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Abstract 

This paper presents the development of a knowledge model, which describes the 

reasoning process in managing schedule disturbance (MSD) in steelmaking. Literature 

review shows the lack of research in developing a knowledge model for decision 

making in steelmaking. In this paper the knowledge model distinguishes three 

knowledge categories: the task knowledge, the inference knowledge and the domain 

knowledge. The knowledge is captured for ten most common types of disturbances in 

steelmaking. It is observed that a common inference model exists for the disturbance 

management. A knowledge elicitation methodology called XPat [eXpert Process 

Knowledge Analysis Technique] combined with CommonKADS approach was used 

to capture process knowledge for managing schedule disturbance in steelmaking. 

Finally the knowledge model is validated through paper based simulations of three 

common disturbance scenarios. The validation process consisted of three components: 

accuracy, completeness and consistency.  
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1. Introduction 

In practice the scheduling systems used to assign activities to resources often assume 

the generated schedule will remain workable for the foreseeable future. The process of 

manually constructing the predictive schedule for steelmaking of a twelve-hour shift 

by a human scheduler takes at least two hours. This manual scheduling time means 

that it is difficult to react to unforeseen production events, e.g. rushed order, 

especially during night shifts and weekends when experts might not be available 

(Cowling and Reizig, 2000). In addition, when it is necessary in advance to schedule 

several parallel activities, which share resources, the quality of manually generated 

schedules deteriorates with time due to unplanned events. This can cause disturbances 

and disruption to plans requiring modification actions or even rescheduling (Brown, 

1988). Frequent rescheduling often results in instability and lack of continuity in 

detailed schedule execution. Due to the dynamic nature of the steelmaking process 

however, it is often difficult to maintain the original short-term schedule. The 

schedule disturbance management is a manual process and requires many years of 

experience. The research presented in this paper intends to formalise the knowledge 

required to manually modify a schedule in order to minimize the impact of any 

disturbance. The knowledge can then be used in a decision support system to improve 

the management of schedule disturbance and avoid unnecessary rescheduling. 

 

This paper presents a knowledge model for decision support to manage schedule 

disturbance in steelmaking (hypothesis). Knowledge modelling is an approach to 

develop a Knowledge-Based System (KBS). This is a transformation approach to 

knowledge capture, by modelling ‘what an expert does’. A knowledge model for the 
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MSD is a semi-formal representation of the tasks involved, the inference mechanism 

to manage the disturbance and any domain specific knowledge. In section 2, the paper 

presents an overview of managing schedule disturbance in steelmaking. Section 3 

describes the approach for knowledge model development and section 4 presents 

validation of the knowledge model through case studies. Section 5 in the paper 

presents a discussion on the research methodology and results and finally section 6 

concludes with the limitation of the approach and the future research. 

 

2. Managing Schedule Disturbance in Steelmaking 

Scheduling in general is a dynamic activity where several repair actions may be 

required depending on internal or external influences. Managing schedule 

disturbances (MSD) is a complex knowledge intensive activity, performed by human 

experts. This activity encompasses several ranges of dynamic tasks, such as 

generating alternative actions and making decision. MSD is necessary to ensure 

reaction in one domain does not affect the rest of the schedule. Disturbance in 

steelmaking can be caused by a variety of unexpected events ranging from external 

influence to internal constraints. The word disturbance has been used in this context to 

mean  

‘An interruption due to unexpected disruption in the steelmaking process’ 

This suggests disturbance is an incident, in which the state of normal behaviour is 

upset. For example an external influence may be rushed orders and an internal 

constraint may be machine or tool breakdown, rework due to wrong product 

specifications. MSD in steelmaking is:  

‘A problem solving process, whereby specific problem solving knowledge (PSK) 

is specified in order to generate a set of instructions as possible actions’ 
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The generation of instruction set depends on time available and the state of the overall 

steelmaking schedule.  

 

The task of managing schedule disturbance is popularly termed as reactive 

scheduling. The human schedulers, as experts, solve problems by inferring knowledge 

from experience and communicating instructions about the schedule either by word of 

mouth or via Gantt chart. The use of Gantt chart in general scheduling is widespread. 

The Gantt chart is a formal tool for communicating change in the schedule. In 

practice, there is more to reactive scheduling than updating the Gantt chart. Informal 

communication is common between schedulers and shop floor operatives. It is 

observed that no one has addressed the issue of knowledge capture to support manual 

MSD. It is important to understand ‘what the experts do to solve reactive scheduling 

problem’ and how to represent the heuristics employed during this process. The major 

aim of this research is to prove that a generic model for MSD in steelmaking can be 

developed. The overall argument is that MSD in steelmaking is a complex knowledge 

intensive activity that should be aided by a decision support mechanism to address 

any process constraints. According to Dorn and Shams, compatibility constraints of 

higher grades of steel impose requirements on the sequence in which orders are 

produced, (Dorn and Shams, 1991). To achieve certain characteristics, when 

chemicals are added it may also react with the steelmaking aggregate. 
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3. Developing a knowledge model for MSD in steelmaking 

The ability of human schedulers to react to unexpected events or disturbances is 

identified as their capacity to reason about the predictive schedule and possible 

actions to minimise disruption on the shop floor. Reasoning about possible actions 

requires understanding of processes and knowledge from past experience. This section 

focuses on the development of a knowledge model for MSD in steelmaking.  

