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Abstract 

The economic feasibility of offshore wind power utilisation depends on the favourable 

wind conditions offshore as compared to sites on land. The higher wind speeds have 

to compensate the additional cost of offshore developments. However, not only the 

mean wind speed is different, but the whole flow regime, as can e.g. be seen in the 

vertical wind speed profile. The commonly used models to describe this profile have 

been developed mainly for land sites. Their applicability for wind power prediction at 

offshore sites is investigated using data from the measurement program Rødsand, 

located in the Danish Baltic Sea.  

Monin-Obukhov theory is often used for the description of the wind speed profile. 

From a given wind speed at one height, the profile is predicted using two parameters, 

Obukhov length and sea surface roughness. Different methods to estimate these 

parameters are discussed and compared. Significant deviations to Monin-Obukhov 

theory are found for near-neutral and stable conditions when warmer air is advected 

from land with a fetch of more than 30 km. The measured wind shear is larger than 

predicted.  

As a test application, the wind speed measured at 10 m height is extrapolated to 50 m 

height and the power production of a wind turbine at this height is predicted with the 

different models. The predicted wind speed is compared to the measured one and the 

predicted power output to the one using the measured wind speed. To be able to 

quantify the importance of the deviations from Monin-Obukhov theory, a simple 

correction method to account for this effect has been developed and is tested in the 

same way. 
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The models for the estimation of the sea surface roughness were found to lead only to 

small differences. For the purpose of wind resource assessment even the assumption 

of a constant roughness was found to be sufficient. The different methods used to 

derive the Obukhov length L were found to differ significantly for near-neutral and 

stable atmospheric stratification. Here again the simplest method using only bulk 

measurements was found to be sufficient.  

For situations with near-neutral and stable atmospheric stratification and long (>30 

km) fetch, the wind speed increase with height is larger than what is predicted from 

Monin-Obukhov theory for all methods to estimate L and z0. It is also found that this 

deviation occurs at wind speeds important for wind power utilisation, mainly at 5-9 

ms-1.  

The power output estimation has also been compared with the method of the resource 

estimation program WAsP. For the Rødsand data set the prediction error of WAsP is 

about 4%. For the extrapolation with Monin-Obukhov theory with different L and z0 

estimations it is 5-9%. The simple wind profile correction method, which has been 

developed, leads to a clear improvement of the wind speed and power output 

predictions. When the correction is applied, the error reduces to 2-5%. 

Key Words: Off-Shore, Meteorology, Boundary-Layer, Power Production Estimation, 

Wind Resource Assessment�

1 Introduction 

It is expected that an important part of the future expansion of wind energy utilisation 

at least in Europe will come from offshore sites. The first large offshore wind farms 

are currently being built in several countries in Europe. The economic viability of 

such projects depends on the favourable wind conditions of offshore sites, since the 
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higher energy yield has to compensate for the additional installation and maintenance 

costs. A reliable prediction of the wind resource is therefore crucial. This requires the 

modelling of the vertical structure of the surface layer flow, especially the vertical 

wind speed profile. This is needed, e.g., to be able to extrapolate wind speed 

measurements performed at lower heights to the planned hub height of a turbine. 

Also, for turbine design the wind shear is an important design parameter, especially 

for the large rotor diameters planned for offshore sites. �

The wind speed profile in the atmospheric surface layer is commonly described by 

Monin-Obukhov theory. In homogenous and stationary flow conditions, it predicts a 

log-linear profile: 
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The wind speed u at height z is determined by friction velocity u*, aerodynamic 

roughness length z0 and Obukhov length L. κ denotes the von Karman constant (taken 

as 0.4) and Ψm is an universal stability function. Thus, if the wind speed is known at 

one height, the friction velocity can be derived from eq. (1) and the vertical wind 

speed profile is determined by two parameters: the surface roughness z0 and the 

Obukhov length L. This relation has originally been developed from the Kansas 

experiment with measurement height of up to 32 m [1]. It cannot in general be 

expected to be valid for the hub heights of today’s large wind turbines of 80 to 100 m 

or even for the wind shear across the rotor with tip heights of up to 150 m. 

The surface roughness of the sea is low compared to land surfaces. This is the main 

reason for the high wind speeds offshore. However, the roughness is not constant with 

wind speed as it is for land surfaces. Instead, it depends on the wave field present, 
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which in turn depends on wind speed, upstream fetch (distance to coast), water depth, 

etc. Different models have been proposed to describe these dependencies. Most 

commonly used is the Charnock model [2], which only depends on friction velocity. 

Numerous attempts have been made to improve this description by including more 

information about the wave field, e.g. by including wave age [3] or wave steepness [4] 

as additional parameters. These additional parameters require wave measurements, 

which are often not available for wind power applications. A fetch dependent model 

has therefore been developed, where the wave age has been replaced by utilising an 

empirical relation between wave age and fetch [5]. 

The Obukhov length L has to be derived from measurements at the site. Different 

methods are available using different kinds of input data: The calculation of L with 

the eddy-correlation method requires fast response measurements, e.g. by an 

ultrasonic anemometer. Wind speed and temperature gradient measurements at 

different heights can be used to derive L via the Richardson number [6]. The method 

with the least experimental effort employs a wind speed measurement at one height, 

water and air temperatures to calculate the bulk Richardson number, which is then 

related to L [7]. 

Monin-Obukhov theory, although developed from measurements over land, has been 

found to be generally applicable over the open sea [8]. This has been questioned for 

sites where the flow is influenced by the proximity of land. [9] and [10] showed that 

the land-sea discontinuity influences the flow for distances of up to 100-200 

kilometres. Offshore wind power plants will therefore always be subject to such 

influences.  

In coastal waters, when wind is blowing from land over the sea, the coastline 

constitutes a pronounced change in roughness and heat transfer. These changes pose a 
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strong inhomogeneity to the flow, which may limit the applicability of Monin-

Obukhov theory. Stimulated by measurements of large wind stress over Lake Ontario, 

Csanady described the processes governing the flow regime under the condition of 

warm air advection over colder water [11]. He developed an equilibrium theory of a 

well-mixed layer with a capping inversion for this condition.  

