
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

The suffix-free-prefix-free hash function construction and its indifferentiability security
analysis

Bagheri, Nasour; Gauravaram, Praveen; Knudsen, Lars Ramkilde; Zenner, Erik

Published in:
International Journal of Information Security

Link to article, DOI:
10.1007/s10207-012-0175-4

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Bagheri, N., Gauravaram, P., Knudsen, L. R., & Zenner, E. (2012). The suffix-free-prefix-free hash function
construction and its indifferentiability security analysis. International Journal of Information Security, 11(6), 419-
434. DOI: 10.1007/s10207-012-0175-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13799292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10207-012-0175-4
http://orbit.dtu.dk/en/publications/the-suffixfreeprefixfree-hash-function-construction-and-its-indifferentiability-security-analysis(292dc828-9843-40c4-9397-a6428f766f18).html


Int. J. Inf. Secur. (2012) 11:419–434
DOI 10.1007/s10207-012-0175-4

REGULAR CONTRIBUTION

The suffix-free-prefix-free hash function construction
and its indifferentiability security analysis

Nasour Bagheri · Praveen Gauravaram ·
Lars R. Knudsen · Erik Zenner

Published online: 12 September 2012
© Springer-Verlag 2012

Abstract In this paper, we observe that in the seminal
work on indifferentiability analysis of iterated hash func-
tions by Coron et al. and in subsequent works, the initial
value (I V ) of hash functions is fixed. In addition, these indif-
ferentiability results do not depend on the Merkle–Damgård
(MD) strengthening in the padding functionality of the hash
functions. We propose a generic n-bit-iterated hash function
framework based on an n-bit compression function called
suffix-free-prefix-free (SFPF) that works for arbitrary I V s
and does not possess MD strengthening. We formally prove

A portion of this project and initial submission were done when the
author was a postdoc researcher in the Department of Mathematics,
Technical University of Denmark sponsored by Danish Council for
Independent Research–Technology and Production Sciences (FTP)
grant number 09-066486/FTP. Part of this work was done when the
author was visiting CR RAO Advanced Institute of Mathematics,
Statistics and Computer Science (AIMSCS), India. A portion of this
project and initial submission were done when the author was
employed in the Department of Mathematics, Technical University of
Denmark.

N. Bagheri
Electrical Engineering Department, Shahid Rajaee Teacher Training
University, 16788-15811 Tehran, Iran
e-mail: NBagheri@srttu.edu

P. Gauravaram
Tata Consultancy Services Innovation Labs, Tata Consultancy Services
Limited, Deccan Park, Plot No. 1, Software Units Layout,
Madhapur, Hyderabad 500081, India
e-mail: p.gauravaram@tcs.com

L. R. Knudsen
Department of Mathematics, Technical University of Denmark,
Matematiktorvet, Building S303, 2800 Kongens Lyngby, Denmark
e-mail: lars.r.knudsen@mat.dtu.dk

E. Zenner (B)
University of Applied Sciences Offenburg,
Badstrasse 24, 77652 Offenburg, Germany
e-mail: erik.zenner@hs-offenburg.de

that SFPF is indifferentiable from a random oracle (RO) when
the compression function is viewed as a fixed input-length
random oracle (FIL-RO). We show that some hash function
constructions proposed in the literature fit in the SFPF frame-
work while others that do not fit in this framework are not
indifferentiable from a RO. We also show that the SFPF hash
function framework with the provision of MD strengthening
generalizes any n-bit-iterated hash function based on an n-bit
compression function and with an n-bit chaining value that
is proven indifferentiable from a RO.

Keywords Indifferentiability · Merkle–Damgård · MD
strengthening · Random oracle · SFPF

1 Introduction

The problem. The Merkle–Damgård (MD) hash function
construction [9,19] has influenced the design of many pop-
ular hash functions such as the SHA [20] and RIPEMD [10]
families. In MD hash functions, a fixed input-length com-
pression function is iterated to hash an arbitrary length mes-
sage. The MD construction has a security reduction [9,19]
that shows that a collision for the hash function implies a
collision for the compression function. This is achieved by
including the length of the message as part of the message
padding. This technique has been termed MD strengthening
[16]. It is interesting to note that the security reduction of the
MD construction is valid for arbitrary initial values (I V s).
Damgård [9] also observed that a similar reduction is possible
in an iterated hash function construction if the IV is fixed but
no message length is appended. Preneel [21] recommended
fixing the IV as well as employing MD strengthening, and this
is also what is used for many hash functions used in practice
such as the SHA and RIPEMD families.

123



420 N. Bagheri et al.

At CRYPTO 2005, Coron et al. [7] provided a strong
notion of security for hash functions, which requires a hash
function to behave like a random oracle (RO) [3] when the
underlying building block is a fixed input-length random ora-
cle (FIL-RO) or an ideal cipher. The main application of this
property is that any cryptographic protocol proven secure in
the RO model will remain secure even if we plug in a hash
function satisfying Coron et al. security notion in the place of
a hash function that is assumed to be a RO. Under this notion,
Coron et al. showed that MD is insecure even if the under-
lying compression function is an FIL-RO. They also pro-
posed chopMD, three variants of prefix-free MD (PFMD),
NMAC, and HMAC constructions as secure variants for the
MD construction and proved them as ROs in the indifferen-
tiability security framework of Maurer et al. [18]. Subsequent
research either improved [4–6,11] or extended the analysis
by Coron et al. to other hash function constructions [2,12].

We observe that the indifferentiability analysis of the MD
variants by Coron et al. [7] and its improvements [4–6,11] fix
the IV of the hash function constructions and do not depend
on the MD strengthening. This observation has led to the fol-
lowing interesting questions: Is it important for these indif-
ferentiability results that the I V stays fixed? If so, then a
natural question may be if it is possible to find similar con-
structions that are indifferentiable from a RO and where it is
not necessary that the I V is fixed? What are the advantages
of such hash function constructions? In this paper, we aim to
seek answers for these questions.

Main contribution. In this paper, we consider the scenario
in which the I V of the hash function is not fixed in the hash
function specification. We call such designs free-IV hash
functions. In these hash functions, the I V becomes just a
part of the hash function input and it is under the control
of the adversaries who try to analyze the hash functions.
We identify properties that are necessary and sufficient for
a free-IV hash function to be indifferentiable from the RO.
Namely, a free-IV iterated hash function with an underlying
FIL-RO compression function must be both prefix-free and
suffix-free (SFPF) to be indifferentiable from a RO. We pro-
pose a generic n-bit hash function construction called SFPF
based on an n-bit FIL-RO compression function without the
provision of MD strengthening. We formally prove that the
SFPF hash function is indifferentiable from a RO when
the underlying compression function is a FIL-RO. This is
our main result.