 

3.1. The Approach 

In steelmaking scheduling, each categories of disturbance are handled differently. It is 

essential that each categories of disturbance and possible action to modify or 

reschedule is well understood. In order to model the process of MSD in steelmaking 

scheduling ten most common categories of disturbances were identified: Steel out-of-

specification in BOS plant, Steel out-of-specification in SSM plant, Steel temperature 

too hot, Steel temperature too cold, Hot Metal Supply (HMS), Tap Needs Outlet, Heat 

Needs Outlet, Clash on SSM Equipment, Clash on Concast Equipment, and Ladle 

Gate Failure. The categories of MSD are identified using a series of semi structured 

interviews with experts from three different plants within Corus. Authors also studied 

shift logs for any disturbance and analysed previous company documentation. 

Problem solving knowledge (PSK) from these categories was captured using the XPat 

methodology (Adesola et. al., 2001). XPat knowledge elicitation methodology is easy 

to use by the experts and is suitable for process knowledge capture. This is followed 

by the development of knowledge items contained in the PSK. Adesola (2002) 

reviewed seven knowledge modelling frameworks (KMFs) to evaluate their suitability 

to support different stages of knowledge capture and reuse. CommonKADS 

methodology in (Schreiber, et. al., 1999) emerged as the most effective in terms of 
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explicit realisation of evaluation criteria. Therefore, CommonKADS methodology is 

followed to analyse the XPat interview results and develop the knowledge model. 

Validation of the model is performed using paper-based simulations of three case 

studies for accuracy, completeness and consistency. 

 

The process of developing PSK for MSD consists of seven steps. The first two steps 

identify and capture domain specific knowledge and their sources. Steps three and 

four describe direct knowledge elicitation techniques used to collect, interpret and 

transform problem solving processes. Direct knowledge elicitation techniques such as 

interviewing and protocol analysis have been used in steps 1 - 4.  

 

Step 1: Review existing documentation 

Step 2: Generate Scenarios 

Step 3: Interview Experts using a questionnaire based on XPat 

Step 4: Transcribe and Interpret 

Step 5: Determine Task Type  

Step 6: Validate and repeat steps 3 - 5 

Step 7: Document PSK 

 

The protocol knowledge acquired is analysed to produce output in the form of rules 

and procedures. These represent the domain expertise that people bring to bear in the 

decision process. Once the knowledge have been identified and elicited the next step 

is to classify the nature of task. To elicit knowledge, simple structured questions were 

developed based on XPat approach. The questions were intended to allow knowledge 

engineers to draw out from expert schedulers how they reason during problem solving 
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and what information sources are used and or reused, the people involved and the 

nature of interactions. Four experts were interviewed, in addition, the authors 

observed experts during MSD. Figure 1 present a problem solving (procedural) flow 

chart for steel out-of-specification in the Basic Oxygen Steelmaking (BOS) Vessel.  

 

Different categories of disturbance require different PSK. A PSK in this case consists 

of eleven knowledge items as listed below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Problem solving (procedural) flowchart for out-of-specification 

(OOS) Steel in the BOS Vessel 
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1. Problem description – A brief description of the problem in terms of the nature 

of the problem and its location.  

2. Entities involved – A list of the steelmaking equipment and systems involved in 

the disturbance. 

3. People involved – A list of people consulted by the shift scheduler about possible 

actions.  

4. Relevant knowledge – This refers to both tacit and explicit knowledge relevant to 

address the disturbance. 

5. Problem recognition – An indication of who inform the shift scheduler, sources 

may include people and systems  

6. Consequences – A measure of the effect on business and scheduling overall 

7. Possible Actions – This refers to repair actions linked to the reasoning process. 

8. Considerations -  This describe the possible implication on cost and performance. 

9. Implementation – A procedural flowchart illustrating the flow of reasoning. 

10. Glossary of Term – List of common terminology used during problem solving. 

11. Data Utilised – Indicates the required data and information to generate actions  

 

Item number nine represents procedural or problem solving flowcharts, which 

illustrate the flow of reasoning. Together all of these represent a structured format for 

eliciting knowledge about different categories of disturbance. 
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3.2. From PSKs to a Knowledge Model 

CommonKADS, the leading methodology, influenced the development of knowledge 

model in this research. It distinguishes three knowledge categories: task knowledge, 

inference knowledge and domain knowledge. The task knowledge defines control over 

the inferences, the inference knowledge describes basic inference steps performed 

using domain knowledge and the domain knowledge specifies knowledge and 

information types in an application. The knowledge model development starts by 

selecting a template knowledge model (TKM) from the CommonKADS library of 

templates. Template selection is itself a knowledge intensive activity, because it 

requires understanding of the domain and the goals that the task intends to achieve.  

