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ABSTRACT 

In recent years, there has been an increase in the application of distributed physically-
based integrated hydrological models. Despite this, many questions regarding how to 
properly calibrate and validate distributed models and assess the uncertainty of the 
estimated parameters and the spatially-distributed responses are still quite unexplored. 
Especially for complex models, rigorous parameterization, reduction of the parameter 
space and use of efficient and effective algorithms are essential to facilitate the 
calibration process and make it more robust. Moreover, for these models multi-site 
validation must complement the usual time validation. In this study we illustrate, 
through an application, a comprehensive framework for multi-criteria calibration and 
uncertainty assessment of distributed physically-based, integrated hydrological models. 
A revised version of the generalized likelihood uncertainty estimation (GLUE) 
procedure based on Markov chain Monte Carlo sampling is applied in order to improve 
the performance of the methodology in estimating parameters and posterior output 
distributions. The description of the spatial variations of the hydrological processes is 
accounted for by defining a measure of model performance that includes multiple 
criteria and spatially distributed information. An initial sensitivity analysis is conducted 
on the model to reduce the problem of overparameterization and to increase the 
robustness of the approach. It is demonstrated that the employed methodology increases 
the identifiability of the parameters of complex hydrological models and results in 
satisfactory multi-variable simulations and uncertainty estimates. However, the 
parameter uncertainty alone cannot explain the total uncertainty at all the sites, due to 
the additional uncertainty that is added when distributed data are not properly included 
in the model calibration. This study also indicates that properly distributed information 
of discharge is crucial in model calibration and validation. 
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1 INTRODUCTION 

In recent years, there has been an increase in the application of physically-based, 
distributed, integrated hydrological models, such as MIKE-SHE (Graham and Butts, 
2006), SWAT (Arnold et al., 1998; Neitsch et al., 2002) and TOPMODEL (Beven, 
1995). One of the main reasons for this trend is the availability of more powerful 
computer resources, which allow using these models also in applications that were 
considered prohibitive few years ago. However, distributed models still lack the 
extensive investigations that have been conducted for lumped, conceptual rainfall-runoff 
(RR) models. Therefore, many questions regarding how to properly calibrate and 
validate distributed models and assess the uncertainty of the estimated parameters and 
the spatially-distributed responses are still quite unexplored. Refsgaard (1997) 
addressed some of the issues related to the increased difficulties in parameterisation, 
calibration and validation of distributed, integrated models compared to lumped RR 
models.

The higher complexity of physically-based, distributed models, compared to 
lumped RR models, arises because these models try to describe, with different degree of 
details, a spatial representation of the different physical phenomena occurring within the 
catchment. As a consequence, proper set up, calibration and validation of distributed, 
integrated models require a huge amount of geological, topographic, meteorological and 
hydrological data representing the various variables of interest. 

The higher complexity of distributed models is also reflected in the larger 
number of parameters they include in comparison to RR models, which must be 
estimated in order to get satisfactory simulations of the system behaviour. Therefore, 
especially for complex models, rigorous parameterization and reduction of the 
parameter space are essential to facilitate the calibration process and make it more 
robust. Overparameterisation must be avoided to ensure a higher degree of credibility to 
the subsequent model prediction (Andersen et al., 2001). In this respect, Refsgaard 
(1997) suggested to assess the parameter values from field data as much as possible and 
to fix spatial patterns of parameters to simplify the calibration process. The 
dimensionality of the parameter space can also be reduced by means of sensitivity 
analysis (SA) on the model response. Through SA the parameters that are non-essential 
in influencing the model response (and can be fixed to their prior values) can be 
distinguished from those that have a strong impact on the model outputs (and should be 
included in the calibration and subsequent assessment of uncertainty). This is a common 
procedure in calibration of hydrological models that has previously been employed for 



3

distributed models by Muleta and Nicklow (2005), Christiaens and Feyen (2001; 2002) 
and Mertens et al. (2004). An alternative way to decrease the number of calibration 
parameters is to fix the values of some of them to those estimated by a simpler model, 
as done, for example, by Sonnenborg et al. (2003), who used the calibration results 
found under steady-state conditions to constrain the parameter space of a transient 
model.

Refsgaard (1997) also pointed out the additional difficulties of validation of 
distributed models than of RR models. Not only time validation should be performed, 
but also validation of internal variables, i.e. a multi-site validation. Moreover, if the 
model is used with different discretization scales, the dependency of the processes on 
the modelling scale should also be tested (Vazquez et al., 2002; Vazquez and Feyen, 
2007). Data requirements can be an obstacle for a proper validation, since, even if 
distributed measurements are usually available to physically characterize the catchment, 
spatially-distributed time series of observations of all the variables of interest are rare. 
This is one of the main reasons why, also in the cases where space-validation was 
conducted, distributed models have usually been calibrated and validated against 
discharge data only (Andersen et al., 2001; McMichael et al., 2006; Engeland et al., 
2006). This method is inconsistent with spatially distributed modelling and it constitutes 
a limit to the performance of such models (Rosso, 1994). According to the knowledge 
of the authors, only few studies used multi-variable and multi-site data to calibrate and 
validate an integrated, distributed model (Refsgaard, 1997; Vazquez et al., 2002; 
Madsen, 2003). 

Madsen (2003) proposed a framework for use of multiple criteria to measure the 
model performance, which is crucial in calibration and validation of distributed models. 
In particular, the proposed method allows to include the different variables of interest 
(multi-variable criteria), their spatial variability (multi-site criteria), and the different 
error functions applied for evaluating the performance of the simulated variables (multi-
response criteria). 

Due to their increased complexity, physically-based, distributed models require 
numerical codes, which are more complex and more computational demanding than 
those of lumped, RR models. Moreover, the larger dimensionality of the parameter 
space increases the number of model runs needed to calibrate and assess the uncertainty 
of distributed models. Applying more efficient calibration and uncertainty assessment 
procedures can limit the computational burdens. Global calibration techniques, such as 
the Shuffled Complex Evolution (SCE) algorithm by Duan et al. (1992), have been 
successfully applied in some calibration studies of distributed models (Madsen, 2003; 
Mertens et al., 2004; Blasone et al., 2007a). To reach convergence, global 
methodologies require a larger number of model runs than local gradient-based 
techniques, which have also been employed in conjunction with this type of models 
(Sonnenborg et al., 2003; Blasone et al., 2007a). On the other hand, it has been 
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demonstrated that local procedures have a high probability of converging to suboptimal 
solutions when they are applied to integrated, distributed models (Blasone et al., 2007a). 

