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Abstract 

The practical implementation of the European Water Framework Directive has resulted in 

an increased focus on the hyporheic zone. In this paper, an integrated model was developed 

for evaluating the impact of point sources in groundwater on human health and surface water 

ecosystems. This was accomplished by coupling the system dynamics-based decision support 

system CARO-PLUS to the aquatic ecosystem model AQUATOX using an analytical 

volatilization model for the stream. The model was applied to a case study where a TCE 

contaminated groundwater plume is discharging to a stream. The TCE source will not be 

depleted for many decades, however measured and predicted TCE concentrations in surface 

water were found to be below human health risk management targets. Volatilization rapidly 

attenuates TCE concentrations in surface water. Thus, only a 300 m stream reach fails to meet 

surface water quality criteria. An ecological risk assessment found that the TCE 

contamination did not impact the stream ecosystem. Uncertainty assessment revealed 
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hydraulic conductivity to be the most important site-specific parameter. These results indicate 

that contaminant plumes with μgL-1 concentrations of TCE entering surface water systems 

may not pose a significant risk. 

 

Key words system dynamics; risk-based approaches; integrated modeling; chlorinated solvents; 

uncertainty; hyporheic zone; contaminated sites 

 

1. Introduction 

The practical implementation of the European Water Framework Directive (WFD) has 

generated many new challenges for water managers across Europe. As global exploitation of 

both stream water and groundwater increases, it is becoming more evident that managers need 

to develop an awareness of the linkages between these two systems, the roles that these 

linkages play in maintaining water quality, and how human activities may impair them 

(Hancock, 2002). In recognition of this, implementation of the WFD within the individual 

countries necessitates the evaluation of all types of contamination sources (e.g. point and 

diffuse) within a specific watershed in order to assess their direct impact on water quality and 

ecosystem health. It is required that surface water must meet good water quality and 

minimum ecological criteria, and that groundwater must have good chemical status. 

Chlorinated solvents, such as trichloroethylene (TCE), and pesticides are among the most 

prevalent and serious contaminants of surface and groundwater resources in the world (e.g. 

Winter et al., 1998, Stroo et al., 2003; Guilbeault et al., 2005). In Denmark this is a major 

problem because almost all drinking water comes directly from groundwater (Henriksen et al., 

2008). And many of these compounds are either acknowledged or suspected carcinogens 

(U.S. EPA, 2009b). Due to their widespread use, mobility and persistence, chlorinated volatile 

organic compounds (VOCs) are considered to have the greatest potential to discharge to 

surface waters (Ellis and Rivett, 2007). 
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Water management decisions are increasingly being based on model studies (Scholten et 

al., 2007) and modeling tools are becoming progressively more sophisticated, i.e. 

parameterized. Existing risk-based studies of coupled groundwater-surface water systems 

have tended to focus explicitly on predicting diffuse source transfers to surface waters 

(Heathwaite et al., 2005; Kannan et al., 2007). The use of these models, however, implies 

access to enough good quality data in order to both calibrate and validate the physical system 

before these models can be used in a predictive capacity. Simpler modeling approaches and 

tools also exist, but here the focus has typically been on either the groundwater (e.g. 

Troldborg et al., 2008) or the surface water system (e.g. Ani et al., 2009). Risk-based 

approaches capable of predicting and quantifying the impacts of groundwater contamination 

on surface water resources and ecosystem health are currently unavailable. 

This paper aimed to bridge this gap by presenting a novel risk-based, source-pathway-

receptor methodology for analyzing point source impacts to both human and ecological 

receptors, especially for use at early decision levels. Uncertainty assessments must be 

incorporated into the decision-making process, with emphasis throughout the modeling 

process (Refsgaard et al., 2007). Thus, the proposed approach also endeavors to produce 

“usable” scientific information by specifically addressing the role uncertainty plays on the 

decision-making process, particularly with respect to the use of “effective” parameters in 

groundwater transport modeling. 

In this paper, we show how integrated modeling can support both human health and 

ecological risk assessments for evaluating surface waters impacted by point sources in 

groundwater. This is accomplished by coupling the system dynamics-based decision support 

system CARO-PLUS to the process-based aquatic ecosystem model AQUATOX through a 

simple analytical volatilization model. The system dynamics approach implemented in 

CARO-PLUS (Serapiglia et al., 2005; McKnight and Finkel, 2008) is particularly suited for 

management issues regarding contaminated land since it has the ability to incorporate past 

 3 



actions (e.g. previous remedial strategies) that may have been undertaken to alleviate a 

problem (e.g. groundwater contamination). AQUATOX (Park et al., 2008) was found to be the 

most comprehensive of the few existing general ecological risk models, capable of 

representing the combined environmental fate and effects of toxic chemicals and their impacts 

to aquatic ecosystems. 

2. Case study site – Skensved stream 

A TCE contaminant plume that is leaching from groundwater into Skensved stream in 

Denmark is assessed with the new system dynamics tool. The Skensved stream, located on the 

eastern side of the island of Sjaelland in Denmark, has a catchment area of 25 km2. Lille 

Skensved is located in an area with protected drinking water interests. Lille Skensved 

Waterworks is situated approximately 1.5 km northwest of the town. A second well field, for 

Lyngen Waterworks (Christensen and Raun, 2005), lies 3 km east of Lille Skensved and 

immediately south of the Skensved stream. 

The aquifer at Skensved is contaminated by TCE originating from an auto lacquer shop in 

Lille Skensved which has used the solvent for degreasing metal parts since 1974. A leaking 

storage tank was found in 1993 where TCE had been seeping directly into the ground below. 

In 2003 it was determined that this storage tank was solely responsible for the TCE 

contamination in the aquifer, with a plume extending up to 1,000 m from the source area (see 

Figure 1, Christensen and Raun, 2005). 
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Figure 1: Propagation of the TCE contaminant plume and impacted stream section at 

the Lille Skensved site. Also shown are the measurement locations in the stream (yellow 

dots) and stream bed (blue dots), the location of the remediation well (B11) used for 

pump and treat, and the location of the well in the hyporheic zone (3B). 

 

The geology beneath Lille Skensved and Skensved stream consists of 2-4 m of alternating 

layers of soil, gravel, sand and clay followed by 8–10 m of bryozoan limestone (the Danien 

Limestone) that is underlain by a low permeability zone (GEO, 2009). The primary limestone 

aquifer is characterized by an effective hydraulic conductivity of 19 md-1, a hydraulic gradient 

of 0.00473 (Christensen and Raun, 2005), and an effective porosity of 0.02 (GEO, 2009), 

resulting in seepage velocities on the order of 4.5 md-1. Since no information is available on 

the mass fraction of organic carbon, a typical literature value of 0.002 for Danish aquifer 

materials was assumed (corresponding to a retardation value of 44 for TCE, Christensen et al., 

1996). 