 

From the initial study, it is observed that the task of MSD is a combination of analytic 

and synthetic tasks. The nearest inference structure in this case is the configuration 

design task template in Schreiber et al., (1999). Configuration design method uses a 

variation of the propose-critique-modify class of method described in Chandrasekaran 

and Johnson (1993). The “propose” part of the method is similar to the predictive 

schedule, the “critique-modify” doesn’t exactly fit MSD but some of the features are 

similar to construct and repair a schedule. Since existing task templates are not 

adequate for MSD, this template presents a useful starting point to adapt and construct 

a TKM for the application task at hand. 
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3.2.1. Mapping XPat to CommonKADS: Knowledge Specification 

The flowchart in Figure 1 features two major classes of problem solving tasks, 

analytic and synthetic (Breuker, et. al., 1987; Schreiber, et. al., 1999; Tansley and 

Hayball 1993). It captures typical analytic and synthetic features of the problem-

solving knowledge. For each disturbance category, the flowchart method was used to 

collect procedures used for problem solving. The flowchart indicates how steelmaking 

schedulers reason during problem solving process. The interpretations of these 

flowcharts provide the necessary understanding for the role of knowledge and the 

inferences made.  

 

Figure 2 shows the two routes prescribed in CommonKADS methodology to map 

reasoning process onto the knowledge model specification. The ‘middle-out’, requires 

parallel activities involving decomposition of tasks through the application of 

methods whilst refining the domain knowledge at the same time. The inference 

structure represents inference functions with the “ellipse-shape” and knowledge roles 

with the “rectangle-shape”. The task knowledge and the domain knowledge are 

mapped to the inference structure via the inference functions and knowledge roles 

respectively. The approach taken in this research is the middle-out route. The decision 

to start construction of the inference structure by middle-out route was influenced by 

the flowchart method of collecting problem solving knowledge. 
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3.2.2. Inference Knowledge Specification 

It is observed that existing CommonKADS TKM are not adequate for the problem of 

MSD in steelmaking, hence it is necessary to adapt the existing template and construct 

an inference structure for MSD. In the previous section, the decision to adapt and 

construct the TKM via the middle-out route was made based on data available about 

problem solving process. This section discusses the evolution of the inference 

structure for MSD. 

Figure 2: Knowledge Model Specification (Schreiber, et. al., 1999). 
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The Evolution of Inference Structure for MSD in Steelmaking 

Figure 3 illustrate the evolution of the inference structure. A bottom-up approach to 

model based knowledge acquisition has been applied to construct an inference 

structure. The inference structure is based on available ‘configuration design’ task 

template that fits only part of the reasoning pattern of the knowledge intensive task 

identified, during knowledge elicitation (Adesola, et al., 2002). Authors studied all ten 

categories of disturbances (corresponding to ten categories of PSKs) identified during 

the research. It is observed that a common pattern exists between the PSKs, which 

suggests steelmaking scheduling experts’ reason about the problem solving in a 

similar way. To achieve a generic inference structure the steps in problem solving 

were identified in order abstract patterns of behaviour. The steps were then put 

together to form an inference structure through an iterative approach which involve 

communication with the experts and refinement at each stage to update the reasoning 

process. There were two iterations in the evolution of the inference structure.  

Figure 3: Evolution of Inference structure for MSD in steelmaking 
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Changes made to the initial and intermediate inference structure include identifying 

input/output for the newly discovered inference functions in order to extend the 

reasoning process. The first task was to identify and evaluate model mismatches in the 

intermediate inference structure and delete them. With further iteration the 

intermediate inference structure was annotated with domain data and further 

refinement was carried out to produce the final inference structure.  

 

The Final Inference Structure 

The final inference structure in Figure 4 demonstrates a combination of task types. 

Monitoring is an analytic task to establish behaviour of a system (Breuker, et. al., 

1987), the task involves selecting a system parameter that can reveal new findings, a 

norm value is then specified and compared with the new findings. If there is any 

difference it is usually classified as minor or major discrepancy representing the 

analysis part of the task. The task of modifying a schedule is synthetic by nature. The 

goal of a synthetic task is to find a structural description of a system in terms of some 

given set of elements, formalism or partial structures. In order to identify a 

specification, a synthetic task may initially contain an analytic task (Breuker, et. al., 

1987). 

 

Construction of the inference structure is realised by identifying first, the inference 

functions for the analysis task, and then synthetic tasks. For the analytic task, the three 

inferences identified were ‘monitor’, ‘verify’ and ‘specify’. For the synthetic task, the 

three inferences identified were ‘generate’, ‘modify’ and ‘reschedule’. The flowchart 

method abstracts the analytic task of monitoring and classifying system behaviour. It 

provides a top-level view of the problem-solving method. 
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Figure 4: Inference structure for MSD in steelmaking 
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3.2.3. Task Knowledge Specification 

In the previous section, a middle-out approach was followed to construct an inference 

structure for MSD in steelmaking. This section describes the process of specifying 

task knowledge, the control structure and general characteristic of the task manage-

schedule-disturbance. Figure 5 shows the task structure for MSD. The task Manage-

Schedule-Disturbance was identified using XPat. The task structure was developed by 

following five steps. 