Monin-Obukhov theory is a key part of the European Wind Atlas method [12] and the 

wind resource estimation program WAsP [13], which is most commonly used for 

offshore wind potential studies (see e.g. [14]) and wind resource estimations from 

measurements (see e.g. [15]). Also other approaches, like the methodology used in the 

POWER project [16] are based on this theory.  

Also mesoscale flow modelling is used for wind power studies. A comparison of the 

mesoscale model MIUU [17] and the WAsP program shows differences of up to 15% 

in mean wind speed [18]. However, such models are too computationally demanding 

to be used in wind power applications and a simpler model is needed to be able to 

estimate these effects.  

A validation study with three offshore masts in Denmark revealed differences 

between measurements and WAsP model results, which correlated with fetch [19]. A 

combination of the simplified assumptions used in WAsP was believed to be 

responsible for the deviations.  

In this study the impact of different methods and models for the extrapolation of wind 

speed measurements on the prediction of the wind turbine power production is re- 

investigated with data from the Rødsand measurement program in the Danish Baltic 

Sea, about 10 km off the coast. A simple ad hoc correction to the Monin-Obukhov 

wind speed profile is developed with the aim to investigate the importance of 
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deviations from the Monin-Obukhov profile on wind resource estimations. The 

deviations occur when warm air is flowing from land over a colder sea, creating an 

inhomogeneous wind flow. 

Measured wind speeds at 10 m height are extrapolated to 50 m height with Monin-

Obukhov theory with different methods to derive L and different models for the sea 

surface roughness. This has been repeated including the simple wind profile 

correction for inhomogeneous wind flow. The results are compared with the measured 

wind speed at 50 m height. By converting the wind speeds to power output of an 

example turbine, the impact of the deviations in wind speed on the estimation of the 

power production is investigated.  

The Rødsand measurement program is briefly introduced in the following section. In 

section 3, Monin-Obukhov theory is used to predict the wind speed profile with 

different methods for the derivation of L and models for estimating z0. The simple 

correction of the Monin-Obukhov profile for inhomogeneous wind flow in the coastal 

zone is developed in section 4. In section 5, the impact of the different methods, 

models and the correction on the estimation of the power production of a wind turbine 

is investigated. Their impact on the prediction of the wind shear is shown in section 6. 

Then conclusions are drawn in the final section. 

2 The Rødsand field measurement program 

The field measurement program Rødsand has been established in 1996 as part of a 

Danish study of wind conditions for proposed offshore wind farms. A detailed 

description of the measurement, instrumentation, and data can be found in [20] and 

[21]. 
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The 50 m high meteorological mast is situated about 11 km south of the island 

Lolland in Denmark (11.74596°E, 54.54075°N) (see Figure 1). The instrumentation of 

the measurement mast is listed in Table 1. It is located in 7.7 m mean water depth 

with an upstream fetch (distance to coast) of 30 to more than 100 km with wind 

directions from SE to WNW (120°N to 290°N). In the NW to N sector (300°N to 

350°N) the fetch is 10 to 20 km.  

All wind speed data are corrected for flow distortion errors due to the mast and the 

booms with a method developed by Højstrup [23]. Records from situations of direct 

mast shade have been omitted. Friction velocity is calculated from the data of the 

ultrasonic anemometer with the eddy-correlation method. Simple correction 

procedures have been applied to account for the small decrease of the fluxes with 

height [21]. 

The air temperature over land in the upwind direction from Rødsand has been 

estimated from measurements at synoptic stations of the German Weather Service 

(DWD) and the measurement station Tystofte, located in Denmark (operated by the 

Risø National Laboratory) (see Table 2 and Figure 1). A more detailed description can 

be found in [21] and [22]. 

Not all instruments are available for long term measurements at Rødsand. Therefore, 

two data sets are used: 

• A data set with shorter measurement period, in which ultrasonic and wave 

measurements are also available. This data set consists of about 4200 half-hourly 

records. This data set is used for all analyses except in sections 5.2 and 6. 
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• A data set of two years measurement time (5/99 to 5/01), but without sonic and 

wave measurements, is used in section 5.2. This data set consists of 64000 records 

of 10-minute averages (61% availability). 

The data have only been selected for the availability of all measurements. For the 

purpose of wind resource estimations all available data have to be used. Therefore the 

data have not been selected for stationarity, although Monin-Obukhov theory is only 

valid for stationary flow conditions. An analysis with data selected for the 

applicability of the theory can be found in Lange et al. [21].  

3 Extrapolation with Monin-Obukhov theory 

3.1 Derivation of Obukhov length 

Atmospheric stability is described in Monin-Obukhov theory with the Obukhov 

length scale L as stability parameter. Three different ways to derive this parameter are 

considered:  

Sonic method 

L is determined directly from sonic anemometer measurements of friction velocity 

and heat flux by:  

�
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Here ��	 ’’  is the covariance of temperature and vertical wind speed fluctuation at the 

surface, u*s the surface friction velocity, T the reference temperature, g the 

gravitational acceleration and κ the von Karman constant (taken as κ=0.4). 
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The sonic anemometer measures the sound virtual temperature, which differs from the 

virtual temperature by ’’1.0 �	�  [24]: 

∗∗−Θ′′=−Θ′′=+′′=′′ �
�	�	�	�	��	�	
�������

1.0’’1.0’’51.0’  (3) 

Here q is the absolute humidity and Θv the virtual potential temperature. No humidity 

measurement is available at Rødsand. Therefore only an average humidity flux could 

be accounted for in the calculation of the stability parameters. Following Geernaert 

and Larsen [25], a relative humidity of 100% and 70% has been assumed at the 

surface and at 10 m height, respectively. The measured water temperature has been 

used to transform these to absolute humidity. The humidity scale q* and the vertical 

humidity profile have been calculated with a diabatic profile with standard humidity 

stability functions and a humidity roughness length of z0q=2.1·10-4 m [25]. 