The Generalized Likelihood Uncertainty Estimation (GLUE) technique by 
Beven and Binley (1992) is an alternative procedure, which has been extensively used 
for simultaneous calibration and uncertainty assessment of different distributed models 
(Lamb et al., 1998; Freer et al., 2004; Mertens et al., 2004; Muleta and Nicklow 2005; 
Cho and Beven, 2006; McMichael et al., 2006). Compared to other methods, GLUE has 
the advantages of being easy to implement and, at the same time, of allowing the 
simultaneous assessment of the total uncertainty present in all the components of the 
modelling process. Moreover, GLUE allows a flexible definition of a function of model 
performance (likelihood function), which is capable of including several variables in 
model calibration and uncertainty assessment. This feature is particularly valuable for 
integrated, distributed models, for which the uncertainty of multi-variable, multi-site 
and multi-response criteria can be assessed. 

The main drawbacks of the GLUE technique are the subjectivity involved in 
definition of the uncertainty (likelihood function, threshold on defining the behavioural 
solutions) and the huge number of model simulations required by the initial sampling of 
the solutions. The latter feature is only of concern when running computationally 
expensive models, such as integrated, distributed hydrological models, since it limits the 
maximum number of simulations to be run (McMichael et al., 2006). The stochastic 
nature of the sampling scheme employed in GLUE (usually the Latin Hypercube 
Sampling, LHS, approach) can deplete considerably the goodness of the statistics 
inferred from the retained solutions, if the initial sampling of the parameter space is not 
dense enough to include many good solutions. Blasone et al. (2007b) have recently 
demonstrated that using a Markov chain Monte Carlo (MCMC) sampling scheme in 
combination with GLUE improves the efficiency and effectiveness of the methodology. 
The properties of the revised GLUE procedure, which have been tested only for RR 
models, may prove to be particularly favourable in applications to complex, 
computationally expensive models. 

In this study we illustrate a comprehensive framework for multi-criteria 
calibration and uncertainty assessment (UA) of physically-based, distributed, integrated, 
hydrological models. The UA method employed is the revised version of the GLUE 
procedure introduced by Blasone et al. (2007b), in which a MCMC method, the 
Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm by Vrugt et al. (2003) 
is used as sampler of the prior parameter distributions. The proposed framework for UA 
is particularly designed for complex models that include a huge number of parameters 
and for which different types of observations are available for calibration. Despite the 
choices made for implementing the procedure have been tailored on a specific case 
study, the methodology employed can be generally used in calibration and uncertainty 
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assessment of distributed and complex models. The approach can be summarized in the 
following steps: 

1) model setup, parameterization and choice of calibration parameters; 
2) definition of performance criteria, aggregation and choice of likelihood 

function;
3) implementation of GLUE using a MCMC sampler; 
4) model validation in time and space. 

The case study considered is the Danish catchment of Karup River, for which an 
integrated, distributed, hydrological model is set up using the MIKE SHE modelling 
system (Graham and Butts, 2006). An initial SA is conducted on the model to reduce 
the problem dimensionality. The uncertainty of spatially distributed multi-variable 
model responses, river discharge and groundwater levels, is simultaneously assessed. A 
flexible objective (likelihood) function, capable of including and equally balancing 
different calibration criteria (i.e. multi-variable and multi-site data) is used to include 
multiple information in the uncertainty assessment. The availability of a large database 
for the Karup catchment allows conducting time and space validation of the results of 
the different model outputs. 

This paper is structured as follows. Chapter 2 briefly introduces the techniques 
used for uncertainty assessment, GLUE and SCEM-UA, and the revised GLUE 
procedure. Chapter 3 describes the specific case study employed: the Karup catchment, 
the MIKE-SHE model setup and parameterization, and the SA employed to reduce the 
dimensionality of the parameter space. In Chapter 4 the methodology used to aggregate 
multiple objectives in the calibration and uncertainty assessment is presented. The 
results are shown and discussed in Chapter 5, while Chapter 6 summarizes the main 
conclusions drawn by the study. 

2 GLUE WITH SCEM-UA SAMPLING 

The Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven and 
Binley, 1992) is a procedure for calibration and uncertainty assessment based on Monte 
Carlo (MC) simulations. Since its first introduction, it has been extensively applied in 
hydrology and environmental modelling to estimate the uncertainty associated with 
model outputs and parameter estimates (among others Beven and Binley, 1992; Freer et 
al., 1996; Lamb et al., 1998; Montanari, 2005). The reasons for the success of GLUE, 
compared to other methods, mainly reside in the fact that this technique allows 
assessing the global uncertainty present in the various modelling elements (i.e. input 
data, model structure and parameter error) in a way that is conceptually simple (it does 
not require any prior assumption on the error structure) and easy to implement. 
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The method is based on running a large number of model simulations with 
different parameter sets and inferring statistics on the outputs and parameter 
distributions based on the set of simulations showing the closest fit to the observations. 
The parameter sets used for the MC simulations are randomly sampled from the prior 
distribution of the parameters, chosen by the modeller based on his/her knowledge of 
the system. A function evaluating the model performance, the likelihood function, is 
defined and used to distinguish between behavioural (i.e. acceptable) and non-
behavioural (i.e. non-acceptable) solutions. The behavioural solutions are selected by 
choosing a threshold on the likelihood function or as a percentage of the accepted 
solutions from the sample. The likelihood functions of the accepted solutions are then 
rescaled similarly to a probability measure, so that their cumulative sum equals 1. The 
distribution function of each parameter is obtained based on the likelihood associated 
with the various parameter values. The same is done with the model output at every 
time step of the simulation. From the output distribution, the output estimate is normally 
computed as the median and its uncertainty bounds are estimated as percentiles of the 
distribution, usually chosen as 5th and 95th in the majority of GLUE applications. It 
must be underlined that these are the percentiles of the behavioural solutions used to 
infer the parameter posteriors and the uncertainty bounds. The latter are not expected to 
include the same percentage of observations, unless by chance. More details on GLUE 
can be found in Beven and Binley, (1992), Freer et al. (1996) and Montanari (2005), 
among others. 