 

Step 1: Define the top-level task. This is the goal the scheduler intends to achieve. 

Step 2: Identify task method to realise the top-level task. 

Step 3: Decompose the task method into subtasks. 

Step 4: Decompose subtasks into subtask methods 

Step 5: Decompose subtask methods into primitive tasks, that is, leaf functions. 

 

The link between task and inference structure is shown as the leaf function. The 

structure is a decomposition of top level composite task. The task knowledge category 

describes the goals and the strategies that will be employed to realise the goals. In this 

case the task is to manage-schedule-disturbance to maintain sequence of heats, in 

order to minimise the risk of needing to reschedule orders. The task knowledge is 

described in a hierarchical fashion. The top-level task1 MANAGE-SCHEDULE-

DISTURBANCE is decomposed into smaller tasks, which in turn is split into even 

smaller tasks. The task does not include rescheduling task. It only decides whether 

rescheduling is necessary, therefore rescheduling is shown as dashed dotted line in the 

                                                           
1 Composite task is a problem solving action it specifies an abstraction level and require decomposition before it 
can be executed.  
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diagram (see Figure 5). The lowest level tasks2 are the leaf functions and are linked to 

inferences and transfer functions in the inference structure. 

Figure 5: Task Structure for MSD in steelmaking 
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by analysing requirements and trade-offs to balance the objectives of the plant. The 

sub task ‘repair’ presents possible modification actions to remove constraint violation 

or generate change list for rescheduling action where it is necessary. The latter action 

is the last resort.  

 

The sub-tasks are decomposed into sub-task methods. For example, the sub task 

“monitor” is decomposed into “monitor-schedule” and “verify-sequence”. In real life, 

these two functions are performed iteratively by the scheduler during the problem 

solving process. In order to respond to system data that indicates discrepancy, the 

monitor function tracks system data (feedback from various sources including 

unsolicited messages received) from the shop floor operators. For verification, the 

scheduler checks specification for constraint violation. For example, if temperature is 

too hot in a ladle such that it is not possible to send the steel to a caster, verify sub-

task will return false, a Boolean value. This result of verification will be passed onto 

specify sub-task which will call the appropriate problem solving knowledge (PSK) 

from the index of PSK.  

 

The index of PSK is where procedures are stored for the different categories of 

disturbance such as out-of-specification, temperature-too-hot, ladle-gate-failure etc. 

The leaf functions describe the lowest level of reasoning in the inference structure, 

(Schreiber, et. al., 1999). For the purpose of problem solving, the ‘construct’ method 

uses ‘specify’ and ‘generate’ function, as procedures for handling specific problems. 

In order to present actions to address a specific problem, the sub-task ‘modify’ is 

employed and the ‘reschedule’ function is used when it is not feasible to ‘modify’ a 

schedule.  



 18

 

Control Structure 

In Figure 6 a graphical representation of the method control structure for MONITOR-

CONSTRUCT-REPAIR task is shown. This presents a graphical view of the method 

of control. The control structure assumes there is an observation that can verify the 

existence of a discrepancy and then the steps are followed. In Figure 7, a generic 

default method applicable to MSD in steelmaking is shown. The method is data 

driven, this is represented with the use of the transfer function ‘receive’ (an external 

agent a human user or a subsystem has the initiative). Whenever the system receives 

external data the controller checks for abnormal behaviour in the schedule execution. 

The system checks the observed values by actively seeking new data (through ‘obtain’ 

transfer function).  

Figure 6: Control Structure for MONITOR-CONSTRUCT-REPAIR 
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3.2.4. Domain Knowledge Specification 

The domain knowledge is static in the sense that, it presents a description of the facts 

about the domain without knowing how this knowledge might be used in problem 

solving. In this sense, domain knowledge is task dependent and domain specific. 

Scheduling task in general is relatively weak in providing domain knowledge because 

of the dynamic nature of scheduling task as compared to other synthetic tasks e.g. 

configuration designs.  

 

General characterization of managing-schedule-disturbance task 

 
Goal:    Given a set of units and resources assigned to a  
schedule, monitor execution, find constraint violation  
and apply a fix-action to satisfy constraint. 
 
Typical Example: Disturbance management in steelmaking. 
 
Terminology:  

System data: data that initiate disturbance in a process 
Discrepancy: abnormal behaviour in schedule execution 
Fix: an ordered list of possible actions to remove or at least  
minimise discrepancy 
Constraint: a control or something that limit process behaviour.  

 
Input: Complaints about disturbance affecting a schedule 
 
Output: A set of instructions to minimise the impact of schedule  
disturbance in steelmaking. 
 
