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Executive Summary

The objective of the present study has been to contribute to a rational basis for quantifying
the consequences of ship grounding events. The covered main aspects are:

1. Establishment of a mathematical model for calculation of loads and hull girder response
during grounding on a soft sea bed.

2. Establishment of a mathematical model for calculation of loads and hull girder response
during grounding on a rock pinnacle.

In addition, a short study is presented of a theory for estimating the expected number
of yearly grounding events in a certain area. A speci�c area in Denmark is investigated and
good agreement is found between the calculated and the observed yearly number of ground-
ing events.

The work concerning grounding on soft sea bottoms includes the following main aspects:

� Identi�cation of the governing grounding mechanics. The hull girder is modelled as a
linear elastic beam and the loads considered are gravity, hydrostatic pressure, hydro-
dynamic pressure and a ground reaction.

� Establishment of a model for the hydrodynamic loads which takes into account the
generation of waves and shallow water e�ects.

� Establishment of a model for the ground response to the penetrating bow. Based on
observations from laboratory experiments, the idea of this theoretical model is that
the bow generates a 
ow of pore water in the soil. The pressure of the pore water on
the bow becomes decisive for the soil reaction.

� Derivation of the governing equations for the hull girder based on the Timoshenko
beam theory. The solution is found both by the �nite element method and by a
modal super-position approach and the results of the two approaches are shown to be
equivalent.

� Veri�cation of the model using the results of both laboratory tests at a scale of 1:60
and large scale grounding tests with a condemned �shing vessel.
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iv Executive Summary

� Investigation of the sectional forces compared to the strength of a VLCC in a grounding
event on a soft sea bed. It is shown that the grounding-induced loads may well exceed
the wave bending moment and shear force capacity of the hull girder. The e�ect of
the hull 
exibility is found to be important in a dynamic analysis because the 
exible
deformation of the hull girder unloads the grounding force and because the dynamic
ampli�cation of the sectional forces is signi�cant for some grounding events. The e�ect
of bow lift due to a receding tide is also investigated and it is shown that even a very
smooth grounding event may lead to catastrophic failure if it is followed by a receding
tide.

� Investigation of the grounding-induced loads compared to the strength of six di�erent
fast vessels built of steel, aluminium and �bre reinforced plastics. Grounding events of
40 knots are considered and it is shown that the hull girder strength and the grounding
induced loads are of equal magnitude. Results also show that the softer the hull girder
is, the smaller are the grounding induced sectional forces.

The work concerning grounding on a hard pinnacle type rock includes the following main
aspects:

� Identi�cation of the governing grounding mechanics. The grounding problem is divided
into external dynamics (the global ship motion) and internal mechanics (the local
response of the structure to the intruding rock). The basic approach of the internal
mechanics is a type of upper bound method - i.e. from the energy dissipation rate of an
assumed mode of deformation, the resistance force can be calculated. Friction, fracture
and large plastic membrane and bending deformations are major basic phenomena to
be depicted.

� Establishment of a model for the external dynamics. Based on time simulation of
the ship motion, it is argued that the sway and yaw motion can be neglected. Then,
from static equilibrium, the heave, roll and pitch motion is related to the vertical rock
reaction and penetration. The surge motion is found from energy considerations.

� Investigation of the mechanics of steady-state cutting of a bare plate by a prismatic
wedge. The extensive amount of literature on plate cutting is reviewed. A theoretical
model is developed on the basis of an assumed mode of deformation with a crack tip
zone, bending hinge lines and a zone of membrane deformation. Comparisons with
three di�erent experiments of plate cutting reveal a very good performance of the
theory over a large range of cutting parameters.

� Establishment of a theory for the internal mechanics of an assembled ship bottom
structure grounding on a conical rock with a rounded tip. The theory is based on a
global assumed mode of deformation with compatibility between all structural mem-
bers. Compared to most of the previous simpli�ed approaches the methodology is very
general, as all known ship bottom structures can be analysed. Major problems ad-
dressed and partially solved theoretically are: local plate deformation around the rock
tip, frictional e�ects, fracture, resistance of bottom plating, resistance of longitudinal
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girders, bulkheads and sti�eners and resistance of transverse frames and bulkheads.
Several of the individual solutions are compared to experiments and good agreement
is found.

� Comparison of the model for internal mechanics of an assembled ship bottom structure
to the results of four large-scale grounding tests. Very good agreement is found as the
discrepancy between measurements and theory is only in the order of 5 % for the
energy absorption and 15 % for the penetration to fracture.

� Comparison of the results of the total grounding model with an accidental grounding
event that happened on a reef in 1975. Uncertainties of the input data are discussed and
there is shown to be very good agreement between calculated and observed damage.
Calculation examples illustrate the necessity of taking proper account of the coupling
between external dynamics and internal mechanics.

� A study of the energy absorption of the individual members in four di�erent ship bot-
toms during a grounding event illustrates how steel can be used more or less e�ectively
in terms of energy absorption.



Synopsis

Form�alet med dette studium har v�ret at bidrage til forst�aelsen af grundst�dningers mekanik.
Arbejdet er delt i to hovedomr�ader:

1. Etablering af en matematisk model til bestemmelse af belastninger og skader under et
skibs grundst�dning p�a en (bl�d) sandbund.

2. Etablering af en matematisk model til bestemmelse af belastninger og skader under et
skibs grundst�dning p�a en klippegrund.

I till�g pr�senteres et kort studium af en teori til bestemmelse af det forventede �arlige
antal grundst�dninger i et bestemt omr�ade. Et afgr�nset omr�ade i Danmark unders�ges,
og der viser sig at v�re god overensstemmelse mellem beregnede og observerede antal
grundst�dninger.

De v�sentligste aspekter i arbejdet vedr�rende grundst�dning p�a sandbund er:

� Identi�kation af de v�sentligste fysiske e�ekter. Skrogbj�lken modelleres herefter
som en line�rt-elastisk Timoshenko bj�lke, og de betragtede belastninger er gravitet,
hydrostatisk tryk, hydrodynamisk tryk samt en reaktion fra grunden. Der ses bort fra
e�ekter af b�lger, propeller, ror, knusning af bov m.m.

� Etablering af en model til bestemmelse af de hydrodynamiske belastninger, under
hensyntagen til dannelsen af b�lger og lavtvandse�ekter.

� Etablering af en model til bestemmelse af grundens reaktion p�a den indtr�ngende bov.
Baseret p�a observationer fra modelfors�g er den grundl�ggende ide, at boven genererer
en porevandsstr�mning i jorden. Trykket fra porevandet p�a boven viser sig at bidrage
betydeligt til grundens kraft p�a boven.

� Udledning af de styrende ligninger for skrogbj�lken baseret p�a Timoshenko bj�lke-
teori. L�sningen bestemmes b�ade med �nit-element metoden og med modal super
position, og resultaterne af de to metoder vises at v�re �kvivalente.

� Veri�kation af den teoretiske model ved hj�lp af b�ade model-fors�g i skala 1:60 samt
stor skala fors�g med et �skefart�j.

vi
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� Sammenligning af snitkr�fter og styrke for en VLCC under en grundst�dning. Det
vises, at belastningerne induceret af en grundst�dning kan overstige skrogbj�lkens
styrke. Skrogets 
eksibilitet viser sig at v�re vigtig i en dynamisk analyse, idet den

eksible deformation a
aster kraften fra grunden, og idet der for visse grundst�dninger
viser sig at v�re en betydelig dynamisk forst�rkning af belastningerne. E�ekten af
tidevand unders�ges, og det vises, at selv en let grundst�dning kan lede til kollaps af
skrogbj�lken, hvis den efterf�lges af ebbe.

� Unders�gelse af belastninger og styrke af 6 hurtige fart�jer under en grundst�dning.
Det vises, at skrog-bj�lkens styrke og de inducerede belastninger er af samme st�rrelse.
Skibe af FRP (�bre-reinforced plastics), aluminium og st�al unders�ges, og det vises,
at jo bl�dere skroget er, des mindre er belastningerne og dermed sandsynligheden for
�del�ggelse af skroget.

De v�sentligste aspekter af arbejdet vedr�rende grundst�dning p�a klippegrund er:

� Identi�kation af de v�sentligste fysiske e�ekter. Grundst�dningsproblemet opdeles i to:
den ydre dynamik (de globale skibsbev�gelser) og den indre mekanik (den lokale knus-
ningsproces omkring den indtr�ngende klippe). Metoden anvendt til analyse af den
indre mekanik er en slags �vre-v�rdi-metode - d.v.s. ved hj�lp af en antaget deforma-
tion kan energi dissipations-raten og dermed strukturens modstandskraft bestemmes.
De v�sentligste mekanismer i den indre mekanik er friktion, materiale-brud og store
plastiske deformationer.

� Etablering af en teoretisk model for den ydre dynamik. Ved hj�lp af tidssimuler-
ing argumenteres der for at afdrift (sway) og giring (yaw) ofte kan negligeres. En
simpli�ceret model opstilles herefter for skibets globale bev�gelse over klippen under
hensyntagen til interaktionen med den indtr�ngende klippe. Modellen ser bort fra
vertikale inertikr�fter.

� Unders�gelse af mekanikken ved opsk�ring af en metalplade med en prismatisk kile.
Eksisterende litteratur for problemet gennemg�as, og tidligere udledte teorier sam-
menlignes. Dern�st udledes en teoretisk model baseret p�a en antaget deformations-
kinematik med en revnetip, b�jningsh�ngsler samt membrandeformation. Sammen-
ligning mellem den udledte teori og tre forskellige fors�g viser god overensstemmelse
over et bredt spektrum af parametre.

� Etablering af en teori for den indre mekanik af en afstivet skibsbund under grundst�dning
p�a en konisk klippe med en afrundet top. Teorien er baseret p�a en global deformations-
kinematik med kompatibilitet mellem alle strukturelle elementer. I forhold til de 
este
simpli�cerede metoder pr�senteret hidtil er modellen meget generel, idet alle kendte
skibsbunde kan modelleres under et. De v�sentligste problemer som er identi�ceret
og l�st teoretisk er: lokal pladedeformation omkring klippens top, friktion, brud, mod-
standskraft fra bundplade, modstandskraft fra longitudinale stivere, skot og dragere
og modstandskraft fra transversale rammer og skot. Adskillige af de udledte teoretiske
l�sninger er sammenlignet med fors�g, og der er fundet god overensstemmelse.
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� Sammenligning af modellen for en afstivet skibsbund med resultaterne fra �re stor-skala
fors�g. Overordentlig god overensstemmelse er fundet, idet afvigelsen mellem m�alinger
og teori er omkring 5 % for energioptagelsen og omkring 15 % for klippeindtr�ngningen
til pladebrud.

