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Abstract

Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While
our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals
previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply
multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central
Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may
have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore
propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful
in informing timely management actions in the face of ecosystem change.
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Introduction

Transitions between alternative states, i.e., regime shifts, have

been shown to occur across an array of complex systems [1,2],

including ecosystems [3]. Our ability to identify abrupt shifts in

real ecosystems has improved through advances in theory and

statistical methods [4]. However, these methods are primarily

designed to detect regime shifts once having occurred. Recent

theoretical studies suggest that several indicators may be used as

early-warnings of an approaching transition [3]. Although needed

for short-term management efforts to maintain key ecosystem

goods and services, empirical applications of early detection of

abrupt shifts in real ecosystems have so far mainly been limited to

experimental studies [5,6] or paleo-climatic reconstructions over

vast temporal scales [7,8].

Several early-warning indicators have been proposed to

describe the temporal dynamics of complex systems close to a

critical transition [3]. The basic rationale behind these indicators

lies in the fact that the recovery of a system to equilibrium after a

perturbation becomes slower close to a transition [9]. This

phenomenon is known as ‘critical slowing down’ [10] and causes

the variance and autocorrelation in the fluctuations of a system to

increase prior to a regime shift [3,11,12]. In addition, the spatial

dynamics of complex systems may also change close to a

transition, where alterations in the spatial patterns of variance

and correlation of key ecological features may serve as a

complimentary set of early-warning indicators [13–15]. Although

the merit of these indicators is that they can be detected across an

array of ecosystems and types of transitions [16], their disadvan-

tage is that they require long time series of high resolution for their

estimation. Moreover, the potential for early-detection in practice

is based on the assumption that the time series accurately represent

the response of the ecosystem around its present equilibrium state

[3]. Since ecological monitoring records are typically of limited

length, lack detailed information on spatial distribution patterns of

key organisms, and often include substantial measurement error,

the practical use of any of the proposed early-warning indicators

for ecosystem management may prove problematic. Given that

these limitations can lead to both false positive and false negative

signals [3], the use of multiple spatial and temporal indicators

should ideally be considered [16] and alternative methods should

be tested [12]. Yet, studies of early-warning signals in real

ecosystems have so-far been restricted to only a narrow range of

possible temporal [8] or spatial indicators [17].

Large-scale patterns of ecosystem change have been observed in

marine ecosystems across the Northern hemisphere [18,19],

including the Baltic Sea [20]. A key question for marine

management is whether these regime shifts could have been

detected by early-warning indicators. Using real monitoring data

of the copepods Pseudocalanus acuspes and Acartia spp., two key

indicator species significantly contributing to the reorganization of

the Baltic Sea ecosystem (Figure 1) [20], we here apply a set of
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methods for detecting trends and structural breaks in time series,

i.e., (i) temporal and spatial indicators of critical slowing down, (ii)

trend analysis and (iii) shiftograms, as alternative tools for early-

detection of regime shifts. Lastly, we assess all early-detection

methods, covering both temporal and spatial processes, in order to

evaluate their practical use in forewarning the major regime shift

that occurred in the Baltic Sea during the late 1980s (Figure 1)

[20].

Materials and Methods

Ecosystem Characteristics and Data Considerations
The Baltic Sea is a large semi-enclosed sea (Figure S1), which

due to its brackish nature is characterized by low species diversity,

but high productivity. Climatic conditions since the late 1980s

have significantly changed the living conditions for plant and

animal populations inhabiting the area, caused by increasing

temperatures and decreasing salinity and oxygen levels [21]. In

addition to climate forcing, anthropogenic impact from overfishing

and eutrophication likely contributed to the abrupt regime shift,

which included trophic cascading involving several trophic levels

[20,22]. The regime shift occurred during a transition period

between 1988 and 1993, where all external drivers were on

extreme levels [20]. Given the difficulty of detecting the exact

timing of regime shifts [4], we assume (for the purpose of this

study) the major changes to have happened already in 1988

(Figure 1A).