Significance. The main practical benefit of the generic SFPF
hash function construction is that it gives a richer space from
which one can design hash functions indifferentiable from
a RO. The SFPF construction generalizes both the fixed-IV
and free-IV hash functions that are indifferentiable from a
RO. The SFPF hash framework and its indifferentiability

security allows us to better understand the effect of I V s and
MD strengthening on the hash function constructions derived
from MD in a more formal way than permitted by the prior art.
This is further strengthened by the following results derived
from our main result:

1. In general, the upper bound of indifferentiability of an
n-bit-iterated hash function with n-bit internal state is at
most 2n/2. For example, constructions such as PFMD,
HMAC and NMAC have indifferentiability bound of at
most 2n/2 [4–7,11]. As shown in our analysis of SFPF
hash function (Sect. 4), an adversary’s advantage to dif-
ferentiate SFPF construction after making q queries is
at most 4q2/2n . This leads to an upper bound of indif-
ferentiability of 2(n−2)/2 for the SFPF construction. In
general, this is the indifferentiability bound of an (n−2)-
bit-iterated hash function with an internal state of size
(n − 2) bits. Thus, the indifferentiability bound of an
n-bit SFPF construction is reduced by 2 bits when com-
pared to the general indifferentiability bound of at most
2n/2 attained by most other n-bit designs with n-bit inter-
nal state. This result shows that even by exerting control
over the I V s, the adversary gains negligible additional
advantage to differentiate the SFPF hash function when
compared to a fixed-IV indifferentiable hash function.

2. We show that under the SFPF framework, one variant of
PFMD [7] as well as HMAC hash functions is indifferen-
tiable when their IVs are set free. We demonstrate attacks
that show that two variants of PFMD [7] are not indiffer-
entiable when their IVs are set free. Similar attacks can
be applied on chopMD and NMAC.

3. An interesting consequence of our main result is that we
can show that variants of MD that are not indifferen-
tiable from a RO in the free-IV setting (i.e., two variants
of PFMD, NMAC, and chopMD [6]) as indifferentiable
designs with the provision of MD strengthening. This fea-
ture bears resemblance with collision resistance security
reduction of MD framework that also holds only with the
provision of MD strengthening even for arbitrary I V s.
Therefore, our result implicitly shows the significance of
MD strengthening on the indifferentiability security of
certain hash function modes.

Security proof methodology. We prove the indifferentiabil-
ity security of the SFPF framework by using a game-playing
argument, a method that was successfully used in the indif-
ferentiability analysis of the MD variants [2,7,12]. Precisely,
our method can be seen as a “dual” of the method used to
prove the indifferentiability of the EMD construction [2].
However, the indifferentiability security proof of the SFPF
hash function has some new techniques compared to those
of [2,7,12] as briefly noted below:
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The suffix-free-prefix-free hash function construction 421

– The game-playing methodology used in [2,7,12] assumes
that the I V of these functions is fixed and hence is
not directly useful to prove the indifferentiability of the
SFPF hash function. For instance, the proofs of [2,12]
use tables and a single tree structure to store adversarial
queries/responses and establish connections among the
table entries respectively. In contrary, we develop a series
of games from scratch using multiple trees and tables to
prove the indifferentiability of the SFPF hash function.

– The indifferentiability security proofs of hash functions
in [2,7,12] only formally show that the so-called mes-
sage extension attack [7,17] on the MD construction does
not apply to its variants. The techniques employed in the
indifferentiability analysis of the SFPF framework, how-
ever, also take into consideration other attacks such as
pseudo collisions (collisions using distinct I V s) for the
MD construction.

Guide to the paper. Section 2 introduces notation and def-
initions. In Sect. 3, the generic SFPF hash construction is
introduced, and its indifferentiability security proof is pro-
vided in Sect. 4. In Sect. 5, we show the indifferentiability of
some hash functions in the free-IV setting and constructions
that do not fit into the SFPF framework. In Sect. 6, we show
that the free-IV hash functions with MD strengthening are
indifferentiable from a RO. Section 7 concludes the paper.

2 Preliminaries

In this section, some basic notation and definitions are intro-
duced. Some notation specific to the indifferentiability analy-
sis of the SFPF hash function is introduced in Sect. 4.

2.1 Notation

We denote by X‖Y the concatenation of two binary bit strings
X and Y , and by X | j the value of X truncated to its j lower
bits. |X | represents the length of the string X in bits. An
empty string is denoted by �. Assigning to X a random

value from {0, 1}z is denoted by X
$← {0, 1}z . We denote

by X ← {0, 1}z assigning a z-bit string to X and by X ← Y
assigning the output of the expression Y to X . We denote by
R : {0, 1}∗ → {0, 1}n a random oracle with n-bit output.

Any n-bit hash function mode constructed by iterating
a compression function f is denoted by H f : {0, 1}∗ →
{0, 1}n . In this paper, we use the notation H f to represent an
iterated hash function either based on a compression function
f or several distinct compression functions (e.g., f1, f2, . . .)
in accordance with the context being considered. For exam-
ple, when we deal with the prefix-free (resp. suffix-free) hash
function, H f refers to the prefix-free (suffix-free) hash func-

tion. Similarly, when we deal with the SFPF design, H f

refers to SFPF based on three distinct compression functions
f1, f2 and f3.

The input message M to a hash function is preprocessed as
M = M1‖M2‖ . . . ‖MN where Mi are the message blocks of
m bits each and N is the total number of blocks. We assume
that |M | is a multiple of m, if necessary by appending a pad of
type pad = 1‖0 . . . ‖0 to M . Whenever MD strengthening
is included as part of pad, we mention it explicitly. The
maximum allowable number of message blocks in a message
including padding is denoted by N max. The chaining values
(intermediate hash values) of H f (M) are denoted by yi for
i = 1, . . . , N − 1 where yi = f (yi−1, Mi ). y0 is the I V and
yN is the hash value.

2.2 Indifferentiability

Definition 1 [7,18] A hash function H f with oracle access
to an ideal primitive f is said to be (tA, tS, q, ε) indifferen-
tiable from a random oracle R if there exists a simulator S,
such that for any computationally unbounded distinguisher
A with oracle access to (H f , f ) and (R, S) respectively
denoted by A(H f , f ) and A(R,S), it holds that:

Adv
indi f
R,S (A) =

∣
∣
∣Pr

[

A(H f , f ) ⇒ 1
]

− Pr
[

A(R,S) ⇒ 1
]∣
∣
∣ ≤ ε

The simulator has oracle access to R and runs in time at
most tS . The distinguisher A runs in time at most tA and
makes at most q queries. H f is said to be (computationally)
indifferentiable from R if the bound ε is a negligible function
of the security parameter k, where in the case of hash function
k is replaced by n, the output length of hash function.

We denote the maximum number of message blocks in a
single query by τ where τ = 1 for ( f/S) and τ ≤ N max for
(H f /R). In addition, we denote the total number of queried
messages by q. The security parameter k refers to the size of
the hash value in bits. For any function U , we denote by Û
the ideal U and by Ū either U or Û . For example, if H f is

a hash function, q H̄ f
denotes the total number of queries to

either H f or the ideal hash function Ĥ f . Note that Ĥ f can
be also a random oracle R.

