Technical University of Denmark

Petrophysical properties of greensand as predicted from NMR measurements

Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael; Fabricius, Ida Lykke

Published in: Petroleum Geoscience

Link to article, DOI: 10.1144/1354-079309-038

Publication date: 2011

Link back to DTU Orbit

Citation (APA): Hossain, Z., Grattoni, C. A., Solymar, M., & Fabricius, I. L. (2011). Petrophysical properties of greensand as predicted from NMR measurements. Petroleum Geoscience, 17(2), 111-125. DOI: 10.1144/1354-079309-038

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Petrophysical properti	es of greensand as predicted from NMR measurements
2		
3	Zakir Hossain* ¹ , Carlos A.	Grattoni ² , Mikael Solymar ³ and Ida L. Fabricius ¹
4		
5		
6	¹ Department of Environmer	ntal Engineering
7	Technical University of Der	nmark,
8	Miljøvej, Building 113, DK	-2800 Lyngby, Denmark.
9	zaho@env.dtu.dk (Zakir Ho	ossain), <u>ilfa@env.dtu.dk</u> (Ida L. Fabricius)
10		
11	² Rock Deformation Researce	ch Ltd, School of Earth and Environment
12	University of Leeds, Leeds	LS2 9JT, UK, c.a.grattoni@leeds.ac.uk
13		
14	³ Statoil ASA, Oslo, Norway	y, miso@StatoilHydro.com
15		
16	*Corresponding author (e-n	nail: <u>zaho@env.dtu.dk</u>)
17		
18	Number of words of text:	7634
19	Number of references:	36
20	Number of tables:	2
21	Number of figures:	13
22		

23 Abstract

24

25 Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective 26 of this study is to predict petrophysical properties from NMR T₂ distributions. A series of 27 laboratory experiments including core analysis, capillary pressure measurements, NMR 28 T₂ measurements and image analysis were done on sixteen greensand samples from two 29 formations in the Nini field of the North Sea. Hermod Formation is weakly cemented, 30 whereas Ty Formation is characterized by microcrystalline quartz cement. The surface 31 area measured by BET method and the NMR derived surface relaxivity are associated 32 with the micro-porous glauconite grains. The effective specific surface area as calculated 33 from Kozeny's equation and as derived from petrographic image analysis of 34 Backscattered Electron Micrograph's (BSE), as well as the estimated effective surface 35 relaxivity is associated with macro-pores. Permeability may be predicted from NMR by 36 using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage 37 curves may be predicted from NMR T₂ distribution when pore size distribution within a 38 sample is homogeneous.

39

40 Keywords: Greensand, glauconite, porosity, permeability, capillary pressure, NMR

41	Greensands are glauconite bearing sandstones composed of a mixture of stiff clastic
42	quartz grains and soft glauconite grains. Glauconite grains are porous and composed of
43	aggregates of iron-bearing smectitic or illitic clay. Porosity is thus found at two scales:
44	macro-porosity between grains and micro-porosity within grains (Fig. 1). Greensand
45	petroleum reservoirs occur world-wide, e.g. the mid-Cretaceous Safaniya Sandstone
46	Member in Saudi Arabia (Cagatay et al. 1996), the Cretaceous Mardi Greensand in
47	Australia (Hocking et al. 1988), the Lower Cretaceous Glauconitic sandstone in Alberta,
48	Canada (Tilley & Longstaffe 1984), the Upper Cretaceous Shannon sandstone in
49	Wyoming, USA (Ranganathan & Tye 1986), a lower Cretaceous Greensand offshore
50	Ireland (Winn 1994) and a late Paleocene Greensand in central part of the North Sea
51	(Slot-Petersen et al. 1998). However, evaluation of greensand reservoirs has challenged
52	geologists, engineers and petrophysicsts. Glauconite has an effect on porosity,
53	permeability and elastic properties of reservoir rocks (Diaz et al. 2003). Glauconite is
54	also ductile (Ranganathan & Tye 1986) so it can cause non-elastic deformation of
55	greensand (Hossain et al. 2009) and affect the reservoir quality. Greensands generally
56	show low resistivity in the reservoir zone due to the large amount of bound water in the
57	glauconite, yet free hydrocarbons can be produced because glauconite rather than being
58	pore-filling is part of the sand grain framework (Slot-Petersen et al. 1998). Core analysis
59	of greensand thus shows a poor relationship between porosity and permeability.
60	Furthermore, greensand paramagnetic glauconite or pore filling berthierine may induce
61	magnetic gradients on the pore level causing the NMR T ₂ relaxation time to be shortened
62	dramatically (Rueslåtten et al. 1998).

63	Nuclear Magnetic Resonance (NMR) is a non-invasive technique, and NMR
64	measurements on reservoir core samples are done to obtain an improved interpretation of
65	logging data. NMR measures the net magnetization of a hydrogen atom (¹ H) in the
66	presence of an external magnetic field. Hydrogen has a relatively large magnetic moment
67	and is abundant in both water and hydrocarbons in the pore space of a sedimentary rock.
68	NMR spectrometry involves a series of manipulations of the hydrogen protons found in
69	fluids. A measurement sequence starts with proton alignment to a magnetic field followed
70	by spin tipping, and decay. The quantities measured include signal amplitude which is
71	proportional to the number of hydrogen nuclei and decay, also called relaxation time
72	(Kenyon <i>et al.</i> 1995). Longitudinal relaxation time (T_1) measures the decay of spin
73	alignment; transverse relaxation time (T_2) measures the decay of precession. Although T_1
74	measurements are more common in the literature, they are more time consuming than $T_{\rm 2}$
75	measurements. Hence, pulsed NMR logging tools preferentially measure T_2 for faster
76	logging speeds (Straley et al. 1997). NMR transverse relaxation (T ₂) of fluids confined in
77	a porous rock is affected by pore surface, by the bulk relaxation process in the fluid and
78	additionally by dephasing in case of molecular diffusion. T_2 may be expressed by the
79	fundamental equation governing the NMR relaxation spectrum (Coates et al. 1999):
80	

81
$$\frac{1}{T_2} = \frac{1}{T_{2Surface}} + \frac{1}{T_{2Bulk}} + \frac{1}{T_{2Diffusion}}$$
(1)

83 Surface relaxation ($T_{2Surface}$) is the dominating mechanism in porous media, controlled by 84 pore surface area. The relation between NMR relaxation and pore surface area results

85 from strong interaction between the protons and the surface because the surface 86 relaxivity (ρ) causes rapid alignment of hydrogen protons on the pore wall, perhaps only 87 a monolayer or two thick, while protons in the remaining fluid decay through itself (bulk relaxation), which is much slower (Howard *et al.* 1993). Bulk relaxation (T_{2Bulk}) is thus 88 89 significantly smaller than the surface relaxation and so where relaxation of diffusion $(T_{2Diffusion})$ is slow, the relaxation $(\frac{1}{T_2})$ may be related to surface relaxivity and surface to 90 91 volume ratio of pores (*Sp*): 92 $\frac{1}{2} = 0.5$ 93 (2)

$$\frac{1}{T_2} - \frac{p_2 S_P}{T_2}$$

94

95 NMR measurements provide information about the pore structure (S_p) , the amount of 96 fluid in-situ and interactions between the pore fluids and surface of pores. Thus, laboratory NMR measurements can be used to obtain porosity and correlate pore size 97 98 distribution, clay bound water, and to estimate permeability and potentially predict 99 capillary pressure curves from longitudinal relaxation time (T_1) and transverse relaxation 100 time (T_2) distribution (Kenyon 1997). Numerous authors have explored the link between 101 NMR measurements and petrophysical properties, e.g. the wettability investigation by 102 NMR measurements by Al-Mahrooqi et al. (2003, 2006).

