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Abstract:  16 

The present study investigated a two-stage anaerobic hydrogen and methane process 17 

for increasing bioenergy production from organic wastes. A two-stage process with 18 

hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, 19 

obtained 11% higher energy compared to a single-stage methanogenic process (HRT 20 

15d) under organic loading rate (OLR) 3 gVS/(L·d). The two-stage process was still 21 

stable when the OLR was increased to 4.5 gVS/(L·d), while the single-stage process 22 

failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of 23 

the two-stage process from 3:12 to 1:14, 6.7%, more energy could be obtained. 24 

Microbial community analysis indicated the dominant bacterial species were different in 25 

the hydrogen reactors (Thermoanaerobacterium thermosaccharolyticum-like species) 26 

and methane reactors (Clostridium thermocellum-like species). The changes of 27 

substrates and HRT did not change the dominant species. The archaeal community 28 

structures in methane reactors were similar both in single- and two- stage reactors, with 29 

acetoclastic methanogens Methanosarcina acetivorans-like organisms as the dominant 30 

species. 31 

 32 

Key words: anaerobic digestion, hydrogen, methane, two-stage process 33 

 34 
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1. Introduction 35 

Hydrogen produced from biomass is renewable energy carrier. Among the various 36 

hydrogen production methods, dark fermentation of organic wastes seems to be the 37 

most promising and environmentally friendly method. The feasibility of such method 38 

has been demonstrated in several studies (Cai et al., 2004; Liu et al., 2006). However, 39 

the main obstacles in such process are the lower hydrogen yield (<4 mol H2/mol 40 

Glucose) and higher residual organic concentration in the effluent (Xie et al., 2008). 41 

The effluents of the dark fermentation process contain mainly acetate, propionate, 42 

butyrate etc., which should be further utilized to increase the total energy recovery 43 

efficiency.  44 

Combined hydrogen and methane production in a two-stage process is a concept 45 

which has been developed in recent years (Kyazze et al., 2007; Liu et al., 2006; Ueno 46 

et al., 2007). It is similar with the traditional two-phase process that separates 47 

hydrolysis/acidogenesis and methanogenesis, and optimizes each process separately, 48 

leading to a larger overall reaction rate and biogas yield (Fox and Pohland, 1994). The 49 

main difference is that hydrogen is retrieved in the first stage of the two-stage process 50 

for hydrogen and methane production. The co-production of hydrogen and methane is 51 

more promising from an energy perspective. Liu et al. (2006) has demonstrated that 52 

more methane could be obtained by two-stage hydrogen and methane process. Also, 53 

the mixture of hydrogen and methane has many advantages than methane alone, 54 

which could improve the efficiency of the methane combustion motors and decrease 55 

the emissions of CO2 and CO (Akansu et al., 2004). Several studies have been 56 

conducted to investigate the hydrogen and methane production in the two-stage 57 

process. However, they mainly focused on the optimization of hydrogen and methane 58 

reactors individually (Antonopoulou et al., 2008; Venetsaneas et al., 2009). It is 59 
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necessary to optimize the whole system for higher total energy production. In addition, 60 

the mechanisms involved in the two-stage process and the microbial community 61 

structures have not been investigated and clarified, which is crucial for better 62 

understanding of the process. 63 

Concerns about instability of fossil fuels supply, limits on fossil fuel reserves and 64 

not least environmental pollutions and climate changes, have brought new lights in 65 

utilization of biomass in biorefinery concepts, where biomass is used as feedstock 66 

instead of fossil fuels for production bio-based fuels, chemicals, solvents etc. by 67 

biological conversion processes. We have proposed a novel biorefinery concept based 68 

on rapeseed plant (Luo et al., 2010a), where the oil seed is used for biodiesel 69 

production and the straw is used for bioethanol production. From this process several 70 

effluent sub-streams are generated, which need to be utilized for full utilization of the 71 

organic matter. Rapeseed cake and glycerol are the by-products in the biodiesel 72 

process, and the search for proper disposal methods is still going on (Thamsiriroj and 73 

Murphy, 2010). Stillage is the wastewater from bioethanol production process and it 74 

contains high concentrations of degradable organic pollutants. The utilization of the 75 

above three sub-streams for bioenergy production is necessary from environmental 76 

protection and sustainability viewpoints. 77 

Therefore, in the present study we investigated and compared different 78 

configurations of two-stage process for hydrogen and methane production from the 79 

above organic streams and studied the role of the hydrogen reactor in the whole 80 

system. Single-stage process for methane production was operated as control. Finally, 81 

the microbial communities in different reactors and operation conditions were 82 

identified. 83 

 84 
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2. Material and methods 85 