Features:  
Managing schedule disturbance is traditionally a manual activity and  
in principle lacking any structure. The activity straddles both analytic  
and synthetic task and demands balanced attention.  

 

Figure 7: Default method for MSD in steelmaking 
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CommonKADS does not prescribe a fixed formalism for describing domain structure. 

However, ‘frames’, ‘is-a hierarchy’, ‘rule sets’ are examples of domain structures, 

which are used in CommonKADS. In order to acquire domain knowledge, each item 

of declarative knowledge was classified into four types: concepts, attributes, relations 

and rule types.  

 

The starting point for domain knowledge modelling is the analysis of interview 

transcript to generate a set of concepts, relations and attributes. Using the transcript of 

interview in (Adesola, et. al., 2000) the following domain knowledge were elicited. 

Figure 8, shows the domain schema drawn from elicited domain knowledge using 

XPat. The natural language analysis (Vescovi, et. al., 1993) technique provides a good 

first guidance for understanding the meaning of text in the transcript. The main 

problems with this approach however, is that it is time consuming, one needs different 

scenarios for analysing different types of sentences. 

Figure 8: Typical domain knowledge types in MSD through monitor-construct-repair 
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4. Knowledge Model Validation  

This section presents the validation of the reasoning process through paper-based 

simulations, as adapted from CommonKADS. The validation process consists of three 

components. The first component concerns what is happening and the entities 

involved in domain specific terminology, this was validated for accuracy. The second 

component describes the associated inference functions and knowledge roles3 

required, determining the actions; this was validated for completeness. The third 

component provides for additional explanation and comments about actions, which 

are taken, this was validated for consistency. Therefore, accuracy, completeness and 

consistency are used as the measurement criteria for the validation; they are also 

supported by existing literature on knowledge analysis. The knowledge model is 

validated with three case studies that reflect the required system behaviour. A paper 

trace in terms of the knowledge model constructs is generated. A set of questionnaires 

was designed from the measurement criteria to validate the knowledge model. Three 

experts validated the knowledge model, which lasted 12 man-hours over three days 

during this time changes were made to the structure and contents of the knowledge 

model. Informal discussion about the behaviour of the model was captured on 

audiotape and transcribed, this was later used to support changes to the paper trace 

where appropriate.  

 

The case studies chosen represent the most common categories of disturbance in 

steelmaking scheduling. The inference structure for MSD is validated with domain 

experts to confirm that it is sufficiently detailed. The validation also indicates that it is 

                                                           
3 Abstract names of data objects that indicate their role in the reasoning process. 
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easy to find domain knowledge that could act as static roles4 for the inference 

structure. . Table 1 shows the three case studies for the knowledge model validation, 

there are two scenarios for each case study. A complete description of all three cases 

with the scenarios can be found in Adesola (2002). Appendix A presents a paper 

based simulation result for ‘Steel OOS BOS Vessel-B (Scenario 1)’ Case Study result 

as a sample. 

Table 1: Case Studies for Knowledge Model Validation 

Case studies Description 
A Out-of-specification in the BOS Vessel 

B Out-of-specification in the Secondary Steelmaking (SSM) plant 

C Steel Temperature Too Hot BOS / SSM plant 

 

Each scenario describes specific disturbance, the conditions and actions. The paper 

simulation is performed in a tabular form with three columns, the first column 

identifies what happens in the domain, entities involved including the scheduler, the 

shop floor operator and the systems used. In the second column, the knowledge model 

(inference functions and knowledge roles) identifies necessary variables and rules to 

generate possible actions. The knowledge model realises the required problem solving 

through the sequence of inferences defined. The third column provides explanation 

and comments about action to validate the knowledge model. Each experts were 

given: (a) the three case studies, (b) six paper simulation tables and (c) a set of semi-

structured questionnaires. Each expert was required to study and cross check items (a) 

and (b) above. Each column of the paper simulation table is validated against the 

measurement criteria. For example, the domain data is validated for accuracy, 

knowledge model is validated for completeness and the explanation is validated for 

consistency. After cross checking, experts were asked to complete the validation 

                                                           
4 These are more or less stable over time, they specify collection of domain knowledge that is used to make inferences 
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questionnaire and comment on their overall experience. Table 2 presents the 

validation results.  

Table 2: Knowledge Model Validation Results, a score of 4 means ‘strongly agree’ and 1 means 

‘strongly disagree’. 