We used Pseudocalanus acuspes and Acartia spp., two key

zooplankton species in the Central Baltic Sea food-web signifi-

cantly contributing to the reorganization of the ecosystem, as

indicators for the regime shift [20]. The population sizes and of

these zooplankton species changed drastically during the regime

shift (Figure 1B, C), which had strong implications for their major

predators, such as larval cod [21,23,24], as well as the main

planktivores in the ecosystem, i.e., herring (Clupea harengus) and

sprat (Sprattus sprattus) [25]. Due to their pivotal role as mediators

between lower trophic levels and the fish community [26], their

rapid response to climate variability (high sensitivity to salinity and

temperature, respectively), Pseudocalanus acuspes and Acartia spp.

serve as suitable indicators for the ecosystem regime shift in the

Central Baltic Sea. Furthermore, long-term temporally and

spatially resolved monitoring programs [27], i.e., monthly

coverage of sampling stations from 1960 and onwards, are

available for both species, In order to assess the ability to detect

abrupt regime shifts sufficiently in advance for management, we

applied a set of early-detection methods on spatially aggregated

and disaggregated (by sampling stations and areas; Fig. S1) data set

of Pseudocalanus acuspes and Acartia spp. biomass covering the period

1960–2008. Since the primary aim of the study is to investigate

and evaluate potential early-warning signals, we chose to focus on

and present results on method performance during the time-period

immediately preceding and following the regime shift (i.e., 1982–

1993). We used data representing spring as this is the main

reproductive season of the copepods [28,29].

Indicators of Critical Slowing Down
We measured temporal variance (as the standard deviation; SD)

and autocorrelation at lag-1 (AR(1)) in detrended time series of

average spring biomass of Pseudocalanus acuspes and Acartia spp.

within a 10, 15 and 20-year sliding window, following the

approach by Dakos et al. [8]. Temporal variance [30] and

autocorrelation at lag-1 [11] are expected to rise prior to a critical

transition, as approaching an unstable equilibrium would theo-

retically lead to a larger degree of instability [8,31]. While

temporal variance was measured as the SD of detrended time-

series (of equal sample size), a relationship between the mean of a

population and its variance often exists when comparing different

samples in space [17]. Hence, spatial variance was estimated by

Figure 1. Ecosystem dynamics of the Central Baltic Sea. (A) The
first principle component of a principle component analysis of biotic
time series [20]. A significant break point based on the Sequential
Regime Shift Detection Method illustrates the ecosystem regime shift in
the late-1980s (dashed). Long-term dynamics of the selected early-
warning indicators, Pseudocalanus acuspes (B) and Acartia spp. (C)
during the corresponding time period (1974–2008) with the associated
regime shift in 1988–1989 (grey). The black dashed lines illustrate two
different types of transitions, i.e., gradual changes or a sudden (pulse)
transitions, respectively.
doi:10.1371/journal.pone.0038410.g001

Early Detection of Ecosystem Regime Shifts

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e38410



the coefficient of variation (CV; 100*SD/mean) [17] correcting for

the mean across all stations from the entire sampling area (Figure

S1). Similar to temporal variance it has been shown that spatial

variance or the coefficient of variation increases before a

catastrophic shift [13,15]. In addition, spatial correlation may

also change close to a shift [16]. Here, we estimated spatial

correlation across sampling stations using the Moran’s I test [32].

In order to reduce bias from uneven sampling between years, we

randomly selected 6, 8 and 10 stations per year and estimated the

mean correlation coefficient and associated p-value for each year

after 1000 random draws.

Trend Analysis
In a second set of methods we applied statistical methods for

assessing recent trends in the zooplankton time series. Although

not specifically designed for early detection of regime shifts, the

idea of using trend analysis as an early-warning signal lies in the

possibility of detecting a slight increase in the rate of change (either

in an upward or downward trend) in advance of a critical

transition in an ecological time series. The approach is based on

fitting non-linear Generalized Additive Models (GAM) [33] and

estimating second derivatives (f99) as a proxy for statistically

significant acceleration in the rate of change (slope) of ecological

time series [34,35]. While the first approach relies on an a priori

specified degree of smoothing [34], the second method [35]

applies a routine for selecting optimal numbers of regression

splines (degree of smoothing; df). In order to reduce potential bias

due to the selection of regression splines, we performed the trend

analysis using two levels of degrees of freedom (df = 10 and 20).