Although little data exist regarding the specific source zone characteristics (e.g. 

geometry), measured TCE concentrations (in the mgL-1 range) in the primary aquifer below 

the source indicate the presence of separate phases of chlorinated solvents (Christensen and 

Raun, 2005). GEO (2009) estimates that 150–240 tons of TCE have been used in the auto 
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lacquer shop during the period from 1974 to 1999. Furthermore, GEO (2009) conclude that 

the TCE plume is under hydraulic control through the implementation of pump and treat. 

Approximately 60,000 to 100,000 m3yr-1 of water have been pumped from the source area, as 

well as 30,000 to 100,000 m3yr-1 from well B11 (indicated on Figure 1, Christensen and 

Raun, 2005; GEO, 2009). Current plans are to continue with the pump and treat strategy until 

2010 (GEO, 2009). 

The average water flux in the Skensved stream was determined to be 13,500 m3d-1 (157 

Ls-1), based on data taken over the past 20 years, with large interannual and seasonal variation 

(Christensen and Raun, 2005). In 2005, the water flow decreased from 1,200 Ls-1 in early 

January to just 6.3 Ls-1 in July and August (data not shown, Bruun and Rose, 2005). The 

changing water flow directly affects the water levels in the stream so that, in 2005, the water 

depth rose to more than 50 cm during the winter months and dropped below 20 cm in the 

summer. In late September of 2005, water levels as low as 11 cm were observed. 

In previous studies, conducted through the Technical University of Denmark in 2005 and 

2008, the extent of groundwater-surface water interaction at the site has been determined 

using piezometers and temperature measurements. Danish groundwater usually has a 

temperature of 10ºC, and so a local surface water temperature rise occurs in the winter when 

groundwater enters the stream, as the surface water is colder than the groundwater. The 

reverse occurs in the summer. The measurements, taken along 4 km of the stream (indicated 

by yellow dots in Figure 1), clearly show a temperature change in the hyporheic zone 

indicating that groundwater influx to the stream occurs (data not shown).  

Further evidence of groundwater-surface water interaction is obtained through groundwater 

monitoring data. The data show that the TCE concentration in groundwater declines from the 

west to east side of the stream, as illustrated in Figure 2, indicating that a significant fraction 

of TCE (maximum concentration of 120 µgL-1 in borehole 3B) is entering the Skensved 

stream. Seepage meter samplers placed in the hyporheic zone show that concentrations of up 
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to 59 µgL-1 occur in groundwater entering the stream. The infiltration rates at three different 

locations along the stream were determined: 336 Lm-2d-1 at 1,674 m, 84 Lm-2d-1 at 1,765 m 

and 170 Lm-2d-1 at 1,943 m (compare distances with Figure 6). Based on these seepage meter 

measurements, the flux of contaminants from groundwater into the stream could be 

determined. 

 

 

Figure 2: TCE and 1,2-cis-DCE concentrations [µgL-1] in the groundwater moving west 

to east (left to right) from the source zone to the east bank of the Skensved stream 

(Christensen and Raun, 2005). Well 3B was found to contain the highest TCE 

concentrations, which was used for calibrating the source release model. 

 

In the surface water in August 2005, the TCE concentration increased from zero to a 

maximum of 17.4 µgL-1 along a 250 m stretch where the groundwater plume interacts with 

the Skensved stream, and decreased thereafter to zero again. Thus, it was concluded that the 

contaminant plume enters the stream between 1,625 m and 1,875 m. TCE was also observed 

in the stream on other occasions, but annual maximums occurred during the summer months. 
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The bottom sediments are generally highly permeable and contain insignificant amounts 

of organic matter. Water chemistry and redox parameters were measured in May–June 2005 

using both multilevel samplers and seepage meters for the influent groundwater, as well as 

directly from the surface water (Table 1). Based on these results, the hyporheic zone could be 

characterized as being slightly aerobic and/or nitrate-reducing, thus preventing significant 

anaerobic dechlorination (Scheutz et al, 2008; Abe et al., 2009). No apparent increase in 1,2-

cis-DCE was observed in the groundwater to the west of the stream (Figures 1 and 2), or in 

the stream itself. And so it was concluded that no overall systematic degradation of TCE is 

taking place in the down-gradient portion of the plume. 

 

TABLE 1 

 

3. Methodology: integrated modeling framework 

The impacts of TCE on Skensved stream was assessed using a source-pathway-receptor 

concept (see Figure 3). The conceptual model was implemented by coupling the system 

dynamics model CARO-PLUS to the U.S. EPA ecological impact assessment model 

AQUATOX. This was necessary since CARO-PLUS is currently equipped only for the analysis 

of risks to human health, specifically when the contamination plume at the receptor occurs in 

groundwater (note however that the source zone can originate either in soil, groundwater or 

both). Similarly, the U.S. EPA model AQUATOX is equipped only for the analysis of 

ecological effects on aquatic ecosystems when the contaminants are already present in the 

surface water. 

In order to enable both a quantitative human health risk assessment and an ecological risk 

assessment of this site, the decision support system CARO-PLUS was coupled to the process-

based aquatic ecosystem model AQUATOX through a simple analytical surface water 
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volatilization model. The model was constructed in order to track the fate of TCE as it moves 

from the groundwater through the groundwater-surface water interaction zone (i.e. hyporheic 

zone) into surface water. These steps will be described in more detail in the following 

sections. 

 

 

Figure 3: Schematic illustration of the source-pathway-receptor concept implemented in 

the program CARO-PLUS. 

 

3.1 System dynamics modeling: CARO-PLUS 

CARO-PLUS, developed at the Center for Applied Geoscience/University of Tuebingen, 

is intended to be used for preliminary assessment as part of a tiered approach, and to allow the 

user to simulate and optimize the effects of potential remedial actions including tackling the 

contaminant source and managing groundwater plumes (McKnight, 2009). It currently 

consists of a source release module, a contaminant transport module and a human health 

impact assessment module. Both mass release and contaminant transport in groundwater are 

quantified using transient models that are based on analytical approaches (Sauty, 1980; 

Huntley and Beckett, 2002; Eberhardt and Grathwohl, 2002; Peter et al., 2008). The existing 

contamination and its further development can be evaluated on the basis of contaminant mass 

fluxes, concentrations, and risk indices (carcinogenic/non-carcinogenic). Possible remedial 

actions causing mass flux changes over time are also simulated (McKnight, 2009). 
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CARO-PLUS also contains a risk assessment module that describes exposure pathways, 

i.e. transport (transfer) of contaminants from groundwater to the receptor “human being”, in 

accordance to the Multimedia Environmental Pollutant Assessment System developed by 

Strenge and Smith (2006). The model is capable of analyzing pollutant behavior in various 

media (air, soil, groundwater and surface water) and estimating transport through and between 

media. The uncertainty inherent in both site-specific and exposure parameters is explicitly 

taken into account using Monte-Carlo simulations. 