Porosity is one of the key parameter for hydrocarbon reservoir evaluation, and NMR is an
effective tool to determine the porosity. However, several authors reported that there exist

106	significant differences between NMR porosity and core analysis porosity. Factors
107	influencing the T ₂ measurements include paramagnetic minerals in the reservoir rock
108	which may cause $T_{2Diffusion}$ and hence reduce the T ₂ relaxation time (Xie <i>et al.</i> 2008).
109	Aditionally, iron and other paramagnetic minerals affect the surface relaxivity and
110	produce a shift of the relaxation distribution to shorter times (Dodge et al. 1995).
111	Rueslåtten et al. (1998) studied NMR of iron-rich sandstone from the North Sea and
112	found a detrimental effect of iron bearing minerals on porosity estimation by NMR T ₂ .
113	
114	Specific surface area is another significant petrophysical parameter for understanding the
115	physics of porous media and for permeability prediction. It was never fully integrated
116	into standard or special core analysis programs due to lack of petrophysical
117	understanding and concepts for correct evaluation (Riepe 1998). Nitrogen adsorption
118	methods (BET) yield high specific surface value as nitrogen enters the pores in the
119	sample. By using image analysis to determine the specific surface area, usually a much
120	smaller value is derived, and the value depends upon the resolution (Solymar et al. 2003).
121	The results of different methods reflect the different properties of pores at different
122	scales. By using a high resolution BET surface or a highly smoothed surface derived from
123	image analysis, the calculated permeability can be varied several orders of magnitude
124	(Riepe 1998). This is a concern because specific surface plays a vital role in
125	understanding and calibrating the T ₂ spectra by estimating surface relaxivity (equation
126	(2)).

128 NMR relaxation is thus not only affected by the pore dimensions but also by the 129 relaxivity of the rock surface. Quantitative knowledge of the surface relaxivity is needed 130 when T_2 distributions are interpreted. Surface relaxivity is required in order to convert T_2 131 distribution into specific surface area, to calculate permeability and to convert T₂ time to 132 capillary pressure curves. However, to measure surface relaxivity directly is not easy. Surface relaxivity may be estimated by scaling the normalized capillary pressure curve to 133 134 the normalized T_2 distribution (Kleinberg 1996); or by comparing NMR T_2 distributions 135 to specific surface area from nitrogen BET adsorption (Hidajat et al. 2002). Alternatively, 136 it can be estimated by comparing NMR pore size distribution to pore size distribution 137 from image analysis of thin sections (Howard et al. 1993; Kenyon 1997). Kleinberg 138 (1996) concluded that the NMR effective specific surface area is closely associated with 139 hydraulic radius of the sedimentary rock and calculated effective surface relaxivity from 140 capillary pressure curves and T₂ distribution.

141

Permeability is a difficult property to determine from logging data, yet it is essential for reservoir characterization. Laboratory measurements provide absolute permeability at core scale which could be different from reservoir permeability. NMR is the only tool that attempts to estimate *in-situ* formation permeability (Hidajat *et al.* 2002; Glover *et al.* 2006). One of the most popular NMR derived permeability correlations is the Timur-Coates formula (Coates *et al.* 1999), and is implemented as:

148

149
$$k_{NMR} = \left(C\phi\right)^m \left(\frac{FFI}{BFI}\right)^n \tag{3}$$

169

151 where, ϕ is the porosity, FFI is the free fluid volume and BFI is the bound irreducible fluid, as determined from NMR measurements. Formation dependent constants C, m and 152 153 *n* may be assumed to be 10, 4 and 2 for sandstones respectively, where NMR 154 permeability, k_{NMR} is given in mD. However, this equation is simply an empirical derived 155 relationship that links various NMR-derived parameters to permeability. Especially for 156 diagenetically altered consolidated reservoir rocks, the complicated internal pore 157 structures may not be described by this model, causing unrealistic permeability estimates, 158 unless empirically calibrated parameters are used, which have no general physical 159 meaning and thus are only valid for special facies types and for local investigations. 160 Timur-Coates formula also indicates that porosity or pore volume strongly controls the permeability together with the effective specific surface area as expressed by $\frac{FFI}{REI}$ in 161 162 accordance with the equation of Kozeny (1927). For homogeneous sediments like chalk, 163 the effective specific surface is equivalent to the one measured by nitrogen adsorption 164 (BET) and Kozeny's equation works well without introducing empirical factors 165 (Mortensen et al. 1998). However, for less homogenous sediments, like greensand, we 166 can calculate an effective surface area (Sp(Kozeny)) from permeability and porosity by 167 using Kozeny's equation. We infer that it is this effective surface that controls 168 permeability.

170 Capillary pressure (P_c) curves can be determined only from core analysis, but NMR

171 derived P_c curves provide a fast, cheap and non-destructive estimation. However, up to

172 now, most authors have focused on the relation between T_2 distribution and P_c curves

173 (Kleinberg 1996; Grattoni *et al.* 2003; Marschall *et al.* 1995; Volokitin *et al.* 1999) and
174 the general conclusion is that, if the bulk relaxation and diffusion effects are ignored, a

175 simple relationship between P_c and T_2 becomes:

176

177
$$P_c = \frac{K}{T_2} \tag{4}$$

178

179 where, K is an empirical scaling factor introduced to predict capillary pressure curves. 180 However, several authors, e.g. Kleinberg (1996) concluded that the match between 181 capillary pressure and NMR relaxation curves are not universal. The simple relationship 182 (equation (4)) reflects that both the T_2 distribution and P_c curves are affected by pore 183 structures but overlooks the difference between the physics of the processes. Kewan & Ning (2008) discussed that in a pore and throat model of the pore space, the capillary 184 185 pressure is sensitive to the pore throat, whereas the NMR measures the pore body size. 186 Thus, the technique gives same information only when there is a constant ratio between 187 them.

188

190 permeability, specific surface area by BET and image analysis of thin sections

191 micrographs is proven to be very effective in the evaluation of normal reservoir rocks.

