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Abstract

This report investigates the general theory and methodology of high order numerical

schemes for one-dimensional model parabolic equation.

The Universal Formula from which a 2-level explicit arbitrary-order numerical meth-
ods for diffusion equation can be derived is developed. Using the Universal Formula

some high order numerical methods are constructed.

Some important features of numerical methods are revealed through the construction

of high order numerical methods and stability analysis.

Subject to the limitation of diffusion number, d, being positive, only the method
that satisfies positive stable region is relevant.
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Chapter 1

INTRODUCTION

1.1 Background Review

The model parabolic Partial Defferential Equations is the one-dimensional initial-

value scalar diffusion equation:

Uy = VlUgg (1.1)

u(z,0) = up(z) (—o0<z<o00,t>0)

where v is a viscous coeflicient.

Because equation 1.1 can describe heat transfer, diffusive phenomena, or viscous
fluid flow, 1.1 is called the heat transfer equation or diffusion equation. In the heat

transfer case the function u gives the temperature at time ¢ and location z.

The problems presented by solving equation 1.1 numerically are not as severe as that
of hyperbolic type. As is well known the convergence conditions are fairly tough
for hyperbolic equations, but not as strict for schemes of the diffusion equation.

Because of the smoothing inherent in 1.1 the discontinuities or shocks will not be
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formed during a computing process, and it is reasonable to believe that non-smooth
initial functions should not seriously influence the convergence of the finite difference
solutions to the PDE. Indeed a numerical method, as long as being consistent and

linearly stable, will converge to the true solution of the PDE.

To analyse linear stability there is a stability Theorem 2 in [6]. Therefore, the
main task of solving 1.1 numerically is how to construct good high order numerical

methods.

Since the 2-level explicit numerical methods have obvious advantages over other

methods, this report will study 2-level explicit numerical methods exclusively.

1.2 Objectives

So far, there is an absence of theory and formulae to define high order 2-level explicit
numerical methods for the diffusion equation. Therefore, the objectives of this report

1s to

e develop a general theory and a universal formula defining 2-level explicit
arbitrary-order finite difference methods for the model diffusion equation using
TEV method introduced in [6].

e use the universal formula to construct some high order diffusion numerical

schemes.

e analyse linear stabilities and find stable regions for these high order numerical

schemes.

e discuss constructive features of these high order numerical schemes.



Chapter 2

THE UNIVERSAL FORMULA
DEFINING NUMERICAL
METHODS FOR MODEL
PARABOLIC EQUATION

2.1 Introduction

At present the simplest 2-level explicit numerical method for 1.1 is obtained by
directly replacing the derivatives of 1.1 by forward-time central-space finite difference

scheme

U;"H = (1-2d)U} +d (U}‘_l + UJ’-‘H) (2.1)
However this scheme is only first order accuracy in time and second order in space.

What we will consider in this chapter is to use Truncation Error Vanish Method
(TEV), see[6)], to derive the universal formula defining 2-level explicit arbitrary-
order numerical methods for the linear model parabolic equation 1.1, to develop

3
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some high order 2-level explicit finite difference schemes, and to analyse structures

and features of the high order diffusion numerical methods.

2.2 The Universal Formula for Model Parabolic

Numerical Schemes

We discretize the computational plane by choosing a uniform mesh with a mesh
width & = Az and a time step k¥ = At, and define the computational gride z; =
jh, tn = nk. We use U7 to denote the computed approximation to the exact solution
u(z;,t,) of 1.1.

THEOREM

The universal formula from which a 2-level explicit arbitrary-order numerical meth-
ods can be derived for the model parabolic equation, u; — vuz, = 0, is defined

as

r
Urtt = ZBka tka (2.2)

a=0

where a is the grid point number; p is the number of grid points used, p = 2m+1; m
is the accurate order in time; By, are constant coefficients which can be determined

by

2m
Bo=1- Y B (2.3a)
o=1,ka#0

2m

> Bk =0 (n=1,3,...,2m —1) (2.3b)
a=1,ka#0

2m n'

S Bekl = Gndf (n=24,...,2m) (2.3¢c)

ny|
a=1,ka#0 ( 2 )
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where d is a diffusion number, d = Zﬁﬁ.