CARO-PLUS is built on the system dynamics platform Vensim (Ventana Systems, 2007). 

System dynamics uses an interlinked system of stocks (levels) and flows (rates). Water, as 

well as contaminant mass can be thought of and measured using stock terms, which describe 

the volume or mass present at a particular place and point in time. Similarly, water and mass 

transfer can be calculated using flow terms, which describe the volume or mass reaching or 

passing a defined point or area in a given time period. The overall structure of the model as 

implemented in a systems dynamics framework is described in Figure 4. The stocks are 

represented in the figure using boxes and the flows by double arrows. The single arrow terms 

show the most important inputs required in calculations. The model has been tested for 

appropriateness and verified in McKnight (2009). 

 

 10 



 

Figure 4: Major structure for the DNAPL pool release scenario and transport along the 

groundwater pathway, including retardation and degradation. 

 

3.1.1 Source characterization: contaminant emission from DNAPL pool 

The source model conceptually distinguishes between light and dense NAPL 

contamination scenarios, as well as residual phase or blob zones. The organic contaminant 

phase is typically described as a mixture of multiple compounds, but single compound 

scenarios can also be modeled. Mass release from a DNAPL pool is quantified using a model 

which describes the dispersive mass transfer of DNAPL into groundwater flowing across the 

pool, with the resultant flux being given by (Eberhardt and Grathwohl, 2002): 

,
4dnapl sat x

i w i p p e
p

DvJ C B L n
Lp

=  (1) 
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where dnapl
iJ  [MT-1] is the dissolution rate of compound i from a pool with width Bp [L] and 

length Lp [L], and D [L²T-1] is the transverse vertical hydrodynamic dispersion coefficient, 

which is calculated using: 

p tv xD D vα= +  (2) 

where Dp [L²T-1] is the pore diffusion coefficient (also approximated as Daqne) and tvα [L] the 

transverse vertical dispersivity.  

The values for transverse vertical dispersivity are estimated by assuming that dispersion 

can be represented as a linear function of groundwater pore velocity (Klenk and Grathwohl, 

2002). Other assumptions inherent to this solution include constant concentration at the 

NAPL-water interface where dissolution occurs, and equilibrium is assumed to have been 

reached between the NAPL and a boundary layer of water (i.e. bordering the DNAPL pool). 

 

3.1.2 Groundwater contaminant transport 

The mass transfer of the contaminant from the source to the stream is modeled 

analytically, assuming steady-state (averaged) flow conditions, advective and diffusive 

transport, retardation and biodegradation (i.e. when applicable) by (Sauty, 1980): 

-
,

,

-
2 2

i x

x

L
x x R R vSE

R
L x R R

L v tJJ erfc e
v t

λ

α

 
 =
 
 

 (3) 

where RJ  [MT-1] is the estimated mass flux at the receptor, SEJ  [MT-1] is the mass flux at the 

down-gradient edge of the source, Lx [L] is the distance between the source and the receptor 

in the x-direction, αL  [L] is the longitudinal dispersivity, tR [T] is the simulation time, iλ  [T-1] 

is the first-order biodegradation rate for compound i, and vx [LT-1] is the groundwater pore 

velocity. The parameter values employed are the average (or effective) values for the pathway 

between the source and receptor. The longitudinal dispersivity is directly estimated in CARO-

PLUS by (Xu and Eckstein, 1995): 
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2.414 0.83 [log( )]L xLα =  (4) 

 

3.2 Analytical volatilization model 

A stream transport model is developed to describe the transfer of mass into the stream 

from groundwater and the subsequent volatilization of contaminant from the stream. The 

model is based on the observation that volatilization is likely to be the dominant process 

affecting the concentration of VOCs in stream water (Rathbun, 2000).  

The model considers a stream of constant volume, where inflow equals the outflow. The 

change in concentration of a VOC over time for a given volume of water is given by: 

( ) ( )gw gw v
dC tV Q C K C t V

dt
= −  (5) 

where V [L3] is the volume of the water body, Qgw [L3T-1] and Cgw [ML-3] are the flux and 

VOC concentration of the infiltrating groundwater, respectively, Kv [T-1] is the volatilization 

rate and C(t) [ML-3] is the VOC concentration at time t [T]. If the initial VOC concentration is 

C(0) = 0, then the solution of (5) is given by: 

( )
vK t

gw gw gw gw

v v

C Q e C Q
C t

K V K V

−

= −  (6) 

When the initial VOC concentration is not zero, the solution becomes: 

1( ) −
−

 
= + − 

 
vgw gw gw gwK t

t
v v

C Q C Q
C t e C

K V K V
 (7) 

where Ct–1 [ML-1] is the initial VOC concentration. Equation (7) can be used for scenarios 

where the infiltration rates Qgw and/or the VOC groundwater concentrations Cgw are not 

constant over the distance of the modeled stream. 

 

3.3 Risk assessment 

3.3.1 Human health risk assessment 
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The risk to human health due to direct or indirect exposure to contaminated water (e.g. 

ingestion of water or leafy vegetables) can be assessed using a methodology that is applicable 

to both groundwater and surface water. In CARO-PLUS, the risk assessment is focused on the 

risks associated with pollutants originating in groundwater. Here the human health risk 

assessment was extended to also consider surface water contaminants. The risk assessment 

begins with identified concentrations of the constituents of interest which are then converted 

to average daily doses at the point of exposure (e.g. receptor location in Figure 3). The doses 

are then converted to risk values for either carcinogens (evaluated as total risk level, RLtot,i [-]) 

or non-carcinogens (total hazard quotient, HQtot,i [-]) using: 

,
1

,
1

*
E

E

n

tot i i i
k

n
i

tot i
k i

RL LADD SF

CADDHQ
RfD

=

=

=

=

∑

∑
 (8) 

where LADDi [MM-1T-1] is the lifetime (cancer) average daily dose, SFi [MM-1T-1]-1 is the 

corresponding (oral) slope factor, k is the exposure pathway, i is the pollutant, nE [-] is the 

number of exposure pathways considered, CADDi [MM-1T-1] is the chronic average daily dose 

and RfDi [MM-1T-1] is the corresponding (oral) reference dose. 

