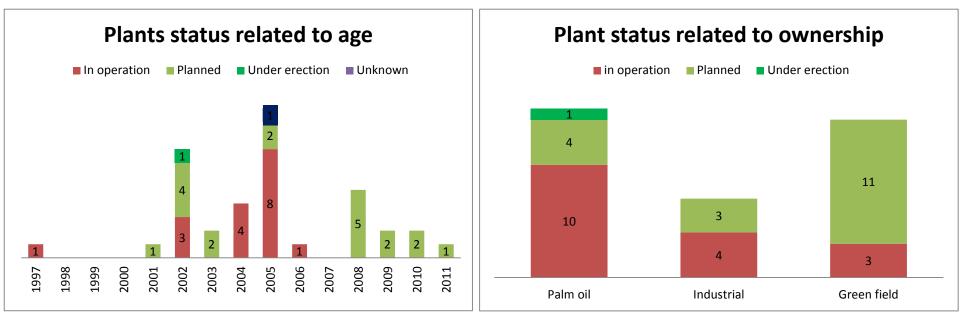
ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Co-generation on biomass

- CDM projects registered (MW electricity)

					/ \					-/	
Region/subregion		Agricultura	al residues		\$ugar	\ <mark>F</mark>	Palm oil	Paper	Fore	estrý 🔰	Total
	Mustard	Poultry lit	Rice husk	Other	Bagasse	\ F	Palm oil	Black Liqu	Sawmill	Other	
East Africa					35	5					35
Southern Africa										13	13
West Africa					25	5				4	29
Africa					60)				17	77
Central America					160)	3				163
South America			24	10	1,009)		130	185	30	1,388
Latin America			24	10	1,169)	3	130	185	30	1,551
East Asia		24	361	1,343	15	5				92	1,838
Southeast Asia			81	45	150)	162		15	22	475
Southern Asia	56	10	403	489	769	9	5	6		28	1,766
Asia & Pacific	56	34	845	1,877	934	¥	167	6	15	142	4,079
Grand Total	56	34	869	1,887	2,162	Ś	170	136	200	188	5,707
				$\overline{\bigcirc}$	$ \bigcirc $		∇				


Source: Based on UNEP Risø – CDM pipeline: <u>http://www.cdmpipeline.org/</u>, 21.09.12



Cogeneration in Malaysia

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Hansen U.; Nygaard I. (forthcoming): Sustainable energy transitions in emerging economies: The formation and up-scaling of a palm oil biomass waste-toenergy niche in Malaysia 1990-2011

Lessons learned in Malaysia

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Intervention areas

- Technical assistance
- Institutional support (Malaysia energy Centre)
- Policy analysis
- Awareness raising
- Full scale demonstration projects
- Measures:
 - Energy policy documents setting targets
 - Power Purchase agreement (Willing seller/willing buyer)
 - Direct financial support
 - Tax exemption
 - Financing schemes
 - Feed in Tariff (2011)

Challenges

- Instability of donor progr/funding
- National commitment
- PPA was an achievement but too weak
- Lack of General Feed in Tariff
- Energy production not seen as a core business for industry
- Demand for short pay back time
- Poor performance of plants for EFB
- Increasing costs of biomass due to alternative use
- Disappointment due to high expectations raised by campaigns

Lessons

- Long term involvement is necessary
- External support to policy making is challenging

Co-gen for Africa

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

COGEN FOR AFRICA

Cogeneration potential in the sugar industry in selected African countries

Country	Installed national power generation capacity from all sources (MW)	Current Cogeneration Installed Capacity (MW)	Cogen potential as percentage of total installed national power generation (%)
Ethiopia	814	13.4	1.65%
Kenya	1,197	73.0	6.10%
Sudan	1,023	55.3	5.41%
Tanzania	1,080	33.3	3.08%
Uganda	380	20	5.26%
Total	4494	195	4.34%

Sources: Gwang'ombe, 2004; Yuko et al, 2004; Kamese, 2004, Engorait, 2004; Wolde-Ghiorgis 2004; Kagucia, B., 2005; Mbithi, J.M.P., 2005; Isingoma, J.B., 2005