The GLUE methodology allows including multiple sources of information in the 
likelihood function, thus being very flexible in this respect. This property is particularly 
useful for integrated, distributed models for which observations of multiple variables at 
different sites are available and the errors are computed using different likelihood 
functions. Multiple criteria can be accounted for in model calibration and UA in 
different ways. The most common aggregation method used in GLUE applications 
(Freer et al., 1996; Lamb et al., 1998) is that of performing Bayesian updating, i.e. by 
further conditioning the likelihood function, L, when data of different types are 
available:

CYLYLYL iii /)|()|()|( 122,1     (1) 

where L( i | Y1,2) is the posterior likelihood function of the parameter set i obtained 
after conditioning on the observed variables Y1 and Y2, L( i | Y1) is the prior likelihood 
of the parameter set i, calculated using the observation set Y1, and L( i | Y2) is the 
likelihood measure calculated with the observations Y2. C is a scaling constant, which 
guarantees that the cumulative sum of L( i | Y1,2) over all the behavioural parameter sets 

i equals unity. This composition rule can also be applied to update likelihood functions 
of different time intervals when new observations become available. 
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Another possible way of aggregating different information into one likelihood 
function is as weighted sum of several criteria. This is one of the methodologies most 
often used in multi-criteria calibration (Madsen, 2003; Sonnenborg et al., 2003; Mertens 
et al., 2004, van Griensven and Meixner, 2006) and also applied in this study. The 
different criteria can also be evaluated separately, without being aggregated in one 
likelihood function. In that case, the model performance can be assessed either by 
considering thresholds on the single criteria (Freer et al., 2004; Sahoo et al., 2005; 
Muleta and Nicklow, 2005) or by ranking the parameter sets according to the Pareto 
criterion (Madsen, 2003; Engeland et al., 2006). According to the knowledge of the 
authors, the latter criterion has never been used in conjunction with GLUE to 
discriminate behavioural solutions; however, this might be a future area of research, as 
also anticipated by Engeland et al. (2006). 

It has been demonstrated by Blasone et al. (2007b) that the computational 
efficiency and the generation of statistically representative results by GLUE can be 
improved if the initial random sampling scheme of the prior parameter distributions is 
substituted by a MCMC sampler. This is because MCMC methods are particularly 
designed for converging to the region of highest posterior probability. Therefore, more 
statistically valid estimates of the parameters and the simulation uncertainty can be 
inferred, as more behavioural solutions are retained to estimate their posterior 
distributions. Moreover, the posterior parameter distributions can be adequately 
approximated with fewer simulations than with a LHS or MC sampling scheme. 

The MCMC method used by Blasone et al. (2007b) is the Shuffled Complex 
Evolution Metropolis (SCEM-UA) algorithm (Vrugt et al., 2003), which is also used in 
the GLUE approach implemented in this study. SCEM-UA is a variation of the Shuffled 
Complex Evolution (SCE) algorithm (Duan et al., 1992), in which the downhill Simplex 
method to search for better solutions is substituted by the Metropolis algorithm 
(Metropolis et al., 1953). Other features that regulates the evolution of the solutions of 
the SCEM-UA procedure are the controlled random search (Price, 1987), competitive 
evolution (Holland, 1975) and complex shuffling (Duan et al., 1992). A complete 
description of the SCEM-UA algorithm can be found in Vrugt et al. (2003). 

3 THE CATHCMENT AND THE MODEL 

3.1 The catchment 
The data used in this study are from the catchment of Karup River, which is located in 
the western part of Denmark. The Karup River and about 20 tributaries drain an area of 
around 440 km2 (see Figure 1). The geology of the catchment is quite homogeneous and 
characterized by sandy soils with high permeability. The hydrological processes in the 
Karup catchment are mainly groundwater-driven and the river regime is dominated by 
baseflow. The aquifer is unconfined and it has a thickness ranging between 90 m at the 
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upstream part of the catchment and 10 m in the western and central areas. The 
unsaturated zone has a depth between 25 m at the catchment boundaries and 1 m along 
the river. 

A long record of hydro-meteorological measurements is available for the Karup 
catchment, which was used in previous studies by Refsgaard (1997) and Madsen (2003), 
among others. This hydrological database includes rainfall measurements from nine 
stations (daily values), runoff at the river outlet and at three internal subcatchments 
(daily values), groundwater elevation data from 35 wells (recorded every 15 days) and 
temperature (daily values). To conduct a space validation of the results, the discharge 
and groundwater elevation data have been divided into a calibration dataset (discharge 
at river outlet plus 17 wells) and a validation dataset (discharge at the three 
subcatchment stations plus 18 wells). The calibration and validation sites are displayed 
in the map of the Karup catchment in Figure 1. The data used in this study covers the 
period from 1 June 1971 to 1 January 1978. The first period of 3.5 years is used to 
calibrate the model, while the following 3-year period is employed for validation. An 
initial warm-up period of 2.5 years is used to reduce the impact on model performance 
due to non-optimal initial conditions. 

Figure 1. Karup catchment. Location of discharge gauging stations and wells. 
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3.2 Model setup, parameterization and sensitivity analysis 
3.2.1 Model setup 
The MIKE SHE modelling system (Graham and Butts, 2006) is used in this work to set 
up an integrated, spatially distributed, physically-based model of the Karup catchment, 
defined with a horizontal computational grid of 1 km x 1 km. The major catchment 
processes, which occur at the surface (overland flow and river runoff), in the 
unsaturated zone (evapotranspiration and infiltration to the aquifer) and in the saturated 
zone (groundwater flow and recharge) are described as well as their interactions. The 
components included in the model and their key parameters are shown in Table 1. Due 
to the high degree of complexity of this model, the number of parameters to assess is 
potentially huge. Since model oveparameterization create severe methodological 
problems for the calibration, validation and uncertainty assessment, the number of free 
parameters must be reduced. A way of doing so is by assessing parameter values from 
field data, where available, or by fixing spatial patterns of parameters, as done in the 
model set up of the Karup catchment. 

Table 1. Model components: process description, parameterisation and parameters found to be sensitive. 

Component Process description Parameterisation Sensitive

River system 
Muskingum routing scheme;  
river-aquifer interaction regulated by a 
leakage coefficient 

Uniform for all branches: 
bed resistance and LeakCoef LeakCoef

Overland flow 2D Saint-Venant equations Uniform for all cells: 
Manning no. 