 
Case 

Studies Scenario Knowledge Model 
Simulation 

Measurement 
Criteria 

Expert 
A 

Expert 
B 

Expert 
C 

Score 
E/12 x 

% 
Domain Data Accuracy 4 4 4 100% 

Knowledge Model Completeness 4 3 4 91% 1. Vessel-B 
Explanation Consistency 3 4 4 91% 

Domain Data Accuracy 4 3 3 83% 
Knowledge Model Completeness 4 3 4 91% 

A 
 
Steel OOS 
BOS Vessel 2. Vessel-C 

Explanation Consistency 3 3 4 83% 
Domain Data Accuracy 4 3 3 83% 

Knowledge Model Completeness 4 2 3 75% 1. Flusher-B 
Explanation Consistency 4 3 4 91% 

Domain Data Accuracy 4 4 3 91% 
Knowledge Model Completeness 2 3 3 66% 

B 
 
Steel OOS 
SSM Plant 2. RH- 

Degasser 
Explanation Consistency 3 3 3 75% 

Domain Data Accuracy 3 3 3 75% 
Knowledge Model Completeness 2 2 2 50% 1. Vessel-B 

Explanation Consistency 2 2 2 50% 
Domain Data Accuracy 3 3 3 75% 

Knowledge Model Completeness 4 3 4 91% 

C 
Steel 
Temperature 
Too Hot 
BOS/SSM 
plant 

2. RH- 
Degasser 
 Explanation Consistency 4 3 3 83% 

61 54 59 58 
=61/72 =54/72 =59/72 =58/72  

 
84% 75% 81% 80% 

 

The result of paper based simulation (Table 2) indicates the model match problem 

solving behaviour. The experts scored 84% (average) for accuracy of domain data, 

which indicates the domain data reflected typical systems data for a specific category 

of disturbance in steelmaking scheduling. For the knowledge model, the experts 

scored 77% to indicate that the knowledge model completely captures the inferencing 

process in the problem solving behaviour to MSD. The result of explanation (79%) 

indicates there is consistency in the relationship expressed between the domain data 

and the analysis in the knowledge model. 
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5. Discussion  

There is now an overall consensus that the process of building a KBS may be seen as 

a modelling activity (Studer, 1998). A generic inference structure for disturbance 

management in steelmaking scheduling has been constructed. Many components have 

been identified with potential for reuse. The methodology applied in this research 

follows an academic approach, which pursues a framework for capturing human 

knowledge and conversion into a system for reuse combined with parallel validation 

through case studies in the industrial environment.  

 

A methodology, called XPat, to capture process knowledge has been applied. The 

method aims to improve the natural knowledge elicitation technique by facilitating 

experts to express and display their expertise within a flexible and structured process. 

From the interpretation of interview transcript, ten categories of disturbances in 

steelmaking were elicited from experts. Eleven knowledge items were defined for 

each category of disturbances. These knowledge items constitute problem-solving 

knowledge for MSD in steelmaking. The knowledge items include implementation 

flowcharts for each PSK. This part of the research is prone to bias due to the 

interpretation by the researchers. The bias is minimised by careful design of the 

questionnaire and through additional observation. The benefit of developing the 

knowledge model this way is that it is easy to trace each function through the 

inference function. The knowledge model is reusable and adaptable. One of the main 

advantages of model based knowledge engineering is the concept of reusability. 

Potentially, combination of model elements can be reused. It is intuitively clear from 

the knowledge model in the research that large parts of model are not specific to 
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steelmaking. Parts of the task and the inference knowledge can re-occur in other 

domain and/or tasks.  

 

The knowledge model has been validated with three case studies. The approach 

employed for validation was repeated “walk through” paper simulation with domain 

experts. Where necessary, feedback from the walk-through tests was used to 

iteratively modify and extend the knowledge model. The case study has shown that 

the knowledge model has accurately captured problem solving knowledge and rules. 

The knowledge model is generic to steelmaking. Although the knowledge model has 

not been tested in other industries, it is expected that this can provide a basis for 

analysing management of schedule disturbance in other sectors. The knowledge 

model reflects expert reasoning process.  

 

However as with any other research, the methodology has some limitations. The 

weakness of the methodology is its applicability to other domain, since time and 

resources limited the research; it has not been tested widely. With more time and 

resources the methodology should be tested in complex environment, like managing 

airline gate assignment. 

 

In future, a prototype decision support system will be developed (for offline use) to 

implement the knowledge model and to exploit the inference structure in other 

application areas where disturbance management is critical to the business.  
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6. Conclusions  

This paper has identified human expertise as the dominant factor in manual 

scheduling. It has demonstrated how the result of knowledge elicitation through XPat 

methodology can be utilised to develop a knowledge model for MSD in steelmaking. 

This proves the hypothesis of this research.  

 

The main problem is that MSD in steelmaking is not formalised. This research has 

formalised elicited knowledge for decision support to MSD in steelmaking. The 

approach is novel and supports “middle-out” route for completing knowledge model 

in CommonKADS. The approach demonstrates that it is possible to construct a 

generic inference structure from problem solving knowledge identified by flowcharts. 

The inference structure is sufficiently detailed for implementation to provide the 

reasoning process for managing schedule disturbance.  

 

The knowledge model has been validated with a case study in out-of-specification 

steel – BOS Vessel. The case study shows that the knowledge model has accurately 

captured problem solving knowledge and rules. The knowledge model is generic to 

steelmaking. Although the knowledge model has not been tested in other industries, it 

is expected that this can provide a basis for analysing management of schedule 

disturbance in other sectors.  