Gradient method 

Temperature and wind speed difference measurements at 10 m and 50 m height are 

used to estimate the gradient Richardson number Ri∆: 
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Here ∆Tv/∆z is the virtual temperature difference ∆Tv at a vertical height difference 

∆z. Equally, ∆u/∆z is the wind speed difference ∆u at the vertical height difference 

∆z. Cp is the specific heat of air at constant pressure. Humidity at the two heights has 

been estimated as described above. The height z’ at which this Ri number is valid can 

be estimated as z´=(z1-z2)/ln(z1/z2) [26]. The gradient Richardson number is converted 

to L by means of the following relation based on the Kansas results [1], [27]: 



���������	
�������
���� � �������������

 page 11 of 64 

( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

<<
−′

<⎟
⎠
⎞

⎜
⎝
⎛ ′

=
2.00

51

0

�

�


�
�

�

�


�

�
��������

 (5) 

Bulk method 

Air and sea temperature measurements are used together with the wind speed at 10 m 

height. An approximation method proposed by Grachev and Fairall [7] has been used. 

In the calculation of the virtual temperatures, humidity has been accounted for with 

the assumptions stated above. 

For the bulk method the sea surface temperature is required. This is not measured at 

Rødsand and therefore had to be replaced by the water temperature measured at a 

depth of about 2 m. Due to the cool skin effect this temperature is on average slightly 

higher than the skin temperature [28]. This leads to a small but systematic 

overprediction of the temperature difference between the surface and 10 m height and 

consequently to an overprediction of the stability parameter |10m/L|, i.e. the 

calculated values of 10m/L are slightly too high for stable and too low for unstable 

conditions. 

3.2 Sea surface roughness 

Compared to land surfaces the surface roughness of water is very low. Additionally, it 

is not constant, but depends on the wave field, which in turn is determined by the 

wind speed, distance to coast (fetch), etc. It is investigated how different models to 

describe the sea surface roughness influence the prediction of the wind profile (eq. 

(1)). Four models for sea surface roughness z0 are considered:  

Constant roughness 
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The assumption of a constant sea surface roughness is often used in applications 

because of its simplicity, e.g. in the wind resource estimation program WAsP [13]. A 

value of z0=0.2 mm is assumed. 

Charnock relation 

The most common model taking into account the wave field by its dependence on 

friction velocity u* is the Charnock relation [2]: 

�
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��

2

0
∗=  (6) 

Here g is the gravitational acceleration and zch the empirical Charnock parameter. The 

standard value of zch=0.0185 has been used [29].  

Wave age model 

The Charnock relation works well for the open ocean, but for coastal areas it was 

found that the Charnock parameter is site specific, due to the influence of other 

physical variables like fetch on the wave field. Numerous attempts have been made to 

find an empirical relation for the sea surface roughness with an improved description 

of the wave field. No consensus on the most suitable scaling groups has emerged yet. 

Different relations have been tested with the Rødsand data [5] and an extension of the 

Charnock relation by a parameterisation of the Charnock parameter with wave age as 

additional parameter by Johnson et al. [3] is used:  
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Here cp/u* is the wave age, the ratio of the velocity of the peak wave component cp 

and the friction velocity u*. The values for the empirical constants A and B are taken 

as A=1.89 and B= -1.59 [3]. 
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Fetch model 

The wave age model requires measurements of the peak wave velocity, which are 

often not available for wind power applications. A fetch dependent model has 

therefore been developed, where the wave age has been replaced by utilising an 

empirical relation between wave age and fetch. 

Kahma and Calkoen [30] found the following empirical relation between the 

dimensionless peak frequency and the dimensionless fetch: 
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Here ωp is the peak wave frequency and x the fetch in metres. Values of C=3.08 and 

D= -0.27 have been used for the coefficients [30]. 

The influence of fetch on wave parameters has been determined by field experiments 

with winds blowing approximately perpendicular to a straight coastline. To use these 

relations for any coastline, an effective fetch xeff for a particular wind direction φ is 

defined as the integral over the fetch x(α) for directions from α= φ-90º to α= φ+90º, 

weighted by a cosine squared term, normalised, and divided by the fetch which would 

result from a straight coastline. 
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With the assumption of deep water conditions the left hand side of eq. (8) can be 

identified as the inverse wave age u*/cp using the dispersion relation. This relation can 

then be used to eliminate the wave age from eq. (7): 
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3.3 Comparison of predicted and measured wind speed profiles 

The wind speed ratio between 10 m and 50 m height is predicted using Monin-

Obukhov theory. From the diabatic wind profile (see eq.(1)) the wind speed ratio is 

calculated as: 
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Here z0 is the aerodynamic roughness length and Ψm(z/L) the integrated stability 

function, for which the Businger-Dyer formulation [1] is used. For the empirical 

parameters β and γ the values of the Kansas measurement reanalysed by [27] for a 

von Karman constant of 0.4 are used (β=4.8 and γ=19.3). 
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A deviation R is defined as the ratio between measured and predicted wind speeds at 

50 m height, where the prediction is made from the measured wind speed at 10 m 

height with eq. (11): 
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This deviation R has been computed for the Rødsand data for all combinations of the 

three models to derive the Obukhov length L and the four models of the sea surface 

roughness.  

Systematic deviations are found in all cases for data with stable stratification. As 

example, the deviations R for the gradient method to derive L are shown in Figure 2, 

using the Charnock relation to model the sea surface roughness. A good agreement is 

found in the unstable region (10m/L<-0.05). For stable conditions the wind speed at 

50 m height is systematically higher than predicted by Monin-Obukhov theory. The 

deviation increases with increasing stability parameter 10m/L.  

The large scatter, which is visible in Figure 2, is due to the fact that the data have not 

been selected for stationary flow conditions. Data from periods with large changes in 

the atmospheric flow lead to large scatter. From [21] it can be seen that the scatter is 

considerably reduced if records with larger nonstationarity of wind speed, wind 

direction, temperatures etc. are excluded from the analysis. 

For comparison of the different methods, the bin-averaged deviations R for the three 

different methods to derive L are shown in Figure 3 together with their standard 

errors. Only bins with more than 20 records have been used. It can be seen that for all 

methods the agreement is good for unstable stratification. For near-neutral and stable 

stratification the wind speed prediction at 50 m height is too low by all methods. The 

deviations increase with increasing stability parameter 10m/L for all methods, with 

the exception of the sonic method for stable conditions. Deviations are between -3% 

and 3% for unstable conditions and between 3% and 18% for stable conditions. 