PROOF

The local truncation error of 2.2 can be written as:

P
E(z,t) = u(z,t+At)— Y Biu(z+ kalz,t)

a=1

= u(m,t)+ Y (‘:?" um + O((A8)™)

n=1

Z By, |u(z,t) + z g%!_x)_"umn + O((Azx)™*1)

a=1 n=1

where u;2 = Uy, U = Ug, etc. and the same for ugn.

From 1.1 it is easy to get

U = V"u,,.zn
and here,
_ d(Az)?
YT AL

Substitution of 2.5 into 2.4:

(At)"

n!

V' Uugen

E(z,t) = u(z,t)— Z B u(z,t) + Z

a=1 n=1

- i B, i (kaj!x)nuxn +0 ((Aty™, (Az)P™+)

a=1 n=1

(1 - Z Bka) u(z,t) + Z [(Ant')" V Ugan

a=1 n=1

(2.4)

(2.5)

(2-6)
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- i By, (ka%x)?uzn + O ((At)™, (Az)*™+1) (2.7

a=1
Note here, the order of the truncation error in equation 2.7 is m + 1 in time and

2m + 1 in space because At ~ Az?, see 2.6. Obviously the relationship between m

and p is:

p=2m+1 (2.8)

In order to achieve an mth order accurate numerical method in time, the following

equations must be satisfied:

1-Y By, =0 (2.9)

(A" ~ o (Rl
V'Ug2n — Y By, ———ten = 0 (2.10)

Replacing 2.6 into 2.10 and simplifying it we get

(d(Aw)"’) Z(Ax B Flugn = 0 (2.11)

a=1

Incorporating left hand side of 2.11 in terms of n and reorganizing it we finally get
the following equations in order to obtain a numerical method of an mth order of

accuracy in time.

By = 1- Eizl,ka;eo B,
S ka0 Br R = 0 (n=1,3,...,2m —1) (2.12)

EZZl,ka¢oBkak: = (_,%) d? (n=2,4,...,2m)
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This is equations 2.3a, 2.3b, and 2.3c and Theorem 1 is i)roved.

2.12 can be written in other forms:

Bka=0 =1- Z:l,ka¢0 Bka
kyBk, + kB, + -+ + ke Bi,,, = 0

$
ki By, + k3 By, + -+ - + k3, By,,, = {

k%Bkl + kgBkz +--t k%mBkzm =2d

0

n!

(3)

|d!2l

k2™ By, + k3™ By, + - -+ + k2m By, = Zmligm

1f n s an odd number

if n s an even number

| (ka #0)
and: )
Bk°=0 =1- Ec’::l,ka;éo Bka
- - - 1 )
By, ky  ky kam 0
B, kK kim 2d
kK k2m Y
By, | LE™ B .. Er] |G|
(ka # 0)
here
_ 0 tf n s an odd number
vy = (’:)ld% if n is an even number
21

(2.13)

(2.14)
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2.3 Applications of the Universal Formula

In this section we will use some examples to demonstrate how to use the Universal
Formula to derive high order numerical methods. We will also pursue stability
analysis for these methods using stability Theorem 2 in [6]. Later on we will see
that because of the limitation that d must be positive, some numerical methods are

physically meaningless.

2.3.1 Three Point Schemes

From 2.8 the accurate order of three point schemes is m = "%1 = 1 in time and

second in space.
n+l _ n n n
1. U = f(Ur,, Uy, UY)

Like hyperbolic schemes we still call this scheme the "upwind scheme”, here k; =
—2, k2 = -—1, and k3 = 0.

So the numerical method takes the form:

U}”’l = BoU} + B_oU}, + B.1U, (2.15)
From equation 2.13, we have

—2B_,—B_; =0
4B_2 + B_l = 2d
Bo=1-B_3— B,

l.e.

By=1+4+d
B_l = —2d (2.16)
B_2 = d
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replacing 2.16 into 2.15

UMt = (1+d)UF — 2dUp, + dUT, (2.17)

According to the stability Theorem 2 [6], the amplification function for this method

is:
A= 1+4d

therefore, the stable region is [A| < 1, i.e.