192	However, for glauconite bearing greensand where a high proportion of micro-porosity in
193	glauconite grains creates an uncertainty with respect to fluid distribution and fluid
194	saturation, an accurate determination of petrophysical properties by using conventional
195	core analysis is difficult (Rueslåtten et al. 1998). The objective of this study is to predict
196	petrophysical properties from NMR T ₂ distributions which can be applied to <i>in-situ</i> well
197	logging. Estimates of porosity, permeability, irreducible water saturation derived from
198	NMR measurement were corrected with measurements from core analysis. The porosity
199	obtained by using the different methods was compared for the greensand samples. The
200	potential use of surface area data is also described and illustrated. Kozeny's equation was
201	used for NMR permeability prediction and P_c curves were estimated from NMR
202	measurements.
203	
204	Geological setting of Nini Field
205	
206	The Nini field is located in Siri Canyon which is part of a larger system of submarine
207	canyons in the Paleocene in the Norwegian-Danish Basin running in an E-W to NE-SW
208	direction towards the Central Graben (Fig. 2) (Stokkendal et al. 2009). The Nini
209	accumulation is defined by a combined structural and stratigraphic trap, the anticlinal
210	structure being induced through salt tectonics. The reservoir consists of sands deposited
211	in the Siri Fairway (Schiøler et al. 2007).
212	

214 in Statoil in the mid-1990s (Schiøler et al. 2007). It is formally included in the Hermod

215	Formation and in the older Ty Formation. These Paleocene reservoir sands are
216	characterized by glauconite rich (20-30 vol %) fine grained, well sorted sand, embedded
217	in hemiplegic to pelagic mud- and marl-stones, in which both quartz grains and
218	glauconite pellets are part of the load-bearing matrix. The greensand beds thus occur in a
219	shale-sequence. In the Nini wells, the Hermod sand was found to be more massive, more
220	porous and more permeable than Ty sand (Fig. 3).
221	
222	Method
223	
224	We studied sixteen one and half inch horizontal core plugs from the two greensand
225	formations of the Nini-1 well (7 samples from Hermod Formation and 9 samples from Ty
226	Formation). The samples had already been used for routine core analysis and were chosen
227	so as to cover the range of variation in porosity (25%-40%) and air permeability (60 mD-
228	1000 mD). All cores were cleaned from brine and hydrocarbons by soxhlet extraction
229	with methanol and toluene prior to analysis. Thin sections were prepared from the end of
230	each plug and material from the end trimmings were used for X-ray diffraction (XRD)
231	and BET analysis.
232	
233 234	Routine core analysis
235	Helium porosity (ϕ_H) of the samples was measured by the gas expansion method. Helium
236	porosity is a good measure of total porosity, including porosity in clay minerals, as no
237	pores are so small that Helium cannot enter. Buoyancy of the cores in brine (Archimedes)

was also used to determine bulk volume on a fully saturated sample and pore volume was
calculated from grain density as measured by the gas expansion method. Complete
saturation was verified by comparing porosity measured by Helium expansion and by
Archimedes method. As porosity data from the two methods are within experimental
error, all samples were assumed to be fully brine saturated.

243

Klinkenberg corrected permeability was derived from permeability at a series of nitrogen gas pressures. Specific surface area of the grain (S_g) was measured by BET method by using nitrogen gas adsorption. Specific surface of pores from BET method (Sp(BET)) was calculated by dividing S_g by porous fraction, (ϕ_H) and multiplying by grain fraction, (1- ϕ_H) as:

249
$$Sp(BET) = S_g \left(\frac{1 - \phi_H}{\phi_H}\right) \rho_g$$
(5)

250

251 where, ρ_g is grain density.

252 The effective bulk specific surface (*S*) was obtained from Klinkenberg permeability (*k*)

and macro-porosity (ϕ) by using Kozeny's equation (Kozeny 1927) as:

254

$$k = c \frac{\phi^3}{S^2} \tag{6}$$

256

where, *c* is Kozeny's factor which can be estimated from porosity via a simple model of linear 3D interpenetrating tubes (Mortensen *et al.* 1998):

260
$$c = \left[4\cos\left\{\frac{1}{3}\arccos\left(\phi\frac{8^2}{\pi^2} - 1\right) + \frac{4}{3}\pi\right\} + 4\right]^{-1}(7)$$

According to equation (7), c increases from 0.15 to 0.25 as porosity increases from 0.05
to 0.5. Specific surface of pores from Kozeny's equation (*Sp(Kozeny*)) can then be

calculated:

265
$$Sp(Kozeny) = \frac{S}{\phi}$$
 (8)

266 $\frac{1}{Sp(Kozeny)}$ is equivalent to hydraulic radius and thus should be related to capillary

267 pressure and T_2 relaxation, so we base the remaining analysis on *Sp*(*Kozeny*).

268

269 Capillary pressure

270

271 The capillary pressure may be expressed by the fundamental equation:

272
$$P_c = \frac{2\sigma\cos\theta}{r_c}$$
(9)

273

274 where, r_c is the radius of pore throat, σ is the surface tension and θ is the contact angle.

For water-wet conditions
$$\cos \theta$$
 becomes one, and in terms of specific surface of pore (Sp)

equation (9) may be rewritten as:

$$P_c = S_P \sigma \tag{10}$$

279	Air brine drainage capillary pressure measurements were done on brine saturated
280	greensand samples by using the porous plate method at room temperature. Initially each
281	sample was saturated with simulated formation brine. The brine has a density of 1.06
282	g/cm ³ and a viscosity of 1.054 cP. Irreducible water saturation (S_{wi}) including clay
283	bound water was determined from capillary pressure curves and macro-porosity was
284	calculated as porosity above irreducible water saturation (Fig. 4b).
285	
286	
287	
288	
289	Image analysis
290	
291	Polished thin sections were prepared from all samples in a plane perpendicular to the
292	flow direction during core analysis. A Philips XL40 Scanning Electron Microscope was
293	used for acquisition of Back Scattered Electron (BSE) images. The images are 1024 x
294	1024 byte greyscale images with a pixel length of $1.78 \ \mu m$. This magnification resolves
295	the intergranular macro-porosity and leaves the micro-porosity unresolved. Each image
296	was filtered to remove the noise and thresholded to create a binary image prior to
297	analysis. Porosity determined in the images is called image porosity (ϕ_{image}). The image

- analysis procedure is sensitive to porosity threshold, so image porosity was determined when
- they are equal to macro-porosity determined from P_C measurements. The macro-porosity
- determined by image analysis is within a narrow range (± 2.5 p.u.) obtained by image analysis

along. The specific surface area or strictly speaking the specific perimeter (*S(image)*) of
the solid grains was determined by using the method of Borre *et al.* (1995). According to
Underwood (1970) and Solymar & Fabricius (1999) the specific perimeter (*S(image)*) may
be approximated to the 3-D specific surface (*S*) by:

305

$$S = \frac{4}{\pi} S(image) \tag{11}$$

307

308 Image specific surface of pores ($S_p(image)$) is thus calculated by using equation (8) where 309 porosity is defined as macro-porosity determined from capillary pressure measurements. 310

311 NMR measurements

312

313 For NMR measurements all samples were saturated with brine (7.6 % NaCl). Complete 314 saturation was verified by using the dry weight, the saturated weight, grain volume by 315 Helium expansion, and brine density. All samples attained full brine saturation. All the 316 measurements were performed with the samples sleeved in PTFE heat shrink as several 317 were poorly consolidated. The weights and volumes of the heat shrink material were 318 accounted for in the measurements. 319 320 The laboratory NMR measurements were performed using a Resonance Instruments MARAN 2 spectrometer at ambient pressure and 34°C at a proton resonance frequency of 321 322 2.2 MHz. T₂ relaxations was measured using Carr-Purcel-Meiboom-Gill (CPMG) pulse

sequence. The T_2 relaxation curves were measured by using a Recycle Delay (Repetition