Similar to the simulators used in the indifferentiability
analysis of the MD variants [2,4,5,7,11,12], the simulator
used in the indifferentiability analysis of the SFPF hash func-
tion H f maintains a history of all previous query relations,
that is, pairs of adversary queries and simulator responses.
However, unlike in the prior works, the simulator presented in
this paper does not know the I V value of H f before a query
has been made to H f /R. We denote the i th query-response
relation by Q Ri : {Q Rq

i → Q Rr
i }, where Q Rq

i is the i th
query and Q Rr

i is the corresponding response. The simula-
tor stores all previous distinct query-response sets Q Ri in a
table T , that is after each query Q Rq

i , if no entry T [Q Rq
i ]

exists, a new entry is added to T .
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422 N. Bagheri et al.

2.3 Iterated hash function constructions

We review the MD construction and some of its indiffer-
entiable variants proposed by Coron et al. [7]. The other
schemes of Coron et al. as well as the EMD and MDP con-
structions are defined in “Appendix 1”.

MD hashing. Let M = M1‖ . . . ‖MN be a padded and MD
strengthened message such that |Mi | = m for i = 1 . . . N .
Given a compression function f : {0, 1}n × {0, 1}m →
{0, 1}n , the MD hash value of M is computed as MD f (M) =
f ( f (. . . f (I V, M1), . . .), MN ).

PFMD constructions. Each PFMD construction uses a
padding function g which ensures that for any two messages
M, M ′ with M 	= M ′, g(M) cannot be a prefix of g(M ′).
Three variants of PFMD are described in Algorithms 5–7 in
“Appendix 1”.

HMAC and NMAC constructions. The HMAC hash con-
struction (Algorithm 8 in “Appendix 1”) hashes a message
by applying the same MD f function twice, using the same
IV. HMAC is a special case of the NMAC construction that
is not discussed in detail here.

ChopMD constructions. The ChopMD construction is an n-
bit MD hash where s out of n bits of the hash value are
chopped, thus producing an (n−s)-bit hash value. Its variant
ChopPFMD does the same for the PFMD construction [6].

SFPF constructions. The SFPF construction is an n-bit-
iterated hash function, with free-IV, which ensures that it
is not feasible in polynomial time to use H f (I V, M) in the
calculation of H f (I V ′, M ′) for any two messages M, M ′
with M 	= M ′.

3 Building an SFPF hash function construction

In this section, we first present properties that the free-IV hash
functions should have in order to be indifferentiable from a
RO and then propose SFPF hash function construction.

Prefix-free hash functions. The variants of MD discussed in
Sect. 2.3 share the unique property that their last message
block is processed differently from the previous blocks in
some way. For example, in PFMD f

g2(M), the last block of
M has always a bit ‘1’ as the prefix while all other blocks
always start with a ‘0’ bit. Hence, when an adversary A tries
to differentiate any of these schemes from RO , the simu-
lator S can recognize the potential last message block in
A’s queries. That is, A cannot use H f (I V, M) to calcu-
late H f (I V, M‖M ′), for any M ′ 	= �. In this sense, all the

variants of MD proven indifferentiable by Coron et al. [7]
are prefix-free. In the same way, for these MD variants, the
simulator can recognize the potential first message block in
A’s queries, since these queries have the structure (y0, M̂),
where y0 is the publicly known I V and M̂ ∈ {0, 1}m is some
message block. The simulator S can then predict the proba-
ble messages that A can derive from its queries to S in order
to compare them with the responses by R. Therefore, S can
respond to A’s queries appropriately.

Now, we formally define a more general definition of a
prefix-free hash function compared to the PFMD construction
presented in Sect. 2.3. To our knowledge, no formal defini-
tions for prefix-free hash function and suffix-free hash func-
tion were provided in the literature although some research
works [1] addressed the importance of prefix-freeness in hash
functions for the security of applications.

Definition 2 A hash function H f with oracle access to an
ideal primitive f is said to be (tA, q, ε)prefix-free hash
function if given H f (I V, M), for any computationally
unbounded adversary A with oracle access to H f and f
it holds that:

AdvP F−H f
(A) = Pr [M $← {0, 1}∗; I V

$← {0, 1}n;
(M ′, Y )←A(H f (I V, M), |M |) :
(M ′ 	= �) ∧ (|(M‖M ′)|
= O(|M |)) ∧ (H f (I V, M‖M ′) = Y )] ≤ ε

where, the adversary A runs in time at most tA and makes
at most q queries. H f is said to be (computationally) prefix-
free if the bound ε is a negligible function of the security
parameter k.

Suffix-free hash functions. Any adversary A trying to dis-
tinguish a free-IV hash function (H f , f ) from (R, S) can
choose any I V value in its queries. Hence, the simulator
S can no longer use a known I V value to determine the
start of the messages queried by A. However, there could
be other unique properties related to the first block that can
be used by S to determine the potential first message block.
Informally speaking, in hash functions that possess such a
property, the adversary A cannot use H f (I V, M) to con-
struct H f (I V ′, M ′), for any I V ′ and any M ′ 	= �, such that
M = M ′′‖M ′. We call this class of hash functions suffix-free
hash functions.

Now, we formally define a suffix-free hash function as
follows:

Definition 3 A hash function H f , with oracle access to
an ideal primitive f and padding function g(.), is said to
be (tA, q, ε) suffix-free hash function if given H f (I V, M)

and all related chaining values, for any computationally
unbounded adversary A with oracle access to H f and f
it holds that:
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The suffix-free-prefix-free hash function construction 423

AdvSF−H f
(A) = Pr [M $← {0, 1}∗;

I V
$← {0, 1}n;m1‖ . . . ‖m N ← g(m);

(I V ′, M ′, Y )←A(H f (I V, M), |M |,
f (I V, m1), f ( f (I V, m1), m2), . . .) :
((I V, M) 	= (I V ′, M ′)) ∧ (M ′ 	= �)

∧(M = M ′′‖M ′) ∧ (H f (I V, M)

= H f (I V ′, M ′) = Y )] ≤ ε

where g(M) is the padding function and the adversary A runs
in time at most tA and makes at most q queries. H f is said to
be (computationally) prefix-free if the bound ε is a negligible
function of the security parameter k.

By assuming that the compression function is a FIL-RO, a
suffix-free hash can be constructed, for example, by encoding
a bit ‘1’ and a bit ‘0’ as the starting bit in the first and the
remaining blocks of the message respectively.

Remark 1 We remark that fixed-IV hash functions that are
prefix-free are also prefix-free when the I V is made free.
However, in this setting, assuming that compression func-
tions are FIL-ROs, prefix-freeness by itself may not be suffi-
cient for the indifferentiability of these hash function modes.
We show this in detail in Sect. 5 by demonstrating differentia-
bility attacks on free-IV PFMD f

g1 and free-IV PFMD f
g2 . On

the other hand, fixed-IV hash functions that are suffix-free
are not necessarily suffix-free when the I V is made free.
For example, the designs PFMD f

g1 and free-IV PFMD f
g2 with

fixed-IV are suffix-free but not when the I V is made free.

Below we show that an iterated hash function that is not
prefix-free or suffix-free is not indifferentiable from a RO,
demonstrating the significance of these properties in the
design of indifferentiable iterated hash functions.