The difference in the magnitude of the deviations can be understood from the way the 

Obukhov length is calculated using the different methods. In the determination of L 
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with the gradient method the applicability of Monin-Obukhov theory has been 

assumed (eq. (5)). This means that the predicted wind speed ratio between 10 m and 

50 m height is already included in the calculation of L. From eq. (4), (5) and (12) it 

can be seen that the diabatic term in the vertical wind profile is inversely proportional 

to the wind speed height ratio squared (Ψm(z/L) ~ 1/∆u2) for stable stratification. 

Therefore, any deviation between measured and predicted profile is amplified with 

this method.  

The small magnitude of the deviation in the bulk method is due to the fact that only 

absolute quantities are used instead of differences. Contrary to the gradient method, a 

deviation of the measured from the predicted profile will therefore only lead to a 

small relative difference in the calculation of L. Additionally, the systematic error 

caused by using the bulk water temperature instead of the sea surface temperature 

leads to a small over-prediction of 10m/L on the stable side. This partly compensates 

for the deviations between measured and predicted wind speed profile. 

To investigate if the deviations R can be caused by inappropriate modelling of the sea 

surface roughness, the four different roughness models are compared in Figure 4. The 

bin-averaged deviations R are plotted versus the stability parameter 10m/L. The bulk 

method has been used to derive L. It can be seen that the choice of model for the sea 

surface roughness does not have a large impact on the dependence of the deviations 

on the stability parameter z/L. Thus, they cannot be responsible for the deviations 

found. 

Sea surface roughness mainly depends on wind speed (or friction velocity, which are 

related). Figure 5 shows the dependency of the bin-averaged deviation on wind speed 

at 10 m height for the four roughness models. The data are selected for unstable (L<0) 

and stable (L>0) stratification. For unstable stratification the deviations are small 
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(<4%), while for stable data deviations of up to 25% are found. The constant 

roughness assumption leads to the smallest deviations up to a wind speed of about 8 

ms-1, but to the largest deviations for higher wind speeds. From the other models, the 

Charnock relation always shows the smallest deviation. The wave age and fetch 

models show only little difference and slightly larger deviations than the Charnock 

model. 

4 Correction of the Monin-Obukhov wind speed profile for 
coastal influence 

4.1 Description of the flow regime 

The measurement station Rødsand is surrounded by land in distances between 10 and 

100 km and thus the air in the boundary layer will always be advected from land. Due 

to the large differences in heat capacity and conduction between land and water the air 

over land will often be warmer than the sea surface temperature. Warm air is advected 

over the colder sea to the measurement station especially at daytime, when the land is 

heated by the sun, and in early spring, when the water temperature is still low from 

winter. Large temperature differences between the advected air and the sea surface 

can occur. At Rødsand, temperature differences of up to 9ºC were measured. 

The flow regime that develops in this situation has been described by several authors. 

We follow the explanation given by Csanady [11] and Smedman et al. [31]: When 

warm air is blown over the cold sea, a stable stratification develops immediately as 

the air adjacent to the sea surface will be cooled. Simultaneously, an internal 

boundary layer develops at the shoreline due to the roughness and heat flux changes. 

In the case when warm air advects over a cold sea, a stable internal boundary layer 

(SIBL) emerges, characterised by low turbulence and therefore small fluxes and slow 
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growth (see Figure 6 (a)). The warm air is cooled from below while the sea surface 

temperature will remain almost constant in this process due to the large heat capacity 

of water. Eventually, the air close to the sea surface will have the same temperature as 

the water and the atmospheric stability will be close to neutral at low heights. Above 

the internal boundary layer the air still has the temperature of the air over land and 

near the top of the SIBL an inversion lid has developed with strongly stable 

stratification separating these two regions (see Figure 6 (b)). Thus, while the stability 

in the mixed layer is close to neutral, the elevated stable layer influences the wind 

speed profile and leads to a larger wind speed gradient than expected for an ordinary 

near neutral condition.  

Due to the small fluxes through the inversion lid, this flow regime is in a quasi-

equilibrium state and can survive for large distances before the heat flow through the 

inversion eventually evens out the difference in potential temperatures. It can be 

expected that eventually the neutral boundary layer is recovered, which is known from 

open ocean observations [8]. 

4.2 Prediction of the inversion height 

A theory for a mixed layer flow with capping inversion has been developed by 

Csanady [11]. The so-called buoyancy parameter Bu is proposed to predict if such a 

flow regime will develop. He found that an inversion lid is likely to develop if Bu>30. 

Bu is estimated from: 
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Here g is the gravitational acceleration, b is the buoyant acceleration (b=g∆ρ/ρ), ρ the 

air density, ∆ρ the air density difference between surface and geostrophic level at 

constant pressure, f the Coriolis parameter and vg the geostrophic wind speed.  

For the Rødsand measurement, the geostrophic wind speed and the air density at 

geostrophic level have been estimated from the measured data at the Rødsand mast 

and at the surrounding land stations. It has been assumed that the air at this height is 

advected from land without temperature change and that the temperature stratification 

over land is neutral (see [21]). 

The buoyancy parameter Bu aims to determine if a mixed layer with inversion lid can 

develop in a certain situation. The influence of a flow regime with mixed layer and 

capping inversion on the wind speed profile can be expected to depend on the height 

of the inversion. If the inversion is very high it will probably have little influence on 

the wind speed profile up to 50 m height, while a low inversion height can be 

expected to have a large impact. Csanady proposes the following expression for the 

depth of the mixed layer h in equilibrium conditions [11]: 

21
∗∆

= 

�

��
ρ

ρ
 (15) 

He estimates the empirical parameter A to 500. The inversion height estimated from 

airborne measurements over the Baltic Sea has been found to agree reasonably well 

with eq. (15) [32]. 

The bin averaged deviation R for situations with long fetch (>30 km) is shown versus 

the inversion height h in Figure 7 (in logarithmic scale). A correlation can be seen 

with large ratios for low inversion heights of below 100 m, decreasing rapidly with 

increasing inversion height and reaching a constant level at an inversion height of 
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about 1000 m. This is in accord with the picture that an inversion height in the order 

of the boundary layer height will not lead to changes in the profile. 