2.1. Feedstocks and inoculum 86 

The stillage used in this study was obtained from an ethanol plant in Lithuania. 87 

Rapeseed cake and glycerol waste from the biodiesel production process were 88 

obtained from a local company (Emmelev). The samples were stored at -20 oC. The 89 

substrates were thawed and kept at 4 oC for 2-3 days before usage. 24 g cake and 2 ml 90 

glycerol was added to 1 L stillage based on the biorefinery concept described in (Luo 91 

et al., 2010a). The characteristics of the three wastes and their mixture are shown in 92 

Table 1. Thermophilic anaerobic digested manure (Biogas plant, Snertinge, Denmark) 93 

was used as inoculum for both hydrogen and methane production. 94 

2.2. Reactor set-up and operations 95 

Two-stage (hydrogen and methane) operation was compared with single-stage 96 

methane operation. The hydrogen reactor (H) was a 2 L continuously stirred tank 97 

reactor (CSTR) with working volume 1.2 L, while the methane reactors (M) was 4.5 L 98 

CSTR with working volume 3.5 L. The configurations of all the reactors were similar 99 

and described in Boe et al. (2009). All reactors were stirred four times (3 min for each 100 

time) per hour throughout the experiment by motor mixer with a timer. The substrates 101 

were fed to all the reactors four times per day using peristaltic pump with timer 102 

control. Before feeding, 8 g/L NaHCO3 was added to the stillage or mixture to adjust 103 

the pH to around 6. The two-stage process was tested at two different distributions of 104 

HRT between hydrogen and methane reactors. The first HRT distribution tested was 105 

3:12 i.e. the HRT for the hydrogen reactor was 3 days (H3) and the HRT for the 106 

methane reactor was 12 days (M12), while the second HRT distribution was 1:14, i.e. 107 

1 day HRT for the hydrogen reactor (H1) and 14 days HRT for the methane reactor 108 

(M14). A single-stage methane reactor was operated at HRT of 15 days (M15). All 109 
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experiments were conducted at 55 oC. The operation data of the reactors were shown 110 

in Table 2. 111 

For the first two-stage experiment, the HRT distribution of 3:12 was tested. The 112 

reactor H3 was initially filled with 200 ml inoculum, 500 ml stillage and diluted by 113 

water to final volume 1.2 L. The initial pH of the mixture was adjusted to 6 by NaOH. 114 

After the hydrogen production ceased, the reactor was fed semi-continuously. For 115 

M12 and M15, the reactors were initially filled with 3.2 L inoculum and 300 ml 116 

stillage. After the methane production ceased, the reactors were also fed 117 

semi-continuously. The effluent of H3 was fed to M12. Initially, H3 and M15 were 118 

fed with only raw stillage to get a successful start-up at relatively low OLR. After 119 

steady-states were achieved, the mixture was fed to the reactors (From day 46 to day 120 

118). The steady-state in this study was defined as a stable biogas production with 121 

daily variation of lower than 10 %. 122 

From day 75 to day 126, the second two-stage experiment with the same total HRT 123 

15 d, but HRT distribution of 1:14 between hydrogen and methane reactors was 124 

started. The reactors were the same as those used in the experiment with HRT 125 

distribution of 3:12, but with different feeding flow rates. The inocula for H1 and 126 

M14 were from the effluents of H3 and M12, respectively. The reactors were directly 127 

fed with the mixture of stillage, cake and glycerol. 128 

2.3. Specific methanogenic activity (SMA) tests 129 

Batch experiments for estimation of the specific methanogenic activity (SMA) on a 130 

specific substrate were carried out when steady-states were achieved in the methane 131 

reactors. 40 mL basal anaerobic (BA) medium (Karakashev et al., 2005) was 132 

dispensed anaerobically in 100 mL serum bottles. The media were supplemented with 133 

different substrates-acetate (20 mM), propionate (10 mM), butyrate (10 mM), 134 
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hydrogen/carbon dioxide (80/20) under 1 atm, and glucose (10 mM). After addition of 135 

vitamin solution and Na2S.9H2O as a reducing agent the medium was inoculated with 136 

10 mL fresh samples from each reactor and incubated in respective temperature of 137 

inoculums. Bottles with BA medium and inocula only, but without substrates, were 138 

used as controls (blanks). All the tests were prepared in duplicates. The SMA was 139 

calculated as the initial, linear methane accumulation rate divided by the biomass VS 140 

content in each series. 141 

2.4. Microbial community analysis 142 

  Bacterial communities in both hydrogen and methane reactors at steady-states were 143 

analyzed. Genomic DNA extraction, PCR-DGGE and sequencing were made as 144 

previously described (Zhao et al., 2009). Archaeal communities in methane reactors at 145 

steady-states were also analyzed. The procedure was similar with bacterial community 146 

analysis. The only differences were the PCR primers and amplification procedures. 147 