� Sammenligning af den komplette teoretiske model for grundst�dning p�a et klippesk�r
med en grundst�dning, som skete i 1975. Usikkerheder omkring input parametre
diskuteres og det vises, at der er god overensstemmelse mellem den observerede og
den beregnede skade p�a skibet. Beregningseksempler viser endvidere vigtigheden af at
tage beh�rigt hensyn til koblingen mellem den ydre dynamik og den indre mekanik.

� Et studium af energioptagelsen af individuelle elementer i �re forskellige skibsbunde
under en grundst�dning illustrerer, hvordan st�al kan benyttes mere eller mindre e�ek-
tivt m.h.t energioptagelse.
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Chapter 1

Introduction

1.1 Overview and Background

The present thesis concerning The Mechanics of Ship Grounding is a part of a greater
study with the objective of making Rational Design of Ship Structures for Accidental Loads.
Ship structures cover a range of constructions varying from fast vessels built of front edge
technology materials to very large commercial ships built according to traditional procedures
and of conventional constructional steels. With collision, grounding and �re as accidental
loads, it is clear that the �eld of Rational Design of Ship Structures for Accidental Loads
could focus on highly varying topics. Many problems within the �eld of accidental loads in
marine engineering are still unsolved and it is true that even if many resources are allocated
to the �eld, it will take years, may be even decades, before the marine community can claim
to have a fully rational design basis with respect to accidental loads. The purpose of the
present treatise has been to contribute to the understanding of ship grounding events.

Over the past decades there has been a continuous increase in the public concern about
general risk issues. The consequence of this trend is that whenever a catastrophic accident
occurs - and receives media coverage - there is an immediate political and public demand for
actions to prevent the same type of catastrophe in the future. Examples of this pattern are
seen in connection with the grounding of the Exxon Valdez and the following requirements for
double hulls and in connection with the loss of the Estonia with the following reformulations
of requirements for ferry design and operation. Many of the past improvements in safety of
marine structure have been triggered by disasters but there is a change in this trend. The
maritime society is beginning, albeit slowly, to think and work in terms of safety assessment
of individual ships instead of the very generalized prescriptive regulations which have evolved
over the past 150 years.

In line of these aspects it is clear that rational procedures for evaluating the consequenses
of accidental loads are highly desirable, not to say necessary. Figure 1.1 shows the present
causes of oil spill in US waters.

1



2 Chapter 1. Introduction

Figure 1.1: Causes of major oil spills, [33]. 'Structural' refers to all other causes than
Grounding, Collision and Fire.

As seen in Figure 1.1 the accidental loads account for 75 % of the accidents number
wise and 90 % of the pollution volume wise1. This re
ects the fact that naval architects
have accumulated a good understanding of the loads and the structural response during
normal operational conditions but have not traditionally designed tank vessels to withstand
groundings and collisions.

Accidents like the grounding of Exxon Valdez or Braer or the loss of both Estonia and
Titanic demonstrated the potential seriousness and fatality of marine accidental loads. Yet,
although the public, the governmental bodies and the marine society have long recognized
the danger of accidental loads, statistics like shown in Figure 1.1 demonstrate the need for
further work. A fundamental problem with rational consideration of grounding and collision
in rules is that there are no simple measures of a ships defense against these loads. An
idea would be to consider the statistical correlation between major design changes and the
amount of oil spilled but as indicated by the clustring in Figure 1.2, the amount of oil spilled
seems to be a random process, [25]. Within a reasonable time span this makes it impossible
to draw cause and e�ect conclusions from statistics alone and attempts of doing so would
most likely be highly reactionary with questionable e�ectiveness.

A - or perhaps the - methodology which rigorously takes into account the high level of
uncertainty and randomness of the accidental loads is normally referred to as Probabilistic
Risk Analysis. At least three steps are involved in such an analysis;

1. Hazard identi�cation, i.e. what can go wrong - what are the consequences. For example
this could be oil spill due to grounding of a tanker in a certain geographic area.

1Numbers vary some from source to source.
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Figure 1.2: Amount of oil spilled world wide 1970 - 1994.

2. Scenario identi�cation, i.e. what are the steps leading to the hazard and what is the
probability of a given hazard. The so-called fault tree is a frequently applied tool in
this part of the analysis.

3. Risk assessment, from the two analyses above calculate the product of consequense
and probability.

As an example, the result of the analysis above could be that the probability of up to 1000
tons of oil spilled along a certain coast line in one year is 10�3. Now with the risk quanti�ed
it would be up to governments, and international regulatory bodies to set up acceptance
criteria. Risks cannot be eliminated but it can be reduced to a level acceptable to society.
There are no universally acceptable risks so decision-makers have to identify levels of risk
that are tolerable. Figure 1.3 illustrates in a simpli�ed manner the concept of acceptable
vs. unacceptable risks. The positions of examples shown in the acceptance diagram are
not absolute (the cost of the clean-up after Exxon Valdez was estimated to be at least 2
billion US $, [33]). Prior to risk mitigation, the risk coordinates C1; F1 typically fall into the
'unaccaptable' region. Then to bring the risk of a certain hazard into the acceptable region
decision-makers would have the options of moving vertically or horizontally (or both) in the
risk diagram, Figure 1.3.

For the example of a grounding, a vertical translation in the diagram could be obtained
by requiring a stricter navigation of the ship - i.e. a higher degree of active safety. Likewise,
a horizontal translation could be obtained by setting requirements for the passive safety, i.e.
the response of the ship to the grounding. In aircraft and automotive industry the latter
is referred to as the structural "crash-worthiness". A cost-bene�t analysis would reveal the
cost-optimal direction to take in the diagram Figure 1.3 and the corresponding measures.

To reduce the consequences of a given grounding - i.e. move in the horizontal direction
in the diagram in Figure 1.3, governmental bodies would basically have two options; either
design criteria or performance criteria. The requirements given in OPA90 are examples of
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Figure 1.3: Acceptable and unacceptable areas of risk and approximate locations of various
accidents. ALARP means As Low As Reasonable Possible, and refers to generally societal
and socio-economic acceptable levels of risk.

design criteria (min. 2 m double hull spacing etc.) whereas the approach adopted by the
automotive industry is based performance standards to a high degree. The development in
the automotive industry is a good example of how performance standards tend to promote
new development in terms of structural and operational innovations that will result in meet-
ing or surpassing the standards. Safety standards for cars were adopted in the United States
in the early 1970s. Examples of these standards are requirements of maximum deceleration
during a 30 mile-per-hour head-on collision with a rigid barrier and amount of intrusion of
the steering wheel into the passenger compartments. To meet the standards, each manufac-
turer took a slightly di�erent approach and the highly competitive market resulted in many
innovative and ingenious approaches to crashworthiness.

However, the example of the automotive industry also shows that it takes several years of
intensive research to arrive at rational performance standards. B�ockenhauer and Egge [72]
noted the inadequacy of simple design criteria in connection with design for side collisions
and presented a procedure for evaluating the collision performance of ships. The basic idea
of the procedure is to evaluate the damage to a ship in eight di�erent collision scenarios and
assign them to a class according to their resistance against collision. Amdahl, [8] suggested a
similar procedure for design for grounding. Figure 1.4 shows the overall idea of a procedure
for evaluating a ship with respect to grounding and collision accidents. Given a speci�c ship
and the route it will be serving, the idea of the procedure is to �rst identify the hazards
of interest. Then, by collection of data, the input data should be speci�ed, for example
what is the ground topology around the route, which ship tra�c will be met, what are



1.1. Overview and Background 5

impact velocities, drafts etc. Some of these parameters are uncertain and should be given by
probability density functions. Now given detailed input parameters, both the consequences
and the likelyhoods of accidents should be calculated so that the risk can �nally be quanti�ed.

Figure 1.4: Overall procedure for evaluating a ship with respect to the grounding and collision
resistance.

Both for the overall risk analysis and for checking the performance of individual ships
as shown in Figure 1.4, it is necessary to have a methodology which de�nes the relation
between the extent of damage and grounding parameters such as impact velocity, structural
design and type of ground. In the automotive industry, full scale compliance tests ('crash
tests') are mandatory but clearly this is prohibitively expensive for ships which are normally
built in very small series. Model scale tests may seem to be the obvious alternative but
as it will be explained later, scale tests can be di�cult to interpret due to di�erent scaling
laws for plasticity and fracture. General purpose non-linear �nite element codes have proved
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their ability to simulate ship grounding on rocks, but their application is still prohibitively
time consuming for design calculations. The main purpose of the present thesis has been to
develop simpli�ed theoretical models for predicting the structural damage in a ship grounding
accident.

1.2 Objectives and Scope of the Work

With the overall objective of improving safety of ship structures with respect to acciden-
tal loads, the present treatise has merely focused on establishing a calculational procedure
for evaluating the structural crashworthiness in a grounding accident. Touched only pe-
ripherically upon, the probabilistic aspects of the accidental loads has not been given high
priority.

An overall view on groundings categorize the accidents in two major groups:

1. Grounding on soft sea beds, so-called Soft Groundings. The damage to the hull in
terms of crushing at the point of ground contact is limited but the hull girder may
fail in a global mode due to shear force and bending moment exceeding the hull girder
capacity.

2. Grounding on hard bottoms - so-called Hard Groundings. The primary concern here
is the local crushing and tearing of the ship bottom due to a cutting rock.

Together with analysis of the damage which can develop during grounding, it is relevant
to consider the residual strength and the stability of the ship in the post-accident condition.
However, the present study focuses on the loads and the damage developed during the
grounding itself.

The treatise is composed as follows:

In Chapter 2 the framework for risk analysis of a certain geographic area with respect to
grounding is presented. The model requires extension to cover calculation of consequences
but it is shown how the expected number of groundings can be calculated. With the other
results of the present treatise it should be possible to formulate a total risk assessment model
with respect to grounding in a certain area.

Chapter 3 sets up a theoretical model for analysis of ship grounding on soft sea beds.
The modelling of the soil response to the penetrating bow is di�cult and a phenomenological
model is proposed. The hull girder is modelled by a linear elastic Timoshenko beam theory.

Chapter 4 presents a veri�cation of the theoretical soft grounding model. Analysis of
results from both model and full scale tests shows good agreement between theory and
measurements.
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Chapter 5 presents numerical results for grounding of a large tanker and of six di�erent
fast vessels made of steel, aluminium and �bre reinforced plastics. For all ship types - and
in particular for the very large tanker - it is shown that a soft grounding may lead to failure
of the hull girder.

Chapter 6 gives the foundation for the theoretical model for grounding on rocks. It is
argued that it is advantageous to develop models for the external dynamics and internal
mechanics separately. As it is the force from the rock (the internal mechanics) that drives
the global ship motion there is a strong interaction between the two models which must
be taken into account. Basic equations for energy dissipation in plasticity and fracture in
a moving deformation zone are also listed. Criteria for plate rupture are reviewed and the
di�culty of theoretical modelling is illustrated. Based on results from sheet forming industry,
it is argued that a proper criterion for plate rupture is initiation of necking.