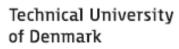
Funded by:	Global Environmental Facility (GEF), 5.3 M USD
Implementation period:	2007-2013
Co-implemented by:	United Nations Environment Programme-Division of
	Global Environment Facility (UNEP-DGEF), and
	African Development Bank (AfDB)
Executed by:	Energy, Environment and Development Network for
	Africa (AFREPREN/FWD)

Achievements September 2012

Commissioned and planned:

- Constructed and commissioned
 - 3.8 MW Electric (17 MW Thermal)
- Planned in Tea (Kenya) and Sugar (Uganda)
 - 74 MW Electric (146 MW Thermal)

Identified Potential: 197 plants, 927 MW el, Investment 1400 MUSD

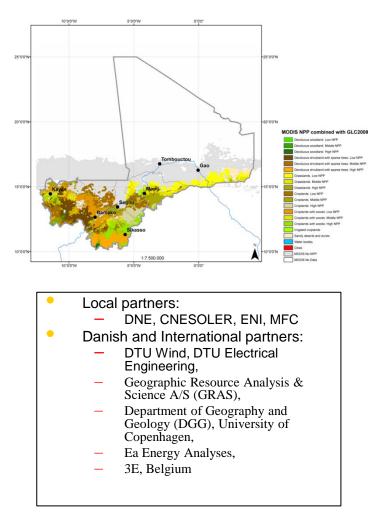

Studies commissioned

- 7 Full Feasibility Studies in Kenya (4 in Tea & 3 in Sugar Sector), 2008/2010
- 2 Full Feasibility Studies in Uganda (1 in Tea & 1 in Sugar Sector), 2009/2012

Contribution to policy formulation on Feed in tariffs:

- Kenya (2008/2010)
- Tanzania (2009)
- Malawi (2011)
- Uganda (2011)

Source: http://cogen.unep.org/

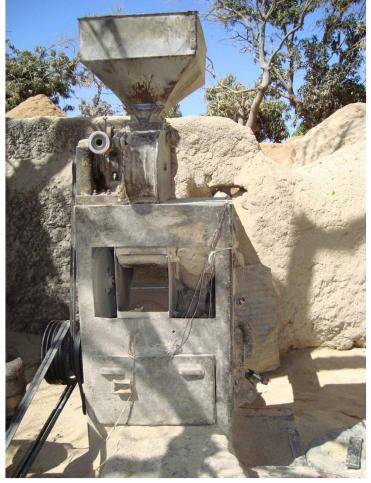


ENERGY, CLIMATE AND SUSTAINABLE

Experiences from study of straw fired power plant in Mali

DEVELOPMENT

- Project: (UNEP Risø Centre)
 - Feasibility of Renewable Energy Resources in Mali
- Resource Mapping:
 - Wind,
 - Solar and
 - Agricultural residues
- Screening of potential use of renewable energy resources in Mali
 - Solar and wind for grid connection
 - Rice straw for electricity
 - Cassava for biofuel
- Funding:
 - Danida (3 MDKK)
- Webpage:
 - http://fremali.org
 - (to be launched 1. October 2012)



Decentralised hulling of rice

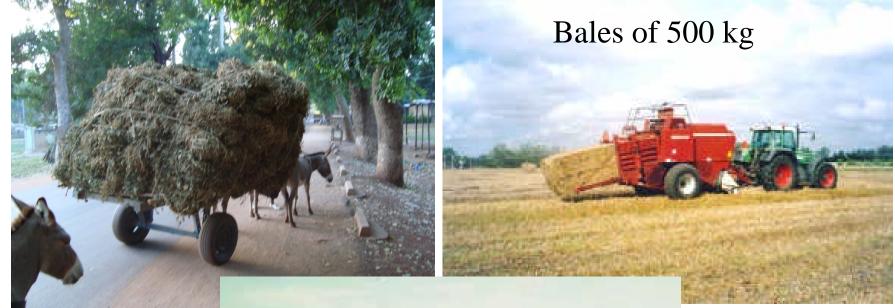
ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Technical potential of rice straw in Mali