The risk values (HQtot,i; RLtot,i) are then summed over all the (known) compounds 

considered for a particular site in order to produce a risk (or hazard) index: 

,
1

,
1

C

C

n

tot i
i
n

tot i
i

RI RL

HI HQ

=

=

=

=

∑

∑
 (9) 

where RI [-] is the risk index, nC [-] is the number of compounds considered and HI [-] is the 

hazard index. Major assumptions include that exposure to any amount of a carcinogen will 

increase the cancer risk (i.e. no threshold dosage), risks are additive for multiple chemicals 

and (exposure) routes, and potential synergistic effects (between compounds) are not 

considered. 
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LADDi and CADDi result from exposure pathway functions (Strenge and Smith, 2006) 

that are based on a specific set of parameters (see equation 10). These parameters are typically 

set to default values considered to be standard for a particular risk group (e.g. children) and 

toxicity assessment (e.g. carcinogens). The toxicity assessment is conducted using existing 

databases such as the Integrated Risk Information System (IRIS), maintained by the U.S. 

Environmental Protection Agency (U.S. EPA, 2009b), and the Risk Assessment Information 

System (RAIS) that is maintained by Oak Ridge National Laboratory for the U.S. Department 

of Energy (RAIS, 2009). The goal is to provide an estimate of the relationship between the 

magnitude of exposure and severity (non-carcinogens) or likelihood (carcinogens) of adverse 

effects. Thus, for carcinogens and for each exposure pathway, LADDi can be determined by a 

set of equations following the U.S. EPA (1991; 2001; 2004) and ASTM (2004): 

, ,

, ,

, ,

*

* *

*

* *

** *
* *

 
 

=  
 
  
 
 

=  
 
  
 
 

=  
 
  

i ing i w w

i inh i a a

i dc i w p 1

EF EDLADD C IR dBW AT 365
yr

EF EDLADD C IR KdBW AT 365
yr

EF EDLADD C SA ET K CFdBW AT 365
yr

 (10) 

where LADDi,ing, LADDi,inh and LADDi,dc are the average daily doses for the ingestion, 

inhalation and dermal contact pathways, respectively, Ci,w [mgL-1] and Ci,a [mgm-3] are the 

concentrations in water and air, respectively, IRw [Ld-1] is the water ingestion rate, IRa [m3d-1] 

is the inhalation rate, SA [m2] is the exposed skin surface, ET [hrd-1] is the exposure time for 

an outdoor activity, EF [dyr-1] is the frequency of exposure to the contaminant, ED [yr] the 

exposure duration, BW [kg] is the bodyweight, AT [yr] is the period over which the time is 

averaged, K [Lm-3] is the Andelman volatilization factor for chemical pollutants, Kp [cmhr-1] 
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is the skin permeability coefficient for chemical i and CF1 [Lmcm-1m-3] is a unit conversion 

factor. 

 

3.3.2 Ecological risk assessment 

This paper extends the CARO-PLUS model to assess the ecological impact of 

contaminants in surface water. An ecological risk assessment can be carried out in several 

ways. A rudimentary (i.e. conservative, screening level) method is to compare exposure point 

concentrations with ecotoxicity values for a set of ecological receptors using (U.S. EPA, 

1997a): 

i
i

i

EECHQ
NOAEC

=  (11) 

where HQi [-] is the hazard quotient for pollutant i, EECi [ML3] is the estimated concentration 

at the exposure point and NOAECi [ML3] is the no-observed-adverse-effects-concentration. 

The NOAECi values were taken from the online database ECOTOX maintained by the U.S. 

EPA (2009a). The U.S. EPA advises that these conservative results can be used to determine 

whether ecological threats are negligible or whether a more detailed ecological risk 

assessment is required.  

The simple ecological assessment approach described above has been criticized since 

NOAECi reference values exist only for a few ecological receptors and a high uncertainty 

exists for the extrapolation of these values to other organisms (Tannenbaum, 2005). A more 

comprehensive ecological risk assessment can be made using the freshwater ecosystem 

simulation model AQUATOX. AQUATOX combines the simulation of an aquatic ecosystem 

with the environmental fate and effect of various pollutants, such as nutrients and organic 

chemicals. The model is capable of computing endpoint concentrations for pollutants in both 

water and bottom sediments, as well as their effects on a variety of aquatic flora and fauna. A 
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detailed description of AQUATOX including the specific calculations for ecosystem health 

parameters is included in Park and Clough (2004), Park et al. (2008) and references therein. 

 

3.4 Uncertainty assessment 

One of the goals of this paper is to carry out a quantitative exposure assessment, including 

an in-depth investigation into how uncertainty influences management decisions. By 

segregating the uncertainties that are specific for the exposure parameters in a particular land 

use scenario from those that are site- and contaminant-specific, the investigator can work to 

reduce the uncertainties associated with the site, while being able to recognize the 

uncertainties inherent in the exposure process. This process leads to robust management 

strategies. 

Uncertainty was investigated using Monte-Carlo simulation of the site-specific 

parameters within CARO-PLUS. A Latin hypercube method was used to sample parameter 

values from given distributions. After generation of the Monte-Carlo output, the simulation 

results were post-processed to remove model outcomes that lie outside a predefined 

acceptable range. This “model screening” is a necessary measure since parameter values 

inherent to the Monte-Carlo process are drawn randomly from their individual probability 

distributions, and can therefore be combined in ways that are physically infeasible and their 

consideration would decrease the validity of the results. 

4. Results: application to Skensved stream 

4.1 Source characterization and groundwater transport model 

The CARO-PLUS model was utilized to simulate the TCE flux from the source area to the 

hyporheic zone as a function of time. Table 2 presents a summary of the general parameter 

values implemented in the base case scenario. Hydraulic conductivity was used as a 

calibration parameter for (model) transport, based on the range given in Christensen and Raun 
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(2005). All further transport parameters could be taken either from site-specific investigations 

or the literature. 

The historical conditions in the source zone are not known, and so observed 

concentrations measured down-gradient of the source zone for two different points in time 

(1995 – pre-pump and treat – and 2005) are used to calibrate the source zone geometry in the 

model (see results in Table 2). Measurement information for calibration of the transport 

model is taken from remediation well B11 (500 m down-gradient, Figure 1) and well 3B 

located in the hyporheic zone (750 m down-gradient, Figures 1 and 2). The model calibration 

assumes that TCE degradation is not occurring at this site, due to the prevailing redox 

conditions and absence of degradation products. 