Shiftograms
The third approach was not primarily designed for early

detection either, but rather for the identification and detection of

regime shift. It is based on the evaluation of statistical time series

models including structural breaks and combines several statistical

indicators into a so-called ‘‘shiftogram’’ [36]. The shiftogram

approach is an iterative procedure combining econometric time

series analysis and quantile methods displaying the gradual or

rapid transition towards a local minimum (i.e., structural break-

point) by making use of time series features and quality-of-fit

criteria, such as the corrected Akaike’s information criterion

(AICC) and a joint significance test (p-joint) of all parameters

related to a particular type of structural break. These quality-of-fit

criteria may be regarded as indicators of an imminent shift,

illustrated by a potential decrease in AICC and p-joint statistics

prior to a shift. Moreover, we used the AICC and p-joint test into

an ‘‘alertogram’’ that primarily uses the negative slope of the

AICC or p-joint values prior to a potential structural break by

Figure 2. Temporal indicators of critical slowing down. Temporal variance (estimated as standard deviations, SD) and the first-order
autocorrelation coefficient (AR(1)) for Pseudocalanus acuspes (A, C) and Acartia spp. (B, D) estimated within sliding windows of 10 years. Vertical
dashed lines mark the timing of the regime shift in the late 1980s and grey solid lines the upper and lower 95% confidence intervals.
doi:10.1371/journal.pone.0038410.g002
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fitting a linear regression and performing assessments of false

positives (type I error; probabilities of false warning) and false

negatives (type II error; probabilities of false no-warnings) based

on slope F tests. As neither the trend analysis nor the shiftogram

approaches are developed as strictly early-detection methods, but

for shift identification, we also refitted the GAMs and shiftograms

on shortened time series until the major regime shift in 1988, in

order to test whether they can be used to give early-warning, or

whether they simply detect the shift once it is underway or even

after it has occurred.

Method Assessment
The full set of early-warning methods were assessed in terms of

(i) the potential for detecting early-warnings signals in the selected

indicator time series, (ii) how far in advance early-warning signals

could potentially be detected, (iii) associated methodological

assumptions and drawbacks influencing early-detection and (iv)

applicability to real ecosystem management in terms of data

requirements. While the trend analysis and shiftogram approach

may quantitatively evaluate the first two criteria (i.e., by

performing statistical tests), no predefined reference levels exist

to objectively assess the performance of our ecological indicators of

critical slowing down, nor the possibility to theoretically crash test

the methods against a simulated (modeled) spatio-temporal data

set [12–16]. In order to minimize the extent to which subjectivity

and expert judgement influence the interpretation and assessment

of our results, we argued that a potential signal may be alerted

when an indicator value exceeds or falls below the upper and

lower 95% confidence interval of its historical (cumulative)

distribution prior to a regime shift. However, note that the above

exercise is not suited for a direct comparison between methods per

se but to assess how under the constraints of real ecological time

series similar to ours, different approaches may or may not work,

and which assumptions and drawbacks may pose the greatest

challenges in terms of early-warning detection and applicability to

management.

Results and Discussion

Indicators of Critical Slowing Down
Temporal variance of Pseudocalanus acuspes (measured as

standard deviation, SD) strongly increased two years before the

regime shift in 1988 (Figure 2A), but still remained below the

upper confidence interval of its historical distribution. In the case

of Acartia spp. the temporal variance also increased prior to the

regime shift, but exceeded the upper confidence interval first after

the shift had occurred (Figure 2B). Overall the strength of the

Figure 3. Spatial indicators of critical slowing down. The coefficient of variation (CV) and degree of spatial correlation for Pseudocalanus
acuspes (A, C) and Acartia spp. (B, D) estimated as the mean significance (p-value) of spatial correlation across 8 randomly assigned stations. Vertical
dashed lines mark the timing of the regime shift in the late 1980s and grey solid lines the upper and lower 95% confidence intervals.
doi:10.1371/journal.pone.0038410.g003

Early Detection of Ecosystem Regime Shifts

PLoS ONE | www.plosone.org 4 July 2012 | Volume 7 | Issue 7 | e38410



increase in SDs depended on the number of years used for the

sliding window, being strongest when using a 10 year window

(Figure S2). On the contrary, temporal autocorrelation analysis

demonstrated a marked and significant decline in AR(1) param-

eters (below the lower confidence level) preceding or coinciding

with the regime shift (Figure 2C–D); regardless of the number of

years used for the sliding window (Figure S2). Since early-warning

detection depends on the choice of metric, the use of sliding

windows, and constraints in the length of the time series, the

potential of temporal indicators of critical slowing down for early-

warning may be limited.