In Chapter 7 the model for the external dynamics is discussed. A pinnacle rock may
induce ship motion in all six degrees of freedom but based on results of time simulation, it
is argued that it is su�cient to consider only the surge, heave, roll and pitch motions. The
consequense of this simpli�cation is that the rock can be assumed to move in a straight line
along the length of the ship. Based on the neglect of certain inertia terms and the sway and
yaw motions, a theoretical model for the external dynamics is subsequently proposed.

Chapter 8 presents the simplest possible internal mechanics model: cutting of a bare
plate by a prismatic wedge. Despite the extreme simplicity of this problem compared to
a general grounding accident, it has received the most scienti�c attention in the �eld of
internal mechanics of ship grounding. Nevertheless, it is shown that the numerous proposed
formulas for predicting the resistance to plate cutting give very di�erent results, and only
few of the formulas are able to predict the involved forces in experiments other than those
they were derived from. A new theoretical model is proposed based on an assumed mode
of deformation. Friction has received little attention in previous works but it is shown how
the e�ect of friction and also the vertical reaction can be predicted within the framework
the present theoretical approach. The theoretical model is compared to experimental results
and it is shown to correspond well with experimental results from cutting of metal plates
varying in thickness from 0.7 mm to 25 mm.

In Chapter 9 the problem of an assembled ship bottom structure deformed by a conical
rock is adressed. Compared to cutting of a bare plate this problem is very complex. The
overall idea is to assume all structural components to follow a global mode of deformation.
A fundamental problem with the approach is to determine the extent of deformation around
the moving rock. The extent of deformation should ideally be calculated by considering
the strength of the structure around the rock but the present approach is based on failure
modes observed in large scale tests. Knowing the extent of deformation, a solution is de-
rived for the local deformation of the plating around the rock tip. The local solution gives
detailed information about frictional e�ects and the limit penetration to fracture. From the
global deformation mode, the resistance of inner bottom plating, shell plating, girders, 
oors,
longitudinals and bulkheads is derived. Some of the derived solutions are veri�ed through
comparisons with experimental results.
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In Chapter 10 the performance of the theoretical model presented in Chapter 9 is com-
pared to four 1:5 scale experiments conducted in USA by the Naval Surface Warfare Center.
The main uncertain parameter is the coe�cient of friction. By choosing this parameter to
be 0.4, which is reasonable, the discrepancy between the energy absorbtion in theory and
experiments is maximum 6 %. An accidental grounding which happened o� the coast of
Singapore in 1975 is reconstructed with the theoretical model and good agreement between
calculated and observed damage is found.



Chapter 2

Estimation of Grounding Frequency

2.1 Introduction

In connection with design for accidental loads it is important to quantify both frequency
and consequence as the societal acceptance limits are de�ned by both these quantities, see
Figure 1.3. Taking the equivalent example of the automotive industry, the performance
standards which designers have to meet may not take into account the expected likelihood
of an accident. However, if governments and regulatory bodies are to arrive rationally at
rules for design, estimation of the accident frequency becomes necessary.

Although the main focus of this thesis is on consequence calculation, the results of the
present chapter have been included to illustrate that the expected annual number of ground-
ing events in a certain geographic area can be calculated by rational but simple means. No
new theoretical models are derived in the present chapter, as the present analysis closely
follows the approach presented by Pedersen in [98]. For further examples and descriptions
of the approach, see also [19] and [91].

The pioneering work on risk models for ship grounding was conducted by Fujii and co-
workers in the early seventies, [40] and [41]. Several risk analyses concerning grounding and
collision have been presented since then, see e.g. [39], [43], [62] and [73].

2.2 Theoretical Model

In accordance with Pedersen [98], the starting point of the theoretical analysis is to divide
the scenarios leading to grounding into four main categories, Figure 2.1:

9
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I Ships following the ordinary direct route at normal speed. Accidents in this category are
mainly due to human error, but may include ships subject to unexpected problems
with the propulsion/steering system which occur in the vicinity of the �xed marine
structure or the ground.

II Ships which failed to change course at a given turning point near the obstacle.

III Ships taking evasive actions near the obstacle and consequently run aground or collide
with the object.

IV All other track patterns than Cat. I, II and III, for example ships completely out of
course due to loss of propulsion.

Figure 2.1 shows observed grounding locations in a part of the Great Belt in Denmark
over a 15-year-period. It is seen that most of the grounding events belong to category I and
II but there are also category III and IV groundings which seem to be randomly scattered
over the area.

Figure 2.1: Observed grounding events over a 15-year-period in a Danish Strait, from [98].
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In the following, expressions are presented for predicting the expected annual number of
grounding events of category I and II accidents. The fault-tree methodology presented below
could also be used to �nd the probability of category III and IV grounding events but this
aspect is left for future studies. Ships in category I and II, following an ordinary route, are
distributed over a transverse section of the waterway with some probability density function,
fi(z), where index i refers to a ship class and z is the transverse coordinate, see Figure 2.2.
The shape of fi is a strong function of the considered waterway so a major challenge of the
present approach is to de�ne rationally fi(z) along a given route. Given fi, the number of
candidates for a grounding event can be calculated as an integral of fi over the width, zmin
to zmax, of the obstacle. This is illustrated by the hatched areas in Figure 2.2. Most of these
candidates will be aware of the danger and take the necessary aversive actions before they
hit the obstacle. However, a fraction, Pc, of the candidates will fail to avoid the obstacle,
due to for example human and technical errors. The fraction Pc is normally referred to as
the 'causation probability', and it will be shown later how it can be estimated.

Figure 2.2: Illustration of model for predicting the expected number of grounding events or
collisions with �xed objects on a given ship route, from [98].

According to the model described above, the expected number of grounding events in
Category I and II can be calculated as

NI =
X

Ship class; i

Pc;iQi

Z zmax

zmin

fi(z) dz (2.1)

NII =
X

Ship class; i

Pc;iQi e
�d=ai

Z zmax

zmin

fi(z) dz (2.2)

where the following notation has been used:



12 Chapter 2. Estimation of Grounding Frequency

ai Average distance between position checks by the navigator.
d Distance from the obstacle to the bend in the navigation route. varying

with the lateral position, s, of the ship.
i Index for ship class, categorised after vessel type and dead weight or

length.
fi(z) Probability density function for the ship tra�c.
NI Expected number of category I grounding events per year.
NII Expected number of category II grounding events per year.
Pc;i Causation probability, i.e. ratio between ships grounding and ships on a

grounding course.
Qi Number of ships in class i passing a cross section of the route per year.
z Coordinate in the direction perpendicular to the route.
(zmin; zmax) Transverse coordinates for an obstacle.

Assuming that the event of checking the position of the ship can be described as a Poisson
process, the factor e�d=ai represents the probability of the navigator not checking the position
from the bend to the obstacle.

With the formulation above the expected number of annual grounding events becomes a
function of tra�c distributions, bottom topology, route layout etc. It is seen from Eq. (2.1)
and Eq. (2.2) that another important parameter is the causation factor, PC , determining how
large a fraction of the accident candidates actually run aground or hit the obstacle. The
parameter PC can be estimated on the basis of available accident data collected at various
locations and then transformed to the area of interest, or it can be found by use of a so-called
fault-tree. A fault-tree is a logical diagram which shows the relation between system failure,
i.e. an undesirable event of the tree, and failures of the components of the system. Fault
tree analysis has become a very important tool for reliability and safety analysis of complex
systems. An example of a fault tree for the current event of failing to avoid an obstacle is
shown in Figure 2.3.

From the fault tree in Figure 2.3 the causation probability is found to be Pc = 3:5 10�4.
The calculated expected number of yearly grounding events, N = NI + NII + NIII + NIV ,
can be considered the intensity in a Poisson process. The probability of no grounding events
in one year is then e�N .

2.3 Numerical Example of Frequency Estimation

In order to illustrate the application of the theory above, the ferry route in Denmark between
Esbjerg and Fan� is considered. The main data for the numerical example is given in
Table 2.1. The transverse distribution of the ship tra�c is assumed to follow a Gaussian
distribution with a mean of � and a standard deviation of �. The ferry route and the
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Figure 2.3: Fault tree for determining the probability, PC , of failing to avoid a ground or a
�xed object, [98].

surrounding banks and grounds are illustrated in Figure 2.4. The route is characterised by
the harbour area in Esbjerg, an open stretch and a narrow dredged channel to Fan�.

The standard deviation, �, of the ship tra�c is a strong function of the allowable width
of the route and in general it varies along the route. For the present problem, where the
dredged channel Loen is only 30 m wide, the standard deviation is assumed to be 5 m.
Hence, the distribution is such that there are three standard deviations from the centre of
the shipping lane to the side of the channel and only 0.2 % of the ships are therefore assumed
to be more than 15 m away from the centre of the lane. Another important parameter is
the mean sailed distance between position checks. When the ship is in the channel special
attention is required of the o�cers so the checking distance is here assumed to be 75 % of
the ship length corresponding to position checks every 8 s. When the ship is between the
channel and the harbour, less strict navigation is required so that the checking distance is
set to one ship length. Figure 2.4 shows the result of the analysis. Due to the assumption
of a standard deviation from the ship route of only 5 m, practically all the grounding events
belong to Category II, i.e. they are due to failure to change course.

The calculated expected number of yearly grounding events is 3.05 giving a probability of
no grounding events in one year of P(no grounding events) = 4.7 %. As the observed yearly
number of grounding events from 1994-1996 was 2.3 in average, there is good agreement
between theory and observations. However, the theoretical result is quite sensitive to both
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Table 2.1: Main data for calculation of the expected number of yearly grounding events for
the Esbjerg-Fan� ferry route.

Ship length, L, 49.9 m
Ship draught, T , 2.3 m
Annual number of trips (one way), Q, 12750
Assumed mean distance from route, �, 0
Assumed standard deviation from route, �, 5 m
Assumed ship lengths per check, ai=L 0.75 - 1
Causation probability, Pc 3:5 10�4

Figure 2.4: Calculated expected yearly number of groundings on the banks and channel sides
for the Esbjerg-Fan� route.

the causation factor, Pc, and to the distance, ai, between position checks. The expected
number of grounding events is proportional to Pc, and doubling the assumed distance between
checks by the navigator (1.5 ship lengths in the channel and 1 ship length on the open stretch)
increases the expected yearly number of grounding events from 3.05 to 5.81. As practically
none of the grounding events are of category I, the assumption of � and � is not critical as
long as the tra�c is concentrated around the centre of the lane.