Calibration of the model results in an initial volume and mass of TCE of 33 m3 and 48.2 

tons, respectively. The calibrated model fits well to concentrations measured in 1995 of 280 

µgL-1 at well B11 (compared with 309 µgL-1 modeled – data not shown) and 160 µgL-1 in 

well 3B (compared with 174 µgL-1 modeled, Figure 5b). A concentration of 120 µgL-1 was 

measured in well 3B in 2005 (see Figure 2), again comparing well with the modeled value of 

129 µgL-1 (Figure 5b). 

 

TABLE 2 

 

4.2 Human health risk assessment based on groundwater concentrations 

The results from the groundwater transport model can be used for an initial calculation of 

risk to human health. The cancer classification for TCE is still under review by the U.S. EPA 

(2009b). However, it is currently classified as a possible-probable carcinogen by the Agency 

for Toxic Substances and Disease Registry (ATSDR, 1997), and is listed as “medium 

priority” by the International Agency for Research on Cancer (IARC, 2008). Thus it makes 

sense to conduct the risk assessment for the case that TCE can be classified as carcinogenic. 
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In addition, the most sensitive target risk group is chosen – children. Table 3 lists the 

exposure pathways determined to be potentially relevant for this receptor. It should be noted 

that CARO-PLUS considers receptor endpoints such as surface water (i.e. fin fish ingestion, 

shoreline sediment ingestion) from a risk perspective. Contaminant concentrations in surface 

water are calculated by a simple dilution model, i.e. through mixing of the contaminated 

groundwater with surface water. The risk scenario was conducted for the worst-case, i.e. fish 

are assumed to ingest a mixture of groundwater and stream water where the amounts were 

determined by the groundwater flow rate and the low (summer) observed surface water flux.  

Table 3 shows the results of the risk assessment: the exposure pathways considered and 

their associated maximum (calculated) risk index. The maximum concentration was 

calculated to be 247 µgL-1 in groundwater used for drinking (first occurring in July 2021) and 

the risk index was determined to be 5.68×10-4 (October 2021). These can be compared with 

target risk levels of 10-6 and maximum allowable TCE concentrations of 10 µgL-1 and 1 µgL-1 

in surface and groundwater, respectively (Miljoe- og Energiministeriet, 1996; Miljoestyrelsen, 

1998). 

 

TABLE 3 

 

Of the eight pathways considered for the receptor, only two pathways play a significant 

role in causing risk to the receptor (marked in bold in Table 3). The drinking water ingestion 

pathway assumes that groundwater is used directly for drinking water (e.g. from a private 

well) without treatment. The sum of the risk indices for the six least important pathways is 

2.69×10-7, thereby meeting the risk management target of 10-6. 

Figure 5 shows overall results of the risk assessment based on groundwater 

concentrations, including (a) mass depletion, (b) aqueous mass flux from NAPL source zone, 

(c) concentration at the receptor (750 m) and (d) risk index for a simulation period of 100 
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years. The figure shows the impact of the pump and treat (P&T) system used for source 

control and the outcome if pump and treat had not been employed. The effect of the pump and 

treat containment strategy can be seen in the decreasing concentrations and risk between 1999 

and 2009. The model shows that if the current pump and treat system is switched off in 2009, 

then the concentration and risk will rebound in 2014. This means that, when the pump and 

treat action is terminated, both management targets of 1 µgL-1 in groundwater (Figure 5b) and 

RI = 10-6 (Figure 5d) will be exceeded in the base case scenario. 

 

 

Figure 5: Output of the source zone and groundwater models: (a) mass depletion, (b) 

concentration at stream receptor (750 m), (c) aqueous mass flux from DNAPL source 

zone, and (d) risk index. Also shown, as a dashed horizontal line, are the management 

targets associated with (b) TCE concentration and (d) risk index. 

 

4.3 Surface water transport model  

The parameter values utilized in the analytical volatilization model are summarized in 

Table 4. Several of the parameters in the model are known to be nonstationary (e.g. surface 

water flow, cross-sectional area), in part due to seasonal changes. To evaluate the worst case, 
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the model was set up to simulate the conditions during the summer, which is characterized by 

low water fluxes and water levels. 

 

TABLE 4 

 

Using the volatilization and groundwater inflow rates as fitting parameters, the 

volatilization model was fitted to the measured TCE concentrations, as shown in Figure 6. 

Three separate groundwater inflow sections were identified, with the first occurring at 1625 m 

and approximately 250 m long, the second only 75 m long, and the third encompassing the 

remainder of the investigated stream section. The initial values for the first two groundwater 

inflow rates were taken from the measured data (e.g. 336 Lm-2d-1 at 1,674 m and 84 Lm-2d-1 at 

1,765 m) and then adjusted. No initial data were available for the third rate. The figure shows 

two “jumps” in the TCE concentration at 2,125 m and 2,300 m and these can be explained by 

the model if it includes the increased groundwater infiltration rates at these points (see Figure 

6). 

The model can be used to determine the stream reach over which the surface water quality 

criteria for TCE has been exceeded, namely between 1,700 m and 2,000 m (Figure 6). That is, 

only 300 m of the Skensved stream is actually affected by the TCE contamination (i.e. fails to 

meet surface water quality criteria) from the contaminated groundwater. 

 

 21 



 

Figure 6: Analytical volatilization model (solid line) fitted to actual TCE concentrations 

(dashed line) measured in August 2005, by accounting for both volatilization and 

upstream inflows. The two “jumps” were fitted by including downstream groundwater-

to-surface water influx areas. 

 

4.4 Human health risk assessment based on surface water concentrations  

The maximum modeled (and observed) TCE concentration in the surface water of 17.4 

µgL-1 was used to assess the human health risk for children. This second human health risk 

assessment was conducted specifically for the potential exposure scenario of children playing 

outdoors in the contaminated stretch of Skensved stream. For a recreational land use scenario, 

risk from surface water is the sum of ingestion, inhalation and dermal contact with the water. 