Theorem 1 Any iterated hash function H f that is not prefix-
free or suffix-free is differentiable from RO, for any simulator.

Proof Let H f denote an iterated hash function based on an
ideal primitive f , and R a random oracle and S a simulator
for f . If H f is not (tA, q, ε) prefix-free, then there exists an
adversary A running in time tA and making at most q queries
(to H f and/or f ) for which:

Pr [M $← {0, 1}∗; I V
$← {0, 1}n; (M ′, Y )←A(H f (I V, M), |M |) :

(M ′ 	= �) ∧ (|(M‖M ′)| = O(|M |)) ∧ (H f (I V, M‖M ′) = Y )] > ε

Then, to differentiate (H f , f ) from (R, S), we can con-
struct A′ from A, defined as follows:

1. Choose random (I V, M) and let Y be the result of apply-
ing H̄ f to (I V, M).

2. Use A to compute M ′ 	= � and Y ′ = H f (I V, M‖M ′),
such that |(M‖M ′)|=O(|M |),with probability ε′ > ε.

3. queries for H̄ f (I V, M‖M ′) and receives Y ′′.
4. Output 1 if Y ′′ = Y ′, or 0 otherwise.

In the above attack, the adversary outputs “1” if H̄ f is
H f with a non-negligible probability ε′ > ε whereas this
probability for RO and any simulator would be 2−n , because
the simulator has no knowledge of M to answer adaptively.
Hence, for an iterated hash function with/without a free-IV to
be indifferentiable, it is necessary for it to be prefix-free. We
would now like to state that A′ is a (tA′ , q ′, ε′) distinguisher
between (H f , f ) and (R, S), for suitable tA′ , q ′ and ε′.

On the other hand, if H f is not (tA, q, ε) suffix-free, then
there exists an adversary A running in time tA and making
at most q queries (to H f and/or f ) for which:

Pr [M $← {0, 1}∗; I V
$← {0, 1}n;

m1‖ . . . ‖m N ← g(m); (I V ′, M ′, Y )

←A(H f (I V, M), |M |, f (I V, m1), f ( f (I V, m1), m2), . . .) :
((I V, M) 	= (I V ′, M ′)) ∧ (M ′ 	= �) ∧ (M = M ′′‖M ′)
∧(H f (I V, M) = H f (I V ′, M ′) = Y )] > ε

Then, to differentiate (H f , f ) from (R, S), we can construct
A′ from A, defined as follows:

1. Choose random (I V, M) and let Y be the result of apply-
ing H̄ f to (I V, M).

2. Use A to compute (I V ′, M ′) 	= (I V, M) such that
Y = H f (I V ′, M ′) and M = M ′′‖M ′, with probability
ε′ > ε.

3. queries for H̄ f (I V ′, M ′) and receives Y ′.
4. Output 1 if Y = Y ′, or 0 otherwise.

In the above attack, the adversary outputs “1” if H̄ f is
H f with a non-negligible probability ε′ > ε whereas this
probability for RO and any simulator would be 2−n , because
finding a collision in RO is expected to cost 2n/2. Again, we
would now like to state that A′ is a (tA′ , q ′, ε′) distinguisher
between (H f , f ) and (R, S), for suitable tA′ , q ′ and ε′.

Hence, for an iterated hash function with a free-IV to be
indifferentiable, it is necessary for it to be both prefix-free and
suffix-free. Otherwise, the construction would not be indif-
ferentiable from RO , for any simulator. �

Remark 2 In the proof of Theorem 1, we have omitted the
details of a padding function that may be used in a hash
function that is not prefix-free or suffix-free. However, it has
no influence on our analysis because the discussion easily
extends to the padded version. More precisely, although dif-
ferent hash functions use different padding functions, many
of them append a sequence of bits which includes the length
of the original message to the end of the message. Hence,
this sequence can also be included in the produced M ′. It
is exactly the approach that is used to do length extension
attack on the MD hash function.
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SFPF hash functions. It is possible to construct a hash func-
tion that is both suffix-free and prefix-free (SFPF) for mes-
sages of at least two blocks. For example, we can encode a
message of at least two blocks in the MD construction by pre-
fixing two 0 bits (“00”) in the first block (suffix-free padding),
prefixing a “10” pair in the last block (prefix-free padding)
and prefixing two 1 bits (“11”) in every intermediate mes-
sage block. Hence, for an SFPF hash function construction,
the adversary A cannot use H f (I V, M) to construct either
H f (I V ′, M ′) (such that M = M ′′‖M ′) or H f (I V, M‖M ′)
for any I V, I V ′, M , and M ′ 	= �.

3.1 SFPF hash function construction

The SFPF hash function can be constructed as follows: Con-
sider a free-IV iterated hash function based on the FIL-RO
compression function f : {0, 1}n+m → {0, 1}n but without
MD strengthening. Let M be the arbitrary length message to
be processed. We split M into blocks M1‖ . . . ‖MN such that
each block is of size m − 2 bits, if necessary by appending
the last block MN with pad bits. Recall that pad does not
include MD strengthening. We let the first f process the first
m − 2 bits of M combined with the two suffix-free padding
bits and the final f process the last message block combined
with the two prefix-free padding bits. Each of the remaining
blocks of M is prefixed with two bits, distinct from the com-
bination of the bits used in the first and the last block, and
processed by the same compression function f .

Alternatively, we can consider processing the message in
the above setting with an iterated hash function based on three
distinct FIL-RO compression functions fi : {0, 1}n+m →
{0, 1}n for i = {1, 2, 3}. We remark that this description is
comparable with that of the 6-round Luby-Rackoff construc-
tion based on six distinct FIL-ROs [8]. In this alternative
description, we divide M into m-bit blocks M1‖ . . . MN (if
necessary by appending the last block MN with pad bits).
We employ f1 to process the first m-bit block, f3 to process
the last m-bit block and f2 to process the intermediate m-
bit blocks as described in Algorithm 1 and shown in Fig. 1.
We denote by H f the SFPF construction based on fi for
i = {1, 2, 3}, and by f we mean f1, f2, and f3. Note that
the PFMD f

g2 construction defined in Sect. 2.3 can also be
seen as based on two distinct FIL-RO compression functions

as it pads last block differently compared to the remaining
blocks.

Algorithm 1: Hash construction SFPF
Input: y0 ∈ {0, 1}n , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m

// IV is free

y1 ← f1(y0, M1) // mark the beginning
yi ← f2(yi−1, Mi ) for 2 ≤ i ≤ N − 1 // yi−1 for
2 ≤ i ≤ N − 1 are the chaining values
y′ ← f3(yN−1, MN ) // mark the end
return y′

Our SFPF hash function is generic but not the most generic
SFPF. The SFPF design defined in Algorithm 1 is generic
from the view that the compression functions f1, f2 and f3

can be defined in different ways. Basically, for any SFPF
hash function design, the way the first block and last block
are processed should be distinguished in some way. As noted
before, one such way is to have a single compression func-
tion in the iteration and processing the first message block
with “00” as the prefix, last message block with “10” as
the prefix and all intermediate blocks with “11” as the pre-
fix. However, we remark that our SFPF based on 3 distinct
compression functions is not the most generic SFPF hash
function construction as all SFPF hash functions may not be
of this form. That is, it may be possible to provide an SFPF
scheme that does not match our framework. For example,
by replacing each function f2 in the iteration in our SFPF
with a distinct compression function, an SFPF scheme with
a different form can be obtained. In the following section,
we consider the indifferentiability analysis of our SFPF hash
function design. For any other SFPF constructions based on
FIL-RO compression function, it would be possible to prove
the indifferentiability following an approach similar to ours,
but the details of the games should be defined based on the
target SFPF construction.