In conclusion, work on theoretical frequency estimation is still needed in terms of calibra-
tion and validation. However, with further development, the model presented above could
be valuable for quantifying the e�ects of changing route layout, pilot requirements etc. An
integrated risk calculation model where frequency estimation is coupled with a model for
predicting the consequences of a given grounding event would provide the necessary tool
for regulatory bodies to set up rational grounding performance criteria of ships, so that the
risk level is limited to an acceptable level. The remaining chapters of this thesis are de-
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voted to the development of theoretical models for predicting the structural damage during
a grounding event.
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Chapter 3

Governing Equations for a Flexible

Ship in a Soft Grounding Event

3.1 Introduction

When a ship runs aground on a soft sea bed the principal energy absorbing mechanisms
which stop the ship are normally:

1. Deformation of the sea bed.

2. Friction between sea bed and hull.

3. Change of potential energy of the ship and the surrounding water.

4. Deformation of the hull.

5. Hydrodynamic damping.

The solution method applied here for theoretical analysis of the soft-grounding prob-
lem is numerical integration of the equations of motion for the ship, i.e. time simulation.
Alternatively, an overall simpli�ed approach based on the conservation of energy and mo-
mentum could be applied. Such an approach was presented by Pedersen, [122], and it gives
a good picture of the overall grounding mechanics. However, to obtain detailed information
about loads during the impact, it is necessary to resort to time simulation. The following
sections describe the load modelling corresponding to the �ve e�ects listed above and the
corresponding equations of motion.

Previous experimental and numerical studies, for example [93], [112] and [117], focused on
the rigid body motion of the ship. This is relevant in connection with the design of protective

17
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Figure 3.1: Coordinate systems (x; y; z) and (X; Y; Z) and de�nition of sectional forces.

islands for bridges and for the prediction of the tug-load necessary to re
oat the ship. As
the present study is focused on the loading of the ship it has been extended to incorporate
enhanced modelling of the hull girder where the hull 
exibility is taken into account. The
�nite crushing strength of the bow could also be included but as a �rst approximation it is
assumed to be rigid. The 
exible deformation of the hull girder has been determined from
Timoshenko beam theory.

It is assumed that both the centre of gravity of the structural and hydrodynamic mass
per unit length and the bending neutral axis of the hull girder can be considered as a straight
line. This line is the x�axis of a coordinate system �xed with respect to the ship and with
origin amidships. The y�axis points towards the port side and the z�axis points upwards,
see Figure 3.1. A global coordinate system, (X; Y; Z), is �xed on the ground with origin
at the point of the initial contact between bow and sea bed. Displacement and rotation in
surge, heave and pitch in the (x; y; z) coordinate system is denoted (u; w;  ). Sway and yaw
is not considered. The basic idea is to calculate accelerations in the local coordinate system,
transform these to the global system and perform time integration in the global system to
get the time history of velocities and displacements.

3.2 Loads from Water and Gravity

3.2.1 Hydrostatic Loads

By combining the loads from the hydrostatic pressure with the gravity load on the structure
in the so-called restoring load, modelling becomes simple. The ship is assumed to be in
equilibrium in the initial con�guration. Then, when a section is lifted out of the water, it
experiences a static downward load due to the di�erence between weight and buoyancy. Since
the weight is unchanged by lifting, the restoring force/moment is approximately given by
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the change of buoyancy alone1. By assuming that the sides of the hull are parallel (vertical),
the restoring load due to a static lift, w(x), of a hull section can be expressed as

qhs;z(x) = ��w g B(x)w(x) (3.1)

The assumption of vertical ship sides is good for large tankers with CB � 0:85 but for
the small fast vessels analysed later, Eq. (3.1) will only hold true during the initial impact.

3.2.2 Hydrodynamic Loads, Added Mass and Damping

Since modelling of the hydrodynamic loads on a ship is of interest in several areas of marine
engineering such as manoeuverability, seekeeping and ship vibration, a substantial amount
of literature has been published in this �eld. The characteristics for whole ships can be
determined experimentally but since this is expensive and inconvenient at the design stage,
many theoretical approaches have been attempted. The so-called 'strip-theory' is a conve-
nient approach which takes advantage of the fact that ships are normally long and slender
such that the overall 
ow pattern is two-dimensional. The ship is divided into a series of
transverse sections ('strips') and each of these strips is considered separately assuming a two-
dimensional 
ow. Determination of the two-dimensional 
ow is signi�cantly less complex
than the three-dimensional problem and several usable analytical solutions exist.

When an in�nitely long cylinder is forced to move in an oscillating heave motion on
the surface of a 
uid it is subjected to hydrodynamic pressure loads. When the motion is
harmonic with the frequency !, the force working on a unit length of the cylinder can be
expressed as

qhd;z(!; t) = �az(!) �w(t)� bz(!) _w(t) (3.2)

where the coe�cients az(!) and bz(!) are denoted 'added mass' and 'damping'. The
added mass is seen to be the part of the force which is in phase with the acceleration and the
damping is the part in phase with the velocity. Eq. (3.2) holds true for a harmonic motion
with a well de�ned frequency. In the general case of a transient motion (Tick [126], Petersen
[101]) the hydrodynamic load can be written

qhd;z(x; t) = ��z(x) �w(x)�
Z t

0
hz(x; �) f _w(x; t� �)� _w(x; t� � = 0)g d � (3.3)

1Actually, the distance from the centre of gravity, CG, to the centre of buoyancy, CB, generates a moment
with the rotation of the hull, but for the pitch motion this e�ect is small.
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Figure 3.2: Experimental data for added mass and damping for a 310 m tanker (CB = 0:85) at
restricted water depths. From Oortmerssen, [92] and [131]. The non-dimensional quantities

are de�ned as a0z = az=�wr, b0z = bz=(�wr
q
g=L) and � = h=T .

where �z is the added mass at in�nite frequency:

�z(x) = lim
!!1 az(x; !) (3.4)

and hz(x; t) is the unit response function:

hz(x; t) =
2

�

Z 1

0
bz(x; !) cos!t d! (3.5)

where bz(x; !) is the two-dimensional damping of the cross-section in heave at frequency
!. Since the damping thus comes as a weighted integral of the velocity history from the
beginning of the motion, it is often denoted a 'memory e�ect' - contrary to the added
mass, it is a function of the past. With Eq. (3.3), the problem is now determination of the
added mass and the damping coe�cients, az(!) and bz(!). As mentioned, several theoretical
methods exist for unrestricted water depth but as groundings - by their very nature - occur at
restricted water depths, this must be taken into account. Figure 3.2 shows results presented
by Oortmerssen, [92] and [131], for added mass and damping in heave for a ship at di�erent
water depths.

It is seen that for a water depth to draught ratio of � = h=T = 1:05, the added mass is
a0z � 5, indicating an increase due to restricted water depth by a factor of approximately 5.
Likewise, the e�ect of the restricted water depth on the damping is seen to be signi�cant.

The approach adopted here for calculation of the damping is to use strip theory together
with the data of Figure 3.2. The graphs for b0z shown in Figure 3.2 are transformed according
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to Eq. (3.5), and the unit response function for a ship section with a given depth to draught
ratio, �, is then found by interpolation.

The added mass at in�nite frequency is determined by a slightly more sophisticated
approach. At in�nite water depth, the added mass can be determined with good accuracy
by use of the results of Lewis 1929, [68]. By conformal mapping of the solution for potential

ow around a cylinder, Lewis found the added mass at in�nite frequency to be given by

�z = CV �w As (3.6)

where As is the submerged cross sectional area of the considered section and CV is de�ned
from the draught to breadth ratio � and the sectional area coe�cient CS as

CV =
(1 + a1)

2 + 3a23
1� a21 � 3a23

C =
�
3

2
(1 + �)�

q
1=4(1 + �)2 + 2�(1� 4Cs=�)

��1
a1 = C(1� �)

a3 = C(1 + �)� 1

� = 2T=B

CS = As=BT

A semi-empirical expression for the modi�cation of added mass due to restricted water depth
was given by Prohaska, [104], as

�z(h; T; CS)

�z(h =1; T; CS)
= 1 + 2(CS � 0:2)

�
T

h

�2
(3.7)

The expression is based on experiments with � = h=T exceeding 1.5 and it is seen to
have a maximum of 2.6 when � = CS = 1. Thus, it does not depict the behaviour shown in
Figure 3.2 for very small bottom clearances. The idea here is to retain Prohaska's functional
dependence on the sectional geometry (i.e. the 02(CS�0:2)0 term ) and �nd another function
for the dependence on � = draught=depth based on the results presented by both Prohaska,
[104], and Oortmerssen, [92]. The �nal result for the modi�cation of added mass at in�nite
frequency due to restricted water depth becomes

�z(h; T; Cs)

�z(h =1)
= 1 + 0:54 (Cs � 0:2)

�
1

� � 1

�0:91
(3.8)
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To limit the added mass at the point of contact (� = 0) in Eq. (3.8)) it is necessary
to take into account the three-dimensional 
ow near the ends of the ship. Based on the
results of Madsen, [74], and Oortmerssen, [92], the maximum value of the correction factor,
Eq. (3.8), is here assumed to be 6.0. As this large added mass only occurs in a very limited
area around the point of contact, the �nal results are not sensitive to this assumption so its
validity will not be discussed in further detail.

3.3 Ground Reaction

The greatest challenge of developing a theoretical model for grounding on soft sea beds is
establishing a model for calculation of the soil reaction. As the soil reaction induces the hull
girder loads and eventually causes the ship to stop, it is of paramount importance to have a
good model for the response of the ground to the penetrating bow.

In the analysis presented by Pedersen, [122], the bow was assumed to move in the plane of
the undisturbed slope and an e�cient coe�cient of friction was adopted. To obtain a good
correspondence between theory and model tests, an e�ective coe�cient for the bow/soil
interaction equal to � = 0:78 was assumed. The coe�cient of friction between steel and
sand is typically 0.3 - 0.4 so this e�ective coe�cient of friction includes the normal pressure
on the bow which must thus be quite signi�cant. In the present analysis it is necessary to
have a more sophisticated model for the soil behaviour so that it can be applied to a time
simulation scheme.

The stopping force acting on a beaching ship is the result of ruptures in the soil in the
areas of contact between bow and soil. The mechanics of this rupture is complicated, which
is illustrated by an example where a ship with a cylinder bow with vertical sides is rammed
horizontally into a slope of sand of 1:6, see Figure 3.3. The bow is semi-circular in shape
with a radius of r = 378mm and it has a 
at bottom. The sand is very uniform in gradation
with a mean diameter of dm = 0:125 mm, permeability coe�cient k = 9 � 10�5 m=s and
frictional angle ' = 39o. The ship is forced with a constant velocity and it is locked in the
horizontal position so that it cannot heave or pitch. Figure 3.3 shows the horizontal and
vertical soil reactions for di�erent impact velocities as functions of the horizontal position
for both dry and submerged slopes.