For the first amplification, primers 1492-r and 109-f were used and the thermal 148 

cycling program was as follows: 94 °C for 2 min,35 cycles of three steps: 94 °C for 1 149 

min, 51 °C for 1 min, and 72 °C for 1 min, followed by a final step at 72 °C for 10 150 

min; For the second amplification, primers 515-r and 109(T)-f were used and the 151 

thermal cycling program was as follows: 94 °C for 3 min, 34 cycles of three steps: 152 

94 °C for 1 min, 53 °C for 1 min, and 72 °C for 2 min, followed by a final step at 153 

72 °C for 10 min. All bands from DGGE were sequenced and identified by comparing 154 

the 16S rRNA gene sequences with DNA sequences in the National Centre for 155 

Biotechnology Information (NCBI) database using the BLAST algorithm. 156 

2.5. Analytical methods 157 

Total and soluble chemical oxygen demand (TCOD and SCOD), Total solids (TS), 158 

volatile solids (VS), ash content, suspended solids (SS), volatile suspended solids 159 
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(VSS), ammonia and total nitrogen were determined according to the Standard 160 

Methods (APHA, 1995). SCOD samples were filtered through glass fiber paper (U90 161 

mm, GF50, Schleicher & Schuell). Lipid extraction was carried out by Soxhlet 162 

Method (APHA, 1995). Protein and carbohydrate were calculated according to 163 

(Kaparaju et al., 2009). The concentrations of ethanol, acetate, butyrate, propionate 164 

were determined by gas chromatograph (GC) (Hewlett Packard, HP5890 series II) 165 

equipped with a flame ionization detector and HP FFAP column (30 m×0.53 mm×1.0 166 

μm). Hydrogen was analyzed by GC-TCD fitted with a 4.5 m×3 mm s-m stainless 167 

column packed with Molsieve SA (10/80). Methane was analyzed with GC-TCD 168 

fitted with parallel column of 1.1 m×3/16 “Molsieve 137 and 0.7 m× 1/4” chromosorb 169 

108. Detailed information about the operation conditions of above GC and HPLC was 170 

described in (Luo et al. 2010a). Analysis of variance (ANOVA) at 0.05 level was used 171 

to analyze the data. 172 

 173 

3. Results and discussion 174 

3.1. Reactor Performances 175 

  The two-stage (H3+M12) and single-stage reactors (M15) were started up at the 176 

same time. The monitoring profiles of hydrogen, methane, pH, volatile fatty acids 177 

(VFA) are shown in Fig 1 and Fig 2, and the overall performances of the reactors at 178 

steady-states are summarized in Table 3. Initially (day 1 to 45), the reactors were fed 179 

with stillage alone. For the two-stage process, hydrogen was produced immediately 180 

and the hydrogen reactor stabilized after about 7 days (Fig 2 A). The hydrogen yield 181 

was 69 ml-H2/gVS, which was comparable with 76 ml-H2/gVS from cassava stillage 182 

in our previous study (Luo et al., 2010b). The methane production rate increased 183 

initially slowly, while rapid increase was found after about 6 days (Fig 2 C). After 15 184 
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days, the methane production was relatively stable with methane production rate 185 

around 1300 ml-CH4/(L·d). Similar trend for methane production was observed in 186 

single-stage process (M15). However, the methane production rate in M15 was about 187 

990 ml-CH4/(L·d), 24 % lower than that in M12. The methane yield in M12 was 188 

calculated as 348 ml-CH4/gVS, which was significantly (p=0.008<0.05) higher than 189 

329 ml-CH4/gVS in M15. Liu et al. (2006) also investigated two-stage (hydrogen and 190 

methane) and single-stage (methane) processes for treatment of household solid waste 191 

and found 21 % enhancement of methane yield in the two-stage process. In their study 192 

the HRT for methane reactors in both systems were 15 d. In our study, the 193 

enhancement was only about 5.7 %, which could be due to the shorter HRT (12 days) 194 

in the two-stage process. Considering the additional hydrogen production, the total 195 

energy recovery (Table 3) in the two-stage process could be 11 % higher than that in 196 

single-stage process. The higher energy recovery in the two-stage process was also 197 

consistent with the lower TCOD and VS concentration in the effluent (Table 3). VFA 198 

and ethanol were detected in both M12 and M15 with propionate as the dominant 199 

metabolite, which indicated the incomplete removal of intermediate metabolites. 200 

