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Here we show polymer solar cells manufactured using only printing

and coating of abundant materials directly on flexible plastic

substrates or barrier foil using only roll-to-roll methods. Central to

the development is a particular roll-to-roll compatible post-pro-

cessing step that converts the pristine and non-functional multilayer-

coated stack into a functional solar cell through formation of a

charge selective interface, in situ, following a short electrical pulse

with a high current density. After the fast post-processing step the

device stack becomes active and all devices are functional with a

technical yield and consistency that is compelling.

Although polymer and organic solar cells have been generally

recognized for more than a decade and presented in a vision of low

cost flexible solar panels with a thin outline and low cost, state-of-the

art polymer solar cells are still handled in a gloveboxand employ rigid

glass substrates, expensive indium-tin-oxide (ITO) and expensive or

reactivemetal electrodes evaporated under high vacuum. This reflects

a developmental focus which has until now beenmostly on increasing

the solar cell efficiency1while neglecting the decisive issues of stability2

and true scalability through the exclusive use of roll-to-roll processing

and abundant materials with a low thermal budget.3,4 The transition

from single laboratory devices to mass produced modules has been

slow and it has proven difficult to transfer the high performance

reported for laboratory devices to a larger scale. Often results for

laboratory devices are represented by a single (or a few) successful

experiment(s) with the values for the ‘‘hero’’ device being quoted.

Mass produced polymer solar cells, however, are represented by the

average which in reality is what can become useful. In such a case

the technical yield and consistency become critically important and

the robustness of materials and processes is paramount. The few

documented cases wheremany polymer solar cells have been reported

are based on ProcessOne5 which does fulfill the criteria of robustness

and repeatability to an extent that many modules can be prepared

with an even performance and integrated into demonstrators. In a

recent examplemore than10 000 small credit card sizedOPVmodules

based on ProcessOne were manufactured and integrated into a small

flashlamp.6 ProcessOne comprise a PET-ITO-ZnO-P3HT:PCBM-

PEDOT:PSS-silver stack and present performances in the range of

1.5–2% in an identical module layout.6 In terms of materials usage

however ProcessOne will never be competitive since it involves ITO

that is arrived at by vacuumdeposition followed by a time consuming

lithographic process.7 The overall processing speed of the patterned

ITO electrode is unlikely to exceed 1 m min�1 even with large

industrial machinery. Apart from the processing of ITO, the material

involves the very rare metal indium and possesses some less critical

attributes such as brittleness and poor thermomechanical properties.

There has been a significant research effort aimed at replacing ITO,

and while there have been some successful laboratory reports8–12 only

few are directly compatible with large scale processing of
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Broader context

The vision of polymer solar cells is a scalable, efficient and stable technology that can be prepared in large areas with a thin outline

using ultrafast printing and coating methods that require little energy in the process and only abundant materials. State-of-the-art

polymer and organic solar cells are far removed from this ideal situation and typically employ tiny areas processed through slow and

time consuming vacuum steps on rigid substrates employing toxic processing conditions and elements with low abundance such as

indium and silver. We present a simple solar cell stack that comprises only four printed and coated layers representing significant

progress at all levels. We have thus moved from single cells to modules, from rigidity to flexibility, from spin coating to full roll-to-

roll processing in all steps, from glove box to ambient processing, thousands of units and have eliminated the use of indium, silver

and vacuum while achieving comparable performance. We introduce a method whereby functionality is arrived at through in situ

formation of a rectifying interface inside the finished stack. We demonstrate how this switching mechanism is fully scalable and we

use it in a fully automated roll-to-roll process. We also elucidate the chemistry behind this generic mechanism as a new processing

step.
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interconnectedmodules. The first successful example8 involved a non-

transparent first electrode based on coated silver nanoparticles. Even

if the performance was quite poor compared to ProcessOne it did

show that an ITO-free future could be anticipated pending the right

developments.