It is noted that the force in the submerged case is 10 - 20 times greater than for the cor-
responding dry case. Figure 3.3 also shows that the reaction is clearly a function of impact
velocity. It could be claimed that the dependence on impact velocity is due to the change in
momentum of the soil being pushed by the bow but since no dependency is seen on impact
velocity for the dry sand is observed, this cannot be the case. The results are important
because they show that in a grounding event on a sand beach, the behaviour of the soil is
strongly in
uenced by the pressure of the 
uid present in the pores of the material. This
in
uence of pore pressure is discussed by Zienkiewicz et al., [87].
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Figure 3.3: Soil reactions on a penetrating bow. Dry and submerged slopes, di�erent veloc-
ities, [94].

In classical soil rupture theory, conditions are assumed to be either drained or undrained.
If conditions are drained an incremental load increase on a soil element is carried solely by
additional stresses in the grain skeleton ('e�ective stresses'), and if conditions are undrained
an additional load is carried by an additional pressure in the pore 
uid alone. Both drained
and undrained conditions are considered independent of the time history of the load - in this
case of the impact velocity. According to Figure 3.3, which shows a clear dependence on
impact velocity, neither of the two theories would therefore be suited for modelling of ship
grounding events. The consolidation theory is a theory which includes the time variance of
loads and deformations. Biot, [20] and [21], presented a general set of equations governing
the behaviour of a saturated linear elastic porous solid under dynamic conditions. For
standard geotechnical consolidation problems, however, the grain skeleton is most often
assumed to be linear-elastic and inertia forces neglected. Obviously, these restrictions do
not apply to grounding problems where strains are far beyond the elastic limit. Biot's
equations can be generalised to non-linear material behaviour if the constitutive relation
is written incrementally. A fully consistent theoretical analysis of a ship grounding event
would require numerical solution of these equtions, for example by use of the �nite element
method. The solution would include phenomena like elastic compression, rupture with very
large strains, liquefaction, dilatation of the soil in rupture and 
ow of pore water. Use of such
a model for grounding simulations would require extensive computer facilities and would be
prohibitively time consuming. Therefore, the soil mechanics model used here has been based
on very substantial simpli�cations and it is to some extent phenomenological.

The porewater creates strong e�ective stresses in the soil which act on the hull both
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as normal and tangential stresses. The question is how these large e�ective stresses are
generated. Two mechanisms seem possible:

1. At the rupture, the sand dilates and thus creates a large suction in the pore water
in the rupture zones. This suction results in a corresponding increase in the e�ective
stresses. This phenomenon can be observed in an undrained triaxial test.

2. During impact, the grain skeleton is compressed and pore water is squeezed out in the
compression zone creating an additional pore water 
ow. This pore water builds up
large e�ective stresses in areas of the grain skeleton. In other areas lique�ed zones are
formed.

The present approach is based on the latter hypothesis although it is recognised that the
suction generated by the soil dilatation is present, [93] and [94].

3.3.1 Modelling of Soil Response

According to the hypothesis above, the soil resistance is governed by pressure in the pore
water when the impact velocity is relatively high. At low velocities, on the other hand, the
grain skeleton must carry the load alone corresponding to the drained case. These re
ections
are implemented in the present model by assuming that the total force from the soil can be
found as the sum of two individual contributions:

1. A force from the pressure in the pore water around the bow. It is assumed that pore
water is pressed into the grain skeleton, corresponding to the motion of the bow and
that velocities of the sand can be neglected.

2. A force corresponding to a drained rupture around the bow.

The frictional stress on the bow is assumed to be a constant fraction of the normal pres-
sure. Below the basic theory for calculation of the normal pressure is given.

Force from Pore Water Pressure

Equilibrium of the 
uid phase in saturated soils can be expressed as ([21], [37])

�p;i = �w(1 + e)

e
�vi + �wg

�
1

k
+ b _wi

�
_wi (3.9)

where
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b empirical constant accounting for non-linearities in Darcy's law
at high 
ow velocities,

e void ratio, i.e. ratio of pore volume to grain volume,

;i spatial derivative with respect to the i'th component,
k permeability coe�cient for laminar 
ow (Darcy 's law),
p pore pressure (above hydrostatic pressure),
vi absolute average displacement of 
uid phase. _vi is the absolute,

�lter velocity, i.e. the appropriate volume rate divided by the total area
wi average pore water displacement relative to solid phase,

wi = vi � ui, where ui is the absolute displacement of solid phase,
_wi relative �lter velocity, i.e. appropriate volume rate divided by

total area,
�w density of water.

The term b _wi was introduced by Engelund, [37], to account for non-linearities in Darcy's
law at high 
ow velocities. In [37] it is shown that the linear permeability coe�cient can be
calculated as

k =
e2(1 + e)

�

g d2

�w
(3.10)

and the correction factor, b, as

b = �
(1 + e)2

e3
1

g d
(3.11)

in which d is the mean diameter of grains and �w is the kinematic velocity of water. To
account for the type and the gradation of the sand, the coe�cients � and � are de�ned as

(�; �) =

8><
>:

(800; 1:8) for spherical equal-sized grains
(1000; 2:8) for uniform, round grains
(1500; 3:6) for irregular, edged grains

(3.12)

For a stationary 
ow of pore water at moderate 
ow velocities, Eq. (3.9) reduces to the
usual form of Darcy's law,

�p;i = �wg

k
_wi (3.13)
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Eq. (3.9) can be linearised by introducing an e�ective permeability coe�cient, ke, de�ned
as

1

ke
=

1

k
+ b � j _waj (3.14)

where _wa is an average 
ow velocity. In the following it is assumed that the displacement
of the grain skeleton is small compared to that of the pore water. Then wi = vi and Eq. (3.9)
becomes

�p;i = �w(1 + e)

e
�vi +

�wg

ke
_vi (3.15)

Application of the continuity condition, _vi;i = 0, to Eq. (3.15) yields the Laplace equation:

r2p =
@2p

@x2
+
@2p

@y2
+
@2p

@z2
= 0 (3.16)

which then becomes the governing equation for the determination of the pore water 
ow.
Several solutions of Laplace's equation, Eq. (3.16) exist for di�erent forms and boundary
conditions. Examples for ship sections were given in the form of added mass in Eq. (3.6).
Many other examples have been published, for instance by Lamb [65], Newman [84] or
Landweber [66].

To illustrate how the pore water pressure acts on a bow, the simple example shown in
Figure 3.4 can be considered.

A plane problem is considered but the method is the same for a three-dimensional prob-
lem. A semi-circular body of width B, is at velocity Ub and acceleration _Ub pressed into a
saturated soil. The boundary conditions are:

1. No 
uid 
ow into the bow.

2. The pressure is zero at the soil surface.

The solution to this problem can be found in [88]. Expressed as a function of a radial
coordinate r and an angular coordinate �, Figure 3.4, the pressure on the bow is

p(r; �) =
1

4

B2 cos�

r
� (3.17)
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Figure 3.4: Pore water 
ow around a section of a semi-circular bow.

where

� =
�w(1 + e)

e
_Ub +

�wg

ke
Ub (3.18)

Integrating the vertical component of the pressure over the bow surface gives the total vertical
force:

FP =
Z �=2

��=2
(B=2) p(r = B=2; �) cos� d� =

1

2

� B2

4
� (3.19)

The resulting force is often expressed in terms of an added mass coe�cient CM (CV in
Eq. (3.6)) and a volume of reference, VR. In the above example of a circular body with
diameter B, CM = 1 and VR = (�=4)B2 so that Eq. (3.19) could be written in a more
general way as

Fp =
1

2
Cm VR � (3.20)

The factor of 1=2 is introduced when CMVR is calculated for a completely immersed body
subjected to 
uid pressure on both sides. Added mass characteristics, CMVR, are tabulated
for a large number of geometries and boundary conditions, and Eq. (3.20) therefore repre-
sents a very useful and convenient form for calculation of the result of pore water pressure
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in the numerical scheme.

Force Corresponding to Drained Rupture

During grounding in normal sand, the pore water pressure is governing the soil reaction.
Only at very low velocities and when the ship has stopped, the conditions are drained and
the load is carried by the grain skeleton alone.

The parts of the hull penetrating the soil are approximated by a series of plane surfaces
and with these assumptions, standard formulas for drained rupture in saturated sand can
be used. Rupture around the bow is clearly three-dimensional but the assumption of plane
strain is made here with an empirical correction due to three-dimensionality.

If it is that the rupture is fully developed and that strain hardening can be neglected, the
normal e�ective soil pressure on the sides can be calculated by use of the theory for passive
soil pressure on plane walls. The soil pressure, es, normal to the wall in the depth, dp, is

es = 
0 dpK
 (3.21)

where 
0 is the submerged weight of the soil and the rupture coe�cient,K
 , is a function of
frictional angle, slope inclination and surface roughness as it is given in standard geotechnical
literature (e.g. [47]). Eq. (3.21) can be integrated to give the normal force on the bulb and
the ship sides.

The maximum possible drained soil reaction on the ship bottom is found from the theory
of load capacities of foundations. A strip of length dl and width B can carry the load

dQ =
1

2

0N
 B

2 dl (3.22)

where the coe�cient N
 is given in standard geotechnical tables (e.g. [47]). Integration
of Eq. (3.22) along the length of the contact area gives the load capacity, Q, based on the
assumption of two-dimensional rupture. To compensate for three-dimensional e�ects, Q
is reduced by an empirical factor of s
 = (1 � 0:4Bmax=Lmax) where Bmax and Lmax are,
respectively, the maximumwidth and the maximum length of the contact area (Bmax=Lmax <
1), [48]. This maximum load, Qmax = s
 Q, is not necessarily reached over the whole contact
area of the ship bottom - in some areas the ground is elastically compressed and in other
areas the rupture is fully developed. Therefore, the loading and unloading behaviour up to
and from the maximum load has to be de�ned. This is particularly important in the �nal
phase where equilibrium between the hydrostatic forces on the ship hull and the drained
soil reaction on the ship bottom has to be reached. From tests with passive soil pressure on
plane walls it is known that the maximum soil pressure is mobilised after a displacement of
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approximately 1 - 5 per cent of the height of the wall. On this basis, it is assumed here that
the load, Qmax, corresponding to the fully developed rupture is reached after a compression of
a certain fraction, �, of the foundation width, Bmax. Correspondingly, unloading from Qmax

is assumed to occur over a distance of � Bmax. It turns out that the grounding behaviour is
quite insensitive to the choice of � so that a �xed value of � = 0:03 is used.

3.3.2 Numerical Implementation

The grounding behaviour is quite sensitive to the bow geometry and the numerical model
must therefore include a reasonable representation of the actual geometry. Many bulbous
bows have the shape of a half-sphere mounted on a cylinder and this is easily represented
mathematically. The rest of the bow often consists of double curved surfaces. Such general
shapes cannot be de�ned by simple analytical functions. In the present numerical model the
idealisation shown in Figure 3.5 is used. The soil pressure on a V-bow is assumed to work
on the ship bottom and on the plane sides de�ned by the points A, B and C in Figure 3.5.
When a bulbous bow is considered, an additional soil reaction on the front spherical part is
also calculated.