4 Indifferentiability analysis of the SFPF hash function

In Theorem 2 of this section, we prove that the SFPF hash
function, H f , is indifferentiable from a random oracle R.

Theorem 2 The SFPF hash function H f : {0, 1}∗ →
{0, 1}n based on three FIL-RO compression functions f1, f2,

Fig. 1 The SFPF hash function
construction H f
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f3 : {0, 1}m × {0, 1}n → {0, 1}n is (tA, tS, q, ε) indifferen-
tiable from a random oracle R, with the same domain and

range, for any tA and tS ≤ q(q+1)/2 with ε ≤ 4q2

2n where q

denotes total queried messages blocks to H̄ f , f̄1, f̄2 and f̄3.

Proof In the following, we only discuss the logic of the sim-
ulator used in deriving the indifferentiability security bound
for the SFPF hash function. The full proof for this Theorem
has been provided in “Appendix 2”.

Let S f be a simulator which simulates f1, f2 and f3.
Hence, we need to program S f such that no distinguisher A
can distinguish (except with negligible probability) between
the following two scenarios:

– A has oracle access to (H f , ( f1, f2, f3)).
– A has oracle access to (R, S f ).

Using this experiment, we define the advantage of A as
follows:

Adv
indi f
H f ,R

(A) = ε

=
∣
∣
∣Pr [AH f ,( f1, f2, f3) ⇒ 1] − Pr [AR,S f ⇒ 1]

∣
∣
∣

The simulator does not see A’s queries to H̄ f (either H f

or R); however, it can call R when needed for simulation.
Whenever A queries H̄ f , it cannot directly access the

output of f̄1 and f̄2. A must query f̄1 and f̄2 to know about
their output. The simulator provides random answers to the
new queries of A to f̄1 and f̄2. On the other hand, for A’s
queries to f̄3, the simulator S f should return values in a way
“consistent” with H f and R. Hence, the only way by whichA
can fool the simulator S f is by predicting its responses for the
queries to f̄1 and f̄2 or by finding a collision in the responses
of S f (explained below). However, we formally show that
neither of these events can occur with high probability. The
simulator program presented in Fig. 3 shows the techniques
used by S f to respond to A for its queries to f̄i for i = 1, 2, 3.

The simulator S f keeps a history of all query/responses
related to f̄1 in a table T f̄1

: T Q
f̄1
→ T R

f̄1
which has three

columns. The queries (y j , M j ) are stored in the first two

columns of T f̄1
, denoted T

Qy

f̄1
and T QM

f̄1
. The correspond-

ing responses are stored in the third column of T f̄1
denoted

T R
f̄1

. The combination of the first two columns T
Qy

f̄1
‖T QM

f̄1
,

denoted by T Q
f̄1

, includes all points in the domain of f̄1 that

have already been queried and T R
f̄1

includes all points in

the range of f̄1 that have been assigned as the responses of
queries. We also represent the table T f̄1

by T f̄1
: T Q

f̄1
→ T R

f̄1
.

Similarly, S f keeps a history of all query/responses related
to f̄2 and f̄3 and similar notation for the respective tables can
be given.

In addition, the simulator S f maintains different tree struc-
tures that include the adversarial query-response connec-
tions. The edges of these trees represent adversarial queries,
and the nodes refer to the responses of S f . Figure 2 shows
possible states of the trees obtained after several queries to
f̄1 and f̄2. Since any root in the trees has started from a
query to f̄1, any query to f̄1 can be considered as the root
of the tree. The labels of the edges indicate that queries are
answered by f̄1 or f̄2. Let M j

l be the lth block of the j th

queried message and y j
l−1 be the corresponding internal state.

Note that the superscript j refers to ′′ and ′ in the first two
several query/response connections in Fig. 2, and the super-
script j is blank (for Ml , yl−1 and yl ) in the rightmost case of
Fig. 2.

The simulator uses the functions Get Path and NewPath
to access and update the trees respectively. We explain the
functionality of NewPath, by considering two cases:

1. NewPath(y j
l−1, f̄1, M j

l )← y j
l

2. NewPath(y j
0 , f̄2, M j

r ‖M j
l )← y j

l

The first case is related to a new query (y j
l−1, M j

l ) to f̄1.

If y j
l−1 ∈ T

Qy

f̄1
, the simulator draws a new edge from the

Fig. 2 A sample tree structure that can be used by a simulator in the indifferentiability analysis of SFPF
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current root labeled y j
l−1 to a new node labeled y j

l , and the

label of the edge would be f̄1 : M j
l . Otherwise, the simulator

uses this new query to f̄1 to grow a new tree where a node
labeled y j

l−1 indicates its root. The simulator adds an edge

labeled f̄1 : M j
l from this node to a new node labeled y j

l ,
which is the returned value for the current query.

The second case is related to a new query (y j
l−1, M j

l ) to

f̄2 for which there is a path from the root labeled y j
0 . The

message blocks that are used in the labels of edges that are
included in that path are concatenated as M j

r . Hence, M j
r

can include more than one block of message. If such a path
exists, the simulator adds an edge labeled f̄2 : M j

l from the

node labeled with y j
l−1 to a new node labeled y j

l .
The function Get Path(Y ) for some chaining value Y ∈

{0, 1}n returns a sequence of message blocks that connect
the chaining value Y to the root of the tree. For example,
the function Get Path(y j

l−1) returns a sequence of message

blocks, M j
r , used as the labels in a path having edges from

the root labeled y j
0 to a node labeled y j

l−1. In the case of a
duplicate path (two different paths that can be tracked from
roots to y j

l−1 which requires a collision in the output of S f )

or no path (we cannot find any path from the root to y j
l−1),

Get Path(Y ) returns Error and false respectively.
It must be noted that if a collision occurs in the output

of S f , then NewPath may not be able to draw a new edge
related to the point properly and it will file, because we have

two nodes with the same label and the simulator does not
know the new edge should be connected to which one. Hence,
in this case, simulator fails. Therefore, the required number
of queries to find a collision in the output of S f is a trivial
upper bound for indifferentiability of the scheme, this bound
is q = 2n/2. Precisely, the following bad events may disrupt
the simulator’s functionality:

1. On a new query f̄1(y j
l−1, M j

l ), if the returned value y j
l

collides with a label of a tree maintained by simulator or
the input of a query to f̄2 or f̄3 which is not included in
any tree. This bad event is indicated by bad f̄1

in Fig. 3.