 

In conclusion, this paper presents the development of a knowledge model to manage 

schedule disturbance in steel making. In future, the model can be implemented to 

develop a decision support system for the disturbance management. 
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8. The Appendix: Case Study A 

Paper based Simulation Result for Scenario 1, Steel Out of Specification (OOS) 
BOS at Vessel-B 

Steel chemistry is OOS in BOS Vessel-B. The scheduler received the information via 

the operator at the BOS Vessel. The quality code is 1522, heat number in 2461. The 

customer will not accept OOS steel. The number of ladle in sequence is 8, heat 

position in sequence is 3, and the process route is VFD (Vessel Flush Degas). Figure 9 

shows annotated inference structure for MSD with data about out-of-specification 

(OOS) steel in BOS Vessel-B.  

 

Condition:  Time is 16:45, required concast delivery time is 17:55. 

  There is time to contact the contact the customer. 

Customer will not accept out-of-spec steel. 

There is no quality that can be made from heat-need-outlet. 

 

 

Action:  “Create Heat-Needs-Outlet: Check the 24 Hour (Hard copy 

of Slab or Bloom Machine) schedule for qualities that can be 

made from Heat-needs-outlet. Tap heat as alternative quality” 
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For practical purposes, the paper simulation process is conducted in a tabular form. 

The reasoning process, employed in MSD is described. The case study is an example 

of schedule disturbance covered in the validation process. The knowledge components 

of the inference structure, that is, the dynamic roles5, e.g. the system-data, the 

schedule, the discrepancies, etc has been instantiated with domain specific objects 

(Figure A.1).  

Figure A.1: An Annotated Inference structure for 

Steel Chemistry Out of Spec (OOS) Steel in BOS Vessel 

The case study reflects required systems behaviour.  After several iterations and 

refinement, the inference structure was validated with domain experts to confirm that 

the inference structure was sufficiently detailed. The validation also indicates that it 

was easy to find domain knowledge that could act as static roles6 for the inference 

structure. A paper trace in terms of the knowledge model constructs is generated. 

                                                           
5 These are run-time inputs and outputs of inferences. The dynamic roles have different instantiations at 
each invocation. 
6 These are more or less stable over time, they specify collection of domain knowledge that is used to 
make inferences 

Specify

Truth
Value

Carbon = 0.2
Silicon = 0.1

Heat locate at
Vessel

Constraints
& Business 

Rules

Rectify and
Tap as normal

Index of
Problem
Solving 

Knowledge

Verify

Modify

Generate

Monitor

receive

Obtain Carbon
is too high

Reschedule

Change
List

Vessel::PSK

‘B’ Vessel heat
 out-of-specification

in-spec=false
within-customer-limit=false
controllable= true

heat located-at Vessel-B
in-spec=false

within-customer-limit=false
controllable= true

Customer-limit. Carbon-LL = 0.02
Customer-limit. Carbon-UL = 0.07
Analysis summary. Carbon  = 0.2

IF time-available > time-required for rectification
THEN add treatment , rectify in the Vessel, tap as
normal and continue to the next station

BOS-Vessel Out-of-specification
problem-solving-knowledge

 Customer-limit.nickel-LL =0.0
 Customer-limit. nickel-UL =0.08
 Analysis-summary.nickel =0.1
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Domain Knowledge Model Explanation 
 Receive System Data 
 
Scheduler: [Look up to identify the problems]                     
Operator : “B-Vessel heat is OOS” 
System:      BC System – Quality Code       
                   Data  
                   Merlin Schedule – Heat Location 
                   Vax Mgmt System – Analysis Summary 

MANAGE SCHEDULE 
DISTURBANCE: 
monitor: system-data; 
Heat.location = Vessel-B 
 

The scheduler monitors system-data, 
receive operator feedback for which 
manage schedule disturbance task is 
started. The heat located at Vessel-B is 
OOS 

 
Obtain Additional Data 
 
Scheduler: [Asked operator what element is OOS] 
Operator:   [The value of Carbon and Nickel is too high] 
System:      Vax Mgmt System – Heat  
                   Status and Analysis Summary (AS) 

OBTAIN: system data; 
 
Heat.carbon-element-analysis = false 
Heat.nickel-element-analysis = false 

Carbon and nickel are the two elements out 
of specification as the element analysis 
value indicate false. 

Compare Analysis Summary with Customer limit 
 
Scheduler: [Check specification] 
Operator:   [Awaiting instruction] 
System:      BC System – QC 10 and  
                   QC 02 for Quality   
                   code 1522 Vessel-B Heat  
                   no. 2461  

 Heat/Sequence of Heats = 3 of 8 
Customer Limit Elemen

t 
 

Analysi
s  
Summar
y 

Lower 
Limit 

Upper Limit 

C  0.2 0.02 0.07 
NI  0.1 0.0 0.08 

Temperature: not affected 

verify: truth-value; 
Heat.within-customer-limits = false 
Heat.element-controllable = false 
Heat.carbon-element-analysis = 0.2 
Heat.carbon-element-analysis-customer-
lower-limit = 0.02 
Heat.carbon-element-analysis-customer-
upper-limit = 0.07 
Heat.nickel-element-analysis = 0.1 
Heat.nickel -element-analysis-customer-
lower-limit = 0.0 
Heat.nickel-element-analysis-customer-
upper-limit = 0.08 

This inference checks whether element 
analysis is within customer limits and 
controllable, it returns a truth-value – true 
or false. It checks each element against 
code of practice specification for customer 
acceptance limits. In this case element OOS 
include controllable and uncontrollable 
elements: Carbon and Nickel exceeds 
customer limit. 
 