In contrast to the temporal analysis, spatial approaches for

detecting patterns in either variance or correlation yielded rather

similar results. The spatial variance in Pseudocalanus acuspes

displayed strong inter-annual fluctuations and a significant

increase in the coefficient of variation (CV) one year ahead of

the regime shift (Figure 3C), while Acartia spp. showed decreasing

CV below the lower confidence interval only after the shift

(Figure 3B). The reason for opposite patterns in spatial CVs may

originate from the pronounced differences in abundance trends,

i.e., illustrating a decrease in Pseudocalanus acuspes (Figure 1B) and

increase in Acartia spp. (Figure 1C), where decreasing abundances

Figure 4. Trend analysis of indicator time series. Smoothed time series of Pseudocalanus acuspes and Acartia spp. based on GAMs using df = 10
(A, C) and df = 20 (B, D). Bootstrapped confidence intervals are shown by grey lines. Acceleration in the rate of change (slope) in each year are shown
by statistically significant second derivatives (f ’’), where black and white dots represent major downward- and upward trends, respectively. Vertical
dashed lines mark the timing of the regime shift in the late 1980s.
doi:10.1371/journal.pone.0038410.g004
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may simply increase spatial CVs and vice versa. Furthermore, our

results show a continuous increase and decrease in CVs

throughout the period, thus partly inconsistent to the theoretical

expectation of critical slowing down, which predicts a decrease in

variance after a shift as the system reaches its new equilibrium.

Whether simply driven by the long-term abundance trends or

caused by dynamics not yet having reached (stable) equilibrium,

the discrepancies between theory and practical application deserve

further attention.

The spatial (Moran’s I) correlation showed p-values exceeding

their upper confidence intervals one year in advance of the regime

shift for both species (Figure 3C–D). This may indicate a strong

fragmentation of the zooplankton distribution well before the

population sizes changed prior to the regime shift (e.g., even 6–7

years before the shift for Pseudocalanus acuspes; Figure S3A). In the

case of Pseudocalanus acuspes this can be explained by the

distribution of adults in deep water layer confined by oxygen

conditions from below and salinity conditions from above [28,29].

Reduction of oxygen and salinity levels due to a lack of inflows

from the North Sea since the early 1980s, a major cause of the

Baltic ecosystem regime shift [20], reduced the spatial extent of

suitable reproductive habitat for the copepod. Hence, habitat

fragmentation may have caused parts of the population to become

spatially isolated from each other which may have impaired

reproductive capabilities and resulted in the population decline

[26]. Nevertheless, it has to be noted that our knowledge on the

spatial dynamics of Pseudocalanus acuspes and Acartia spp. is still

limited. We are therefore unable to provide a solid interpretation

of the observed distribution patterns. Hence, the elevated

heterogeneity in the distribution pattern, i.e., the consecutive

peaks in p-values during the late-1980s (Figure S3A), may simply

represent the natural spatial variability in the dynamics of Baltic

Sea copepods and thus render the derived early-warning signals as

potential false alarms.

Contrary to temporal indicators of slowing down, spatial

approaches for detecting changes in correlation and variance

patterns [13,14,17] are not primarily constrained by methodolog-

ical assumptions associated with a particular method, but are

influenced by the quality and consistency of monitoring programs

in space and time. However, our spatial analysis of critical slowing

down seems robust to the random resampling of monitoring

stations, e.g., spatial correlation between stations in each year

showed consistent dynamics based on repeated random draws of

6, 8 and 10 stations, respectively (Figure S3), indicating that

potential bias from uneven sampling between years may be of less

importance or successfully accounted for by performing proper

sensitivity analysis.

Trend Analysis
The trend analysis [34] indicated potential early-warning signals

given by a significant decreasing and increasing trend for

Pseudocalanus acuspes and Acartia spp. prior to the regime shift

Figure 5. Shiftogram analysis of indicator time series. The shiftograms show the transition towards a local minimum in the AICC (black) and p-
joint (white) for Pseudocalanus acuspes (A) and Acartia spp. (B). In panel (C, D), an alertogram demonstrates the AICC slopes (vertical bars), the
estimated probabilities (p-values) of false warnings (white) and false no warnings (i.e., the beta error, black) over a 5-year period before and after the
regime shift. The two dotted horizontal lines represent the significance level (p = 0.05) and the upper tolerance limits with regard to the probabilities
of false detections (i.e., false alarm limit).
doi:10.1371/journal.pone.0038410.g005
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(Figure 4). When refitted to the time-period preceding the regime

shift (1960–1987), significant change points were detected between

1986 and 1987 (Figure S4), while when excluding year 1987 no

change was detected before the regime shift. In the complimentary

trend analysis [35], applying a routine for selecting the optimal

numbers of regression splines, a significant increase in the rate of

decline was indicated between 1985 and 1987 (Table S1), as

illustrated by a negative f9 (slope) and a positive f99 (acceleration).