To rationalize our efforts towards replacing ITO, one must logi-

cally also consider the relatively low abundance and high thermal

budget of silver which make its use just as critical as the use of

indium.7 Silver, however, has the advantage over ITO of an excep-

tionally high conductivity enabling the use of much less material, if

applied correctly as a very thin layer or a grid. In the ultimate case,

however, even silver cannot be anticipated as being on the materials

list unless it can be recycled efficiently.

When focusing on the functional part of the solar cell stack it

comprises the active layer sandwiched between an electron and a hole

selective layer where one or both of the charge selective layers may

serve as electrode.

For the purpose of this study we introduce the generalized stack

shown as the center piece in Fig. 1, comprising first-electrode/ZnO/

active layer/PEDOT:PSS/second-electrode, forming the functional

basis for the solar cell module, as succeeding stacks can be serially

connected by overlapping of their first- and second-electrode. In the

ideal case the two electrodes are based on abundant materials. Here

we utilize a compact module comprised of 16 serially connected solar

cells which enables us to alleviate the use of both ITO andAg, thus in

essence presenting a metal electrode-free solar cell module. The

chosen device structures were thus simply PEDOT:PSS/ZnO/active

layer/PEDOT:PSS/graphite, while a series of modules using Ag

instead of graphite as the second-electrode were also fabricated for

comparison.

Returning to the scalability and processability of this device stack

it is highly compatible with high speed printing at all levels,

especially the front electrode including the ZnO layer could be

processed at very high speed even under simple pilot line conditions

as shown in Fig. 1. We were thus able to process the entire front

electrode structure with the front PEDOT:PSS electrode being

formulated for rotary screen printing enabling printing speeds with

high accuracy at >10 m min�1 (speed limited by the drier length of 2

m). The slot-die coating of the ZnO nanoparticle ink could easily be

coated at 10 m min�1 also with high accuracy (48 cell lines coated

simultaneously, 3 mm wide and spaced by 1 mm). The sheet resis-

tivity of the pure PEDOT:PSS was 60 ohm per square and sufficient

for transport over the 2 mm wide active area with part of the 4 mm

repeat covered by the thick printed interconnection (Fig. 2e). The

electrode structure thus presents a significant alternative to ITO at

all levels by being comparable in performance, while being abundant

and processable in air without vacuum. The active layer was like the

ZnO layer slot-die coated and the back PEDOT:PSS electrode was

rotary screen printed in registry with the underlying layer structure

(for modules the interconnects or grids were also rotary screen

printed in registry). It is of significant importance to underline that

the realization of the patterned multilayer stack was readily

achievable using standard coating and printing techniques (pending

an appreciable effort in ink formulation, printing/coating method-

ology and machine design) and as such it did not present inventive

steps (only skill).

The testing of themultilayer stack as a solar cell however presented

a non-functional devicewith a very lowparallel resistance as shown in

Fig. 2b (essentially a short circuit). At first this was ascribed to coating

or printing irregularities that bridge the two electrodes through the

thin active part of the solar cell thus creating a short circuit. However,

the process is in essence identical to ProcessOne where large numbers

of similar solar cell modules can bemade reliably, and careful analysis

revealed that processing faults were not the cause.

Fig. 1 The device structure (d) centrally surrounded by photographs of the R2R coating and printing, with (a) and (f) showing the rotary screen

printing of the top and bottom PEDOT:PSS layers, respectively. (c) and (b) showing the slot-die coating of ZnO and P3HT:PCBM, respectively, while

(e) shows the rotary screen printing of the graphite second-electrode.
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ZnO as a semi conductor is known to present interaction with

atmospheric oxygen13 and can also be subject to proton doping.14

Both effects alter the transport properties of ZnO and can also be

expected to be present in the stack we explore here. We found by

studying very small area devices (#25 mm2) that a high current

density at a significant applied field presented an irreversible response

vis-�a-vis a report on the use of PEDOT:PSS as a write-once-read-

many-times (WORM) memory material15–20 and ZnO as a reversible

memory element.13,21,22

Fortunately, the device works exceptionally well after the short

high current density-high electric field treatment as shown in Fig. 2b

and it was thus a matter of characterizing the effect in order to make

proper use of it in solar cell devices. The observation that a high

negative bias dramatically alters the electrical performance is ascribed

to the known permanent conductivity change in PEDOT:PSS films.