Isolating LADDi in equation 8 and then solving for the respective contaminant 

concentrations from equation 10 allows the determination of the maximum allowable 

concentrations in water and air for a specific risk target, e.g. RI = 10-6. Using the parameter 

values listed in Table 5, the maximum allowable concentrations in water for the ingestion and 

dermal contact pathways were found to be 54.2 µgL-1 and 25.4 µgL-1, respectively. Both of 

these values are above the TCE concentration actually measured in the stream. Similarly, the 
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maximum allowable concentration in air for the inhalation pathway was found to be 0.7 µgL-

1. No data exist for TCE concentrations in the air in this vicinity for comparison purposes. 

 

TABLE 5 

 

4.5 Preliminary ecological risk assessment in the stream 

Indicator organisms were selected for the screening-level ecological risk assessment (e.g. 

according to equation 11), including Daphnia magna (aquatic crustaceans), mayfly and 

minnow (representing fin fish). TCE toxicity data can be found for these three organisms in 

the U.S. EPA ECOTOX database (U.S. EPA, 2009a). The respective hazard quotients were 

calculated to be 0.013, 0.0004 and 0.001, respectively, and all were well below the target 

value of 1. Neither D. Magna nor minnow are typically found in small Danish streams (Dall 

and Lindegaard, 1995). However, D. magna and minnow were chosen to represent Gammarus 

pulex (common freshwater shrimp) and (juvenile) Salmo trutta (brown trout), both of which 

are common inhabitants of small Danish streams (Dall and Lindegaard, 1995). Furthermore, 

species of the mayfly family, Baetidae, are frequently found in Danish streams. The chosen 

indicator organisms are thus assumed to represent different trophic levels in a simplified 

Danish stream ecosystem. NOAECs for D. magna and G. pulex are comparably low in terms 

of other toxicant groups (e.g. pesticides, Kronvang et al., 2003), and we therefore assume that 

D. magna here is representative of G. pulex as the most sensitive organism at the TCE 

polluted stretch in Skensved stream. 

 

4.6 Comprehensive ecological risk assessment in the stream 

In order to conduct a more comprehensive ecological risk assessment, the AQUATOX 

model was set up to model the 300 m stretch of the Skensved stream impacted by the TCE 

groundwater plume. Although the Skensved site was extensively characterized, much of the 
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data needed for input to AQUATOX were not available (e.g. lipid fraction for the various 

organisms modeled). Instead, unknown parameters were based on an existing case study in 

AQUATOX, where the impact of an organic toxicant is simulated and verified for a generic 

Ohio creek (see Table 6 for parameters). Biomasses of the included autotrophic components 

were maintained at low levels because of the small stream size and expected high level of 

human maintenance activities. Shading effects of stream bank vegetation increase 

proportionately with decreasing stream size (Allan, 1995). Furthermore, the vast majority of 

small Danish streams have lowered stream beds due to heavy and frequent maintenance 

which, additionally, increase shading effects of bank vegetation. We therefore propose that 

primary production is low at this impacted stretch of Skensved stream. Please note that some 

of the ecotoxicological parameters could be either estimated directly from the parameters 

given in Table 6 (e.g. animal/plant K2 elimination rate constants), or were estimated as 

suggested within the existing case study (e.g. animal EC50 growth/reproduction values were 

estimated using the D. Magna LC50/EC50 ratio; see U.S. EPA, 2009c for more details). The 

“Mannings Equation” method was selected for computing the water body volume in 

AQUATOX, based on existing (dynamic) outflow data for 2008. 

 

TABLE 6 

 

Figure 7a shows the observed stream discharge and modeled TCE concentration for one 

year. In July, the water volume reaches its annual minimum of 20 m3 (over 300 m, 

corresponding to 0.8 m3 per m stream), and the TCE concentration peaks at just over 16 µgL-

1. In general, the pattern of peaks seen on both curves shows that a clear correlation exists 

between the water volume and the TCE concentration, with high water volumes reflecting low 

TCE concentrations. 
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Figure 7: AQUATOX results for (a) stream discharge and (b) bioaccumulation factor vs. 

TCE concentration for the 300 m groundwater-impacted stream stretch, and (c) half-

lives for both TCE in water and sediment, as well as time required for 95% TCE loss in 

both water and sediment. 

 

Figure 7b illustrates the modeling results for the calculated bioaccumulation factor for 

four species (D. magna, stonefly, mayfly and minnow) versus TCE concentration. A trend 

clearly exists, with an increasing bioaccumulation factor from the lowest to the highest 

trophic level (i.e. moving from D. magna to minnow and bottom to top in Figure 7b). It can 

also be seen that the bioaccumulation factor increases with TCE concentration in the summer 

months (i.e. from May to September). 

D. magna was found by AQUATOX to be the most sensitive species modeled (data not 

shown). However, a close comparison of the D. magna concentration between the perturbed 

and control (no TCE present) scenarios indicates that there were no ecosystem effects 

occurring. This low ecosystem impact is expected as the NOAEC for this organism and TCE 

is 1,384 µgL-1 (U.S. EPA, 2009a), which is much higher than the observed surface water 

concentration of 17.4 µgL-1. 

The half life of a contaminant provides a good indication of the length of time in which a 

stream will be impacted by the contaminant. Figure 7c depicts the modeled TCE half life in 

water and sediment (bottom two curves) and the time for 95% chemical loss (upper two 

curves). Both parameters in water (versus sediment) follow the trend for TCE concentration 

(depicted in Figure 7b). In contrast, both half life and time for 95% chemical loss in sediment 

are less affected by the dynamically changing TCE concentration. Simulations were carried 

out for 5 years (2008-2012), and it was observed that the trends evident in Figure 7 simply 

repeat themselves, producing a yearly cycling pattern (data not shown). 
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4.7 Uncertainty assessment 

Monte-Carlo simulation was used to assess the uncertainty of the results from the 

groundwater transport model, focusing on the role of the highly uncertain or effective 

parameters on the decision process. Table 7 lists the parameters and ranges applied for the 

analysis. Input parameters were described using either triangular or uniform distributions, 

where the degree of variation (i.e. spread) reflected the estimated uncertainty for a specific 

parameter (e.g. van Groenendaal and Kleijnen, 2002). 

 

TABLE 7 

 

Simulations were done for an ensemble of 500 realizations. The outcome was then screened 

in order to generate a subset of realizations that are consistent with actual site data. A subset 

of 112 realizations was produced utilizing a screening criterion that requires the predicted 

(model) concentrations to be within ±50% of the observed concentration measured at the 

receptor in 2005.  

Uncertainties in input data (Table 7) lead to uncertainties in model output. The simulation 

results show that TCE concentration and resulting risk to the receptor may be approximately 

three times higher or two times lower than was predicted for the base case (Figure 8). 

Interestingly, two “trends” or sets of curves can be distinguished in Figure 8. A deterministic 

sensitivity analysis using the allowable, i.e. screened parameter ranges showed that lower 

values of hydraulic conductivity were responsible for the set of curves appearing with a later 

breakthrough time, i.e. in 2000. Both transverse vertical dispersivity and DNAPL pool length 

had no observable effect on the time for the first breakthrough, but were instead responsible 

for the resulting “spread” of both maximum concentration and risk indices. This also plays a 

role in model predictions in which contaminant concentrations can be expected to decrease as 

a result of the pump and treat strategy. 
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Figure 8: Monte-Carlo realizations of the transport and risk assessment model for (a) 

concentration at receptor and (b) risk index over time. Note that the base case (BC) 

model run is indicated in both figures as a dashed line. The model screening criteria 

(predicted concentrations at receptor = observed concentration at receptor ± 50%) is 

indicated in (a) by the range allowed (vertical bar) in 2005. 