<d<0 (2.18)

N =

However, it is physically meaningless for diffusion number d being negtive. Obvi-
ously, upwind scheme 2.17 is physically not right. Actually, later on you will see
that all upwind and downwind numerical schemes are physically violating for model

parabolic equation.
2. U;“ = f( }z—vU}‘s U?+1)
This is central scheme. Here k; = —1, k; =0, and k3 = 1.

So the numerical method is:

UM = BoUP + BLUL, + BiUfy (2.19)
From 2.13
—B-l + Bl = 0
B_1 + B1 = 2d

B0=1—B..1—Bl
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Therefore
Byo=1~-2d
B_;=d (2.20)
Bl = d

here B_; = B;. Later on we will see that this is a common feature for all numerical
schemes. It states that mirror points of numerical schemes, such as points j — 1 and

7 + 1 in this scheme, have same coefficient values.

Substitution of 2.20 into 2.19

Urtt = (1-2d)U7 +d(UT, + UR,y) (2.21)
The amplification function of 2.21 is
A =1-4d

Hence the stable region of this method is

0<d< (2.22)

DN

The order of accuracy of this scheme is first order in time and second order in space,
i.e. order (1,2).

3. U;‘H-l =f(U;L’ _1?+17 Jp+2)

This is the three points downwind scheme. Undertaking the same procedure as

obove the numerical method becomes:

Uttt = (1+d)UP - 2dU%,, +dUT,, (2.23)

Like in the upwind scheme presented in equation 2.17, for stability, d must be
nagtive. Clearly this scheme is physically not correct.
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2.3.2 Four Point Schemes

1. U;H—l = f(U;‘__:s’ U;—z, U;‘_l, an)
This is upwind scheme. Here k) = —3, ky = =2, ks = —1, and k4 = 0.

So
UMY = BoU} + BLyUp, + BoyUry + B_sU?

73

From 2.13 we get

-B_,-2B_,-3B_3=0
B_1+4B_;+9B_3=2d
—B_1—-8B_,—-27TB_3=0
By=1-B_;—B_;—B_3

i.e.
B_, = -5d
B_,=4d
B_3 = —-d
The amplification function is
A= 1+4+12d
and the stable region is
1
—=<d<
g=d=< 0

Again we proved the upwind schemes are physically unrealistic.

2. Uf“ =f(U}‘_2, ;—1,U?an+1)

11
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Here kl = —2, k2 = —1, k3 = 1, and k4 = (.

So the numerical method takes the form:

Ut = BoU} + BiUpyy + BoUP, + BLUL, (2.24)

From 2.13 and doing some manipulation we get

By=1-2d
By =d
B_,=d
B_,=0

(2.25)

Replacing 2.25 into 2.24
U;""l = (1-24)UF +d(U7,, + Uiy)

This implies that since B_, is equal to 0 the four point scheme (-2,-1,0,1) has became
the same as three point scheme (-1,0,1), and can not increase the order of accuracy.

3. Urtl = FU_, U Uy, Ul)

This is the mirror scheme of 2.24. Here k; =2, ky =1, k3 = —1, and k4 = 0.

So
U}"H = BOU;‘ + B]U?+1 + B—lUf_l + BZU}l.f-z (226)
and
Bo - ]. - 2d
B, =d (2.27)
B-l =d
B2 = 0

Like in the scheme 2.24 this scheme reduces to three point scheme (-1,0,1) as well.
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4. U?+1=f(U?’ ;n+17 ]!1+2,U]’.1+3)

The numerical method is:

UM = (14 2d)U7 — 5dU%, + 4dUSy, — dUZ (2.28)

The stable region of the method is

<d<0

|+

As you can see that the stable region of this method is the same as the upwind
scheme, hence this method is physically meaningless too.

We can conclude therefore, that four point schemes can not improve the order of

accuracy of parabolic numerical schemes.

2.3.3 Five Point Schemes

Because upwind and downwind schemes are physically meaningless for model diffu-

sion equation, from now on we will dispence these schemes.

From 2.8 we know that the accuracy of five point schemes is second order in time

and fourth order in space.
1. U;H = f(U}z—aaU;L—z, U?-DU}L, U?+1)

The numerical method is:

vt = (1-3d—e@)ur+ (Ratie) v, + Yivsa)un,
i 3 Pt T ) 2 j

1 n 1 1 "
+ (-gd - 2d2> P (§d2 RET ) i-3 (2:29)
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The amplification function is:
4 2
A=1-2 -3—d +4d
The stable region is |A| < 1, i.e.