Figure 3.5: Idealisation of V-bow and bulbous bow used in calculation model.

As shown in Figure 3.1 the ship is assumed to sail perpendicularly onto a sloping sea bed
bottom of a bi-linear shape.

3.4 Structural Response by Modal Analysis Approach

It is assumed that the structural behaviour of the ship hull can be modelled by linear
Timoshenko beam theory. It is shown later that the linear elastic limit of the hull girder
may actually be exceeded but it is assumed a priori that the hull girder response is purely
elastic.
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3.4.1 Loads

In addition to the loads from the ground and the surrounding water described previously,
inertia loads are here treated as external loads in the usual manner. If the added mass in
surge is denoted �x, the translational and angular momentum vectors for a section of unit
length are

~B(x) = [(m+ �x) _u; 0; (m+ �z) _w] (3.23)

~I0(x) =
h
0; jy(x) _ ; 0

i
(3.24)

where m and jy are structural mass and moment of inertia per unit length respectively.
The inertia forces acting on a segment of the hull can now be determined by expressions
formulated in vector form as

~qi(x) = �@
~B

@t
� ~! � ~B (3.25)

~mi(x) = �@
~I0
@t

� ~! � ~I0 � ~U � ~B (3.26)

where ~U = ( _u; 0; _w) is the translatory velocity of the section and ~! = (0; _ ; 0) is the instan-
taneous angular velocity in the instantaneous moving local coordinate system. By use of
Eqs. (3.23, 3.24), Eq. (3.25) and Eq. (3.26) can be transformed to scalar form:

qi;x(x) = �(m + �x) �u� (m+ �z) _ _w (3.27)

qi;z(x) = �(m + �z) �w + (m+ �x) _ _u (3.28)

mi;y(x) = �jy � + (�z � �x) _u _w (3.29)

The reaction from the ground results from a soil pressure on a �nite area of the hull but since
the contact area is relatively small for the considered types of grounding, it is convenient
to condense the soil pressure to a load vector, [Fx;G; Fz;G;My;G], by using the Dirac delta
function, �. All in all, the distributed loads along the hull girder are then

qx(x) = �(m + �x) �u� (m + �z) _ _w + �(xc)Fx;G (3.30)

qz(x) = �(m + �z) �w + (m + �x) _ _u� �w g B(x)w(x)

�
Z t

0
hz(x; �) f _w(x; t� �)� _w(x; t� � = 0)g d� + �(xc)Fz;G (3.31)

my(x) = �jy � + (�z � �x) _u _w + �(xc)My;G (3.32)

where xc is the position of the point of attack for the soil reaction force.
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3.4.2 Dynamic Timoshenko Beam Equations

If the coupling between axial deformation and vertical bending of the hull beam is neglected,
the condition for equilibrium of an in�nitesimal element of the hull girder in the x�direction
gives

@

@x

"
EA

 
1 + �

@

@t

!
@u

@x

#
= �qx(x) = (m + �x)�u+ (m+ �z) _ _w � �(xc)Fx;G (3.33)

Figure 3.1 shows positive directions for the sectional forces. Here E denotes Young's
modulus, A = A(x) is the e�ective cross-sectional area of the hull, � is a structural damping
coe�cient. If the Timoshenko beam theory is used, the corresponding equations for moment
and vertical equilibrium are
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!
= (3.34)

�my(x) = jy � + (�x � �z) _u _w � �(xc)My;G

and

@

@ x

"
�kzGA

 
1 + �

@

@t

! 
@w

@x
+  

!#
= �qz(x) = (3.35)

(m+ �z) �w � (m + �x) _ _u+ �w g B w �
�(xc)Fz;G +

Z t

0
hz(x; �) f _w(x; t� �)� _w(x; t� � = 0)g d�

Here Iy = Iy(x) denotes the cross sectional moment of inertia, kzA = kzA(x) is the vertical
shear area, G is the material shear modulus.

3.4.3 Solution Methodology

The solutions of Eqs. (3.33, 3.34, 3.35) will be sought in the form

u(x; t) = ~u0(t) +
NX
i=1

gi(t) ui(x)

w(x; t) = ~w0(t)� x ~ 0(t) +
MX
i=1

fi(t)wi(x) (3.36)

 (x; t) = ~ 0(t) +
MX
i=1

fi(t) i(x)
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where ~u0(t), ~w0(t) and ~ 0(t) denote rigid body surge, heave and pitch motions, respectively,
and f(ui(t); wi(t);  i(t)) ; i = 1; 2; : : :g are the normalised eigenfunctions associated with free
vibrations of the ship in water.

The eigenfunctions ui(x) are determined from the eigenvalue problem consisting of the
di�erential equation and the boundary conditions, respectively:

� (EAu0i)
0
= 
2

a;i (m + �x) ui (3.37)

(EAu0i)x=xaft = (EAu0i)x=xforw = 0 (3.38)

where 
a;i is the i
0th eigenfrequency for the longitudinal vibration and 0 denotes di�eren-

tiation with respect to x. Note that the added mass, �x, is at in�nite frequency, i.e. it is
independent of 
a;i. The eigenfunctions can be normalised so that they satisfy the orthonor-
mality condition:

Z
L
ui (m+ �x) uj dx = �ij (3.39)

Similarly, the eigenfunctions (wi;  i) are determined from the following di�erential equations:

�(EIy 0)0 + kzGA (w0 +  ) = 
2jy (3.40)

� [kzGA (w0 +  )]
0
= 
2 (m+ �z) w (3.41)

with the boundary conditions

(EIy 
0)x=xaft = (EIy 

0)x=xforw = 0 (3.42)

[kzGA (w0 �  )]x=xaft = [kzGA (w0 �  )]x=xforw = 0 (3.43)

Since this eigenvalue problem is self-adjoint, the normalised eigenfunctions fwi;  ig and
fwj;  jg corresponding to the eigenvalues 
2

i and 
2
j , respectively, ful�l the following or-

thonormality relations:

Z
L
f ijy(x) j + wi (m+ �z)wjg dx = �ij (3.44)

Z
L

�
 i
�
EI 0j

�0
+  ikzGA

�
w0j +  j

�
+ wi

h
kzGA

�
w0j +  j

�i0�
dx = 
2

i �ij (3.45)

where �ij is Kronecher's delta.
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The boundary conditions in Eqs. (3.38, 3.42 and 3.43 ) imply that the axial force, the
bending moment and the shear force are zero at the forward end of the hull. The axial
deformation turns out to be negligible and certainly, the bending moment at the forward
end is small compared to the maximum bending moment in the hull girder. The shear
force, on the other hand, attains its maximum value at the point of contact, so by using
the eigenfunctions for a free-free beam a somewhat erroneous representation of the shear
deformation at the forward part of the hull must be expected. The validity of the modal
super-position approach was therefore checked by a �nite element approach, as described
later.

The solution assumption, Eq. (3.36), is now substituted into the governing equations,
Eqs. (3.33, 3.34, 3.35). Multiplication of the resulting Eq. (3.33) with one eigenfunction at
the time followed by integration over the length of the ship leads to the governing equation
for the longitudinal rigid body motion:

Mxx
�~u0 +Mzz

�
_~w0
_~ 0 � xgz

_~ 
2

0

�
= Fx;G(t) (3.46)

where

Mxx =
Z
L
fm(x) + �x(x)g dx (3.47)

Mzz =
Z
L
fm(x) + �z(x)g dx (3.48)

xgz =
Z
L
fm(x) + �z(x)g xdx=Mzz (3.49)

It is assumed that the quadratic terms ( _w _ ) can be neglected. The amplitude functions
gi(t) for the longitudinal vibrations can then be found by solving the following second order
di�erential equations:

�gi(t) + �
2
ai _gi(t) + 
2

aigi(t) = Fx;G � ui(xc) (3.50)

Performing analogous multiplications and integrations to Eqs. (3.34, 3.35) gives the
following equations for the heave and pitch rigid body motions:

Jy
�~ 0 + (Mxx �Mzz) _~u0 _~w0 + xgzMzz

�
_~u0
_~ 0 � �~w0

�

��w g Sw ~w0 + �w g Iw ~ 0 =My;G + xc Fz;G (3.51)

+
Z t

0
hzx(�)

n
_~w0(t� �)� _~w0(t� � = 0)

o
d�

�
Z t

0
hzx2(�)

�
_~ 0(t� �)� _~ 0(t� � = 0)

�
d�
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and

Mzz
�~w0 �Mxx

_~u0
_~ 0 � xgzMzz

�~ 0 � �w g Sw ~ 0 + �w g Aw ~w0 =

Fz;G +
Z t

0
hz(�)

n
_~w0(t� �)� _~w0(t = 0)

o
d� (3.52)

+
Z t

0
hzx(�)

�
_~ 0(t� �)� _~ 0(t = 0)

�
d�

where

Jy =
Z
L

n
jy(x) + x2 (m(x) + �z(x))

o
dx

Aw =
Z
L
B(x) dx

Sw =
Z
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hz(�) =
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hzx(�) =
Z
L
x hz(x; �) dx

hzx2(�) =
Z
L
x2 hz(x; �) dx

It must be noted here that the governing equations for the rigid body motion, Eqs. (3.46,
3.51 and 3.52), correspond to those derived for example by Abkowitz, [1].

Utilising the orthonormality relations, Eq. (3.44), gives the governing equations for the
amplitude functions of the transverse vibration modes:

�fi(t) + �
2
i
_fi(t) + 
2

i fi(t) = Fz;G(t)wi(xc) +My;G(t) i(xc) (3.53)

In the derivation of Eq. (3.53), the terms which are quadratic in the structural vibration
amplitudes are neglected and it is assumed that the natural frequencies, 
i, are so high that
the memory e�ects represented by the convolution integrals can be neglected.
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3.5 Structural Response by the Finite Element Ap-

proach

With the capabilities of modern computers, the �nite element method has become the most
popular numerical approach in structural mechanics. It was included in the present study to
check the validity of the modal analysis approach. As for the modal analysis, the structural
response is here modelled by application of the linear Timoshenko beam theory in accordance
with Pedersen and Jensen, [89].

3.5.1 Solution Methodology

The overall idea of the method is to discretize the structure into a series of nodal points
and connecting elements. The deformation of the structure is de�ned by the displacements
and the rotations of the nodal points and the assumed deformation �elds for the elements.
Since each nodal point has six degrees of freedom at the most, the problem of �nding the
deformation of a continuous structure has been reduced to calculating the displacement and
rotation of a �nite number of points.

Knowing the sti�ness and inertia of the connecting elements, global equilibrium for the
structure can be expressed in matrix form as

M � �q +C � _q +K � q = Q (3.54)

whereM , C and K are the inertia, damping and sti�ness matrices, �q, _q and q are the
second, �rst and zeroth derivatives of the displacement and rotation vector and Q is a vector
containing global external loads (i.e. forces and moments) on the structure.