As in the previous example, no significant trend or change point

was detected when excluding also 1987.

The trend analysis seems to be highly dependent on the length

of time series and the numbers of regression splines used during

fitting of the generalized additive models (GAMs; Figure 4). These

assumptions influence the degree to which potential signals may

resemble true early-warning signals, hence limiting the robustness

of advice originating from such analysis. As an example of

potential methodological bias, the choice of the numbers of

regression splines results in differences in the number of change

points detected, as well as in the timing of these changes (Figure 4).

Even when statistically optimizing the number of splines [35], the

length of the time series may influence the number and timing of

significant change points being detected. However, it should be

noted that trend analysis approaches were not primarily designed

for early detection of regime shifts, but as an highly effective tool

for detecting recent trends and change points in ecological time

series [34,35].

Shiftograms
The shiftogram generally resulted in an early detection of

regime changes well in advance of the regime shift. For

Pseudocalanus acuspes both the Akaike’s information criterion (AICC)

and the p-joint significance test showed a gradual transition

towards a local minimum (i.e., structural break point) 3–4 years

before the regime shift (Figure 5A), while for Acartia spp. an abrupt

transition occurred only 2 years in advance (Figure 5B). This was

the case regardless of fitting to the entire time series or to the time-

period preceding the regime shift. In both cases, the p-joint

statistics decreased before the AICC and remained on low values

over a longer time-period. In addition, performing tests on false

positive and negative warnings using a slope F test based on the

AICC (alertogram), shows that two years before the local

minimum in 1987 was reached, the negative decrease towards a

break becomes highly significant (p,,0.05) in terms of the

estimated slopes (Figure 5C). Thus, the year 1985 sharply marks

the beginning of a gradual shift in Pseudocalanus acuspes with a clear

alert signal. In addition, both type I and II errors exceed their

upper significance limits before 1985 and after 1987, indicating

that false positive and negative warnings occur outside the 1985–

1987 period (Figure 5E). In contrast, the Acartia spp. time series

displayed a significant alert signal first in 1990 (Figure 5D), despite

a pronounced decrease in AICC and p-joint prior to the regime

shift (Figure 5B).

The shiftogram approach appeared to be promising in detecting

structural breakpoints well in advance before the regime shift.

However, the way these metrics approach a local minimum are

influenced by the type of transition at hand in the time series.

Sudden (pulse) transitions or more gradual changes strongly

influence the shape (e.g., steepness and size) of the local minimum

and hence the degree to which these transitions can be detected

sufficiently in advance; a difference illustrated by the abrupt

decrease in Acartia spp. (Figure 5B) and the more gradual decline in

Pseudocalanus acuspes (Figure 5A). In addition, a local minimum of

considerable width and little steepness may saturate the value and

hence the reliability of the derived early-warning signal. However,

the use of alertograms may compliment the shiftogram approach

by adding valuable information for decision support, such as the

strength of the negative slope of the AICC, as well as the

significance (false positive signals) and the power (false negative

signals) of this slope. Because the alertogram displays the false

warning probabilities along with the false no-warning probabilities

it aids in evaluating the urgency of potential management actions.

Conclusions
The versatility of methods for early detection of regime shifts in

ecological time series provide an important toolbox for scientists

and ecosystem managers. As learned from our example, no ‘one-

size-fits all’ solution to deriving and interpreting spatio-temporal

patterns announcing critical transitions exists [3]. Given by the

Table 1. Assessment of early-detection methods in terms of (i) the potential for detecting early-warnings signals in the selected
time series, (ii) how far in advance early-warning signals could potentially be detected (i.e., in number of years before the regime
shift), (iii) major associated methodological assumptions and drawbacks influencing early-warning detection and (iv) applicability
to real ecosystem monitoring and management in terms of data needs.