 

A synopsis of the results of the Monte-Carlo simulation is provided in Table 8. Ranges of 

input parameters are narrow compared with the previously defined ranges (see Table 7) as a 

consequence of model screening. The coefficient of variation (CV) may be used to quantify 

how the original uncertainties have “propagated” through the modeling system. The 

probability distributions of input and output parameters appear to be very similar. 

 

TABLE 8 

 

The results of the sensitivity analysis for the output variables were also analyzed for the 

October 2021 (indicated as t = 10-2021 in Figure 9) time step corresponding to the time of 

maximum risk value, using histograms. For both concentration at receptor and risk index, the 
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base case values fell into the ranges containing the largest probability with predicted 

probabilities of 24% and 22%, respectively. 

 

 

Figure 9: Histograms showing the probability distribution for (a) TCE concentration at 

receptor and (b) risk index at the expected time of maximum risk (t = 10-2021). The 

specific subset range containing the base case modeled value is indicated by arrows. 

 

5 Conclusions 

This paper has shown how integrated modeling can support both human health and 

ecological risk assessments for surface waters potentially impacted by point sources in 

groundwater. The decision support system CARO-PLUS allows for a model-based, multi-

compartmental environmental impact assessment designed to establish the suitability of 

management scenarios capable of meeting pre-defined, site-specific compliance criteria. It is 

based on a quantitative exposure assessment and determination of risks for potential receptors 

deemed relevant for a particular site. This approach is intended to evaluate and reduce the 

number of competitive options for any further detailed assessment. 

The results of the screening tool at the Skensved site indicate an unsettling trend, with 

TCE concentrations (in groundwater) reaching a maximum of 250 µgL-1 that will hold steady 

for many decades to come. The plume today is under hydraulic control, but the results suggest 
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that pump and treat, functioning either as a remediation or as a containment strategy, may not 

be a sustainable management solution for this site. 

For the human health risk assessment in surface water, no (carcinogenic) risk was found 

for the developed worst-case scenario, i.e. children, in a recreational setting. Measured and 

modeled TCE concentrations in surface water were found to be below the estimated 

maximum allowable concentrations in water for meeting the risk management target of 10-6. 

These results are dependent on the actual values chosen for the scenario. Risk was only found 

to exist if the groundwater was to be used as drinking water, with maximum modeled 

concentration and risk values of 247 µgL-1 and 5.68×10-4, respectively. 

The results of the volatilization model could be used to determine the stream reach over 

which surface water quality criteria has been exceeded. This corresponded to the 300 m 

stretch where the TCE plume actually infiltrates the Skensved stream. TCE concentrations, as 

well as water levels were used for a preliminary verification to support the quantitative 

ecological risk assessment. The applied ecosystem model AQUATOX was found to capture 

these trends well, when compared with actual data. Two major drawbacks, however, were 

found to exist when using the AQUATOX model for preliminary assessment: the extremely 

large number of parameters needed to create a functioning ecosystem, and the fact that 

specific organisms not currently included in the model cannot be added by the user. 

For the ecological risk assessment, it was found that the TCE contamination does not 

have any significant effect on the stream ecosystem. These results indicate that volatile 

organic solvents may not pose a threat to surface water ecosystems. Caution is warranted, 

however, since the only chemical investigated was TCE and ecosystem effects were modeled 

based on the impact of TCE on three indicator organisms assumed to represent common 

species in small Danish streams. This is also reflected in the high NOAEC values found for 

all organisms investigated. Further modeling studies are needed, including studies comparing 

ecosystem impacts for both chronic and acute toxicants. We additionally propose that 
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conducting subsequent supplementary field studies is highly necessary to improve the 

evaluation of modeling results, when ecosystem modeling input is restricted to only a few 

species which potentially are not present at the site in question. 

Uncertainty with respect to transport modeling parameters was also investigated. The 

hydraulic conductivity was found to be the most critical site-specific parameter, suggesting 

that additional effort should be directed towards it when prioritizing future investigation 

needs. Sensitivity analyses confirmed that an evaluation of uncertainties for site-specific 

parameters is critical to sound decision-making and must be taken into consideration in any 

quantitative assessment. 

The implementation of system dynamics to hydrogeological issues recognizes the 

increasing importance of interdisciplinary systems research that relates policy assessment to 

resource management options. The risk assessment tools developed in this paper serve to 

integrate multiple issues, interest groups, disciplines and scales in order to address the wide-

ranging impacts of controllable and uncontrollable socioeconomic, ecological, hydrological 

and institutional drivers. 
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Tables: 

 

Table 1: Water chemistry and redox parameters measured at Skensved stream 

(Christensen and Raun, 2005). 

Parameter 
Multilevel 

samplers 

Seepage 

meter 

Skensved 

stream 

pH [-] 6.7 – 8.1 6.9 – 7.0 7.6 

Temperature [ºC] 9.4 – 15.3 10.3 – 13.8 10.7 – 10.8 

Chloride [mgL-1] 50 – 278 71 – 104 24 – 26 

Oxygen [mgL-1] 0.2 – 3.5 0.3 – 0.5 8.5 

Nitrate [mgNL-1] 0.4 – 6.4 1.8 – 2.0 1.8 – 1.9 

Dissolved Iron [mgL-1] < 0.3 – 1.2 n.a. n.a. 

Sulphate [mgSL-1] 7 – 41 14 – 17 9 – 10 

 

 38 



Table 2: General (best estimate) parameter values used in the base case scenario, 

including aquifer, site and contamination parameters. 