The addition of cake and glycerol from day 44 did not lead to the increase of 201 

hydrogen production compared to stillage alone (Fig 2 A). The hydrogen yield of the 202 

mixture was only 48 ml-H2/gVS. For M12, the methane production rate increased 203 

from about 1300 ml-CH4/(L·d) to 1800 ml-CH4/(L·d) and the methane yield for the 204 

mixture was about 320 ml-CH4/gVS. The results indicated that cake and glycerol 205 

could successfully be utilized for methane production. Rapeseed cake is 206 

lignocellulosic material (Egues et al., 2010) and the carbohydrate was not easily 207 

accessible for hydrogen production at the short HRT (3 d) applied, but the longer HRT 208 

(12 d) in subsequent methane reactor led to the solubilization of organics for methane 209 
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production. Though studies have demonstrated the feasibility of hydrogen production 210 

from glycerol (Selembo et al., 2009), the hydrogen yield was very low (0.28 211 

mol-H2/mol glycerol). The pure glycerol contained in the glycerol waste in our study 212 

was only 33 %, and the glycerol concentration in the mixture (2 ml/L) was also low, 213 

which could not lead to measurable increase of hydrogen production (only 15 214 

ml-H2/(L·d)). For the single-stage reactor M15, the methane production ceased after 215 

about 30 days due to the low pH (<6), resulted from the accumulation of VFA 216 

especially acetate and butyrate. This could be attributed to the increase of OLR (from 217 

to 3 gVS/(L·d) to 4.5 gVS/(L·d)) by changing the reactor influent from stillage to the 218 

mixture of stillage, cake and glycerol. The results further demonstrated that the 219 

two-stage process could withstand higher OLR than single-stage process. In M12, 220 

propionate was still the dominant metabolite. The acetate concentration increased 221 

from 6.3 mM (stillage as substrate) to 19.3 mM (mixture as substrate), but it did not 222 

inhibit the methane production. 223 

From day 77, another configuration of two-stage process (H1+M14) was started up. 224 

The HRT in the hydrogen reactor was reduced to 1 d, while that for the methane 225 

reactor was increased to 14 d. Both reactors reached steady-state quickly because the 226 

inocula were acclimated to the substrate (Fig 3). The hydrogen yield (40 ml-H2/gVS) 227 

in H1 was 17 % (p=0.006<0.05) lower than that in H3, while the methane yield in 228 

M14 (344 ml-CH4/gVS) was 7.5 % (p=0.005<0.05) higher than that in M12. In our 229 

study, the hydrogen production was mainly associated with butyrate production (Fig 3 230 

B), which is in accordance with previous studies focusing on thermophilic hydrogen 231 

production (Akutsu et al., 2009; Ueno et al., 2007). The decreased hydrogen yield in 232 

H1 was coincident with decreased butyrate concentration compared to H3. The total 233 

energy recovery in H1+M14 was 12.7 KJ/gVS, which was 6.7 % (p=0.01<0.05) 234 



11 

higher compared to H3+M12. It is worth noticing that the acetate concentration in 235 

M14 decreased to 8.7 mM, and was significantly lower than that in M12. However, 236 

the propionate concentration was still at the same level. The different HRT 237 

distribution in hydrogen and methane reactors was shown to significantly affect the 238 

production of hydrogen and methane, as well as the total energy recovery. Under the 239 

same total HRT, the short HRT in the hydrogen reactor was enough to maintain the 240 

stability of the two-stage system, while the longer HRT in the methane reactor would 241 

lead to the improved performance of the two-stage system. It is the first time to reveal 242 

the importance of HRT distribution between hydrogen and methane reactors on total 243 

energy production. 244 

In all cases, the energy from hydrogen in the two-stage process accounted for lower 245 

than 6% of the total energy recovery (Table 3). The results were consistent with Zhu 246 

et al. (2008), who studied the hydrogen and methane production from potato waste 247 

and found only about 5 % of the energy was from hydrogen. Theoretically, in the 248 

two-stage process, 1 mol glucose could be converted to 4mol hydrogen and 2mol 249 

methane (C6H12O6+2H2O → 2CH3COOH+2CO2+4H2; 2CH3COOH → 2CH4+2CO2) 250 

(Xie et al., 2008), which means the energy from hydrogen could be accounted for 251 

37.6% of the total energy recovery. Nevertheless, 4 mol-H2/mol glucose can not be 252 

achieved in practice, considering production of several other metabolites than acetate, 253 

such as, butyrate and propionate as well as production of cell biomass (Ueno et al., 254 