It has to be kept in mind that the estimated inversion height h is for equilibrium 

conditions only, i.e. when the mixed layer and capping inversion already are 

developed. Therefore the theory cannot be used for small fetches. The correlation 

between h and R has been found to hold for fetches larger than 30 km [21]. 

4.3 Development of a simple correction method 

The deviations due to thermal effects in coastal waters will lead to errors in wind 

resource prediction made with Monin-Obukhov theory. If e.g. the mean wind speed at 

hub height is estimated from measurements at a lower height, the wind resource will 

be estimated too low.  

A micrometeorological model to take into account these effects is not available. 

Therefore a simple correction method is developed here to investigate the importance 

of this effect for wind resource estimations. In Figure 7 it is shown that the deviation 

decreases with increasing height of the inversion layer. It is assumed that the 

deviation increases linearly with height. The simplest correction method is therefore 

to add a linear correction term to the wind speed profile of the Monin-Obukhov theory 

(see eq. 1), which is proportional to the measurement height z and inversely 

proportional to the estimated inversion height h: 
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This correction is used for all records with fetch greater than 30 km and buoyancy 

parameter Bu greater than 30. From the Rødsand measurements the correction factor c 

is estimated to be about 4. 

The effect of this correction on the deviation R is shown in Figure 8 to Figure 9. In 

Figure 8 R is bin averaged with respect to the stability parameter 10m/L for different 

methods to derive L. This can be compared to Figure 3, where the same is shown 

without correction. It can be seen that the deviations on the stable side are reduced 

considerably for all three methods. Especially for the gradient method the deviation is 

greatly reduced since with this method the proposed wind speed profile with 

correction for thermal influences is used twice: in the calculation of L and in the 

prediction of the 50 m wind speed. For the sonic method also the deviation in the 

unstable regime decreases. This is due to the fact that some records with large 

deviations and Bu>30 are erroneously regarded as unstable by the sonic method, 

probably due to the large measurement uncertainty and sampling variability of the 

friction velocity. 

Figure 9 shows the deviation R versus wind speed as in Figure 5, but with the 

proposed wind profile correction. It can be seen that the reduction of the deviation is 

largest for small wind speeds. This is due to the fact that the inversion height after 

Csanady is proportional to the friction velocity squared (see eq. (15)). Since the 

correction is inversely proportional to h, it decreases with increasing wind speed. 

However, comparing Figure 9 with Figure 5 it should be noted that the correction is 

effective for wind speeds up to 12 ms-1. 
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5 Predictions of power production 

So far, different methods to derive the stability parameter L, different models for the 

sea surface roughness and a simple wind profile correction for the influence of a 

thermally modified flow regime have been discussed. In the context of wind energy 

utilisation it is important to know, which impact these different approaches have for 

the prediction of the power output of an offshore wind turbine. It is not only important 

how large an effect like e.g. the fetch dependence of the sea surface roughness is, but 

also how frequently it occurs and at which wind speed.  

This is investigated in an example application: the power production of an example 

wind turbine with hub height 50 m and 1 MW rated power output (see Figure 10 for 

the power curve) is estimated from the wind speed measurement at 10 m height using 

the different methods and models described in the previous sections. The estimated 

production is then compared with that obtained by using the measured wind speed at 

50 m height. The background for this example is that often wind speed measurements 

are made at meteorological masts, which are lower than the hub height of the 

proposed turbines. These need to be extrapolated to hub height for the prediction of 

the power production. 

5.1 Comparison of different methods 

The measured wind speed at 10 m height is extrapolated to hub height and converted 

to power output with the power curve of the example turbine. For the extrapolation to 

hub height different methods are used for: 

• derivation of the Obukhov length L: Sonic method, gradient method and bulk 

method (see section 3.1) 
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• modelling the sea surface roughness z0: constant roughness, Charnock relation, 

wave age model, fetch model (see section 3.2) 

• simple wind profile correction for deviations from Monin-Obukhov theory for 

warm air advection from land (see section 4) 

The resulting mean of the power output is compared to that derived from the 

measured wind speed at 50 m (hub height). 

The mean power output for the data set derived from the measured wind speed at hub 

height (50 m) is 498 kW. This is compared to the power output estimated from the 

extrapolation of the wind speed from 10 m measurement height to hub height. The 

result is shown in Figure 11, where the power output prediction error, defined as (Ppred 

–Pmeas)/Pmeas, is shown for all extrapolation methods. 

The estimated production with wind speed extrapolation is lower than that using the 

measured wind speed at hub height in all cases with errors ranging from 3% to 9%. 

Significant differences are found for the performance of the different methods to 

derive the Obukhov length L: The results for the sonic and bulk methods are almost 

equal with about 3-6% and 3-7% error, respectively, but the results obtained with the 

gradient method show larger errors of 5-9%. For the different sea surface roughness 

methods it can be seen that the constant roughness assumption and the Charnock 

relation lead to almost equal results. Equally, there is almost no difference between 

the wave age and the fetch models, which show a slightly (about 1%) higher error. 

The correction method for the wind speed profile leads to a significant reduction in 

the prediction error in all cases. For the sonic and bulk methods the error is reduced 

by about 2%, while for the gradient method a reduction of about 3% is obtained.  
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The variation of the absolute prediction error with stability can be seen in Figure 12 

for the three methods to derive L with and without applying the correction for flow 

with inversion layer from section 4. The difference between predicted and measured 

power output has been bin averaged with respect to the stability parameter 10m/L. 

Without correction, both the gradient and bulk methods show large errors for stable 

stratification. This shows that situations with stable stratification are important for the 

estimation of the power output of an offshore wind turbine, even though the wind 

speeds are on average smaller than for near-neutral conditions. The simple correction 

for the flow modification due to the land-sea transition is shown to have an important 

impact on the absolute power production estimation, since it improves the estimation 

significantly for stable conditions.  