0<d<0.36 (2.30)

2. Uptt = f(UR,, UF, Uy, U2y Ulla)

This is the mirror scheme of 2.29. The numerical method 1s:

. 5 (11,1 . 1 .
1 dZ n 1 2 1 n
+ §d -2 Ul + §d - ﬁd Uls (2.31)
The amplification function is:
4 2
A=1-2 §d +4d
and the stable region is [A\] <1, i.e.
0<d<0.36 (2.32)

Note this scheme has a same stable region as 2.29.
3. U}H-l = f( ;?—2, ?—1) U}L7U}z+1’ U?+2)

The scheme is:
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5 4
Urtt = (1 +3d* — -2—d> U? + <§d - 2d2) Uy + Ulya)

1 1 n n

The amplification function is:

8
A =1-2(=d-4d
2(3 )

and the stable region is:

(2.34)

o
IA
S
IA

ol o

2.3.4 Seven Point Central Scheme

From the observation we know that all central schemes are stable, moreover, they
have the largest stable regions. Hence we only consider to construct high order

central numerical schemes from now on.

From 2.8 we know that the accuracy with seven point schemes is third order in time
and sixth order in space.

10 14 49 15 13 3
Uit = (1 -l gl - —d) Ur + (—d3 &+ §d) Uy + Ufy)

3 18 ) 4 6 4
3 n n
(-0 - 5d) U+ T)
1 3 1 2 1 n n

The amplification function of this scheme is:
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LaMEDA O€ven point Scheme

1.0+
0.5+
0.0+
—-0.5
~ 1.0
-1.5+
—2.0-
-2.54
d
—3.0 T i T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Figure 2.1: Stable Region for 7T-point Central Scheme
32 . 40 , 272
A= 1-=d+ =& -==d
3 + 3 45
and the stable region is |A| < 1, see Figure 2.1, this is
0<d<0.385 (2.36)

2.3.5 Nine Point Central Scheme

The accuracy of this scheme is 4th order in time and 8th order in space.

Urtl = (1 —2.847222d + 5.6875008d — 6.24999984d° + 2.91666484")U}'
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+(1.6d — 4.066666656d4% + 4.83333324d° — 2.333331844d*)(UL-; + U}4,)
+(1.408333332d* — 0.2d — 2.16666667d° + 1.16666667d*)(UI_, + U5
+(0.025396824d — 0.2d> + 0.5d° — 0.333332164")(U_3 + U},5)
+(0.01453324d> — 0.00178572d — 0.041666644° + 0.04166568d")

(Uf-a + Upta) (237)

The amplification function is:

A = 1—2(3.250794d — 8.533333d* + 10.66666692d° — 5.33333304d*)

The stable region, see Figure 2.2, is:

0<d<1 (2.38)

2.4 Important Features of Observation

From the observation of the numerical schemes in the last section, we can summarise

some of the important features of parabolic numerical schemes as follows:

1. For arbitrary point schemes fully upwind and downwind schemes are physically

violating.

2. For arbitrary point schemes the central point scheme has the largest stable

region.

3. For central point schemes, the stable region increases proportion to the size of
the stencil.

4. For mirror numerical schemes the coefficient values, By, , of mirror points are

identical.
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L AMBDA Nine point scheme

1.0-
0.8-
0.6
0.4

0.2+

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.2: Stable Region for 9-point Central Scheme

5. Mirror numerical schemes have the same stable region.

Generalizing these features above we can conclude that the ideal 2-level explicit nu-

merical methods for model parabolic equation are central point numerical schemes.
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CONCLUSIONS

In this report we developed a theory and a universal formula which can be used to
construct arbitrary-order 2-level explicit numerical methods for the model parabolic

equation.

However, because of the limitation of the diffusion number, some numerical schemes
are physically violating. In order to obtain a physically correct and numerically
stable method we have to select a numerical method which possesses a positive

stable region in terms of diffusion number d.

The findings in this report indicate that the ideal numerical schemes for the model

parabolic equation are central point schemes which have the largest stable region.

19
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