2007). In addition, the actual organic wastes may also contain protein and lipids 255 

besides carbohydrate, which are not suitable substrates for hydrogen production, but 256 

are good for methane production. In our study, the dominant metabolite for hydrogen 257 

production was butyrate (Table 3). Additionally, the substrate contains certain 258 

amounts of protein and lipids besides carbohydrates (Table 1) which finally led to the 259 
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lower energy recovery as hydrogen compared to the theoretically calculated value. 260 

Though the contribution of hydrogen to total energy is minor, it was crucial to 261 

maintain the stability of the subsequent methane reactor. Our results also revealed that 262 

optimization of hydrogen and methane reactor individually is not proper since 263 

methane is the main energy carrier. By appropriate adjustment of reactor 264 

configuration of the two-stage process (i.e. different HRT distribution between 265 

hydrogen and methane reactor), the total energy in the system could be enhanced. 266 

Therefore, further study should be focused on the optimization of the total energy 267 

production in the two-stage system and pilot-scale reactors should be investigated to 268 

speed up the application of two-stage process. It needs to be pointed out that though 269 

the two-stage process could obtain more energy and achieve higher OLR compared 270 

with single-stage process, the operation and control of such process is complicated 271 

which should be carefully considered before industrial application. 272 

For traditional two-phase anaerobic process, the higher biogas production was 273 

attributed to enhanced hydrolysis of the substrate in acidogenic reactor and improved 274 

activity of methanogens in the methanogenic reactor (Fox and Poland, 1994). 275 

However, it seems that the improved performance of two-stage process in our study 276 

was not due to the enhanced hydrolysis of substrate, because there was no significant 277 

difference (p=0.74>0.05) between effluent VSS in both single-stage and two-stage 278 

processes (Stillage as substrate) (Table 3). The short HRT (3d) in hydrogen reactor 279 

may be not enough to significantly enhance the hydrolysis of the whole process, but it 280 

is suitable for hydrogen production. The reason for higher biogas production in 281 

two-stage process should be attributed to the enhanced methanogenic activities in the 282 

methane reactors, which was demonstrated by SMA tests in subsequent section. 283 

Another possible reason for the improved biogas production was due to a serial 284 
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operation minimizing the loss of relatively “fresh feed” out of the reactor due to 285 

“short-circuiting”, occurring in single-stage fully mixed reactors. 286 

 287 

3.2. SMA 288 

  The SMA results of the sludge biomass from different methane reactors on various 289 

substrates are shown in Table 4. The degradation rates for glucose, acetate, and 290 

butyrate in M12 of the two-stage process were much higher than that in M15 when 291 

stillage was used as substrate. This could be the reason for the better performance of 292 

the two-stage process. When mixture was used as substrate, the degradation rates for 293 

glucose, acetate, and butyrate in M12 of the two-stage processes still maintained at a 294 

high level, which demonstrated that the higher OLR did not inhibit the biogas process. 295 

For M14 (mixture as substrate), the degradation rate for acetate was much higher than 296 

that for M12. The result was consistent with the lower acetate concentration and 297 

higher energy recovery in M14. Conclusively, the hydrogen reactors played an 298 

important role to maintain a stable and efficient gasification process. Our results are 299 

consistent with previous investigations of two-phase process, where it was concluded 300 

that the separation of acidogenesis and methanogenesis favored the methanogenesis in 301 

the second-phase (Fox and Pohland, 1994). In our study the improved performance of 302 

the two-stage system was more attributed to the enhanced methanogenic activities and 303 

not to enhanced hydrolytic/acidogenic activity. On the contrary, previous 304 

investigations on two-phase process focused on optimizing the conditions for 305 

hydrolysis/acidogenesis in the first stage and not in hydrogen production (Elefsiniotis 306 

et al., 1996; He et al., 2005). 307 

  The SMA tests also showed that the degradation rates for propionate were very low 308 

in all cases, which was consistent with the high propionate concentrations in all the 309 



14 

methane reactors. Low propionate degradation rate has been attributed to high organic 310 

loading, VFA inhibition and lack of macro- and micro-nutrients in the substrates 311 

(Cresson et al., 2006; Kida et al., 1993; van Lier et al., 1993). Anaerobic digestion in 312 

single-stage CSTR with OLR between 2.5 and 5 gVS/(L·d) have been reported to 313 

work stably, without propionate accumulation (Liu et al., 2006; Zhu et al., 2008). In 314 

our study, the OLR was initially 3 gVS/(L·d) and subsequently increased to 4.5 315 

gVS/(L·d), which was within the range for good propionate degradation. Furthermore, 316 

acetate and butyrate concentrations in our study were not high enough to inhibit 317 

degradation of propionate (Van lier et al., 1993). A possible explanation for 318 

accumulation of propionate could be the lack of some macro- and micro-nutrients in 319 