324 Time) of 10 sec, Number of Echos 8000, CPMG inter echo spacing (τ) 200 µs and 100 325 scans. The $\pi/2$ and π pulses were 14.8µs and 29.6µs, respectively. 326 327 NMR porosity of the fully saturated samples was determined by using the total signal 328 amplitude of each sample (by summing the amplitudes of the T2 distribution) and known 329 standard of similar diameter. In this case the reference standard was a sealed glass vial, containing 3cm³ of 50,000 ppm NaCl and 17cm³ of deuterium oxide. Deuterium oxide 330 331 does not have an NMR signal therefore this reference standard has an equivalent porosity 332 of 15%. The same number of scans was used for the reference and the sample. NMR 333 porosity is then calculated using the, total signal amplitude, the bulk volume, hydrogen 334 index of both plug and reference and the equivalent porosity of the reference. 335 336 For determining the macro-porosity and micro-porosity we need a cutoff value from the T_2 distribution. For two samples (one from Hermod and one from Ty), the T_2 cutoff was 337 338 determined in the laboratory by obtaining the T_2 distribution at two saturations, fully 339 brine saturated and at irreducible water saturation as determined from capillary pressure 340 curves. The analysis of the air-water systems is relatively easy as there is no NMR 341 response from the air and the relaxation time is exclusively due to the protons in the 342 water. The cutoff time is defined as the relaxation time at the point where the cumulative 343 porosity of the fully saturated sample equals the irreducible water saturation (Fig. 4a). As the T₂ cutoff is determined from capillary pressure equilibrium experiments includes 344

323

345 capillary bound fluid and trapped in micro-pores. A single T_2 cutoff value for each

346 formation was used for all samples of that formation. The cumulative porosity over the 347 range T₂>T_{2cutoff} was the macro-porosity and below the range T₂< T_{2cutoff} was the micro-348 porosity or irreducible water saturation. 349 350 The NMR permeability model used in this work was obtained by combining equation (2), 351 (6), and (8): 352 $k = c\phi(T_2\rho_2)^2$ 353 (12)354 In a similar way the capillary pressure NMR model was obtained combining equation (2) 355 356 and (10): $P_c = \frac{\sigma}{\rho_2 T_2}$ 357 (13)358 The assumption of this model is that: 1- the pore structure controlling the T2 distribution 359 and capillary pressure is a bundle of capillary tubes and the drainage is controlled by the

360 hierarchy of pore sizes; 2- the surface relaxivity is constant overall the sample; 3-

361 diffusion relaxation is negligible.

362

363 **Results**

364

365 The Helium porosity of greensand ranges from 28 to 42 p.u. (porosity units) with a

366 maximum uncertainty 1.5 p.u. (Table 1). Klinkenberg corrected permeability ranges from

367	60 to 940 mD (Table 2). Permeabilities of Hermod samples are larger than Ty samples
368	and correlates with porosity, whereas Ty data are more scattered (Fig. 5).
369	
370	Petrographic thin section analysis indicates that the studied Paleocene greensands are
371	well to very well sorted, dominated by grains of quartz but also large volumes of
372	glauconite (20-25 vol %) (Fig. 6). Samples from Hermod Formation contain glauconite
373	grains of size between 100 and 200 μm , some glauconite grains are larger (300 to 400
374	μ m) (Fig. 1a). Samples from Ty Formation contain glauconite grains of size between 100
375	and 150 μm , although some glauconite grains are larger (200 to 300 μm) (Fig. 1b). The
376	grains are subangular to sub-rounded for the both Formations. Hermod Formation is only
377	weakly cemented, whereas samples from Ty formation contain cement of berthierine or
378	microcrystalline quartz cement resulting in relative in a low permeability (Table 2). In
379	both formations XRD analyses of separated glauconite grains show the presence of some
380	expanding layers in the predominantly illitic glauconite.
381	
382	The capillary pressure was obtained assuming 72 mN/m for the brine surface tension.
383	Capillary pressure curves show that for the higher permeability Hermod Formation
384	samples, the P_c curves are shifted toward low irreducible water saturation, whereas P_c
385	curves for the lower permeability Ty Formation samples are shifted toward high
386	irreducible water saturation (Figs 7a, c). Irreducible water saturation from capillary
387	pressure was obtained at P_c 100 psi, and varied between 25% and 42% of the total
388	porosity (Table 2).

390	The NMR T_2 distributions are presented in graphical form for each sample and the
391	population is expressed in porosity units in Figures 7b, d. All T ₂ distributions are
392	bimodal. Each T_2 time corresponds to a particular pore size. If the rock has a single pore
393	size then instead of a broader distribution there will be a single vertical line. Thus broader
394	distributions reflect greater variability in pore size. We have determined a time cutoff of
395	5.21 ms for the sample 1-4 from Hermod Formation and 3.68 ms for sample 1A-141 from
396	the Ty Formation. The short relaxation time component in a T_2 distribution of a rock is
397	attributed to the water in glauconite. For the present greensand samples a peak close to 1
398	ms should correspond to glauconite water, whereas all samples also present a second
399	peak close to 100 ms that corresponds to movable fluid. Higher permeability Hermod
400	Formation samples show larger amplitude in the movable fluid than samples from Ty
401	Formation; whereas lower permeability bearing Ty Formation sample show slightly
402	larger amplitude in capillary bound and glauconite water (Figs 7b, d).

404 **Discussion**

405 **Porosity**

406

407 Helium porosity, Archimedes porosity and NMR porosity are compared in Figure 8.

408 Helium porosity is associated with the total porosity of the sample including micro-

409 porosity in glauconitic and it shows the highest values among the three types of porosity

410 data. However, Archimedes and NMR porosity should also in principle represent the total

411 porosity of a sample, but could be lower if water saturation is below 100%. Although the

412	Archimedes porosity is close to Helium porosity, NMR porosity tends to be lower. Both
413	macro-porosity and micro-porosity are underestimated by the NMR measurements (Figs
414	8c, d). The discrepancy between Archimedes porosity and NMR porosity could be due to
415	several factors. First, NMR and Archimedes porosity depend on saturation condition of
416	the sample. So we cannot rule out that during NMR measurement the saturation condition
417	was lower than that at the Archimedes measurements. Second, paramagnetic iron-bearing
418	minerals in reservoir rock may be an important factor influencing T ₂ measurements as
419	shown by Dodge et al. (1995). The presence of paramagnetic ions increases the rate of
420	relaxation of the hydrogen proton. This is expected for greensand because glauconite and
421	berthierine are iron-bearing. These clay minerals have large surface area and high
422	magnetic susceptibilities leading to large internal gradients and short T ₂ (Straley <i>et al.</i>
423	1997). Rueslåtten et al. (1998) illustrated the influence of chlorite (berthierine) and
424	glauconite on the difference between Helium porosity and NMR T_2 derived porosity
425	(delta porosity) and found broad positive correlation between delta porosity and chlorite
426	content, whereas they found no correlation with glauconite content. Thus they pointed to
427	the detrimental effect of chlorite or berthierine on porosity estimated by NMR. However,
428	we found only a vague negative correlation between delta porosity and bulk mineral
429	composition (glauconite, clay coating and pores filling) (Fig. 8b).
100	

431 **Specific surface area**

432

433 Specific surface area with respect to pore (*Sp*), determined by three methods are

434 compared in Figure 10a. We found a large difference between the specific surface areas

435	as measured by BET method (<i>Sp</i> (<i>BET</i>), 76-141 μ m ⁻¹) and calculated by Kozeny's
436	equation (<i>Sp</i> (<i>Kozeny</i>), 0.27-0.95 μ m ⁻¹) and determined by image analysis (<i>Sp</i> (<i>image</i>),
437	$0.32-0.46 \mu m^{-1}$). Nitrogen adsorption has a very high resolution; therefore this method
438	determines the specific surface of the total porosity, including micro-porosity. Based on
439	the Kozeny's equation, we estimated $Sp(Kozeny)$ by using permeability determined on
440	the cores and macro-porosity. Sp by image analysis depends on the resolution of the
441	image (Solymar et al. 2003). However, Sp from image analysis at the present pixel size
442	and Sp from Kozeny's equation are in same order of magnitude which tells us that
443	resolution of image is sufficient and pixel size is small enough to determine Sp by image
444	analysis. The specific surface area of separated glauconite grains are in order of 1300-
445	1600 μ m ⁻¹ , whereas the specific surface area of quartz grains is less than 1 μ m ⁻¹ . So
446	rather than quartz grains, specific surface of glauconite grains are measured by BET
447	method. Thus, Sp by BET method is mainly reflected by the micro-pores of glauconite
448	grains and pore filling/lining clays, whereas Sp from Kozeny's equation and image
449	analysis is associated with effective surface and related to macro-porosity. We found that
450	Sp measured by BET method is well correlated with fraction of glauconite plus pore
451	filling clay minerals (Fig. 9c).