Drainage system Linear reservoir description for  
each cell 

Uniform for all cells: 
DrnCoef, DrnLev

DrnCoef, 
DrnLev

Evapotranspiration Kristensen and Jensen (1975) model 

Distributed using four 
vegetation classes: 
LAI, root depth and 
evapotranspiration parameters

Unsaturated zone 

Two-layers model: 
Yan and Smith (1994) description of 
interception, ponding, infiltration, 
evapotranspiration and  
groundwater recharge 

Uniform in each layer: 
infiltration capacity, ETdepth,
and soil moisture contents 
SWCwp, SWCfc and SWCsat

SWCwp, 
SWCfc, 
SWCsat
of upper 

layer,
ETdept 

Saturated zone Groundwater flow is described by the 
2D Boussinesq equation 

Distributed using 5 soil types: 
Kh, Kv, horizontal and 
vertical soil conductivities of 
the soil type 

Kh1, 
Kv1, 
Kh3, 
Kv3 

Snow melt 
accumulation Degree-day approach 

Uniform threshold 
temperature and degree-day 
coefficient
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Overland flow in the catchment is generated according to evaporation and infiltration 
processes along the flow path and has an additional contribution, if the first upper 
centimetres of the soil are saturated. The diffusive wave approximation of the Saint-
Venant equations is used to describe the routing of surface runoff down-gradient 
towards the river system. The drainage system of the Karup catchment includes both 
natural and artificial drainage. The drainage flow is modelled using a linear reservoir 
description, which for each cell requires a drainage level, DrnLev, and a time constant 
(drainage coefficient), DrnCoef, that regulate how much and how fast water is drained. 
Both these parameters are assumed uniformly distributed in the catchment. The river 
system collects both the overland and the saturated zone flow. The Muskingum routing 
scheme is used for river flow routing. The water exchange between river and saturated 
zone is accounted for by a leakage coefficient, LeakCoef, which is assumed to be 
uniform for all river branches. The model also includes a description of the snowmelt 
process by using a simple degree-day approach. 

The unsaturated flow in MIKE SHE is modelled as one-dimensional, vertical 
flow. Due to the high computational time required by implementing the subsurface 
processes using Richards’ equation, the unsaturated zone is represented by a simple 
two-layer water balance model. The two-layer water balance method is based on a 
formulation presented by Yan and Smith (1994), which is suitable when the water table 
is shallow and the groundwater recharge is primarily influenced by evapotranspiration 
in the root zone. If sufficient water is available in the root zone, the water will be 
available for evapotranspiration. The module includes the processes of interception, 
ponding, infiltration, evapotranspiration and groundwater recharge. The model outputs 
comprise estimates of actual evapotranspiration and groundwater recharge. The input 
for the model includes the characterisation of the vegetation cover and the soil physical 
properties. The vegetation is described in terms of leaf area index (LAI) and root depth. 
The types of vegetation distributed in the catchment are classified according to the 
following land use and vegetation typologies: agriculture (57%), forest (18%), heath 
(7%) and wetland (18%). The soil properties include infiltration capacity and soil 
moisture contents at the wilting point (SWCwp), field capacity (SWCfc) and saturation 
(SWCsat). Capillarity rise occurs if the groundwater table rises above a defined 
thickness of the upper soil layer (ETdepth). All the unsaturated soil parameters are 
assumed uniformly distributed in the catchment. 

The geological description of the saturated zone is defined with a vertical scale 
of 10 m. Five main soil types have been identified in the area by the Danish National 
Water Resources model (Henriksen et al., 2003) and are shown in Table 2. One specific 
soil type is assigned to each grid element, thus defining the geology of the area. The 
different soil types are characterized by specific hydrogeological parameters. The 
horizontal, Kh, and the vertical, Kv, hydraulic conductivities are assumed to be linked 
by a constant anisotropy factor. Thus, only Kh is varied, while Kv is set equal to one 
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tenth of the respective horizontal conductivity. The saturated zone is represented by a 
two-dimensional model defined as one computational layer. The hydraulic properties of 
each model grid cell are computed by considering the characteristics of all the different 
types of soil present in the earth column represented by the particular cell. 

       Table 2. Soil types used in the parameterization of the saturated zone.
Soil code Soil name Description 

1 Melt water sand Quarternary and Post-Glacial sand and gravel 
2 Clay Glacial, Inter-Glacial and Post-Glacial clay and silt 
3 Quartz sand Miocene, medium to coarse grained sand and gravel 
4 Mica sand Miocene, fine to medium grained sand 
5 Mica clay/silt Pre-Quarternary clay and silt 

3.2.2 Sensitivity Analysis 
Not all the parameters have a large impact on the model output. Thus, the problem 
dimensionality can be further reduced, if these parameters, also defined as non-
sensitive, are fixed to their prior values, while only those significantly affecting the 
model response, the sensitive parameters, are assessed. To discriminate between 
sensitive and non-sensitive parameters, a sensitivity analysis (SA) is performed using 
several methods, as suggested by Christiaens and Feyen, (2002). These tests are applied 
to a sample of 400 parameter sets, which is obtained using the LHS technique. The 
sensitivity of two model responses is analysed separately; these are: the root mean 
square error of the discharge at the catchment outlet, RMSEq, and the sum of the root 
mean square errors of the groundwater elevations of the 17 wells used for model 
calibration, RMSEh, which are defined in the following in Eqs. (2) and (3). The Simlab 
software (Joint Research Centre of the European Commission, 2004) is used to analyse 
the data. The global SA tests applied are based on: visual analysis of scatterplots, 
Kolmogorov-Smirnov test, computation of Pearson product moment correlation 
coefficient (PEAR), Spearman coefficient (SPEA), Standardised Regression 
Coefficients (SRC) and Partial Correlation Coefficients (PCC). The last two measures 
are calculated also on the ranked parameters and output variables. The results of these 
different SA tests are quite homogeneous for the two criteria considered. Therefore, the 
sensitive parameters can be unambiguously determined, while the others are fixed to 
their previously manually-calibrated values. 

For the saturated zone, the sensitive parameters are the hydraulic conductivities 
of two soil types, melt water sand, Kh1, and quartz sand, Kh3. In the unsaturated zone, 
the upper layer, which describes the evapotranspiration processes, is found to 
significantly affect the model response through two parameters defining the water 
contents SWCfc and SWCsat of the soil profile and the thickness of the layer where 
capillary rise can occur, ETdepth. For the surface water processes, the drainage level, 
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DrnLev, the drainage coefficient, DrnCoef, and the LeakCoef, are found to be sensitive. 
All these parameters and their prior ranges are shown in Table 3, together with the tied 
parameters. 