the substrate. Agler et al. (2008) reported that VFA accumulation was observed even 320 

when the OLR was only around 1.2 gVS/(L·d) when using anaerobic sequencing 321 

batch reactor for the treatment of stillage. Addition of Co (20 mg/L) resulted in 322 

decrease of VFA. Moreover, the OLR could be increased to as high as 7.5 gVS/(L·d) 323 

without the process to be disturbed. We also analyzed for the metal ions in the stillage 324 

and mixture, and found both Co was below detection limits (<7 ug/L), which might be 325 

the reason for accumulation of propionate. Though the propionate concentration was 326 

higher in our study, it did not apparently affect the process stability and the methane 327 

yield was still very high (>300 ml-CH4/gVS). Similarly, Wiegant et al. (1985) found 328 

high propionate concentration (27-80 mM) under thermophilic condition, but the 329 

anaerobic process was still stable. Moreover, the effluent quality did not deteriorate 330 

with increasing loading rates from 17 to 98 kgCOD/(m3·d) in UASB. 331 

 332 

3.3. Microbial communities 333 

  DGGE was conducted to analyze the microbial communities in all the reactors and 334 

Comment [r1]: I think van Lier is 
written with small v and not capital V. 
Please check. 
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the sequencing results were shown in Table 5. The bacterial communities in both 335 

hydrogen and methane reactors were shown in Fig 4. For hydrogen reactors (Lanes A, 336 

D, F), the bacterial communities included members affiliated within one phyla 337 

Firmicutes, and two unaffiliated bands (4 and 6). The change of substrate from stillage 338 

to mixture in H3 led to the appearance of another two weak bands 4 and 6 besides the 339 

dominant band 9. The decrease of HRT from 3d to 1d led to the significant shift of 340 

dominant bands from band 9 to bands 6, 8 and 11. It seems that HRT was an 341 

important parameter determining the relative composition of the microbial 342 

communities in the hydrogen reactor. Nevertheless, Thermoanaerobacterium 343 

thermosaccharolyticum was always the dominant species (band 8 and 9) even with 344 

different substrates and HRT, indicating this bacterium is robust and can grow well in 345 

a wide range of environmental conditions. T. thermosaccharolyticum can use glucose, 346 

starch, and sucrose for hydrogen production and the optimal growth was in the range 347 

pH 5-6 under thermophilic condition (O-Thong et al., 2008). T. 348 

thermosaccharolyticum was also reported as the dominant species in thermophilic 349 

hydrogen reactors from other study (Ahn et al., 2005). 350 

  For methane reactors, the phylogenetic affiliations of bacterial community 351 

converged within three phyla, Firmicutes, Proteobacteria, Actinobacteria, which were 352 

more diverse than the communities in hydrogen reactors. When stillage was used as 353 

substrate, the dominant species in M12 was only band 10, while bands 1 and 2 were 354 

also dominant species besides band 10 in M15 (Lanes B and C). It is obvious the 355 

bacterial communities were different in the methane reactors of two-stage and 356 

single-stage process, which also could explain the different performances of the two 357 

different systems. Band 1 showed 96 % similarity to uncultured gamma 358 

proteobacterium and band 2 showed 95 % similarity to uncultured pseudomonas sp., 359 
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both of which were isolated from anaerobic activited sludge (unpublished data). Band 360 

10 was related to Clostridium thermocellum, which could utilize carbohydrates to 361 

produce various metabolites (acetate, ethanol et al.) (Nochur et al., 1992). Band 10 362 

was also dominant in M 12 and M 14 when mixture was used (Lanes E and G). 363 

Moreover, band 3 was closely related to Propionibacterium sp. (97 %), and this 364 

bacteria could utilized carbohydrate for propionate production (Schuppert et al., 1992). 365 

The higher propionate concentrations in all the methane reactors may be attributed to 366 

the above microorganism. 367 

  For methane reactors, the archaeal DGGE bands were similar at all conditions (Fig 368 

5), which indicated archaeal community structures were not obviously affected by the 369 

changes of substrates and HRT. Although the relative dominance of microorganisms 370 

did not change, the concentration of microorganisms and their activities might have 371 

been altered, since DGGE is only a qualitative method. Therefore, the estimated 372 

increase of SMA of aceticlastic methanogenesis, could have been due to increase of 373 

aceticlastic biomass and activity in the reactors, and not to change of 374 

microorganism-types. The dominant band 3 showed 96 % similarity to 375 

Methanosarcina acetivorans str. , which belonged to acetoclastic methanogens 376 

(Karakashev et al., 2005). Band 4 was also related to Methanosarcina species. 377 

Methanosarcina species were reported to be dominant at high acetate concentration 378 