We found that irreducible water saturation ranges from 22% to 41% from capillary
pressure measurements and from 23% to 36% from NMR measurements. Considering
errors association with these two methods, irreducible water saturations are close to each
other. The high value of irreducible water saturation is due to the high specific surface of
glauconite. The micro-pores of glauconite remain brine filled even at a capillary pressure

458	of 100 psi. We found a positive correlation between irreducible water saturation
459	determined from P_c and NMR with Sp determined from BET method (Figs 9a, b). In
460	addition Figures 9a, b also show the tendency for low surface area samples to approach
461	minimum irreducible water saturation and for high surface area samples to remain more
462	saturated. A relationship between specific surface and irreducible water saturation has
463	been noted by several authors e.g. Hamada et al. (2001) where authors reported an
464	excellent correlation (R^2 =0.98) between irreducible water saturation and specific surface
465	of pores.

467 Surface relaxivity

468

469 We compare four ways of estimating surface relaxivity in Figure 10b. Equation (2) shows 470 that surface relaxivity for NMR T₂ distribution is related to specific surface of pores. 471 Thus in absence of laboratory data, surface relaxivity may be evaluated by comparing T_2 472 distributions with Sp(BET), Sp(Kozeny) or Sp(image). This results in relaxivity value ranges in order of 2.7-4.2 µm/s from Sp(BET), 7-58 µm/s from Sp(Kozeny), and 10-35 473 474 μ m/s from Sp(*image*). As an alternative, we used P_c curves and found that a surface 475 relaxivity of 20.4 µm/s for Hermod and of 28.4 µm/s for Ty Formation are needed to 476 generate Pc curves from NMR measurements. The surface relaxivity estimated based on 477 Sp(BET) would be controlled by micro-porosity in glauconite. We found an average 478 surface relaxivity by Sp(BET) of 3.42 µm/s, which is close to the 3.3 µm/s for glauconite 479 reported by Matteson et al. (1996). Surface relaxivity estimated from Sp(Kozeny) and

480 *Sp(image)* also should be effective surface relaxivity as it was calculated from effective
481 specific surface area.

482

483 **Permeability**

484

485 Kozeny's equation (equation (12)) was used to predict permeability from NMR T_2 486 distributions. Before applying this equation we highlight the similarities and differences 487 within T_2 distribution among samples (Fig. 11). The T_2 distribution of sample 1-18 peaks 488 at longer time than for sample 1-6, thus the larger porosity of sample 1-18 is due to the 489 larger pores which also cause higher permeability (Fig. 11a). The comparison of three 490 samples with similar distributions at shorter times is shown in Figure 11b. When the 491 larger peak (around 100 ms) becomes smaller and is shifted to larger times due to a small 492 number of intermediate pores, there is a small increase of the number of larger pores. Thus, for these samples the permeability is not high although porosity is higher. We thus 493 494 cannot use average T_2 time or final T_2 time in equation (12) for permeability calculation. So we modified the equation (12) by summing the total permeability among the T_2 495 496 distribution and only including the macro-porosity. Thus resulting:

497

498
$$k = c\phi \rho_2^2 \sum_{i=1}^N f_i (T_{2i})^2$$
(14)

500 where, fi is a fraction of the total amplitude of each T_{2i} . Kozeny factor c was calculated 501 using equation (7).

502

The predicted permeability distribution obtained by using equation (14) is shown in Figures 11c, d. Below cutoff time, the amplitude of permeability is zero which means micro-porosity does not contribute to fluid flow. From cutoff time to 100 ms, the amplitude of permeability is small but above 100 ms the contribution of permeability increases.

508

509 Predicted permeability and measured permeability are compared in Figure 12a by using 510 surface relaxivity from Sp(Kozeny) (Average surface relaxivity for each depth interval), 511 in Figure 12b by using surface relaxivity from Sp(image), in Figure 12c by using surface 512 relaxivity from equation (13), and in Figure 12d by using surface relaxivity from Sp(BET). 513 Predicted permeability is close to 1:1 line of measured permeability for case 1 and 2. The 514 estimated permeability from Timur-Coates model is illustrated in Figure 12e. Predicted 515 permeability using this model works rather well if we use C=8.3 which was optimized in 516 a least-squares sense such that the sum of the squared error between the measured and 517 predicted permeability is minimized. Predicted permeability from image analysis and 518 measured permeability are compared in Figure 12f. Image permeability and NMR 519 predicted permeability by using surface relaxivity from Sp(image) are equal. 520

521 Capillary pressure curves522

523	We applied the value of surface relaxivity of 20.3 $\mu m/s$ and 28.4 $\mu m/s$ for Hermod
524	Formation and Ty Formation sample respectively to generate the capillary pressure
525	curves directly from the T_2 distribution by using equation 13 (Fig. 13). Capillary
526	pressure curves overlay each other for low permeability samples. However, we found
527	deviation between the P_c NMR and P_c lab for the high permeability sample from Hermod
528	Formation. A deviation is to be expected, because we assumed uniform surface
529	relaxivity within a sample and ignored diffusion relaxation. The calculated surface
530	relaxivity is shown in Figure 13e for a sample from Hermod Formation and in Figure 13f
531	for a sample from Ty Formation. A good match between P_c curves from laboratory and
532	NMR measurement is found when average surface relaxivity is equal to surface relaxivity
533	applied to predict P_c curves from NMR. In contrast, we found deviation between P_c
534	curves from laboratory and NMR measurements when average surface relaxivity is not
535	equal to the surface relaxivity need to match Pc curves. This variation of surface
536	relaxivity within the sample is probably due to the large pores and higher permeability in
537	the greensands of Hermod Formation.
538	

539 **Conclusion**

540

541 The objective of this study is to predict petrophysical properties from NMR T_2

542 distributions. Based on laboratory experiments and image analysis on sixteen greensand

- samples from the two formations in the Nini field of the North Sea, we found Hermod
- 544 Formation is only weakly cemented, whereas samples from Ty formation contain cement

of berthierine or microcrystalline quartz cement resulting in relatively to lower

546 permeability than Hermod samples.

547

548 We found that the total porosity measured by Archimedes method is to close to Helium

549 porosity, whereas NMR porosity tends to be lower. The discrepancy between Archimedes

550 porosity and NMR porosity may be due to a combination of several factors, including the

551 presence of glauconite grains in greensand.