 

Specify PSK 
 
Scheduler: [Specify PSK] 
Operator:   [Awaiting instruction] 
System: “Call Vessel out-of-specification psk” 

specify: fix: 
VESSEL::OOS-PROBLEM-SOLVING-
KNOWLEDGE  

This inference states the precise PSK to fix 
out-of-specification steel in the BOS 
Vessel. The inferencing method is forward 
reasoning. A PSK is specified to fix out-of-
specification steel in the Vessel. 
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Generate possible actions 
 
Scheduler: [Generate possible actions] 
Operator:   [Awaiting instruction] 
System: “Check condition and generate  
              action” 
              “Calculate time available for  
              rectification” 
 
 
 
 
Condition: Time (i.e. Time on the  
                  clock)    = 20:20 
                  Required concast delivery   
                  time = 21:30 
  
Q. Is there time available for rectification? Yes 
 
 

generate: actions; 
Basis for time to rectify in the Vessel 
Heat.tap-to-open-time = 65  (for Quality 
1522) 
Heat.time-until-required-at-concast = 
[delivery-time less current-time] 
Heat.time-available-from-tap = [delivery-
time less heat tap-to-open-time] 
Heat.time-available-for-rectification = 
[time-until-required-at-concast less time-
available-from-tap] 
 
Rules for calculating extra time per 
sample number 
IF at Vessel and sample = 1 THEN  

extra-time = 10 
ELSE IF at Vessel and sample = 2 THEN  

extra-time = 5 
ELSE extra-time = “0” 
END  
Heat-time-available-for-rectification = 
Heat-time-available-for-rectification + 
extra-time 
 
The Rule 
IF time-available-for-rectification =>10 
THEN 
          there is sufficient-time-to-rectify in 
the vessel,  
          tap-as-normal and continue-to-the-
next-station 
ELSE  
 

This inference produces action to solve the 
OOS problem in the Vessel. This is 
achieved by computing all possible 
combinations in an algorithm as the rules 
for calculating time indicates. For example 
depending on the state of the plant, the 
following questions are asked: 
 
Is there time available for rectification? Yes 
 
 
Although there is no time to rectify in the 
Vessel the element OOS is uncontrollable. 
The scheduler instructs the operator to 
reblow in the vessel.  The scheduler checks 
for quality that can be made from heat-
need-outlet, and found there is no quality 
that can be made from heat-need-outlet. 
The scheduler instructs the operator to tap 
as an alternative quality 
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 IF time-available-for-rectification < 10 
THEN 

there is insufficient-time-to-rectify 
in the vessel, ask-the-caster-
operator-to-slow-down-casting-for-
sufficient-time , rectify in the vessel, 
tap-as-normal and continue-to-the-
next-station 

ELSE create heat-needs-outlet 
END  
Comments 
Note that a judgement may need to be 
made concerning the actual time for 
rectification at present this is set to 10 
minutes e.g. 10 minutes 
 

 

Display modification instruction 
 
Scheduler: [Advice shopfloor about  
                  possible actions] 
Operator:   [Receive possible action] 
System: “Display problem statement,                   
              advice and explanation”  
 
 
 

modify: schedule; 
 
Problems 
element C is out of spec for Customer 
Limit at VESSEL-B. Controllable: true; 
Analysis: 0.2. upper limit: 0.07. lower 
limit: 0.02 element NI is out of spec for 
Customer Limit at VESSEL-B. 
Controllable: false; 
Analysis: 0.1. upper limit: 0.08. lower 
limit: 0.0 
 
Advice 
 “Create Heat Needs Outlet, find 
alternative quality and available caster for 
heat- needs-outlet.  Tap heat as alternative 
quality”.  

This inference seeks to adapt the schedule 
by displaying relevant actions as 
instructions to advice shop floor operators 
in order to maintain stability in the 
steelmaking process.   
 
In this case although there is time to rectify 
in the vessel, the element out of spec is 
uncontrollable and the customer will not 
accept steel with OOS elements. This 
inference display problems, advice and 
explanation. The heat will have to be 
rescheduled. The scheduler informs weekly 
planner by complete the production 
planning and report sheet. 
 
 
 

Display rescheduling instructions  
 
 

OBTAIN: rescheduling instructions;  
Not applicable in this case 
 

This transfer function is only required if the 
scheduler cannot manually modify schedule 
as illustrated in the above two scenarios.  
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