(>1.2 mM) (Chu et al., 2010), and the results were consistent with the high acetate 379 

concentrations in all the methane reactors (Table 3). Band 1 and 2 were related to 380 

Methanoculleus species, which were responsible for hydrogenotrophic 381 

methanogenesis (Shin et al., 2010). The activities of hydrogenotrophic methanogens 382 

were also demonstrated by SMA tests and all the sludge biomass from different 383 

methane reactors exhibited obvious degradation rate of hydrogen (>20 384 
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ml-CH4/(gVS·d)). 385 

 386 

4. Conclusions 387 

  The two-stage hydrogen and methane process could obtain 11% more energy 388 

compared to single-stage process under OLR of 3 gVS/(L·d). The increase of OLR to 389 

4.5 gVS/(L·d) led to the break down of the single-stage process, while the two-stage 390 

process could work stably. The study also revealed that by proper adjustment of HRT 391 

distribution between hydrogen and methane reactors, more energy could be obtained. 392 

Microbial community analysis showed the dominant bacteria were always related to T. 393 

thermosaccharolyticum in hydrogen reactors and C. thermocellum in methane reactors. 394 

The acetotrophic methanogens Methanosarcina acetivorans-like organisms were the 395 

dominant archaeal species in methane reactors. 396 
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Figure caption: 517 

Fig 1 Profiles of methane production, pH and VFA of single-stage process (M15) 518 

Fig 2 Profiles of gas production, pH and VFA in hydrogen reactor (A, B) and methane 519 

reactor (C, D) of two-stage process (H3+M12) 520 

Fig 3 Profiles of gas production, pH and VFA in hydrogen reactor (A, B) and methane 521 

reactor (C, D) of two-stage process (H1+M14) 522 

Fig 4 DGGE bands of bacterial communities. A, H3 (stillage); B, M12 (stillage); C, 523 

M15 (stillage); D, H3 (mixture); E, M12 (mixture); F, H1 (mixture); G, M14 524 

(Mixture). 525 

Fig 5 DGGE bands of archaeal communities. 526 



24 

Table 1 Characterization of substrates 527 
 528 

“/”, not detected 529 
“N.D”, not detectable 530 
“a” Value expressed in g/kg 531 

  Stillage Cake Glycerol Mixture 
pH 3.9±0.1 / 7±0.1 4.2±0.1 
TS (%) 4.75±0.15 85.6±1.55 / 6.85±0.05 
VS (%) 4.5±0.11 79.6±1.28 / 6.82±0.03 
COD (g/L) 61.9±1.8 / 1638±103 97.3±2.1 
SCOD (g/L) 20.8±1.9 / / 29.8±1.2 
VFA (g/L) 0.15±0.08 / / 0.08±0.01 
TSS(g/L) 35.4±1.2 / / 54.8±1.3 
VSS(g/L) 34±1.6 / / 54±2.1 
Total nitrogen (g/L) 1.44±0.06 30.6±0.85a 0.23±0.01 2.16±0.05 
Ammonia (g/L) 0.27±0.05 1.4±0.05a N.D 0.27±0.03 
Carbohydrate (g/L) 30 580a / 48.9 
Lipid (g/L) 7.5±1.2 35±1.2a 51±2.5 8±0.6 
Protein (g/L) 7.2±0.8 181±5.02a 1.42±0.03 11.3±0.8 
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Table 2 Reactor operation data 

 

 

 

 

 

Parameter Single-stage  Two-stage   Two-stage  
  M15  H3 M12  H1 M14 
HRT 15  3 12  1 14 
working volume, 
L 3.5  1.2 3.5  1.2 3.5 

feed rate, mL/d 233  400 292  1200 250 
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Table 3 Summary of reactor performances at steady-states 
 
  One-stage Two-stage Two-stage Two-stage 
Substrate Stillage Stillage Mixture Mixture 
     
Hydrogen reactor H3 H3 H1 
HRT(d) / 3  3  1 
Hydrogen yield (ml/gVS) / 69±6.3 48±5.5 40±4.7 
pH / 5.2±0.1 5.2±0.1 5.3±0.1 
Ethanol (mM) / 17.7±0.8 18.6±1.2 10.1±1.2 
Acetate (mM) / 22.1±1.8 22.8±1.3 17.7±1.3 
Propionate (mM) / 0.7±0.2 0.3±0.1 0.4±0.1 
Butyrate (mM) / 63.7±2.0 64.8±2.4 53.7±1.4 
Valerate (mM) / 0.2±0.1 0.1±0.1 0.2±0.1 
SCOD (g/L) / 23.5±2.2 33.6±3.4 32.5±2.8 
TCOD (g/L) / 57.5±4.7 92.6±7.6 93.8±5.9 
NH3-N (mg/L) / 310±50 360±75 350±62 
VSS (g/L) / 29±1.8 47.7±3.1 51.5±2.6 
Energy (KJ/gVS) / 0.7±0.07 0.5±0.06 0.4±0.05 