552

553 This study shows that the surface area measured by BET method and the derived surface

relaxivity are associated with the micro-porous glauconite grains. The effective surface

area as calculated by Kozeny's equation and as determined from petrographic image

analysis of Backscattered Electron Micrographs and the estimated effective surface

relaxivity is associated with macro-pores. We found that Sp measured by BET method is

558 well correlated with fraction of glauconite plus pore filling clay minerals.

559

560 Irreducible water saturation in the studied greensands ranges from 22% to 41% and these

561 high values are due to the high specific surface area of glauconite. The micro-pores of

562 glauconite remain brine filled even at a capillary pressure of 100 psi.

563

564 We found that predicted permeability from NMR by using Kozeny's equation agrees well

565 when surface relaxivity is known. By using Timur-Coates model, predicting permeability

566 works rather well if we optimize the constant to C=8.3.

567

- 568 This study shows that predicted capillary pressure curves from NMR T₂ distribution
- 569 overlay on measured capillary pressure curves for low permeability samples. The
- 570 deviation between the P_c NMR and P_c lab for the high permeability samples is due to the
- 571 contrasting relaxivity on the surface of quartz and glauconite.

573 Acknowledgements

574

- 575 Niels Springer and Hans Jørgen Lorentzen (GEUS, DK) are thanked for help with the
- 576 core analysis. Sinh Hy Nguyen (DTU, DK) performed XRD and BET measurements,
- 577 Hector Ampuero Diaz (DTU, DK) prepared polished thin sections. DONG Energy A/S is
- 578 acknowledged for financial support.

579

580 Appendix

581 Nomenclature

582	BFV	Bound fluid volume
583	С	Formation dependent constant
584	С	Kozeny factor
585	f_i	Amplitude of each T_{2i}
586	FFI	Free fluid volume
587	k	Klinkenberg permeability,
588	Κ	Scaling factor
589	S	Specific surface area of bulk
590	S_g	Specific surface area of grains
591	Sp	Specific surface of pores
592	T _{2Bulk}	Relaxation of fluids
593	$T_{2Diffisionk}$	Relaxation of molecular diffusion
594	T _{2Surface}	Relaxation of surface

595		
596	Greek	symbols
597	ϕ	Porosity (fraction)
598	ρ	Surface relaxivity
599	τ	Inter echo spacing.
600		
601	Unit co	onversion
602		
603	1 mD =	$= 0.9869 \ 10^{-15} \ \mathrm{m}^2$
604	1 psi =	6.89 kPa

606 **References**

- Al-Mahrooqi, S. H., Grattoni, C. A., Muggeridge, A. H., Zimmerman, R. W. & Jing, X.
- D. 2006. Pore-scale modeling of NMR relaxation for the characterization of wettability.
- 610 *Journal of Petroleum Science and Engineering*, **52**, 172-186.
- 611 Al-Mahrooqi, S. H., Grattoni, C. A., Moss, A. K. & Jing, X. D. 2003. An investigation of
- 612 the effect of wettability on NMR characteristics of sandstone rock and fluid systems.
- 613 *Journal of Petroleum Science and Engineering*, **39**, 389-398.
- Borre, M., Lind, I. & Mortensen, J. 1997. Specific surface as a measure of burial
- 615 diagenesis of chalk. *Zentralblatt fur Geologie und Palaontologie*, **1**, 1071–1078.
- 616 Cagatay, M. N., Saner, S., Al-Saiyed, I. & Carrigan, W. J. 1996. Diagenesis of the
- 617 Safaniya Sandstone Member (mid-Cretaceous) in Saudi Arabia. Sedimentary Geology,
- **618 105**, 221-239.
- 619 Coates, G. R., Xiao, L., et al. 1999. NMR logging principles and applications. Gulf
- 620 Professional Publishing, Houston, Texas, 234.
- 621 Diaz, E., Prasad, M., Mavko, G. & Dvorkin, J. 2003. Effect of glauconite on the elastic
- 622 properties, porosity, and permeability of reservoir rocks. *The Leading Edge*, **22**, 42-45.

- 623 Dodge, W. S., Shafer, J. L., Guzman-Garcia, A. G., & Noble, D. A. 1995. Core and Log
- 624 NMR Measurements of an Iron-Rich, Glauconitic Sandstone Reservoir. *36th Annual*
- 625 *Symposium of SPWLA*, Paris, France, June 26-29.
- 626 Glover, P., Zadjali, I. & Frew, K. 2006. Permeability prediction from MICP and NMR
- 627 data using an electrokinetic approach. *Geophysics*, **71**, 49-60.
- 628 Grattoni, C. A., Al-Mahrooqi, S. H., Moss, A. K., Muggeridge, A. H. & Jing, X. D. 2003.
- 629 An improved technique for deriving drainage capillary pressure from NMR T₂
- 630 distributions. The International Symposium of the Society of Core Analysis, 25, 21-24
- 631 September, Pau, France.
- Hamada, G., Al-Blehed, M., Al-Awad, M. & Al-Saddique, M. 2001. Petrophysical
- 633 evaluation of low-resistivity sandstone reservoirs with nuclear magnetic resonance log.
- 634 *Journal of Petroleum Science and Engineering*, **29**, 129-138.
- 635 Hidajat, I., Singh, M., Cooper, J. & Mohanty, K. K. 2002. Permeability of porous media
- 636 from simulated NMR response. *Transport in Porous Media*, **48**, 225-247.
- 637 Hocking, R., Voon, J. & Collins, L. 1988. Stratigraphy and sedimentology of the basal
- 638 Winning Group, northern Carnarvon Basin. In: P.G. Purcell and R.R. Purcell (editors),
- 639 The North West Shelf, Proceedings of Petroleum Exploration Society Australia
- 640 Symposium, Perth, 203–224.
- 641 Hossain, Z., Fabricius, I. L. & Christensen, H. F. 2009. Elastic and nonelastic
- 642 deformation of greensand. *The Leading Edge*, **28**, 260-262.

- 643 Howard, J. J., Kenyon, W. E. & Straley, C. 1993. Proton magnetic resonance and pore
- 644 size variations in reservoir sandstones. *SPE Formation Evaluation*, **1**, 194-200.
- 645 Kenyon, B., Kleinberg, R., Straley, C. & Morriss, C. 1995. Nuclear Magnetic Resonance
- 646 Imaging—Technology for the 21st Century. *Oilfield Review*, **7**, 19–30.
- Kenyon, W. E. 1997. Petrophysical principles of applications of NMR logging. *The Log Analyst*, **38**, 21-43.
- 649 Kewan, W. & Ning, L. 2008. Numerical simulation of rock pore-throat structure effects
- on NMR T2 distribution. *Applied Geophysics*, **5**, 86-91.
- Kleinberg, R. 1996. Utility of NMR T₂ distributions, connection with capillary pressure,
- clay effect, and determination of the surface relaxivity parameter ρ_2 . *Magnetic resonance*
- 653 *imaging*, **14**, 761-767.
- 654 Kozeny, J. 1927. Ueber kapillare Leitung des Wassers im Boden.
- 655 Sitzungsber.Akad.Wiss.Wien, **136**, 271-306.
- 656 Marschall, D., Gardner, J. S., Mardon, D. & Coates, G. R. 1995. Method for correlating
- 657 NMR relaxometry and mercury injection data. Proceeding of the 1995 International
- 658 Symposium of Society of core Analysts, papers 9511.
- 659 Mortensen, J., Engstrøm, F. & Lind, I. 1998. The relation among porosity, permeability,
- and specific surface of chalk from the Gorm field, Danish North Sea. SPE Reservoir
- 661 *Evaluation and Engineering*, **1**, 245-251.