2. On a new query f̄2(y j
l−1, M j

l ), if the returned value y j
l

collides with a label of a tree maintained by simulator or
the input of a query to f̄2 or f̄3 which is not included in
any tree. This bad event is indicated by bad f̄2

in Fig. 3.

In addition, finding a fixed point in the output of S f

increases the size of the tree uncontrollably but for any query
to S f it occurs with the probability of 2−n which is negligi-
ble and we omit it (for the given compression function f , the
pair of chaining value yi and a message block mi is called a
fixed point when we have f (yi , m) = yi ). �

Remark 3 Due to the birthday paradox, the upper bound of
indifferentiability of any n-bit hash function with an n-bit
chaining value is at most 2n/2 (schemes in [2,7,12] have this

Fig. 3 Simulator for the SFPF hash function
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bound). For the SFPF hash function, this bound is 2n/2/
√

4 =
2(n−2)/2, a loss of only 3 bits in security compared to the
maximum achievable indifferentiability upper bound for any
n-bit hash function with an n-bit chaining value. On the other
hand, for the same computational work as a fixed-IV hash,
the given SFPF scheme can hash n extra message bits via
its I V at the expense of padding every block with two bits
or using 3 distinct FIL-ROs. However, this is not a huge
penalty as the message blocks of PFMD f

g2 and PFMD f
g3 [7]

also use additional padding and counter bits respectively (for
the details of PFMD f

g2 and PFMD f
g3 refer to Algorithms 7 and

6 in “Appendix 1” respectively).

Remark 4 Due to the birthday paradox, the upper bound of
the security of the given SFPF hash function against generic
attacks such as length extension, multicollisions [13], long
message second preimages [15] and herding [14] is similar
to the security of plain MD against these attacks. It must be
noted that the adversary advantage after q queries to the com-
pression function is upper bounded by q2/2n/2 [13] which
does not compromise the claimed bound of indifferentiability
of our scheme.

5 Hash function constructions (not) fitting in the SFPF
framework

In this section, we reason that free-IV versions of the PFMD f
g3

and HMAC schemes fit in the SFPF framework and are
hence indifferentiable. We differentiate free-IV PFMD f

g1 and

PFMD f
g2 , showing that they do not fit in the SFPF framework.

Similar attacks apply to their chopped variants, NMAC and
chopMD.

Indifferentiability of free-IV PFMD f
g3 . In the PFMD f

g3 con-
struction, each query to f/S is of the form (y j−1, M j , N , j),
where N and j are the counter index and message length
respectively. In particular, the existence of these parameters
allows the simulator to identify potential first or last blocks of
the message and thus the possible messages that can be built
from the previous queries. From [7], we know that PFMD f

g3 is
prefix-free. Since each iteration of this construction processes
a counter index and the total message length, it is trivial that A
cannot use H f (I V, M) to calculate H f (I V ′, M ′) ( such that
M = M ′′‖M ′), for any I V ′ and M ′ 	= �. Hence, PFMD f

g3

construction is also suffix-free.

Indifferentiability of free-IV HMAC. In the HMAC scheme
(i.e., HMAC f (I V, M) for any I V ∈ {0, 1}n), the first and
the last iteration of the compression function receive the same
chaining value, denoted by I V . Hence, the simulator can use
this characteristic of HMAC f (I V, M) to determine the start
and the end of potential messages that can be employed to
distinguish whether adversary interacts with S/ f . However,

the simulator can be fooled if the adversary can find a fixed
point in the output of S (either a single-block fixed point or
a multi-block fixed point), because, in this case, the simu-
lator cannot determine the exact size of message which the
adversary queries to R. However, since f is a FIL-RO, find-
ing a fixed point costs 2n calls to the compression function
which is far beyond the indifferentiability bound for HMAC.
However, if it is easy to find a fixed point in the compres-
sion function, for example, Davies Meyer (DM) compression
function, then HMAC with free-IV can be easily differenti-
ated as follows:

1. query for (SE/E)−1(M, 0) for any M ∈ {0, 1}n and
receive X , where SE simulates the ideal cipher E .

2. assign X to the I V value and query for HMAC
f
(I V, M)

and receive Y .
3. query for HMAC

f
(I V, M‖M) and receive Z .

4. output “1” if Y = Z else output “0”.

In the case of DM, the adversary outputs “1” with proba-
bility 1 while for a random oracle and for any simulator this
probability is 2−n . Hence, the free-IV HMAC with DM as the
compression function is differentiable from random oracle.
However, this does not contradict our claim because DM is
not a FIL-RO.

Differentiability attacks on free-IV P F M D f
g1 and f ree −

I V P F M D f
g2 . Algorithm 2 describes a distinguisher that

differentiates PFMD f
g1 from R which implements a pseudo-

collision attack against PFMD f
g1 . The probability that an

adversary A outputs a bit ‘1’ is always 1 whenever it inter-
acts with (PFMD f

g1 , f ) and is negligible whenever A inter-
acts with (R, S). Consequently, the adversary’s advantage
is close to 1, and PFMD f

g1 is differentiable from R. Sim-

ilarly, Algorithm 3 describes a distinguisher for PFMD f
g2 .

The above attacks are the variants of the generic attack on
the hash functions that are not suffix-free provided in the proof
of Theorem 1.

6 Strengthening differentiable f ree-I V hash
functions

The free-IV hash constructions that are shown differentiable
in Sect. 5 are prefix-free. If their structure is modified such
that they are also suffix-free, then they fall under the SFPF
hash function framework. One way of achieving this is to
use MD strengthening. This prevents the adversary from
choosing H f (I V, M) to calculate H f (I V ′, M ′) (such that
M = M ′′‖M ′) for any I V, I V ′, M , and M ′ 	= �. Hence,
the free-IV variants of these proposals with the provision of
MD strengthening are SFPF. In Algorithm 4, we generalize
these constructions by an n-bit hash function called SFPF-
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Algorithm 2: Adversary against free-IV PFMD f
g1

y0←{0, 1}n, M0 ← 2, M1 ← 1, M2
$← {0, 1}m

Query (y0, M0) to ( f/S) and obtain response y1.

Query (y1, M1‖M2) to (PFMD
f
g1

) and obtain response Y .

Query (y0, M0‖M1‖M2) to (PFMD
f
g1

) and obtain response Y ′.
if Y = Y ′ then return 1 else return 0

Algorithm 3: Adversary against free-IV PFMD f
g2

y0←{0, 1}n
Query (y0, 0m) to ( f/S) and obtain response y1.

Query (y0, 0m−1‖0m−1) to (PFMD
f
g2

) and obtain response Y .

Query (y1, 0m−1) to (PFMD
f
g2

) and obtain response Y ′.
if Y = Y ′ then return 1 else return 0

Algorithm 4: SFPF-N: An SFPF hash construction with
the MD strengthening

Input: y0 ∈ {0, 1}n , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m
// IV is free

yi ← f1(yi−1, Mi ) for 1 ≤ i ≤ N
yN ← f2(yN , N ) // mark the end
return yN

N wherein the final compression function is denoted by f2

and other compression functions by f1. The indifferentiabil-
ity security proof of SFPF-N is similar to that of the SFPF
hash function, and the simulator functionality is disclosed in
Algorithm 11 in “Appendix 3”.