Table 3. Parameters subject to calibration and tied parameters. * Kv = 0.1·Kh
Model component Parameter Range Units 
River system leakage coefficient, LeakCoef   1·10-8 - 1·10-6  [s-1] calibrated 

drainage level, DrnLev     –1.3 -  –8  [m] calibrated Drainage system 
drainage constant, DrnCoef 1·10-8 - 1·10-6  [s-1] calibrated 
soil water content at saturation, SWCsat 0.35 - 0.45 [0-1] calibrated 
soil water content at field capacity, SWCfc      0.1 - 0.35 [0-1] calibrated Unsaturated zone 

ET surface depth, ETdepth 0 - 3 [m] calibrated 
horizontal, soil 1, Kh1 5·10-5 - 5·10-3  [m/s] calibrated 
vertical, soil 1, Kv1 5·10-6 - 5·10-4  [m/s] tied*
horizontal, soil 3, Kh3 1·10-4 - 1·10-2  [m/s] calibrated 

Saturated zone 
(hydraulic conductivity) 

vertical soil 3, Kv3 1·10-5 - 1·10-3  [m/s] tied*

It might be argued that we claim to use a complex, distributed integrated model but end 
up calibrating only eight parameters, a number comparable to lumped conceptual 
models. It is important, in this respect, to distinguish between model complexity (given 
by the physical description of the processes, as well as by their spatial representation) 
and the number of parameters to calibrate and assess (i.e. the degree of freedom of the 
system). Even if the problem dimensionality is reduced, the higher complexity of our 
model as compared to lumped conceptual models is still preserved. In fact, apart from 
the simplified conceptual representation of the unsaturated zone, all the modelled 
hydrological processes are physically-based and spatially distributed. The spatial 
variability of the geology is explicitly accounted for. Moreover, the simplification of the 
problem is conducted following a rigorous methodology (Refsgaard, 1997). Where 
possible, the problem is simplified based on the knowledge of the catchment 
characteristics and field data (as, for example, by assuming uniformly distributed 
parameters, or by using soils maps to define zones with similar hydrological properties). 
Analysing the model sensitivity to the parameters (i.e. by the SA) is the second step in 
order to obtain a rigorous parameterization procedure. 

4 IMPLEMENTATION OF GLUE: PERFORMANCE CRITERIA, 
AGGREGATION, LIKELIHOOD FUNCTION 

4.1 Calibration criteria 
Since the model couples groundwater with surface water processes, which both are of 
interest in the study, river discharge as well as groundwater table elevations are used for 
calibration and uncertainty assessment. The function used to represent the fit of the 
model simulations to the observations is the root mean squared error, RMSE. In this 
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way, two criteria are defined, the RMSE of the discharge, RMSEq, and the aggregated 
RMSE of the wells, RMSEh, which is the sum of the RMSE of the groundwater levels at 
the 17 wells used for calibration: 
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where qt is the discharge (m3/s) and ht the groundwater elevation (m) at the observation 
time step t, the superscripts sim and obs indicate the simulated and observed data 
respectively, j is the index of the calibration well and Ntq and Nth are the total number of 
observations of discharge and groundwater elevation, respectively. 

4.2 Objective function 
In this study none of the two criteria considered is preferred to the other. Therefore, the 
objective function used by SCEM-UA to sample the parameter space should be a 
balanced aggregate of the runoff and groundwater elevation error functions. It must be 
noticed that the aggregated RMSE of discharge and groundwater wells have different 
orders of magnitude and different units of measure. Previous work conducted on the 
same catchment (Madsen, 2003) has demonstrated that a sharp trade-off exists between 
these two criteria. In this application, we aim at obtaining good model simulations of 
both discharge and groundwater levels. To select the most suitable aggregation method 
for this study, several MCMC experiments have been run using different objective 
functions. The results have been inspected in the Pareto space defined by the two 
calibration criteria. The chosen aggregate function is the one showing convergence to 
the region containing the more balanced solutions with respect to both calibration 
criteria. The aggregated objective function, Fi, associated with the i-th parameter set, i,
is given by: 
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where min{RMSEq} and min{RMSEh} are the minima of the RMSEq and RMSEh

criteria, respectively, which are found so far in the solutions contained in the Markov 
chain.
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The defined function has the property of automatically assigning equal weight to the 
criteria included in the calibration and uncertainty assessment processes, given the 
knowledge found so far in the calibration process on the minima of the two criteria, 
which are used as scaling factors for RMSEq and RMSEh. In fact, min{RMSEq} and 
min{RMSEh } are varying, while the generation of solutions by SCEM-UA continues, 
as both criteria are progressively reduced during the sampling of the solutions. This 
requires recalculating Fi at the end of the SCEM-UA procedure using the obtained 
min{RMSEq} and min{RMSEh} to be able to compare the different solutions. However, 
within each population generation, the scaling values are the same, allowing for a 
homogeneous criterion for ranking of the solutions. The equal weighting property is 
preserved, also if more criteria are included in the definition of Fi, as long as each of 
them is rescaled by their respective minimum. If a different weight should be assigned 
to the criteria, this can easily be done by including weights in the expression of Fi. It 
must also be noted that RMSEq and RMSEh can assume their respective minima for 
different parameter sets (due to the trade-off), so that the minimum of Fi can be higher 
than the sum of the single minimum contributions. 

4.3 Acceptance of behavioural solutions 
Defining the acceptance criteria of the behavioural solutions is a critical point in the 
GLUE procedure, since it deeply affects the parameter distributions and the estimation 
of uncertainty bounds of model outputs. The general procedure in GLUE is to retain as 
behavioural solutions a given percentage of the sampled parameter sets (Lamb et al., 
1998) or the solutions with a likelihood above a certain threshold (Freer et al, 1996; 
Mertens et al., 2004; McMichael et al., 2006). The latter method does not always 
provide uncertainty bounds capturing a satisfactory percentage of the observations. 
Increasing the number of retained parameter sets has the effect of including more 
uncertainty into the assessment, thus obtaining wider uncertainty bounds and capturing 
more observations (Montanari, 2005). A trade-off between the estimation accuracy of 
GLUE and the generation of uncertainty bounds including a high percentage of the 
observation was observed by Blasone et al. (2007b): larger uncertainty bounds are 
obtained, if more solutions are included in the behavioural set, at the cost of a decreased 
performance of the median GLUE output prediction. Thus, the selection of the 
behavioural parameter sets should be a compromise between these two tendencies. 

In this study a total of 15000 parameter sets is generated by SCEM-UA. The 
selection of the behavioural solutions is based on both convergence of the MCMC 
method and on ensuring the generation of uncertainty bounds wide enough to include a 
large amount of the observations. The solutions visited by the MCMC sampler after 
convergence generate simulations very close to the observations and thus provide 
narrow uncertainty bounds, including relatively few observations. Therefore, the 
uncertainty intervals are enlarged by including more parameter sets, even if, by doing 



15

so, the parameter variation described by the posterior distributions also accounts for 
other sources of uncertainty. A total of 250 solutions is in this case accepted as 
behavioural.