- 662 Ranganathan, V. & Tye, R. S. 1986. Petrography, diagenesis, and facies controls on
- porosity in Shannon Sandstone, Hartzog Draw Field, Wyoming. *AAPG Bulletin*, **70**, 56664
 69.
- Riepe, L. 1998. Specific internal surface: the "forgotten?" petrophysical measurement!
- 666 Proceeding of the 1998 International Symposium of Society of core Analysts, papers667 9540.
- Rueslåtten, H., Eidesmo, T., Lehne, K. A. & Relling, O. M. 1998. The use of NMR
- spectroscopy to validate NMR logs from deeply buried reservoir sandstones. Journal of
- 670 *Petroleum Science and Engineering*, **19**, 33-44.
- 671 Rueslåtten, H., Eidsemo, T. & Slot-Petersen, C. 1998. NMR studies of iron-rich
- 672 sandstone oil reservoir. Proceeding of the 1998 International Symposium of Society of
- 673 *core Analysts*, papers 9821
- 674 Schiøler, P., Andsbjerg, J., Clausen, O. R., Dam, G., Dybkjær, K., Hamberg, L.,
- Heilmann-Clausen, C., Johannessen, E. P., Kristensen, L. E. and Prince, I., 2007.
- 676 Lithostratigraphy of the Paleocene: Lower Neogene succession of the Danish North Sea.
- 677 Geological Survey of Denmark and Greenland, Danish Ministry of the Environment
- 678 report 77.
- 679 Slot-Petersen, C., Eidsemo, T., White, J. & Rueslatten, H. G. 1998. NMR formation
- 680 evaluation application in a complex low resistivity hydrocarbon reservoir. *Transactions*
- 681 of the SPWLA 39th Annual Logging Symposium, Paper 1998-TT

- 682 Solymar, M. & Fabricius, I. L. 1999. Image analysis and estimation of porosity and
- 683 permeability of Arnager Greensand, Upper Cretaceous, Denmark. Physics and Chemistry
- of the Earth Part A-Solid Earth and Geodesy, 24, 587-591.
- 685 Solymar, M., Fabricius, I. L. & Middleton, M. 2003. Flow characterization of glauconitic
- 686 sandstones by integrated Dynamic Neutron Radiography and image analysis of
- backscattered electron micrographs. *Petroleum Geoscience*, **9**, 175-183.
- 688 Stokkendal, J., Friis, H., Svendsen, J. B., Poulsen, M. L. K. & Hamberg, L. 2009.
- 689 Predictive permeability variations in a Hermod sand reservoir, Stine Segments, Siri Field,
- 690 Danish North Sea. *Marine and Petroleum Geology*, **26**, 397-415.
- 691 Straley, C., Roosini, D., Vinegar, H., Tutunjian, P. & Morriss, C. 1997. Core analysis by
- 692 low-field NMR. *The Log Analyst*, **38**, 84-94.
- Tilley, B. J. & Longstaffe, F. J. 1984. Controls on hydrocarbon accumulation in
- 694 glauconitic sandstone, Suffield heavy oil sands, southern Alberta. AAPG Bulletin, 68,
- 695 1004-1023.
- 696 Underwood, E. E. 1970. *Quantitative stereology*. Addison -Wesley, Reading,
- 697 Massachusetts, 270.
- 698 Volokitin, Y., Looyestijn, W. J., Slijkerman, W. F. J. & Hofman, J. P. 1999. A Practical
- 699 Approach to Obtain 1st Drainage Capillary Pressure Curves From NMR Core and Log
- 700 Data. The International Symposium of the Society of Core Analysts, 24, 1–4.

- 701 Winn, R. D. 1994. Shelf Sheet-Sand Reservoir of the Lower Cretaceous Greensand,
- North Celtic Sea Basin, Offshore Ireland. *AAPG Bulletin*, **78**, 1775-1789.
- Xie, R. H., Xiao, L. Z., Wang, Z. D. & Dunn, K. J. 2008. The influence factors of NMR
- 704 logging porosity in complex fluid reservoir. Science in China Series D: Earth Sciences,
- 705 **51**, 212-217.

707 Figure captions

709	Fig. 1. BSE images of greensand samples. (a) Sample 1-4 from Hermod Formation and
710	(b) sample 1A-142 from Ty Formation. Scale bar is 200 μ m. Q: quartz; GI: glauconite; H:
711	Heavy minerals, M: Mica; PF: pore filling clay minerals. Porosity, permeability and
712	irreducible water saturation are 37 p.u., 530 mD and 26% for sample 1-4 and 29 p.u., 150
713	mD and 38% for sample 1A-142.
714	
715	Fig. 2. Location map showing the position of the Nini-1 well used in this study (arrow).
716	The margins of the Siri Canyon are shown by grey shading. An area of positive relief
717	within the canyon is also shown by grey shading. G, Germany; N, Norway; NL,
718	Netherlands; S, Sweden; UK, United Kingdom (Figure modified after Schiøler et al.
719	2007).
720	
721	Fig. 3. Gamma ray, porosity and resistivity logs for wells Nini-1 (top) and Nini-1A
722	(bottom). The glauconite bearing reservoir intervals (Hermod sand and Ty sand) have
723	relatively low separation between neutron- and density porosity. Horizontal dashed lines
724	indicate the studied core intervals. Core data are shown for reference. Permeability is
725	higher in Hermod sand than in Ty sand.
726	
727	Fig. 4: Macro-porosity and micro-porosity determination for sample 1-4 (a) from NMR
728	T_2 distribution (b) from the capillary pressure curve. The cumulative distribution for the
729	fully saturated sample is compared to the cumulative distribution after centrifuging at 100

730	psi. The cutoff time which separates the T_2 distribution into macro-porosity and micro-
731	porosity is defined as the relaxation time at the point where the cumulative porosity of the
732	fully saturated sample equals the irreducible water saturation. The dashed vertical line is
733	shown a cutoff of 5.21 ms. The capillary pressure of 100 psi corresponds to a micro-
734	porosity of 9.1%.
735	
736	Fig. 5. Cross plot of macro-porosity from capillary pressure measurement and
737	permeability. Samples from the Hermod sand have similar porosity and permeability,
738	whereas the samples from Ty sand are more scattered. The reference lines represent equal
739	specific surface of pores (<i>Sp</i> (<i>Kozeny</i>)) in μ m ⁻¹ as calculated by using Kozeny's equation.
740	The data indicate that Sp is lower in Hermod sand than in Ty sand.
741	
742	Fig. 6. Bulk composition of investigated samples from Hermod and Ty Formations of the
743	Nini Field. Mineral composition was determined by point counting of 500 points across
744	each entire thin-section. Macro-porosity was determined by image analysis when porosity
745	threshold is equal to macro-porosity determined from P _c measurements. Micro-porosity is
746	the difference between Helium porosity and image porosity.
747	
748	Fig. 7. (a), (c) Capillary pressure curves and (b), (d) NMR T ₂ distribution curves of
749	greensand samples. (a) P_c curves of Hermod Formation samples are shifted toward low
750	irreducible water saturation, whereas (c) the Ty Formation samples have relatively high