A switching mechanism was first demonstrated byM€oller et al.15,16

and later adopted by others,17–20 in all cases for WORM devices. The

exact nature of this bias induced phenomenon is still debated, but

apart from de Brito et al.18 who ascribed the conductivity loss to a

delamination caused by gases produced by hydrolysis, it is believed to

be caused by de-doping of the PEDOT (PEDOT+ / PEDOT0)

molecules induced by charge injection, while the dedoped state is

stabilized by the neutralization of the PSS counter-ions (PSS� /

PSS-H).16,19,23 Here we report for the first time that the de-doped

PEDOT:PSS layer functions as a very efficient hole selective layer for

solar cells. The proposedmechanism is, as illustrated in Fig. 2c and d,

blocking of electron transport by the formation of a sufficiently thick

de-doped PEDOT:PSS layer. The layer thus constitutes a thin region

where the polythiophene is reduced and it thus behaves like an

intrinsic semiconductor. Themechanism is in nature self-contained as

the de-doping is electron injection induced, thus hindering ‘‘over-

growth’’ of the de-doped layer. In the following we shed further light

on this by providing chemical proof of the de-doping mechanism. As

the devices have two distinct PEDOT:PSS layers and a ZnO layer

there are several different junctions at which the switching phenom-

enon could take place. Initially we believed that the switch took place

at the PEDOT:PSS/ZnO junction since this was the only variation

with respect to the traditional ProcessOne device structure. The solar

cell stack was taken apart and built again in order to prove that the

active-layer–PEDOT:PSS interface is indeed responsible for

the effect. Fortunately it is facile to delaminate the solar cell exactly at

the P3HT:PCBM–PEDOT:PSS interface.24 We could thus prepare

devices and switch them to their functional form. Delamination and

removal of the PEDOT:PSS-Ag electrode followed by application of

the PEDOT:PSS layer and Ag electrode, again presented a non-

functional device, displaying the initial ohmic shunting. More

importantly it could be switched anew thus unequivocally proving

that the active-layer–PEDOT:PSS interface is responsible for the

effect (with a series of control experiments, it was deduced that the

switching was not reversed by either the exposure to vacuum or

solvents). To shed further light on the de-doping mechanism in the

context of the active-layer–PEDOT:PSS interface, explored here as a

solar cell junction, we systematically analyzed the interfaces using

chemical probe time-of-flight secondary ion mass spectrometry

(TOF-SIMS). It was clear that the effect should be small if the

proposed mechanism was correct since it involves only the reduction

of PEDOT:PSS to the neutral semiconducting PEDOT0 and PSS-H

involving water and electrons for the reduction.16,19 In terms of

chemical composition, the changes at the interface aremarginal and it

is essentially only a redox reaction. What does change however is the

polarity/ionic strength of the medium since the polythiophene cation

becomes neutralized and ions are thus expected to diffuse away from

the interface and towards the more ionic bulk PEDOT:PSS.

We thus analyzed the PEDOT:PSS interface through depth

profiling from the surface and found a decreased sodium content at

the interface for the switched device (we use sodium ions as a marker

Fig. 2 Electrical characterization. (a) The I–V characterization under simulated solar light, showing the initial bias sweep (red) going from 1 V to�8 V,

followed by a forward sweep from�1 V to 1 V (green). (b) A zoom-in on the active quadrant, showing the change in device performance. (c and d) show

the layer stack before and after the de-doping has occurred. (e) shows a cross section of the device highlighting the active region and in the printed

interconnection.
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for the ion content). As expected the sodium content was identical in

the two cases further in the bulk of the PEDOT:PSS layer. The

experiment and results are shown in Fig. 3.