4.4 Transformation of the objective function into a likelihood function 
The posterior distributions of the parameters are evaluated based on a chosen likelihood 
function, as it is done in the GLUE approach. The objective function described by Eq. 
(4) has not the properties of a likelihood function, as it can assume values outside the 
range [0, 1] and the sum of the retained likelihoods is not equal to 1. Therefore, a 
conversion is necessary before using the function Fi to infer posterior distributions of 
parameters and output. Similarly to what was done by Mertens et al. (2004), the 
likelihood function is calculated as the reciprocal of the objective function used in 
calibration and then rescaled by a constant factor: 
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i
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where Y indicates the observations and C is the normalizing factor introduced to ensure 
that the sum of the likelihood functions of the behavioural solutions equals 1: 

i iF
C 1        (6) 

5 RESULTS 

5.1 Posterior parameter distributions 
The posterior distributions of the parameters are defined using the likelihood values 
associated with the behavioural solutions. It is expected that GLUE in conjunction with 
the SCEM-UA algorithm provides more realistic posterior parameter distributions than 
the classical GLUE procedure (Blasone et al., 2007b). Moreover, using the particular 
approach implemented in this study, it is expected to obtain unimodal distributions that 
uniquely define the parameters values. 

The posterior distributions of the eight parameters considered are shown in 
Figure 2. All the parameters possess very well-defined and unimodal posterior 
distributions. From such distributions the parameter estimates can be unambiguously 
inferred as modal values, while the shape of the distributions indicate the degree of 
uncertainty of the estimates. Sharp and peaked distributions are associated with well 
identifiable parameters, while flat and/or spread distributions indicate more uncertain 
parameters values. 
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Figure 2. Parameter posterior distributions plotted in normalized range of the parameters with respect to 
the parameter range given in Table 2. 

The posterior distributions are quite narrow for most of the parameters, indicating low 
uncertainty. Only three parameters Kh1, Kh3 and SWCsat, have wider distributions. For 
the hydraulic conductivities this may be associated with some uncertainty in the 
parameterization of the saturated zone. In fact, the maps defining areas with the same 
hydraulic conductivity values have been determined on the basis of available knowledge 
of the soil types of the catchment. Therefore, the lower parameter identifiability can, in 
this case, be associated also with the uncertainty related to the model parameterization. 
For the upper layer of the unsaturated zone, the parameters are averaged values for the 
entire catchment, thus more uncertainty is expected in determining their values. Despite 
this, only the water content at saturation, SWCsat, shows a wide distribution, while the 
parameters SWCfc and ETdepth are more well-defined. 

The followed approach is efficient in finding well-defined posterior parameter 
distributions. There are two main factors influencing this result. The first reason is the 
initial SA conducted on a larger parameter space, which allows excluding from the 
further analysis those parameters that have a relatively small impact on the model 
response (and are therefore less identifiable). The second reason is the use of a MCMC 
sampling method to search the parameter space, which results in less uncertain 
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parameter estimates than a random sampling approach (Blasone et al., 2007b). We do 
not know which of these two factors has the largest impact in this case, but we can 
acknowledge that their synergy has a positive effect in enhancing the parameter 
identifiability. This result is also confirmed by the low correlations found among the 
behavioral parameter sets. In fact, the maximum absolute value of the correlation 
coefficients is 0.57, found for the parameters Kh1 and DrnLev.

5.2 GLUE estimates and uncertainty bounds 
Using the behavioural parameter sets, discharge and groundwater elevation are 
simulated at both calibration and validation sites for the entire simulation period. The 
likelihood value of the parameter set generating a particular simulation is assigned to 
the respective model predictions. In this way the posterior distributions of river 
discharge and groundwater elevation at the different sites can be calculated. At each 
time step t of the simulation, the output estimate is obtained as the median of the 
distribution, as it is common practice in GLUE applications, and the uncertainty bounds 
are here defined as the 2.5 and 97.5 quantiles of the distribution. If these bounds are 
large enough to include most of the observations, it means that parameter variability 
alone can compensate for other sources of error, such as measurement and model 
structure errors, and, thus, it can account for the total output uncertainty. 

This set of results allows conducting time and space validation of the GLUE 
posterior distributions of model outputs. First, the GLUE model predictions of discharge 
and groundwater levels and their associated uncertainty found for the calibration sites 
and the calibration period are analyzed and discussed. In the following part, the results 
obtained for the space and time validation are presented and compared to those obtained 
for the calibration data set. 

5.2.1 Calibration results 
5.2.1.1 Groundwater elevation 
The GLUE estimates of groundwater elevation provide a quite good description of the 
dynamics at the majority of the locations considered. Based on a visual qualitative 
judgment of the results, 10 out of 17 wells show a good agreement between simulated 
and observed groundwater elevations in terms of dynamic description (Figure 3.a and 
3.b). A satisfactory performance is obtained at 3 sites, while only at 4 sites the model 
prediction is poor (Figure 3.c). At the majority of the sites the observed groundwater 
table is either in the upper part or even above the GLUE uncertainty bounds. Therefore, 
the posterior probability of the model output is skewed to the bottom, as it is evident in 
the plots of Figure 3. On average, the GLUE median underestimates the groundwater 
levels of about 0.61 m. 
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Figure 3. Calibration results. Groundwater elevation at well locations a): 55, b): 56 and c): 22. Observed 
data, median GLUE estimates and uncertainty bounds (2.5 and 97.5 quantiles of output distribution). 

The amount of observations included in the uncertainty intervals is one of the main 
issues in evaluating GLUE results, since it is important that the GLUE bounds are able 
to account for all or most of the output variability. The percentage of measurements 
included inside the GLUE bounds at each of the 17 calibration locations are illustrated 
in Figure 4.a. At 6 out of 17 sites the uncertainty bounds do not include any of the 
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observations, as in the case illustrated in Figure 3.b for well no. 56, due to a large bias 
between observations and model simulations. At the remaining wells the GLUE bounds 
contain all or a part of the observations, which normally fall very close to the upper 
uncertainty bound (Figures 3.a and 3.c). Like the median estimates, also the GLUE 
uncertainty bounds follow quite well the dynamics. The average width of the bounds is 
2.6 m, varying between a minimum of 1.4 m to a maximum of 3.9 m. 

Figure 4. Percentage of observations included in the uncertainty bounds for the 
calibration and validation period. a): calibration wells and b): validation wells. 

5.2.1.2 Discharge 
The hydrograph at the catchment outlet, station 20.05, is simulated quite well by the 
GLUE estimate, as shown in Figure 5 for a selected period. Overestimation or 
underestimation trends are present, but they occur only during short time intervals. For 
the entire calibration period, the uncertainty bounds include a large percentage of the 
observations, about 82% (see Figure 6), thus describing most of the runoff variation. 
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Figure 5. Calibration results for hydrological year June 1973-July 1974. Discharge at river outlet, 
gauging station no. 20.05. Observed data, median GLUE estimates and uncertainty bounds (2.5 and 
97.5 quantiles of output distribution). 

Figure 6. Percentage of observations included in the uncertainty bounds 
for the calibration and validation discharge gauging stations.