- 751 irreducible water saturation. This pattern compares to the relatively high permeability of
- Hermod sand relative to the low permeability of Ty sand (Fig. 3). T₂ distribution of all

- samples shows two peaks. The peak close to 1 ms represents micro-porosity and the peakclose to 100 ms represents macro-porosity.
- 755

756 Fig	g. 8. (8	ı) Helium	porosity,	Archimedes	porosity	and NMR	porosity	of invest	igated
---------	-----------------	-----------	-----------	------------	----------	---------	----------	-----------	--------

- samples. Helium porosity tends to be the highest, whereas NMR porosity is
- underestimated due to iron bearing minerals in greensand. (b) Cross plot of delta porosity

759 (Archimedes porosity-NMR porosity) and minerals bulk composition (glauconite, pore

filling clay and clay coating). Cross plots of (c) macro-porosity and (d) micro-porosity

- 761 from NMR T₂ distribution and capillary pressure curves.
- 762

Fig. 9. Correlation between specific surface of pores as measured by BET (Sp (BET)) and

(a) irreducible water saturation as determined from NMR measurements, (b) irreducible

765 water saturation as determined from capillary pressure measure as well as (c) clay

766 minerals (glauconite, clay coating and pore filling clay) as percentage of bulk

767 composition.

768

```
Fig. 10. (a) Specific surface area with respect to pore (Sp) determined by BET nitrogen
```

adsorption (Sp (BET)), estimated from Kozeny's equation (Sp (Kozeny)) and determined

by image analysis of the BSE images (*Sp* (*image*)). (b) Surface relaxivity determined

- comparing T₂ distribution with Sp (BET), Sp (Kozeny), and Sp (image). For two samples,
- surface relaxivity are also determined from capillary pressure versus NMR T₂

distribution.

Fig. 11. (a), (b) Porosity distribution and cumulative porosity for five greensand samples.

(c), (d) Permeability distribution of five greensand samples obtained from Kozeny'sequation.

779

780 Fig. 12. Measured permeability versus NMR predicted permeability by using surface 781 relaxivity from (a) Sp(Kozeny), (b) Sp(image), (c) Sp(BET), (d) P_c versus NMR and (e) 782 from Timur-Coates model. (g) Measured permeability versus predicted permeability from 783 image analysis. Image permeability and NMR predicted permeability by using surface 784 relaxivity from *Sp(image)* are equal. 785 786 Fig. 13. Air Brine capillary pressure curves including saturation error compared with 787 NMR derived capillary pressure including saturation error. Saturation error corresponds 788 to the error associated with porosity measurements. The NMR derived capillary pressure 789 curves are based on surface relaxivity value of 20.4 µm/s for Hermod Formation and 28.4 790 µm/s for Ty formation. Deviation between average surface relaxivity (solid line) and 791 surface relaxivity for predicting P_c NMR (dashes line) are shown (e) for Hermod 792 Formation and (f) for Ty Formation.

794 List of tables

796	Table 1.	Core plug poro	sitv data.	. Helium	porosity was	measured by	Helium	gas
	10010 11	00.0 pmg p0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		po. obt.,			<u> </u>

- 797 *expansion, Archimedes porosity was measured by immersing, and NMR porosity was*
- measured by the signal amplitude of T_2 measurements respectively. Archimedes macro-
- 799 porosity and NMR macro-porosity were determined from capillary pressure curves and
- 800 T_2 distributions respectively.
- 801
- 802 Table 2. Core plug data. Specific surface area of grains (SSA) was measured by BET
- 803 *method and effective specific surface of pores (Sp(Kozeny)) was calculated by using*
- 804 *Kozeny's equation. Image specific perimeter of pores (Sp(image)) was determined by*
- 805 image analysis by using the method of Borre et al. (1997). The cutoff time which
- 806 separates the T_2 distribution into macro-porosity and micro-porosity is defined as the
- 807 relaxation time at the point where the cumulative porosity of the fully saturated sample
- 808 equals the irreducible water saturation.

(a)

(b)

Fig. 3

Fig. 5

Fig. 13

T-11-	1
I able	1

Formation	Measured Depth	TVD (msl)	Sample ID	Helium porosity (p.u.)		Archimedes porosity (p.u.)		NMR porosity (p.u.)		Archimedes macro-	NMR macro-	
	(m)				Error ±	Error ±		Error ±		porosity (p.u.)	porosity (p.u.)	
Hermod	1761.1		1-4	37.3	1.5	35.5	1.1	31.2	0.4	27.0	22.7	
	1761.7		1-6	39.3	1.3	37.2	1.1	33.8	0.5	29.9	25.4	
	1762.1		1-7	39.2	0.4	37.9	1.1	35.5	0.5	29.6	26.7	
	1765.7		1-18	42.4	0.5	40.2	1.2	37.2	0.5	30.5	28.8	
	1768.1		1-25	37.1	0.5	36.7	1.1	33.3	0.5	25.9	23.7	
	1768.7		1-27	37.8	1.1	37.0	1.1	32.7	0.5	27.2	23.0	
	1770.4		1-32	36.2	0.9	35.5	1.1	32.6	0.5	26.0	24.3	
Ту	1805.5		1-137	34.7	0.8	36.1	1.1	31.6	0.4	24.2	22.2	
	1806.1		1-139	34.2	0.5	34.3	1.0	31.6	0.4	23.1	21.6	
	1806.7		1-141	34.9	0.3	34.6	1.0	31.8	0.4	24.1	22.5	
	1810.7		1-153	40.0	0.4	38.6	1.2	33.6	0.5	27.2	23.0	
	1972.1	1774.7	1A-141	30.1	0.1	29.5	0.9	27.0	0.4	19.4	17.7	
	1972.4	1775.0	1A-142	29.3	0.7	29.0	0.9	29.0	0.4	17.9	18.6	
	1975.8	1778.1	1A-152	27.7	0.3	28.1	0.8	26.6	0.4	16.7	17.5	
	1985.7	1787.0	1A-182	35.7	0.1	35.3	1.1	33.7	0.5	23.7	23.9	
	1986.0	1787.2	1A-183	36.2	0.4	35.5	1.1	33.3	0.5	24.9	24.5	

Table	2
-------	---

Sample ID	Klinkenberg permeability (mD)	SSA (BET) (m²/g)	Sp (Kozeny) (μm ⁻¹)	Sp (image) (μm ⁻¹)	T ₂ Cutoff (ms)	Irreducible water saturation from P _c (%)	Irreducible water saturation from NMR (%)
1-4	530	21	0.34	0.32	5.2	25.6	27.2
1-6	560	21	0.35	0.33		19.6	24.9
1-7	680	21	0.31	0.35		22.1	24.9
1-18	940	19	0.27	0.32		24.2	22.6
1-25	540	20	0.33	0.35		29.4	28.8
1-27	570	22	0.33	0.33		26.5	29.8
1-32	550	21	0.32	0.36		26.7	25.5
1-137	260	20	0.45	0.34		33.0	29.8
1-139	210	22	0.49	0.38		32.8	31.8
1-141	360	20	0.38	0.39		30.5	29.2
1-153	390	23	0.39	0.33		29.6	31.6
1A-141	230	17	0.43	0.35	3.7	34.4	34.2
1A-142	160	19	0.49	0.35		38.4	35.7
1A-152	80	20	0.68	0.36		40.7	34.4
1A-182	60	22	0.95	0.46		32.9	28.9
1A-183	100	19	0.74	0.41		29.9	26.4