Figure 13 shows the variation of the absolute prediction error with wind speed. The 

difference between predicted and measured power output has been bin averaged with 

respect to wind speed bins of 1 ms-1. The four roughness models (see section 3.2) 

have been used with the bulk method to derive L with correction. The estimation 

errors are most important in the wind speed range 5-9 ms-1, while for wind speeds in 

the range of 9-13 ms-1 both wind speed and power output estimation show only small 

errors. For very low and very high wind speeds no prediction error occurs, since for 

lower wind speeds the power production is small and so is the absolute error. For very 

high wind speeds above 13 ms-1 the decreasing steepness in the power curve reduces 

the impact of errors in wind speed estimation on power production estimation. 
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5.2 Comparison with results from a longer time series 

The results obtained above are compared with those from a data set of the two years 

time series where only part of the instruments are available (see section 2). Therefore 

the sonic method to derive L and the wave age model for z0 cannot be used. 

The results are shown in Figure 14. Compared to the result of the short time series 

(Figure 11) the overall picture remains unchanged. The mean production derived from 

the measurement at hub height is slightly smaller. Equally, the prediction errors are 

slightly smaller, while the comparison of the different methods shows the same 

overall picture as before. This shows that the effects found are not due to unusual 

conditions during the measurement period, but are at least qualitatively representative. 

5.3 Comparison with the wind resource estimation program WAsP 

The results are also compared with the mean power production calculated with the 

wind resource assessment program WAsP in Figure 14. For the WAsP calculations, 

the same data as for the extrapolation with the different methods have been used, i.e. 

the wind speed measurements at 10 m height. The estimated mean production with 

WAsP is about 4% lower than that derived from the wind speed measurements at hub 

height.  

When no correction is applied for wind profile correction, the extrapolation methods 

described above show a higher prediction error then WAsP, even though the 

atmospheric stability and sea surface roughness are estimated for each record, while 

the WAsP method uses a mean profile.  

The WAsP method assumes a constant sea surface roughness and a wind speed profile 

corresponding to a slightly stable mean atmospheric stability. This means that the 
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mean stability used in WAsP for the site Rødsand leads on average to better results 

than the actually measured atmospheric stability. 

As could also be seen from Figure 11, the prediction error is smaller for the bulk than 

for the gradient method. This is due to the influence of the flow regime with inversion 

layer on the profiles, which leads to a larger error in the estimation of L. 

For the sea surface roughness modelling there is little difference between the constant 

roughness assumption, as also used by WAsP, and the use of the Charnock relation. 

The fetch model for the roughness leads to an increased error.  

The prediction accuracy is improved greatly when the simple correction for the wind 

profile is applied. With this correction, the bulk method to derive L and the constant 

roughness assumption, the predicted mean power production error is less than 2%. 

This shows that a large part of the prediction error found in all methods is due to the 

modified wind profile stemming from a flow regime of a mixed layer with capping 

inversion.  

6 Prediction of the wind shear 

Wind shear is the change of wind speed with height in the vertical wind speed profile. 

It is one of the most important parameters for wind turbine design, since it gives raise 

to important fatigue loading of the rotor support and especially the blades. The blades 

of a wind turbine experience an alternating wind force for each rotation depending on 

their position in the wind profile.  

For design calculations, a power law profile as a simplified form of the wind profile is 

often used to describe the wind speed variation with height [34]: 
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Thus, the wind speed u at height z is only determined by the wind speed at hub height 

u(zhub) and the power law exponent a. A value of a=0.2 is recommended in the current 

version of the IEC certification guidelines [34]. 

Figure 15 shows a comparison of different forms of the vertical wind speed profile 

and the resulting wind shear. A wind speed of 10 ms-1 at a hub height of 80 m has 

been assumed as example. Shown are the power law profile with an exponent of 

a=0.2, the logarithmic profile with roughness length z0=0.0002 m, the Monin-

Obukhov profile with the same roughness length and Obukhov length L=200 m, and 

the profile with inversion layer correction from eq. (16), which fits the Rødsand 

measurements, with the same parameters and inversion height h=200 m. 

It is obvious that, due to the small roughness length, the wind shear of the logarithmic 

profile is smaller than of the power law profile. The power law and the logarithmic 

profiles do not account for stability effects. For moderately stable conditions the 

Monin-Obukhov profile shows a wind shear comparable to that of the power law 

profile. It was shown in the previous sections that the wind shear at Rødsand is larger 

than predicted by Monin-Obukhov theory for slightly stable conditions. The profile 

developed there (eq. (16)) shows a larger wind shear than the power law relation. 

To compare the wind shear of the different profiles with the Rødsand measurements, 

the wind speed ratio between 50 m and 30 m height is used. Figure 16 shows how this 

ratio clearly depends on the atmospheric stability. Power law and logarithmic profiles 

lead to constant values for this ratio, as they do not take this stability into account. 

The wind shear predicted by the logarithmic profile with z0=0.0002 m is 

approximately that measured for neutral stability conditions. The power law profile 

with a=0.2 leads to a higher wind shear estimate. But even for this the measured wind 

shear at stable conditions is systematically higher. The Monin-Obukhov profile does 
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in general follow the measured dependence of the wind shear on stability, but predicts 

too small values for stable stratification. This is due to the effect of the warm air 

advection with inversion layer discussed in section 4. An example of the result of the 

ad hoc correction term (eq.(16)) for an inversion layer height of 200 m is also shown 

in Figure 16. It can be seen that this effect can qualitatively explain the increased 

wind shear.  

For load calculations it is also important at which wind speeds the cases of high wind 

shear occur. This can be seen in Figure 17, where the wind speed ratio is shown 

versus wind speed at 10 m height. The same data are also shown as bin averages in 

Figure 18 along with their standard errors and standard deviations. The data have been 

segregated according to atmospheric stability in unstable (10m/L<-0.05), near-neutral 

(-0.05<10m/L<0.05) and stable (10m/L>0.05) classes. For wind speeds of up to 13 

ms-1 wind speed ratios have been measured which exceed the estimation of the power 

law profile. These are mainly stably stratified. Compared to land surfaces, in offshore 

conditions stably stratified flow can occur at higher wind speeds because of the low 

surface roughness. 

It can also be seen in Figure 17 that for high wind speeds the minimum wind shear 

tends to increase, while the maximum wind shear tends to decrease. Thus, the bin 

averaged wind shear does not show a clear dependency on wind speed for higher wind 

speeds (see Figure 18). For lower wind speeds up to 10 ms-1 the wind shear decreases 

with wind speed for stable and near-neutral conditions. 