In order to gain appreciation for the implications and usefulness

of this general approach we designed and built a machine that could

usefully switch devices and modules in a full roll-to-roll process at a

reasonable speed. The large current density at high fields does imply

that the charge transporting layers and conductors have to dissipate

heat. Whereas it is readily possible to dissipate heat when the devices

are small (on the order of a few mm2) it is a different matter for

large area devices and modules, and we found that a large drum as

shown in Fig. 4d was the most rational way to cool the foil during

switching.

The switched modules performed as shown in Fig. 4a and

Table 1, with only a minor difference in performance between

the silver and carbon based devices (depicted in Fig. 4b). This

performance is comparable or better than ITO containing

ProcessOne cells (ref. 6).

The switching itself is fast and takes place in a matter of millisec-

onds and the largest challenge for an automated setup was to ensure

that all devices achieve switching simultaneously. We demonstrated

that three modules, each comprising sixteen serially connected cells,

could be switched in parallel (see Fig. 4c and d). In terms of pro-

cessing speed every extra step does reduce the throughput speed. To

illustrate the delay that this new process incurs, it can be rationally

compared to the processing speed of the module. The complete

manufacture of a single module comprising 16 serially connected

stripes with the same size as a credit card takes a total of 1.2–1.7

seconds in these experiments (limited only by the length of the driers).

The switching of a singlemodulewas typically achieved in <2 seconds

(not including automated measurements of whether the switching

had taken place) which is comparable to the manufacturing speed.

The switching pulse duration was optimized for each roll of solar cell modules (approx. 4900 modules for a typical run) and was typically

10 ms. This implies that the actual speed of switching could easily

reach 50 ms (when switching 3 modules in parallel).

In terms of applicability, we have tested this type of substrate

extensively and found that it is robust in manufacture, and the

switching is very consistent. It should be added that while automatic

switching is a requirement for processing many modules, it is very

easy to apply this principle on the laboratory scale (i.e. manual

switching) and we easily foresee the use of this substrate in small

research labs or even in a school classroom.

An operator can simply apply a short negative pulse by crossing

two wires connected to the device. We have employed this method

extensively, and it implies that the substrate described here works at

all levels in terms of scale, from the student wishing to switch a small

device to the professional that wish to switch multitudes of large

modules in a fast and automated fashion.

Conclusions

We have described the underlying generic mechanism for this in situ

formation of a charge selective interface through both chemical and

physical analyses and believe that this new disruptive approach will

radically change the field of polymer solar cells and finally eliminate

the broad use of ITO in both research laboratories and industry. We

also found that it was possible to replace silver electrodes by carbon

and our modules thus represent a technology that is free from the

three ingredients that hinder the wide dissemination of polymer solar

Fig. 3 Schematic OPV device illustrating where delamination occurs

(confirmed from mass spectral data) that enables the exposed

PEDOT:PSS surface to be analyzed. The resulting sodium ion depth

profiles show a decreased content of sodium ions for the switched device

in the PEDOT:PSS material facing the P3HT:PCBM–PEDOT:PSS

interface.

Table 1 Photovoltaic parameters

Device type PCE (%)a Jsc (mA cm�2) Voc (V) FF (%)

Carbon CC 1.6 �6.2b 8.2 51
Silver CC 1.9 �6.5c 8.1 52

a Active area of the 16 striped device is 15.4 cm�2. b Measured at 100 mW
cm�2. c Measured at 90 mW cm�2.

Fig. 4 (a) Current–voltage characteristics of small area modules having

either a graphite or silver electrode, which are shown in the photo in (b).

(c) Displays the switching setup in progress, switching 3 modules in

parallel. (d) Photograph of a cooling drum and inset with close-up of gold

pin array used for switching.
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cells, namely indium, silver and vacuum. The performance of the

modules is qualitatively similar to ITO based devices with a cost

reduction by a factor of >10 and an increase in processing speed by a

factor of >10 under simple pilot scale conditions. In order to further

the general alleviation of ITO this substrate material is made avail-

able freely by DTU to anyone with an academic interest†.
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† Complete solar cell modules and front electrode samples comprising
PET-PEDOT:PSS-ZnO are available freely for academic purposes. The
authors declare no competing financial interests. Correspondence and
requests for materials should be addressed to FCK.
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