     
Methane reactor M15 M12 M12 M14 
HRT 15 12 12 14 
Methane yield (ml/gVS) 329±13.7 348±14.2 320±14.5 344±19.5 
pH 7.8±0.1 8.0±0.1 7.9±0.1 8.0±0.1 
Ethanol(mM) 0.2±0.1 0.3±0.1 0.1±0.1 0.1±0.1 
Acetate(mM) 5.1±0.3 6.3±0.3 19.3±1.7 8.7±0.7 
Propionate(mM) 36.4±1.6 31.5±2.3 28.5±1.2 28.9±1.6 
Butyrate(mM) 1.6±0.3 1.5±0.2 4.6±0.6 3.3±0.5 
Valerate(mM) 1.5±0.2 7.5±0.4 4.7±0.2 4.3±0.5 
SCOD(g/L) 13.5±2.1 8.3±1.5 12.5±2.8 11.3±1.8 
TCOD(g/L) 21.6±1.8 16.2±3.2 35.2±3.3 29.5±2.1 
NH4

+-N(mg/L) 1158±320 1135±110 1432±250 1590±370 
VSS(g/L) 8±1.8 8.6±2.3 19.5±1.5 18.5±1.9 
Energy (KJ/gVS) 11.8±0.49 12.4±0.51 11.4±0.52 12.3±0.69 
     
Total energy (KJ/gVS) 11.8±0.49 13.1±0.55 11.9±0.53 12.7±0.72 
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Table 4 SMA of sludge biomass from methane reactors (ml-CH4/(gVS·d)) 
 

Substrate Single-stage 
(Stillage, M15) 

Two-stage 
( Stillage,  
H3+M12)   

Two-stage 
( Mixture, 
H3+M12) 

Two-stage 
( Mixture, 
H1+M14) 

Glucose 57.7±1.6 72.2±1.1 64.6±4.0 70±3.5 
Acetate 45.3±2.0 55.1±3.8 63.1±2.9 72±4.6 
Propionate 6.7±0.9 5.7±2.5 8.8±3.3 6.1±2.8 
Butyrate 31.5±2.0 45.5±1.9 46.1±1.7 41±3.2 
Hydrogen 28.8±2.2 22.4±5.7 24.3±2.7 27±2.5 
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Table 5 DGGE 16S rRNA gene band identifications 
 
DGGE 
band Closest match Identity(%) Phyla Accession no. 

Bacteria     

1 Uncultured gamma proteobacterium 96 Proteobacteria HQ219810 
2 Uncultured Pseudomonas sp. 95 Proteobacteria HQ219811 
3 Propionibacterium sp. 97 Actinobacteria HQ219812 
4 Uncultured bacterium 93 Unaffiliate HQ219813 
5 Streptococcus thermophilus 93 Firmicutes HQ219814 
6 Uncultured bacterium  96 Unaffiliate HQ219815 
7 Clostridium sp. 94 Firmicutes HQ219816 
8 Thermoanaerobacterium thermosaccharolyticum 100 Firmicutes HQ219817 
9 Thermoanaerobacterium thermosaccharolyticum 95 Firmicutes HQ219818 

10 Clostridium thermocellum 98 Firmicutes HQ219819 
11 Thermoanaerobacterium sp. 100 Firmicutes HQ219820 

Archaea     

1 Methanoculleus thermophilus 96 Euryarchaeota HQ219821 
2 Methanoculleus thermophilus 97 Euryarchaeota HQ219822 
3 Methanosarcina acetivorans str. 96 Euryarchaeota HQ219823 
4 Methanosarcina barkeri 94 Euryarchaeota HQ219824 
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Fig 1 Profiles of methane production, pH and VFA of single-stage process (M15) 
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Fig 2 Profiles of gas production, pH and VFA in hydrogen reactor (A, B) and methane 
reactor (C, D) of two-stage process (H3+M12) 
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Fig 3 Profiles of gas production, pH and VFA in hydrogen reactor (A, B) and methane 
reactor (C, D) of two-stage process (H1+M14) 
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Fig 4 DGGE bands of bacterial communities. A, H3 (stillage); B, M12 (stillage); C, 
M15 (stillage); D, H3 (mixture); E, M12 (mixture); F, H1 (mixture); G, M14 
(Mixture). 
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Fig 5 DGGE bands of archaeal communities. 
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