A strong dependency of the wind shear on atmospheric stability can be seen in Figure 

17 and Figure 18: While for unstable conditions the wind shear is even smaller than 

predicted by the logarithmic wind profile with z0=0.0002 m, for stable classification it 

exceeds the power law profile with a=0.2, which corresponds to z0=0.34 m at 50 m 
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height. For the Rødsand data set the dependency of the wind shear on atmospheric 

stability seems more important than on wind speed. For the wind speed range 

available in the data set no clear effect of the sea surface roughness can be found, 

which would result in an increase of roughness with increasing wind speed. Data at 

higher wind speeds are necessary to investigate the importance of this effect for 

extreme wind conditions. 

7 Conclusion 

Models to describe the flow regime in the coastal zone have been compared with data 

from the Rødsand measurement program in the Danish Baltic Sea. Focus of the 

investigation has been the description of the vertical wind speed profile for resource 

assessment and wind shear modelling in offshore wind power utilisation.  

The vertical wind profile has been described by Monin-Obukhov theory and different 

models have been applied for the estimation of the two parameters used in this 

description: the Obukhov length and the sea surface roughness. For near-neutral and 

stable stratification large deviations from the measurements have been found in all 

cases. These are believed to be due to the inhomogeneous flow situation near the land-

sea discontinuity. To investigate the importance of this effect for wind resource 

assessment, a simple correction method has been developed for the vertical wind 

speed profile.  

To test the different models, the wind speed at 50 m height has been extrapolated 

from the measurement at 10 m height. To investigate the importance of the 

differences for wind power output estimations, the extrapolated wind speeds have also 

been converted to power production estimates. The following options have been used 

for extrapolation: 
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• Three different methods to derive the Obukhov length have been used, which 

utilise different measured quantities.  

• Four sea surface roughness models of different complexity have been tested.  

• A simple correction term has been applied in the equation of the vertical wind 

speed profile to account for the modification of the wind speed profile in a flow 

regime of a mixed layer capped by an inversion. 

The three different methods to derive L from the measurements were found to 

disagree for stable atmospheric conditions. This is believed to be a consequence of the 

flow regime with mixed layer capped by an inversion. Monin-Obukhov theory is not 

applicable here. The largest differences were found for the method deriving L via the 

Richardson number from measured profiles of temperature and wind speed. This is 

explained by the large difference in these profiles in the modified flow from usual 

Monin-Obukhov theory. Consequently, the simple correction method for the flow 

regime improved these results most. The derivation of L from sonic measurements (u* 

and w’T’) or from bulk measurements (Tsea, Tair, U) showed less strong deviations. 

The difference between the different models for the sea surface roughness is small 

compared to differences of other model choices. The simplest assumption of a 

constant roughness was found to be sufficient for the purpose of wind resource 

assessment. The reason is that errors of this method first become important at high 

wind speeds, where the power curve of the turbine is flat. Therefore the wind speed 

prediction errors do not lead to errors in production estimation. Compared to the 

assumption of constant roughness, the Charnock relation does not lead to 

improvements in power output prediction. The more complex sea surface roughness 

models based on wave age dependency were found to actually increase the prediction 
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error. The reason might be that the wave age dependency of the Charnock parameter 

suffers from self-correlation problems [33]. 

When the usual Monin-Obukhov profile is used, the wind shear in the surface layer is 

under-estimated at the Rødsand site by all models for L and z0, when the atmospheric 

stratification is near-neutral or stable and the fetch is long (>30 km). In contrast, all 

models showed reasonable results for unstable stratification.  

This effect is believed to be due to the flow regime, which develops when warmer air 

is blown from land over a colder sea. At some distance behind the coastline a flow 

regime develops, which consists of a mixed layer at the surface, capped by an 

inversion layer. In such a flow regime Monin-Obukhov theory is no longer applicable.  

A simple correction term has been applied in the equation of the vertical wind speed 

profile (see eq. (1)): 
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Here h is the height of the inversion and c is an empirical constant, estimated to c=4 

by a fit to the Rødsand data. 

The predictions of the wind speed profile have been repeated with the different 

models for sea surface roughness and Obukhov length. For the Rødsand data it is 

found that this simple correction leads to a clear improvement of the predictions for 

stable conditions. It has also been shown that this effect occurs predominantly at wind 

speeds of 5 to 9 ms-1, which are important for power production with wind turbines. 

More than half of the error in the prediction of the mean power output of an example 

turbine was due to this effect. 
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The mean power output estimation made by extrapolation of the wind speed 

measurements from 10 m to 50 m height with the different methods was also 

compared with the standard WAsP method. The WAsP extrapolation yielded a 4% too 

low mean power output. This was slightly less than for the best methods using Monin-

Obukhov theory. It shows that the assumption of a mean atmospheric stability 

performed even better than Monin-Obukhov theory, which uses the actually measured 

time series of stability conditions. The flow modification at the coastline leading to a 

mixed layer flow with capping inversion is believed to be the main cause of the 

prediction error. The error was reduced to only 2% when the proposed simple 

correction was applied. 

From these findings it is concluded that the wind resource estimation at offshore sites 

is more complex than usually believed. Not only the variable sea surface roughness, 

the determination of the atmospheric stability and the growth of the internal boundary 

layer complicate the situation, but also the land-sea discontinuity can lead to a special 

flow situation far offshore. In this flow regime the wind speed increases more rapidly 

with height than predicted by Monin-Obukhov theory. It should be noted that these 

deviations, although caused by the coastal discontinuity, where found far offshore for 

fetches of 30 to 100 km.  

The wind shear resulting from different forms of the vertical wind speed profile has 

been investigated by a comparison of the estimated and measured wind speed ratio 

between 50 m and 30 m height. For turbine design often a power law profile is used. 

This does not account for stability effects, which is shown to be a drawback, as these 

strongly influence the wind shear. From the measurements at Rødsand it can be seen 

that the power law profile proposed in the current IEC certification guidelines [34] 

underestimates the wind shear for stable stratification, especially in conditions with an 
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elevated inversion layer, which lead to an increased wind shear compared to Monin-

Obukhov theory. For load calculations it is also important to note that in offshore 

conditions flow with stable stratification occurs also at comparably high wind speeds. 