.

7 Conclusion

We proposed a new generic iterated hash function framework
called the SFPF construction that works for arbitrary I V s
without the provision of MD strengthening and proved that it
is indifferentiable from a RO when the compression function
is an FIL-RO. This result demonstrates that it is possible to
design hash functions indifferentiable from a RO wherein
the I V of the hash functions need not be fixed. The positive
outcome of this result is that the SFPF framework with MD
strengthening generalizes n-bit hash functions based on n-
bit compression functions and with n-bit state that are proven
indifferentiable from a RO.
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8 Appendix 1: Hash function constructions

Algorithms 5–10 describe some hash constructions used in
the main text.

Algorithm 5: Hash construction PFMD f
g1

Input: y0 = I V , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m

g1(M)← (N‖M1‖M2‖ . . . ‖MN ) // prepend msg
length

y← M D f (y0, g1(M)) // run standard MD
return y

Algorithm 6: Hash construction PFMD f
g2

Input: y0 = I V , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m − 1

g2(M)← ((0‖M1)‖(0‖M2)‖ . . . ‖(0‖MN−1)‖(1‖MN ))

// mark last block

y← M D f (y0, g2(M)) // run standard MD
return y

Algorithm 7: Hash construction PFMD f
g3

Input: y0 = I V , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m

for i ← 1 to N do // for each block:
yi ← f (yi−1, Mi , N , i) // compress with index
and msg length

end
return yN

Algorithm 8: Hash construction HMAC
Input: y0 = I V , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m

M ′ = (0m‖M1‖M2‖ . . . ‖MN ) // prepend block of
zeros

y← M D f (y0, M ′) // run standard MD
if n < m then // ensure length(y′)=m

y′ ← y‖0m−n

else
y′ ← y|m

y′′ ← M D f (y0, y′) // run MD
return y′′

Algorithm 9: Hash Construction EMD
Input: y0 = I V0, y1 = I V1, M = (M1‖M2‖ . . . ‖MN ) where

|M1| = · · · = |MN−1| = m, |MN | = m − n − 64

M ′N ← MN‖|M | // append msg length as 64-bit
value

y← M D f (y0, (M1‖ . . . ‖MN−1)) // run standard MD
y′ ← f (y1, y‖M ′N ) // process final block with
msg length
return y′

Algorithm 10: Hash Construction MDP
Input: y0 = I V , M = (M1‖M2‖ . . . ‖MN ) where |Mi | = m and

MN contains |M |
y← M D f (y0, (M1‖ . . . ‖MN−1)) // run standard MD
y′ ← f (π(y), MN ) // permute final chaining
value
return y′
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9 Appendix 2: Proof of Theorem 2

In the following, we provide a proof for Theorem 2.

Proof Let A be the adversary whose goal is to differentiate
(H f , ( f1, f2, f3)) from (R, S f ) by asking q non-repetitive

queries where q = τq H̄ f +q f̄1 +q f̄2 +q f̄3 . Recall from the
previous discussion that the simulator S f answers each new
query of A to f̄1 and f̄2 with a random value. The simulator
S f answers each new query to f̄3 by checking the possibility
of the combination of the current query with the previous
entries in T f̄1

, T f̄2
and T f̄3

in order to be in consistence with

the queries to H̄ f and R. Since the number of entries in the
tables T f̄1

, T f̄2
and T f̄3

together would not be more than q,
the running time of the simulator is tS ≤ q(q + 1)/2. The
time of A to maximize its advantage for q-queries, tA, can
be any value.

We analyze the advantage of A by considering Games
Gi for i ∈ {0, 1, . . . , 7} that are informally described in
the following (formal descriptions of the games are given
in “Appendix 4”). We will denote A with access to (playing)
Game Gi by AGi . For each game Gi , we let pi = Pr [AGi ⇒
1]. We start with the game G0 which directly communi-
cates with (H f , ( f1, f2, f3)) and complete the proof with the
game G7 which emulates (R, S f ). The intermediate games
G1, . . . , G6 would slowly transform these games into each
other. We start the game playing as follows:

– Game 0 (G0): This game shows the communication of
A with H f , f1, f2 and f3.

– Game 1 (G1): We denote by I H a subroutine that emu-
lates the iteration process of the SFPF hash function H f .
This game exactly emulates H f and f1, f2 and f3. It is
identical to G0 except that FIL-ROs f1, f2 and f3 are cho-
sen in a “lazy” manner. Namely, we introduce a controller
CH that keeps the history of all queries to f̄1, f̄2 and f̄3

in the Tables T f̄1
, T f̄2

, and T f̄3
respectively. Initially, the

tables are empty. Upon receiving a query from A to f̄1, f̄2

or f̄3, CH first checks in their respective tables T f̄1
, T f̄2

,
or T f̄3

for an entry corresponding to the query and if
found, CH returns that entry to A consistently. Otherwise
CH returns a random value for the query. In addition, CH

uses a subroutine, denoted I H , that emulates the itera-
tion process of H f to answer the queries of A to H̄ f .
Now, we can see that G1 is a syntactic representation of
G0. Thus, p1 = p0.

– Game 2 (G2): This game is identical to G1 except that
CH maintains trees to detect the connection between
queries and responses. The functions Get Path and
NewPath (explained before) are used to access and
update the trees respectively. The only change from G1

to G2 is the access and update of the trees for new queries

to f̄1, f̄2 and f̄3. However, it has no affect on the random
selection of the values returned to A. Thus, p2 = p1.

– Game 3 (G3): In this Game, CH does not let I H to
directly communicate with f̄1, f̄2 and f̄3, but it changes
I H such that the FIL-ROs are simulated in I H . How-
ever, it has no effect on the returned values to A. Thus,
p3 = p2.

– Game 4 (G4): This game is identical to G3 except that
for the new queries to f̄3, CH accesses the trees to find a
root connected to the current query to f̄3. If CH finds such
path, it concatenates the message blocks that included
in that path with the current message queried to f̄3 and
queries it to I H . However, for this query, I H returns a
random value and it does not change A’s advantage in
comparison with G3. Thus, p4 = p3.