Eq. (3.54) can be set up for general systems and examples of impressive solutions for
very complex problems of structural crashworthiness are shown in Chapter 10. The most
commonly used method for solving Eq. (3.54) for very dynamic problems like a car crash or a
ship collision is normally referred to as 'the explicit method'. It is the least ingenious method
(and the one used here): simply put everything except inertia terms into Q, solve for the
accelerations and integrate these twice to obtain velocities and displacements as a function
of time. As mentioned, the method has proved applicable to highly dynamic problems, but
it is normally not e�cient for �nding a (near) static equilibrium where inertia terms are not
dominant.
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3.5.2 Sti�ness and Inertia of a Timoshenko Beam Element

Due to the varying sti�ness and mass of the hull girder, it is divided into a number of beam
elements. If the longitudinal deformation (not displacement) is ignored, each beam element
has only two degrees of freedom, (wz; �y) = (w; �), for the 
exible deformation. Cubic
interpolation functions are used in accordance with the approach of Jensen and Pedersen
[89]. By means of the notation M and l for the element mass and the length, G for the
material shear modulus and

�y = EIy=kzGAl
2

�y = 1=(1 + 12 �y)

�y = (1 + 3 �y)�y

�y = (1� 6 �y)�y

the element sti�ness matrix can be written as
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and the elements of the inertia matrix as
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No transformations are needed, so the element matrices are assembled directly into the global
sti�ness and inertia matrices, which become banded with a width of four. Note that the
element mass includes the added mass so that M =

R
l(m+ �z)dx.

3.5.3 Loads

As mentioned previously, the loads acting during the grounding are the ground reaction and
the hydrostatic and hydrodynamic pressure. Hydrodynamic damping is neglected for reasons
given in Chapter 4 and the hydrodynamic loads therefore enter the equations of motion as
added mass in M . As in the modal analysis, the ground reaction is assumed to attack the
structure in a nodal point (the foremost point) and is thus easily included in the system of
equations. The hydrostatic loads are calculated from Eq. (3.1). By denoting the intensity
of the vertical line load at the two nodal points of an element pz1 and pz2 and assuming a
linear variation between the nodal points, the corresponding nodal forces are derived in [89]:
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3.6 Grounding-Induced Sectional Forces

The following two sections present theory for calculating the grounding induced sectional
forces. The theory is divided into two parts although the governing equations are the same.
The �rst section deals with the sectional forces during the grounding process, i.e. during
those few seconds while the ship is being brought to a stop by the ground reaction. As
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indicated above, the equilibrium of the hull girder during this process is determined both
by static and dynamic e�ects. After the ship has stopped it rests on the sea bed until it is
re
oated and meanwhile the hull is subjected to the forces of wind, waves and tidal action.
The sectional forces during this period, which may be up to several days, are considered in
the second part. The analysis is split into two parts because the solution methodology is
fundamentally di�erent. During the grounding the accelerations are relatively large and the
solution can be found by explicit integration of accelerations over time. The static solution
after the grounding is independent of time and is considered as the equilibrium position of
the ship where the bow lift is equal to the bow lift when the ship velocity has diminished to
1/1000 of the initial velocity.

3.6.1 Sectional Forces during the Grounding Process

The equations governing the ship motion during the grounding were set up above. Once the
rigid body displacements and the 
exible deformations are known, the sectional forces could
be found from the constitutive relations

Nx = EA
@u

@x
(3.57)

Qz = kzGA

 
@w

@x
+  

!
(3.58)

My = EIy
@ 

@x
(3.59)

This approach works for the �nite element solution but it turns out that in a modal
analysis, a very large number of eigenfunctions and stations are needed for accuracy and
convergence ofQz andMy. This problem, which is caused by the necessity of using derivatives
of approximate eigenfunctions, is e�ciently overcome by considering the overall equilibrium
of the aft part of the hull, thus by working with integrals instead of derivatives. Equilibrium
is formulated as

dNx

dx
= �qx (3.60)

dQz

dx
= �qz (3.61)

dMy

dx
= Qz �my (3.62)
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Since the boundary conditions at the aft end of the ship are very simple:

Nx(x = �L=2) = 0 (3.63)

Qz(x = �L=2) = 0 (3.64)

My(x = �L=2) = 0 (3.65)

it is convenient to integrate Eqs. (3.60 - 3.62) from x = �L=2 with the loads given by
Eqs. (3.30 - 3.32).

3.6.2 Sectional Forces in Final Stopping Position

Even if a ship hull survives the loads during the actual grounding, the following additional
loads from tide and waves may be fatal. In several of the large disastrous grounding accidents
(for example that of the Braer), the hull damage was continuously increased over a long
period of time due to waves acting on the ship while stuck on the cli�s. Modeling of such
a behaviour would be very di�cult to present in a generally applicable form, so the present
study does not include any attempts to establish models for such a behaviour. Instead, the
much simpler case of grounding followed by a receding tide is considered.

Figure 3.6 shows an example of a ship grounding event where the e�ect of a receding tide
was very signi�cant. The shown ship, the Else Terkol, is supported at two points close to
the ends. This condition would be critical for the strength of the hull girder for many ships.

The sectional forces after the ship has stopped will be analysed here simply by considering
loads due to an instance of static lifting at a certain point of the hull. This lifting arises
partly from the grounding itself and partly from a tide following the grounding.

In the analysis presented by Pedersen, [122], where the hull was assumed to be rigid and
have vertical sides, linear expressions were derived for the maximum sectional forces due to
the static lift at a certain point of the ship bottom. For a 
exible hull girder, however, the
sectional forces give rise to a deformation which changes the loads. In the present section, the
e�ect of this 
exible deformation is investigated. As in the previous sections, it is assumed
that the ship runs aground on a slope and rests on the bow, i.e. xc � L=2. The displacement
of a section of the hull is written in a form similar to Eq. (3.36):

w(x) = w0 � x 0 + wf(x) (3.66)
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Figure 3.6: Grounding of the Else Terkol in the Bristol Channel. The tide is 8 m.

where (w0,  0) is the rigid body lift and rotation measured amidships and wf(x) is the
additional 
exible deformation. The kinematic boundary conditions of the 
exible problem
are chosen to be wf = 0 at x =+

� L=2. The 
exible deformation is found by use of the �nite
element method. Faster and more sophisticated solution methods could be found but for the
present analysis, which only requires few calculations, the �nite element method is considered
easy to implement. The element sti�ness matrix for a prismatic Timoshenko beam element
was given in Section 3.5. Generally, the �nite element or sti�ness method proves impractical
for problems where insu�cient kinematic boundary conditions are present - for example in
an overall analysis of an aeroplane or a ship as in this case. The global sti�ness matrix is
then singular and arti�cial boundary conditions - for example based on symmetry conditions
- have to be introduced. This introduction of boundary conditions was not necessary for the
dynamic part of the grounding because the inertia matrix in Eq. (3.54) is non-singular,
regardless of boundary conditions. In the present analysis, the problem is overcome by
considering a beam, which is simply supported in both ends. The beam is indeed simply
supported at the fore end but the �nal solution must have zero reaction at the aft support.
An example of the loads, which are the distributed restoring load, q, and the ground reaction,
Fz;G, is shown schematically in Figure 5.7. Vertical equilibrium gives

Fz;G = �
Z L=2

�L=2
qz(x) dx

= �w g
Z L=2

�L=2
fw0B(x)� x 0B(x) +B(x)wf(x)g dx (3.67)

Likewise, moment equilibrium around midship gives
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xc Fz;G = �
Z L=2
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x qz(x) dx

= �w g
Z L=2

�L=2

n
xw0B(x)� x2  0B(x) + xB(x)wf(x)

o
dx (3.68)

Due to the 
exible deformation, wf , the solution to this problem cannot be found imme-
diately. The load on the beam and thus the deformation is a function by the deformation
itself so an iterative solution is applied. Although not trivial the system is still linear, and if
it is found to be necessary, a closed-form solution could be found for the considered 
exible
problem, which is actually the problem of a beam on an elastic foundation. The reduced
force, F 0z and the moment M 0

y are de�ned as

F 0z =
Fz;G
�wg

�
Z L=2

�L=2
wf(x)B(x) dx (3.69)

M 0
y =

xc Fz;G
�wg

�
Z L=2

�L=2
xwf(x)B(x) dx (3.70)

With a trial 
exible deformation wf;k(x), an estimate of the rigid body displacement and
rotation is found by solving Eq. (3.67) and Eq. (3.68) for w0 and  0:

w0 =
F 0z �M 0

y Sw=Iw

Aw � S2
w=Iw

(3.71)

 0 =
�M 0

y + F 0z Sw=Aw

Iw � S2
w=Aw

(3.72)

A de�nition of Aw, Sw and Iw was given in Section 3.4.3. The line load can now be cal-
culated for this con�guration and the corresponding re�ned 
exible deformation, wf;k+1(x),
can be found by solving the static �nite element equations, K � q = Q. As a measure of the
residual load the quantities

Fz;resid = Fz;G +
Z L=2

�L=2
qz(x) dx (3.73)

My;resid = xc Fz;G +
Z L=2

�L=2
x qz(x) dx (3.74)
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are chosen and a convergence criterion is formulated as

max

(�����Fz;residFz;G

����� ;
�����My;resid

xc Fz;G

�����
)
� � (3.75)

The problem converges very fast and an accuracy corresponding to � = 10�5 is reached
within 2 - 3 iterations.

When the displacement, w, of sections along the hull is known, the distribution of the
grounding-induced shear force and bending moment are easily found from Eqs. (3.1, 3.61,
3.62).

Considering a rigid ship with vertical sides, Pedersen, [122], derived approximate expres-
sions for the maximum shear force and bending moment around midship. When the distance
from the longitudinal centre of 
otation to the contact point is L=2, the expressions are

Qext =
Zbow �w g Aw
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(3.76)

where Zbow is the lift of the bow, l is the distance from the longitudinal centre of 
otation to
the contact point and r is an inertia radius de�ned from the longitudinal metacentric height
GML, the water plane area Aw and the submerged volume r as

r =

s
rGML

Aw
(3.77)

3.7 Hull Girder Strength

In order to apply the theory presented above to risk assessment in connection with ship
grounding, the ship strength in reserve for the grounding loads must be known. Numerous
methods have been presented for prediction of the ultimate strength of a hull girder, for
example Caldwell [26], Smith [116], Yao and Nikolov, [143]. It is important to note, however,
that it is the reserve strength which is relevant to a comparison with the calculated grounding-
induced loads. Hence, the still-water loads (and perhaps some wave loading) have to be
considered together with the grounding loads. The importance of this is exempli�ed by the
fact that ships have been lost due to hull girder failure even when 
oating freely in calm
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water. For example the VLCC the Energy Concentration collapsed during discharge of oil
in Rotterdam in 1980, [107].