However, the influence of the wind speed itself on the wind shear is found to be less 

important for the wind speed range present in the data set. 

Data measured at Rødsand are not sufficient to study the effect of the sea surface 

roughness on wind shear in extreme wind cases. For high wind speeds the surface 

roughness will increase according to the Charnock relation and possibly additionally 

due to the fetch limited wave field. 

Currently these conclusions can be drawn for the site Rødsand only and need to be 

validated with other measurements. But from this example it can be seen that the flow 

modification in conditions of warm air advection from land plays an important role in 

the flow regime at offshore sites. At Rødsand this is the dominating uncertainty in the 

description of the wind conditions. Other sources of uncertainties, like the derivation 

of L, cannot be understood without taking this into account. We expect that a better 

understanding of this effect is a prerequisite for future improvements in the 

description of the wind regime over the coastal zone. 

To improve the wind resource estimation for offshore sites, a model for the flow 

regime in conditions of warm air advection from land over sea is needed. The simple 

correction method introduced in this paper is intended to show the importance of the 

effect, but cannot be used as a general model of the flow regime. Further development 

with data from additional sites is needed. Until such a model is available, 

measurements at or close to hub height are necessary for an accurate estimation of the 

wind resource of an offshore location. 
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Figure captions 

 

Figure 1: Map of the measurement stations 

Figure 2: Deviation R between measured and predicted 50 m wind speeds versus 

10m/L; L derived with the gradient method and z0 with the Charnock model 

Figure 3: Bin-averaged ratio R of measured and predicted 50 m wind speed versus 

stability parameter 10m/L with L determined by the sonic, gradient and bulk 

methods and z0 with Charnock model 

Figure 4: Bin-averaged ratio of measured and predicted 50 m wind speed versus 

stability parameter 10m/L with L determined by the bulk method and z0 

modelled with four different models (see text) 

Figure 5: Bin-averaged ratio of measured and predicted 50 m wind speed versus wind 

speed at 10 m height with L determined by the bulk method and z0 modelled with 

four different models (see text) 

Figure 6: Conceptual sketch of the flow regime with warm air advection over colder 

sea. The wind profile is shown compared with a neutral profile. 

Figure 7: Deviation R bin averaged for the estimated height of inversion layer h (from 

eq. (15)); When estimating u50pred, the bulk method has been used to determine 

L and the Charnock equation for the estimation of z0 

Figure 8: Bin-averaged ratio of measured and predicted 50 m wind speed versus 

stability parameter 10m/L with L determined by the sonic, gradient and bulk 

methods and z0 with Charnock model; the proposed correction method for 

thermal influences is used 
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Figure 9: Bin-averaged ratio of measured and predicted 50 m wind speed versus wind 

speed at 10 m height with L determined by the bulk method and z0 modelled with 

four different models (see text); the proposed correction method for thermal 

influences is used 

Figure 10: Power curve of the example wind turbine 

Figure 11: Error in power output prediction (Pmeas-Ppred)/Pmeas of an example turbine 

for the Rødsand data set; different methods to extrapolate the wind speed 

measurement at 10 m height to 50 m are used (see text) 

Figure 12: Difference between predicted and measured power output, bin averaged for 

stability parameter 10m/L; L derived with Sonic, Gradient and Bulk methods; 

Prediction with and without wind profile correction 

Figure 13: Difference between predicted and measured power output, bin averaged for 

10 m wind speed; Comparison of different models with wind profile correction 

Figure 14: Relative error in power output prediction (Pmeas-Ppred)/Pmeas of an example 

turbine for the 2 year long Rødsand data set; different methods to extrapolate the 

wind speed measurement at 10 m height to 50 m are used (see text); the result 

with the WAsP method is also shown 

Figure 15: Comparison of wind speed (left) and wind shear (right) height profiles for 

different profile forms; the wind speed at hub height 80 m is 10 m/s; shown are a 

power law profile with a=0.2, a logarithmic profile with z0=0.0002m, a Monin-

Obukhov profile with z0=0.0002m and L=200 m, and a profile with inversion 

layer correction from eq. (16) with z0=0.0002m, L=200 m and h=200m 

Figure 16: Wind speed ratio between 50 m and 30 m height measured at Rødsand 

versus atmospheric stability; also shown are calculations with different wind 

speed profiles (see Figure 15) 
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Figure 17: Wind speed ratio between 50 m and 30 m height measured at Rødsand 

versus wind speed at 10 m height for different stability classes (10m/L<-0.05 

unstable, -0.05<10m/L<0.05 near-neutral, 10m/L>0.05 stable stratification); also 

shown are calculations with different wind speed profiles (see Figure 15) 

Figure 18: As in Figure 17, but bin averaged data with respect to wind speed 
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Table captions 

 

Table 1��Instrumentation of the Rødsand measurement 

Table 2: Synoptic stations used for estimating the upwind air temperature over land 
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 height above 

mean sea level 

instrument sampling rate  

Wind speed 50.3 m cup anemometer 5 Hz 

 29.8 m cup anemometer 5 Hz 

 10.2 m cup anemometer 5 Hz 

Wind direction 29.7 m wind vane 5 Hz 

3 axis wind speed 

and temperature 

46.6 m (42.3 m 

from 12.5.99) 

ultrasonic anemometer 20 Hz 

Air temperature 10.0 m Pt 100 30 min mean 

Temperature 

difference 

49.8 m – 10.0 m Pt 500 30 min mean 

Sea temperature about –2m Pt 100 30 min mean 

Sea level  DHI AWR201 acoustic 

wave recorder 

8 Hz  

Sea current  GMI current meter 8 Hz  
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 latitude longitude height asl direction from 

Rødsand 

Glücksburg 54º49’ 09º30’ 27 m 281º 

Olpenitz 54º40’ 10º02’ 4 m 279º 

Kiel-Holtenau 54º22’ 10º08’ 27 m 256º 

Lübeck-Blankensee 53º48’ 10º42’ 14 m 221º 

Boltenhagen 54º00’ 11º11’ 15 m 210º 

Laage 53º55’ 12º17’ 40 m 150º 

Barth 54º20’ 12º43’ 7 m 112º 
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