5.2.1.3 Comments 
The calibration results of GLUE show that the MIKE SHE model is able to simulate 
quite well the dynamics of both groundwater table and runoff for the Karup catchment. 
The fact that the GLUE estimates reproduce correctly the dynamics of both variables of 
interest can be attributed also to the particular likelihood function employed. The 
method used to aggregate multiple criteria proves to be successful in generating 
balanced solutions, which simultaneously account equally for different variables, and it 
also allows including spatially distributed information. 

On the other side, when looking at the GLUE estimates of the groundwater 
table, it is evident that the parameter uncertainty alone cannot explain the total 
uncertainty in simulating spatially-distributed observations. In fact, at the sites where 
the uncertainty bounds underestimate the observations, the results seem to be deeply 
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affected by the presence of other error sources, such as data and/or model errors. 
Significant biases in reproducing accurately the groundwater levels were found also by 
Madsen (2003) and Refsgaard (1997), who modelled the same catchment. This 
phenomenon, observed at few locations, can be the effect of the different scales of 
model simulations and observed data. In fact, while the measurements are point values, 
collected at groundwater wells, the model simulations are representative of average 
groundwater elevations within 1 km2 areas. Moreover, in the Karup catchment, the 
groundwater table is characterized by a very high spatial gradient. For the observed 
groundwater levels spatial gradients up to a maximum of 3.5 m per km are seen, which 
is in the order of magnitude of the bias of the GLUE estimates. Thus, the bias in the 
model results can be attributed to the difference between model and observation scales. 
Moreover, it can be noticed that the scale of the uncertainty defined by the average 
width of the GLUE uncertainty bounds is about the same as the variation induced by the 
gradient of the groundwater table on a 1 km distance. This might indicate agreement 
between the uncertainty detected by GLUE and the scaling uncertainty present in the 
model.

Since the observed elevations can fluctuate a lot within 1 km2, using a finer 
model grid would probably result in more precise groundwater level simulations. 
Another way of dealing with the bias of groundwater levels could be simply accepting 
the fact that it cannot be totally removed from the simulations. The calibration process 
could focus instead on optimizing the dynamics of the modelled responses by using an 
objective function that measures this, such as the variance of residuals. 

5.2.2 Space validation of the results 
5.2.2.1 Groundwater elevation 
During the calibration period, the GLUE estimates and uncertainty bounds of the 
groundwater table at the validation wells show similar results as those obtained for the 
calibration sites. In particular, the dynamics is well reproduced at 11 out of 18 wells 
(see, for example, the results in Figure 7.a and 7.b), while only at 3 sites poor 
simulations are obtained (such as that shown in Figure 7.c for well no. 11). At the 
remaining 4 sites, the groundwater table dynamics is not perfectly reproduced, but it can 
still be considered satisfactory. Overestimation of the groundwater elevation occurs 
only at well no. 25, while, the underestimation of the groundwater levels previously 
illustrated for the calibration wells is present also at some validation sites. As a 
consequence, the median of the GLUE posterior distributions is shifted towards the 
upper interval of the uncertainty bounds also for the validation wells (Figure 7). The 
performance of the uncertainty bounds in including the observations is worse for the 
validation sites than for the calibration wells, as it can be noticed by comparing Figure 
4.a to Figure 4.b. The measurements are almost completely outside the bounds at 9 out 
of 18 wells (as shown in Figure 7.b for well no. 54) and at only 7 locations more than 
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80% of the observations are contained into the uncertainty bounds (as in the cases 
shown in Figures 7.a and 7.c). The average width of the uncertainty intervals of the 
validation wells is 2.7 m, a similar value to that found for the calibration sites, but it has 
a larger variability, ranging between 0.9 to 4.6 m. 

Figure 7. Space validation results. Groundwater elevation at well locations a): 46, b): 54 and c): 11. 
Observed data, median GLUE estimates and uncertainty bounds (2.5 and 97.5 quantiles of output 
distribution). 
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5.2.2.2 Discharge 
During the calibration period the validation results of the discharge at internal river 
sections are not as satisfactory as those obtained for the groundwater wells, since the 
hydrograph shape is not always well reproduced and overestimation or underestimation 
of the hydrograph occurs. 

Figure 8. Space validation results for hydrological year June 1973-July 1974. Discharge at gauging 
stations no. a): 20.06, b): 20.07 and c): 20.08. Observed data, median GLUE estimates and uncertainty 
bounds (2.5 and 97.5 quantiles of output distribution). 
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At the gauging station closest to the river outlet, 20.06, the GLUE estimate is quite close 
to the observations during the first two years of the simulation, while it gets slightly 
worse afterwards (Figure 8.a). However, most of the measured data (around 74%) are 
contained within the uncertainty bounds, as shown in Figure 6, and the performance of 
the GLUE estimates in describing the runoff and its variation is similar to that of the 
station used for calibration. At the two stations at the smaller subcatchments, stations 
20.07 and 20.08, the performance of the GLUE uncertainty bounds is much worse, as it 
can be noticed in Figure 8.b-c. and Figure 6. In particular, at station 20.08, despite the 
good agreement between the shape of the simulated and observed hydrographs, a severe 
overestimation of the runoff occurs during the first part of the calibration period and 
most of the measured data are below the uncertainty bounds (initial period shown in 
Figure 8.c). The uncertainty interval of station 20.07 includes more observations than 
those of station 20.08, but the GLUE estimate of the discharge follows less satisfactorily 
the measured one and the runoff is underestimated during the period shown in Figure 
8.b.

5.2.2.3 Comments 
A distributed hydrological model can be considered validated not only if it is able to 
produce good simulations for future conditions, but also if it is able to perform reliable 
predictions at internal/multi-site locations (Refsgaard, 1997). According to this 
definition, we can consider our model validated for the groundwater response. In fact, 
despite the presence of a bias in the simulations, as previously discussed, a similar 
satisfactory performance is achieved by the GLUE estimates and uncertainty bounds at 
both calibration and validation wells. The model is able to provide satisfactory spatially 
distributed predictions of the dynamics of groundwater levels with a performance 
similar to that achieved at the calibration wells. On the other hand, the ability of the 
uncertainty intervals of including a high percentage of observations is worse for the 
validation than for the calibration wells, since the bias of the simulations has a larger 
impact on the validation sites. 