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

From technical to sustainable resources

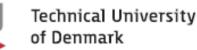
AND SUSTAINABLE DEVELOPMENT


Zone	Inter- views	Burnt in the field	Incorpo- rated into soil	Fodder for own cattle	Fodder for other cattle	Other uses	Total
Niono	62/20	22%	11%	31%	35%	-	100%
N'debougou	61	19%	10%	12%	59%	0%	100%
Molodo	60	12%	7%	18%	61%	2%	100%
Macina	80	2%	35%	38%	21%	4%	100%
Mopti nord	40	3%	0%	25%	72%	0%	100%

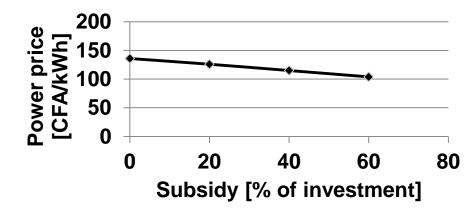
Zone	Macina	Bewani	<mark>Niono</mark>	Molodo	Kourou-	N'debou-	Total
					mari	gou	
Harvest avr. 2009-2010	105,455	70,153	85,640	52,081	104,699	85,522	503,549
Grain to straw ratio	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Technical resource	79,091	52,614	<mark>64,230</mark>	39,060	78,524	<mark>64,141</mark>	377,660
Share being burned	2%	18%	<mark>22%</mark>	<mark>12%</mark>	18%	<mark>19%</mark>	15%
Sustainable resource	1,582	9,471	<mark>14,131</mark>	4,687	14,134	12,187	56,191

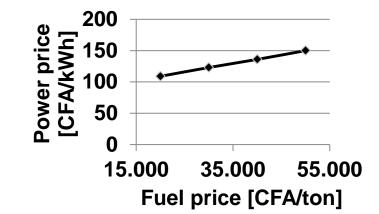
Adapting technologies

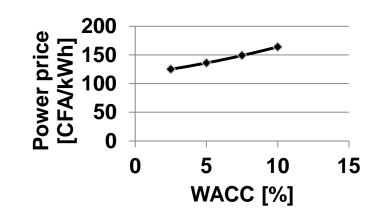
ENERGY, CLIMATE AND SUSTAINABLE


UNEP RISØ centre

Adapting technologies




Economic feasibility



ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

- Size: 5 MW_electrical
- Fuel: Rice straw (80%) and rice hulls (20%)
- Technology: Grate fired boiler, steam turbine, air cooled condenser
- Efficiency: 24,6 % at full load. 20
 % as yearly average.
- **Operation**: Base load (6.400 h/year)

Lessons learned

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Opportunities

- Economic feasible compared to diesel generation
- Nearby sugar factory possessing knowhow on cogeneration
- Local job creation
- Use of national resources
- Reduction of greenhouse gas emissions
- Energy security, reducing dependency on imported diesel

Challenges

- Who should Built, Own and Operate ?
- Difficult access to finance ?
- Uncertainty on future sales prices
 - Power purchase agreements, only one of its kind
 - No standard feed in tariff
- Uncertainty on price and delivery of feed stock
 - Long term contracts with small holders on price and delivery ?
- Limited developer interest
 - Limited national market for this type of plant
 - Demonstration only ?
- Political stability

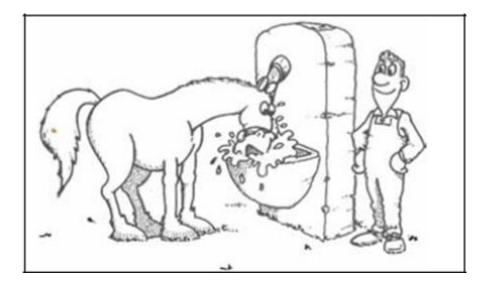
Conclusion

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Opportunities

- High and relative stable oil prises increasingly makes biomass cogeneration economic feasible
- Technologies are mature, and can be adapted and diffused in Africa
- Resources are available, although most often in competition with other use

Measures


- Long term interventions
- Stable enabling framework for investment (political stability)
 - Standard power purchase agreements
 - Feed in tariffs
- North South and increasingly
 South South cooperation
- Access to finance
- Awareness rising
- Training for technical skills to maintain and operate the installations

ENERGY, CLIMATE AND SUSTAINABLE DEVELOPMENT

Be patient – diffusion of technologies takes time !

Thanks for your attention