Aquifer Parameters Estimate Reference 

Thickness [m] 10 GEO (2009) 

Hydraulic conductivity [md-1] 19 
Calibration parameter; 

Christensen and Raun (2005) 

Hydraulic gradient [-] 0.00473 Christensen and Raun (2005) 

Effective porosity [-] 0.02 GEO (2009) 

Seepage velocity [md-1] 4.5 Calculated 

Site Parameters Estimate Reference 

Aquifer material organic carbon 

content [-] 
0.002 Christensen et al. (1996) 

Depth to GW [m] 2 GEO (2009) 

Longitudinal dispersivity [m] 6.86 
Calculated  

(Xu and Eckstein, 1995) 

Transverse vertical dispersivity [m] 0.0001 Klenk and Grathwohl (2002) 

Distance from source to P&T well [m] 500 Christensen and Raun (2005) 

Distance from source to receptor [m] 750 Christensen and Raun (2005) 

Minimum (summer) surface water 

flux [m3d-1] 
544 Bruun and Rose (2005) 

Contamination Parameters Estimate Reference 

Pool width [m] 11 Calibration parameter 

Pool length [m] 15 Calibration parameter 

Thickness [m] 10 Calibration parameter 
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NAPL molecular weight [gmol-1] 131.4 U.S. EPA (2009b) 

NAPL density  [kgl-1] 1.46 U.S. EPA (2009b) 

Interfacial tension NAPL/water 

[dynes cm-1] 
42 

Mayer and Hassanizadeh 

(2005) 

Interfacial tension NAPL/air  

[dynes cm-1] 
32 

Mayer and Hassanizadeh 

(2005)  
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Table 3: Summary of the human health assessment including initial set of exposure 

pathways and their corresponding maximum RIi,k. 

Exposure pathways Maximum RIi,k [-] 

Drinking water ingestion 5.65E-04 

Fin fish ingestion 2.23E-06 

Shoreline sediment ingestion 3.63E-11 

Soil ingestion 3.75E-08 

Inhalation of re-suspended soil 2.71E-10 

Outdoor air inhalation 1.68E-07 

Soil dermal contact 6.25E-08 

Shoreline sediment dermal contact  1.21E-10 

Maximum RIi [-] 5.68E-04 
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Table 4: Input parameters for the volatilization model. 

Parameter Value Reference 

TCE concentration in groundwater [µgL-1] 130 CARO-PLUS output 

Stream depth [m] 0.11 
Minimum value; 

Bruun and Rose (2005) 

Stream width [m] 1.4 
Average value;  

Bruun and Rose (2005) 

Surface water flux [md-1] 3366 Bruun and Rose (2005) 

Volatilization rate [d-1] 19 Fitting parameter 

Groundwater inflow rate I [Lm-2d-1] 360 Fitting parameter 

Groundwater inflow rate II [Lm-2d-1] 30 Fitting parameter 

Groundwater inflow rate III [Lm-2d-1] 18 Fitting parameter 
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Table 5: Parameter values used in the assessment of human health (i.e. children) 

exposure to contaminated surface water. 

Parameter Value Notes/References 

Exposure frequency, EF [dyr-1] 90 
Best estimate, 

recreational scenario 

Exposure time for outdoor activity, ET 

[hrd-1] 
0.75 

Best estimate, 

recreational scenario 

Surface water ingestion rate, IRw [Ld-1] 0.05 U.S. EPA (1997b) 

Inhalation rate, IRa [m3d-1] 7.5 ECETOC (2001) 

Body weight, BW [kg] 21.4 ECETOC (2001) 

Averaging time, AT [yr] 75 ECETOC (2001) 

Unit conversion factor, CF1 [Lmcm-1m-3] 10 Default; U.S. EPA (1991) 

Volatilization factor of Andelman (1990), 

K [Lm-3] 
0.5 Default; U.S. EPA (1991) 

Exposure duration, ED [yr] 6 Default; U.S. EPA (1991) 

Exposed skin surface area, SA [m2] 0.9052 
Calculated as 423 cm2/kg; 

ECETOC (2001) 

Skin permeability coefficient, Kp [cm hr-1] 0.0157 
Chemical-specific;  

RAIS (2009) 

Fraction of contaminant absorbed in the 

gastrointestinal tract, GI [-] 
1.0 

Chemical-specific;  

RAIS (2009) 

Oral slope factor for ingestion pathway, 

SFo [kgd mg-1] 
0.4 

Chemical-specific;  

RAIS (2009) 

Oral slope factor for inhalation pathway, 0.4 Chemical-specific;  
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SFi [kgd mg-1] RAIS (2009) 

Oral slope factor for dermal contact 

pathway, SFd [kgd mg-1] 
0.4 

Chemical-specific; 

Calculated as SFo/GI 

(U.S. EPA, 2004) 
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Table 6: Parameter values used in AQUATOX for the assessment of ecological health. 

Animal 

toxicity data 

Initial 

conditions 

[g m-2 dry] 

LC50 

[µg L-1] 

LC50 

experimental 

time [h] 

Lipid 

fraction 

[-] 

Average 

wet 

weight 

[%] 

Stonefly 0.5c 70000a 48a 0.05c 0.03c 

Oligochaete 1c 132000a 48a 0c 0c 

Minnow 2c 52000b 24b 0.047c 2c 

Ostracod 0.65c 56000a 48a 0.05c 0.002c 

Chironomid 0.5c 42000a 48a 0.06c 0.0006c 

D. magna 0.03c 22000c 24c 0.06c 0.0006c 

Plant 

toxicity data 

Initial 

conditions 

[g m-2 dry] 

EC50 

photo 

[ug L-1] 

EC50 

experimental 

time [h] 

Lipid 

fraction 

[-] 

 

Macrophytes 2c 0 0 0.02c  

Bluegreens 1.2c 63000c 192c 0.05c  

Greens 0.05c 390000b 96b 0.05c  

Diatoms 1.2c 150000c 96c 0.05c  

a) Kegley et al. (2008) 

b) Rippen (1995) 

c) U.S. EPA (2009a) 

d) U.S. EPA (2009c) 
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Table 7: Site-specific parameters varied in the Monte-Carlo sensitivity test. 

(Input) Parameter  Estimate Min Max Peak 

Hydraulic conductivity [md-1] 19 9.5 28.5 - 

Transverse vertical dispersivity [m] 0.0001 0.00004 0.00015 - 

DNAPL pool length [m] 15 10 30 15 
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Table 8: Summary statistics for the Monte-Carlo simulations for selected input and 

output parameters (at t = 10-2021). 

Parameter Min Max Median Mean StDev CV 

Input parameters       

Hydraulic 

conductivity [md-1] 
10.96 20.69 18.26 16.64 3.46 0.21 

Transverse vertical 

dispersivity [m] 
4.0E-05 1.5E-04 9.0E-05 9.3E-05 3.2E-05 0.35 

DNAPL pool 

length [m] 
10.95 29.41 17.04 17.89 4.43 0.25 

Output parameters       

Concentration at 

receptor [mgL-1] 
0.153 0.489 0.273 0.279 0.065 0.23 

RI [-] 3.52E-04 1.12E-03 6.26E-04 6.41E-04 1.49E-04 0.23 
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