– Game 5 (G5): In this game, CH applies some restriction
on the values returned to A. The controller CH restricts
the returned values for a query to f̄1 or f̄2 to not collided

with any value in T R
f̄1

⋃
T

Qy

f̄2

⋃
T R

f̄2

⋃
T

Qy

f̄3
. In general,

any event that lets CH terminate the game is considered
as a bad event. Such events are explained below.
It is obvious that G4 and G5 are identical until a bad
event is set to true in G5. This is denoted by bad ← true.
Hence, the maximum advantage of A in distinguishing
G5 from G4 (transient from G4 to G5) is at most the
maximum probability of the occurrence of bad events.
Thus:

∣
∣
∣Pr [AG5 ⇒ 1] − Pr [AG4 ⇒ 1]

∣
∣
∣

≤ Pr [AG5 ⇒ (bad ← true)]

The probability that the bad events (explained below)

bad f̄1
or bad f̄2

are set to true in G5 is denoted as Pr
bad f̄1
G5

and Pr
bad f̄2
G5

respectively. Thus:

Fig. 4 G0 representation
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Fig. 5 G1 (boxes removed) ad
G2 (boxes included)
representation

Fig. 6 G3 (boxes removed) ad
G4 (boxes included)
representation
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The suffix-free-prefix-free hash function construction 431

Fig. 7 G6 and G5
representation with their I H
subfunctions

Pr [AG5 ⇒ (bad ← true)] ≤ Pr
bad f̄1
G5

+ Pr
bad f̄2
G5

Now we bound each of the bad events as follows:

1. bad f̄1
: This event is set to true if the current selected

random value for a query to f̄1 is collided with a value

in (T R
f̄1

⋃
T

Qy

f̄2

⋃
T R

f̄2

⋃
T

Qy

f̄3
). For the i th query to f̄1

we have i−1 domain and range points defined for f̄1

and up to q f̄2 (resp. q f̄3 ) previous queries to f̄2 (resp.
f̄3). Thus:
∣
∣
∣(T R

f̄1

⋃

T
Qy

f̄2

⋃

T R
f̄2

⋃

T
Qy

f̄3
)

∣
∣
∣ ≤ i − 1+ 2q f̄2 + q f̄3

The probability that one of the values that set this bad
event to true is selected at random from {0, 1}n for
the i th query to f̄1 is not larger than (i − 1+ 2q f̄2 +

q f̄3)/2n . Hence, we can sum up this probability over
all the queries to f̄1 and bound the probability of

bad f̄1
occurrence, Pr

bad f̄1
G5

, as follows:

Pr
bad f̄1
G5

≤
q f̄1
∑

i=1

(i − 1+ 2q f̄2 + q f̄3)

2n

= 1

2n

⎛

⎝

q f̄1
∑

i=1

i−
q f̄1
∑

i=1

1+2q f̄2

q f̄1
∑

i=1

1+q f̄3

q f̄1
∑

i=1

1

⎞

⎠

≤ (q f̄1)2 + 2q f̄1(2q f̄2 + q f̄3)

2n+1

≤ q f̄1(q f̄1 + 2q f̄2 + q f̄3)

2n
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Fig. 8 G7 representation

2. bad f̄2
: This event is set to true if the current selected

random value for a query to f̄2 is collided with a value

in (T R
f̄1

⋃
T

Qy

f̄2

⋃
T R

f̄2

⋃
T

Qy

f̄3
). Hence, based on the

calculation of bad f̄1
, we can bound the probability

of bad f̄2
occurrence, Pr

bad f̄2
G5

, as follows:

Pr
bad f̄2
G5

≤
q f̄2
∑

i=1

(2(i − 1)+ q f̄1 + q f̄3)

2n

= (q f̄2)2 + q f̄2(q f̄1 + q f̄3)

2n

= q f̄2(q f̄1 + q f̄2 + q f̄3)

2n

Thus:

∣
∣
∣Pr [AG5 ⇒ 1] − Pr [AG4 ⇒ 1]

∣
∣
∣ ≤ Pr

bad f̄1
G5

+ Pr
bad f̄2
G5

≤ q f̄1(q f̄1 + 2q f̄2 + q f̄3)

2n
+ q f̄2(q f̄1 + q f̄2 + q f̄3)

2n

≤ (q f̄1 + q f̄2)(q f̄1 + 2q f̄2 + q f̄3)

2n

– Game 6 (G6): In game G6, CH changes I H such that
it simply return a random value for any new query. The
implementation of I H(y, M) in G5 follows the SF P F
iteration, while G6 returns a random value for any new
query to H̄ f . It is obvious that the returned values for

the queries to H̄ f in G6 and G5 are determined by
the I H - sub function. Both games return random val-
ues for any new query (y, M) to H̄ f where M consists
of N message blocks Mi for i = 1, . . . , N . G5 answers
such queries by invoking f̄1(y0, M1), f̄2(yi−1, Mi ) for
2 ≤ i ≤ N − 1, and f̄3(yN−1, MN ) in the order.
Whereas for any new query (y, M) to H̄ f , G6 does not
invoke f̄1, f̄2 and f̄3 and selects the answer to such new
queries randomly from {0, 1}n . Hence, in G6 the cardi-

nality of T R
f̄1
, T

Qy

f̄2
, T R

f̄2
, and T

Qy

f̄3
would be decreased up

to q H̄ f
, (τ − 2)q H̄ f

, (τ − 2)q H̄ f
and q H̄ f

respectively,
which reduces the probability of receiving a bad event in
G6 compared to that probability in G5. Hence, we have:

∣
∣
∣Pr [AG6 ⇒ 1] − Pr [AG5 ⇒ 1]

∣
∣
∣ ≤

∣
∣
∣
∣
Pr

bad f̄1
G5
−Pr

bad f̄1
G6

∣
∣
∣
∣

+
∣
∣
∣
∣
Pr

bad f̄2
G5
−Pr

bad f̄2
G6

∣
∣
∣
∣
≤ Pr

bad f̄1
G5
+Pr

bad f̄2
G5

≤ (q f̄1 + q f̄2)(q f̄1 + 2q f̄2 + q f̄3)

2n

– Game 7 (G7): We finish the play with the “ideal” game
G7 that exactly simulates R and S f . In this game, H̄ f

does not send its query to I H any more and respond to
any new query randomly. However, it has no affect on
the returned values to A. Thus, in G7,A does not gain
any additional advantage over G6 and p7 = p6. In this
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game, H̄ f is exactly the same as R, and the controller
CH is precisely equivalent to S f , our proposed simulator
for f1, f2 and f3.

We complete the proof by combining Games 0 to 7. Note that
G0 emulates H f and f1 f2 and f3 and G7 exactly emulates
R and S f . We conclude that:

Adv
indi f
R,S (A) =

∣
∣
∣Pr [AH f ,( f1, f2, f3)] − Pr [AR,S f ]

∣
∣
∣

≤ 2× (Pr
bad f̄1
G5

+ Pr
bad f̄2
G5

)

≤ 2× (q f̄1 + q f̄2)(q f̄1 + 2q f̄2 + q f̄3)

2n

With further simplification, this results in

Adv
indi f
R,S (A) = ε ≤ 4q2

2n

�


10 Appendix 3: Simulator for the SFPF-N hash function

In this section, we present a simulator for the SFPF-N hash
function in Algorithm 11. This simulator emulates f1 and
f2 such that SFPF-N is indifferentiable from R. For sim-
plicity and without loss generality, this simulator assumes
that the entire last block is used for MD strengthening. Its
running time tS = O(q2), and A’s advantage after q queries
is bounded by ε ≤ O(τ 2 · q2 · 2−n).

11 Appendix 4: Formal description of the Games used
in the indifferentiability analysis of the SFPF hash
function

In this section, we provide figures that formally describe the
games used in the indifferentiability analysis of the SFPF
hash function. See Figs. 4, 5, 6, 7, 8.
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