Method i ii iii iv

1. Indicators of critical slowing down

A. Temporal variance Medium 1–2 Size of window, Length of time series Long-term data, slow variables

B. Temporal AR(1) Low 0–1 Size of window, Length of time series Long-term data, slow variables

C. Spatial variance Low 0–1 Uneven sampling (No./distribution) Spatial data, consistent design

D. Spatial r (Moran’s I) Medium 1 Uneven sampling (No./distribution) Spatial data, consistent design

2. Trend analysis

A. Temporal GAM (I) Low (1) Degrees of smoothers, ‘‘retrospective’’ (f ’’) Recent trend, pressures/drivers

B. Temporal GAM (II) Low (1) ‘‘retrospective’’ analysis, f ’’ calculation (t+1) Recent trend, pressures/drivers

3. Shiftograms

A. Shiftogram (AICC) High 2–4 Gradual/rapid decrease, global vs local minima Time series, contrasts/variability

B. Shiftogram (p-joint) High 2–4 Broad local minima, timing of shift Time series, contrasts/variability

C. Alertogram Medium 1 Slope, power, significance of shifts in AICC Time series, contrasts/variability

doi:10.1371/journal.pone.0038410.t001
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type of transitions (i.e., sudden (pulse) transitions or more gradual

changes) in the chosen ecological time series, some indicators and

methods may result in clear early-warning signals, as demonstrated

by the shiftogram and alertogram approaches, while other

methods may have limited utility in informing ecosystem-based

management, as they show no or weak (i.e., too late for a

management measure to implement) early-warning potential

(Table 1).

Hence, we suggest that a multiple method approach may

provide a sound scientific basis for detecting and evaluating early-

warning signals and thus provide timely advice for immediate

management actions in the face of future ecosystem changes [37].

Such a multiple method approach should be based on (i) the

availability and quality of monitoring data; (ii) a thorough

sensitivity analysis of key methodological assumptions and

potential sources of bias of a given methodology; and (iii) a

scientifically sound interpretation of results based on the best

available knowledge concerning the ecological variable in ques-

tion. Eventually, early-warning systems, including suitable indica-

tors and related methods, for detecting and preventing unwanted

catastrophic changes must be tailored to the local ecosystem

characteristics.

Supporting Information

Figure S1 Map of the Baltic Sea and its location within
Northern Europe. The central part of the Baltic Sea

encompasses three deep (,70 m) basins important for marine

biota, the Bornholm Basin (BB), the Gdansk Deep (GD) and the

Gotland Basin (GB); largely corresponding to the International

Council for the Exploration of the Sea (ICES) official sub-divisions

25, 25 and 28, respectively (thin lines). Furthermore, these basins

are part of a long-term spatially and temporally disaggregated

zooplankton monitoring program in the Baltic Sea.

(JPG)

Figure S2 Temporal variance of Pseudocalanus acuspes
(circles) and Acartia spp. (triangles) estimated by
standard deviations (SD) and the first-order autocorre-
lation coefficient (AR(1)) of detrended time-series for a
sliding window of 10 (A, D), 15 (B, E) and 20 (C, F) years.
Vertical dashed bars mark the timing of the Central Baltic Sea

regime shift in the late 1980s.

(TIF)

Figure S3 The degree of spatial correlation for Pseudo-
calanus acuspes (A) and Acartia spp. (B) estimated as the
mean significance (p-value) of spatial correlation coef-
ficients derived from a Moran’s I test across 6 (black), 8
(grey) and 10 (black) randomly assigned stations (after
1000 resamples). Vertical dashed bars mark the timing of the

Central Baltic Sea regime shift in the late 1980s.

(TIF)

Figure S4 Smoothed indicator time-series of Pseudoca-
lanus acuspes and Acartia spp. with GAM df = 10 (A, B)
and df = 20 (C, D) from 1960–1987. Bootstrapped confidence

intervals are shown by grey lines. Acceleration in the rate of

change (slope) in each year are shown by statistically significant

second derivatives (f99’), where black and white dots represent

major downward- and upward trends, respectively.

(PPTX)

Table S1 Test results for recent trends and changes in
trends over 3-year periods before the regime shift in
1988 using intersection–union tests. P-values from a x2

goodness-of-fit test indicate whether the GAM fits satisfactory to

the entire time-series. Significant negative (2) or positive (+) time

trends in the rate of change (f9), as well acceleration (+) or

deceleration (2) of the current trend (f99) are shown. Hence, an

increase in a rate of decline is indicated by negative f9 and a

positive f99.

(DOC)
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19. Möllmann C, Conversi A, Edwards M (2011) Comparative analysis of European

wide marine ecosystem shifts: A large-scale approach for developing the basis for
ecosystem-based management. Biol Letters 7: 484–486.
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26. Möllmann C, Kornilovs G, Fetter M, Koster F, Hinrichsen H (2003) The

marine copepod, Pseudocalanus elongatus, as a mediator between climate variability
and fisheries in the central Baltic sea. Fish Oceanogr 12: 360–368.
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