Despite the space validation of river discharge can be considered satisfactory, it 
is not as good as that found for the groundwater levels. The GLUE bounds, in fact, 
clearly overestimate or underestimate the hydrograph at the smaller subcatchments. 
Refsgaard (1997) observed the same phenomenon when using the discharge at the river 
outlet for calibration and the subcatchment stations for validation of the Karup model. 
Andersen et al. (2001) also found difficulties to validate discharge simulations, when 
using a downstream station for calibration and upstream stations for validation. This is a 
general problem that arises because of the different catchment scales of the sites used 
for calibration and validation. In fact, the downstream runoff is the sum of the 
contributions from the single subcatchments plus the additional contribution from the 
area drained by the downstream river branch. In this way, errors and biases with 
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opposite sign, which are present in the subcatchments simulations, may get cancelled 
when the total runoff is estimated. This makes it easier to obtain, in general, a good 
model fit of runoff at a larger basin scale than at the subcatchment scale. Using runoff 
gauging stations at different catchment scales to calibrate the model, the discharge 
simulations can be improved at both the upstream tributaries as well as at the 
downstream stations, as demonstrated by Andersen et al. (2001). Thus, our results could 
probably have been better if the error function of at least one of the smaller 
subcatchment gauging stations had been included into the likelihood function. 

An additional consideration has to be made regarding the spatial variation of the 
results of the groundwater simulations. Considering both calibration and validation 
wells, a spatial pattern emerges for the dynamic description of the groundwater table by 
the GLUE procedure and the same occurs for the underestimation. The worse dynamic 
description is found at wells located in the south and eastern part of the catchment, 
while the underestimation of the groundwater table only occurs at the sites at the 
western side of the river. No correlation between underestimation of groundwater heads 
and poor dynamic description is found, as it is also confirmed by the plots in Figures 3 
and 7. 

5.2.3 Time validation of the results 
When using an independent time series, the GLUE estimates of the uncertainty bounds 
and the variables of interest show similar performance to those obtained during the 
calibration period. Figures 4 and 6 illustrate that, at each site, the uncertainty intervals 
normally include the same percentage of observations during the calibration and 
validation periods. This result is found for both the groundwater table and the river 
discharge and for both calibration and validation sites. In particular, during the 
validation period a slight improvement in the dynamic description of the groundwater 
levels is observed at some calibration sites, i.e. wells 12, 22 and 24. This may be the 
effect of the long time influence of the initial conditions on the groundwater table 
simulations, which affects more the initial calibration period than the following 
validation. As for the time validation of the discharge at the river outlet, the GLUE 
estimate follows quite satisfactorily the hydrograph shape, but a slight overestimation of 
the runoff occurs. This also causes more observations to fall below the uncertainty 
bounds.  The performance of the GLUE estimates for the internal gauging stations 
during the validation period is very similar to what is obtained for the calibration period. 
Actually, for station 20.08, the overestimation of the GLUE uncertainty interval is less 
severe and more observations are contained into the uncertainty bounds. 
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6 DISCUSSION AND CONCLUSIONS 

This study presents an application of multi-criteria calibration and uncertainty 
assessment of a physically-based, distributed, integrated, hydrological model. A revised 
version of the GLUE procedure is applied in order to improve the performance of the 
methodology in estimating parameters and posterior output distributions. By using an 
efficient sampling scheme based on the MCMC method, more realistic parameter 
estimates can be obtained and the computational burden of the GLUE procedure can be 
reduced. The description of the spatial variations of the hydrological processes is 
accounted for by defining a measure of model performance that includes multiple 
criteria and spatially distributed information. To reduce the problem of 
overparameterization and to increase the robustness of the approach, a sensitivity 
analysis is initially conducted on the model using multiple techniques. 

The employed methodology proves to be a valid tool to obtain well-defined 
posterior parameter distributions, from which unambiguous estimates can be inferred. 
Both the initial SA of the model and the MCMC sampling method contribute to reduce 
the uncertainty on the parameter posteriors. In particular, the SA helps in simplifying 
the problem, by excluding from the further analysis the parameters that do not have a 
large impact on the model response. The MCMC sampling method reduces the 
uncertainty associated with the parameter estimates, by locating solutions in the region 
of highest posterior probability of the parameters. 

Several issues arise from this research on proper calibration and validation 
strategies in distributed modelling. The first one regards the importance of the 
aggregation function used to include multi-variable (in this case river discharge and 
groundwater table) and multi-site data in the model calibration and validation. A 
balanced aggregation of multiple criteria results in model outputs that simultaneously 
describe equally well the dynamics and the associated uncertainty of different variables, 
as demonstrated by the good performance of the discharge and groundwater level 
simulations obtained for the calibration sites. The spatial variability of the results can 
also be satisfactorily accounted for by properly aggregating multi-site information in the 
likelihood function, as shown by the results found for the groundwater table variable. 

The second issue is related to the poorer space validation results obtained in this 
study for the discharge, which indicates that properly distributed information of 
discharge is crucial in model calibration and validation of distributed models. In 
particular, the locations used for calibration and validation must have similar 
characteristics and reproduce phenomena occurring at similar scales. While this can 
easily be done for variables, such as the groundwater levels, it is more problematic for 
the river discharge, since the simulation and observation errors of this variable are 
affected by the size of the associated subcatchment. For this reason, when modelling 
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discharge, we recommend to include spatial information from the subcatchments in the 
calibration process. 

The results of this work also show that the biases that may occur in groundwater 
modelling can deteriorate the calibration results, as well as the ability of the uncertainty 
bounds of including the observations. This problem is likely to arise when point 
measurements are compared to area-averaged-simulations, as demonstrated by the 
simulations of groundwater elevation. This phenomenon can be particularly evident 
when the spatial gradient of the groundwater table is large. Thus, it is very important to 
properly define the size of the computational grid of the model in order to obtain more 
precise estimates. On the other hand, it must be remembered that a model is not a 
perfect representation of the physical reality, and discrepancies between observations 
and representation of the processes will always be present. In this respect, using 
distributed data to test the model results is more informative, as it allows making 
hypothesis on the nature of the possible calibration problems, i.e. whether they might 
arise because of data, model or parameter errors. If the model scale cannot be reduced, 
due for example to computational time or model stability constraints, the biases on the 
model outputs should be accepted and the calibration should focus, instead, on 
reproducing well the response dynamics. 

As illustrated in this study, the parameter uncertainty alone cannot explain at all 
the sites the total uncertainty in simulating spatially-distributed variables. This is 
particularly true when biases are present in the model estimates, such as those arising 
from systematic measurement errors, as well as from the model scaling, as it is the case 
here for the groundwater elevations. However, the modeller should be aware that the 
GLUE procedure implemented in this study is just a tool to assess the errors intrinsic to 
the modelling process through parameter variation. The proper choices on model 
parameterization, parameter space sampling scheme and likelihood function aggregation 
method can only reduce, but cannot remove, the effect of other errors. 
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