In principle, the analysis could be done in two ways. The total ultimate strength of the
hull girder could be compared to the grounding-induced loads together with still water loads
and perhaps some wave or tidal load. If all information about a given grounding is available
this approach is attractive because it contains the choice of very accurate analysis. The
ultimate strength of ship sections exposed to both bending and shear could be considered
as indicated by Hansen, [46].

Alternatively, since the design of the ship is often based on a still-water load and a wave
load, it is meaningful to compare the design wave load to the grounding-induced load on the
basis of the idea that the actual wave load in a grounding situation is probably small. To
get a �rst estimate of how the grounding-induced loads compare with the strength of certain
ship types, the simplicity of this approach makes it the most attractive. The current study
is based on this approach which was also presented by Pedersen in [122].

Large Vessels
In [85] results were presented for the maximum wave loads predicted to occur during the life
of a large ship, based on a probability level of 10�8 and maximum wave-induced bending and
shear stresses of 110 N=mm2. An analysis by Bai et al., [18], showed that for bulk carriers
without signi�cant corrosion, the sagging moment at the ultimate collapse is about 28 %
higher than the allowable bending moment speci�ed by the IACS. To get a �rst idea of how
grounding-induced loads compare with ship strength, however, the formulas adopted by the
IACS are considered to be su�ciently accurate.

According to the sign convention shown in Figure 3.1, the wave-induced bending moment
is given by

MW =

(
0:19F0(x)CL

2BCB for sagging moment
0:11F0(x)CL

2B(CB + 0:7) for hogging moment
(3.78)

where MW is in kNm, L and B should be in metres and CB should not be less than 0.6. F0
is a distribution factor which varies between 0 and 1 (0 at ends and 1 around midship). The
maximum wave-induced shear force (in kN) to be expected over the lifetime at the given
probability level is

QW =

(
0:3F1(x)CLB(CB + 0:7) for QW > 0
0:3F2(x)CLB(CB + 0:7) for QW < 0

(3.79)
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where F1(x) and F2(x) are 0 at the hull ends and between 0 and respectively 1 and 0.92 over
the hull length. The coe�cient C is a function of length:

C =

8>>><
>>>:

10:75�
�
300�L
100

�1:5
for 90 � L � 300

10:75 for 300 < L < 350

10:75�
�
L�350
150

�1:5
for 350 � L

(3.80)

High-Speed Vessels
The increasing popularity of fast vessel concepts has made a study of this category of ships
relevant. The environmental damage following hull failure of a fast ferry will most likely
be very limited compared to that of a large tanker, but accidental groundings have demon-
strated the potential fatality of this type of accident, [86]. A high-speed vessel is de�ned
as one where V=

p
L > 4:2 (V is the maximum ship speed in knots and L is ship length

in metres). Unfortunately, classi�cation societies do not separate design loads in still-water
and bending contributions, so the present study compares the grounding-induced loads to
the total strength, neglecting still-water loads. Det Norske Veritas, [134], gives the following
values for the total design bending moment (in kNm) as:

Mb =

(
0:125L2BCW (CB + 0:7)

�
0:85 + k1

Vp
L

�
for hogging moment

0:3L2BCWCB for sagging moment
(3.81)

where k1 = 0:25 at unrestricted service, and the wave coe�cient CW is considered according
to

CW =

(
0:08L for L < 100
6 + 0:02L for L > 100

(3.82)

Following DNV, [134], a vertical shear force (in kN) can be related to the bending moment
from Eq. (3.82) by the relation

Qb =
4Mb

L
(3.83)

which is connected to requirements for the bending moment through Qb = dMb=dx. The
equations presented above will be used later for the reserve strength of the hull girder. As
already mentioned, the application of these formulas introduces uncertainties about the still-
water loads but as a �rst conservative estimate of the magnitudes of the grounding loads
compared to the strength, the formulas are considered su�ciently accurate.



Chapter 4

Veri�cation and Discussion of the

Theoretical Soft-Grounding Model

The objective of the present chapter is to discuss and validate the presented theoretical
model. In connection with the construction of the �xed link across the Great Belt in Den-
mark, a series of model- and large-scale tests was conducted to investigate the mechanics
of soft grounding. Some results of these experiments were already shown in Figure 3.3 and
below more results are presented to validate the theoretical model.

4.1 Model Tests

4.1.1 Experimental Set-up

Figure 4.1 shows the experimental set-up. A tanker model in scale 1:60 was forced into a
sand beach at a constant horizontal velocity. The bow of the ship was connected to the
rest of the hull by a dynamometer making it possible to measure the vertical shear force at
this cross section of the ship. Based on the measured vertical shear force, the heave and
pitch motions and the hydrostatic properties, the vertical ground reaction acting on the bow
during the grounding could be determined. The horizontal reaction was measured directly
as the force necessary to push the ship onto the ground. Some of the main data for the
experiments is given in Table 4.1.

4.1.2 Results and Validation

The calculated ground reaction is sensitive to the modelling of the ground response, hydrody-
namic loads and hydrostatic loads, so it is well suited for comparison between measurements
and calculations.

45
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Figure 4.1: Experimental setup for model testing of soft grounding.

Table 4.1: Main data for model scale grounding experiments.

Length, L 2.57 m
Beam, B 0.378 m
Initial Draft, T 0.117 m
Ship mass, Ms 78.4 kg
Impact velocity, V 0.265 - 0.664 m/s
Slope inclination 1 : 6
Mean grain size, dm 0.125 mm

Figure 4.2 shows the measured and the calculated vertical soil reaction for two tests
where the impact velocity was 0.664 m/s. Very good correspondence between measurements
and calculations is observed.

As it will be shown later, the behaviour of an initial peak followed by a continuous
increase in the soil reaction is more or less characteristic of soft groundings. The initial
peak of the soil reaction transfers momentum to the ship, so that the motion is changed
from surge to a mode of motion where the bow somewhat follows the slope. The following
gradual increase is due to the continuous lifting of the bow as the ship moves forward.

For analysis of the dynamic response of the hull girder, it is the initial peak of the soil
reaction, which induces the hull vibration, so it is important that this peak is correctly
modelled. Figure 4.3 shows the measured and the calculated vertical ground reaction for
di�erent impact velocities. The calculated soil reactions show a more dynamic behaviour
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Figure 4.2: Vertical ground reaction vs. horizontal position of ship. Theoretical prediction
and results of two tests where the impact velocity was 0.664 m/s.

after the �rst peak but other experiments actually also showed this behaviour, see for example
Figure 4.2. All in all the agreement between measurements and calculations is very good.

Figure 4.3: Measured and calculated vertical ground reaction vs. horizontal position of ship
for di�erent impact velocities.

Experiments were also carried out with a larger grain size corresponding to gravel in
full scale and the theoretical model depicts the behaviour of this material with all its main
characteristics but with greater errors for the peak forces. All in all, however, the comparisons
indicate that the theoretical model is capable of predicting the vertical ground reaction from
normal beach material. With a good theoretical prediction of the vertical soil reaction it is
interesting to compare measured and calculated values for the e�ective coe�cient of friction.
This coe�cient of friction is de�ned as the ratio of the soil reaction in the direction of the
bow motion to the soil reaction in the normal direction. Figure 4.4 shows measured and
calculated values for this quantity in experiments with di�erent impact velocities. Some
scatter of the experimental results is observed but the overall agreement with the theoretical
predictions is good. Again, it is worth noting that the e�ective coe�cient of friction is about
0.6 - 1.0, indicating a signi�cant contribution of the passive soil pressure in front of the bow
to the total resistance.
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Figure 4.4: E�ective coe�cient of friction vs. model ship velocity.

4.2 Large-Scale Tests

Being able to predict the grounding response in model scale, the Great Belt Link Ltd con-
ducted a series of large scale tests in March 1993 to verify model tests and the mathematical
model. The test results were most recently published by Sterndor� and Pedersen [117].

4.2.1 Experimental Set-up

The tests were conducted by running a condemned �shing vessel up on selected beaches at
impact velocities ranging between 2 m/s and 5.5 m/s. During the tests, surge, heave and
pitch accelerations were measured as well as deformations of the beach and the ship bow.
Based on the accelerations, rigid body velocities and motions were determined. The forces
arising from the interaction between the bow of the vessel and the soil were determined by
the accelerometer recordings and the equations of motion for the ship.

Figure 4.5 shows the vessel in a grounded position after test no. 1. The waves were small
the �rst day (tests nos. 1 and 2) but signi�cant the other days.

Main data for the experiments is given in Table 4.2.

4.2.2 Results and Validation

Measured and calculated rigid body accelerations, vertical and horizontal ground reaction
forces, the e�ective coe�cient of friction and stopping distances are compared below. All
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Figure 4.5: Grounded ship in large-scale test no. 1.

test data is from [117] and all calculated results - including those published in [117] - were
produced by the author with the theoretical model presented above.

Figure 4.6 shows the rigid body accelerations for the vessel during grounding test no.
4. Some di�erence is observed between the peak values of the acceleration but the overall
behaviour of the measured and the calculated response is identical.

Figure 4.7 shows measured and calculated values for the vertical and the horizontal soil
reaction during the impact. First it is noted that the overall behaviour is similar to that
shown in Figure 4.2 for the model tests - an initial peak is followed by a gradual increase
in forces. It is seen that the overall behaviour of the measured and the calculated forces

Table 4.2: Main data for large scale grounding experiments.

Length, L 29.55 m
Beam, B 6.60 m
Initial Draught, T 3.30 m
Displacement, Ms 298.6 t
Metacentric height, GML 28.9 m
Impact velocity, V 2.0 - 5.5 m/s
Slope inclination 1 : 20 - 1 : 4
Mean grain size, dm 1.0 - 2.0 mm
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is identical. A closer look, however, reveals a di�erence in the magnitude of the peak soil
reactions and also in the duration of the initial peak. The di�erence in peak force can be
due to uncertainties in the modelling of hydrodynamic loads. The di�erence in the duration
of the initial peak is most likely due to the di�culty of modelling the complex double curved
hull shape by a plane ship side and a plane ship bottom as shown in Figure 3.5. This is a
limitation of the theoretical model which could be removed in future studies.

As regards comparison of measured and calculated values, it must be noted that deriva-
tion of the required quantities from the measured data is a cumbersome task which is associ-
ated with uncertainties - for example the added mass, the point of attack for the ground force
and the e�ect of waves. Therefore, a discrepancy between measured and calculated values
does not necessarily indicate an erroneous theoretical model - it also indicates the di�culty
of the deterministic approach to a partly stochastic problem. The content of the soil should
be described by a distribution function rather than just a mean diameter. Moreover, some of
the large scale tests revealed a rather signi�cant dependence of the grounding behaviour on
the waves. Finally, it should be noted that due to uncertainties, such as modelling of added
mass and the soil permeability, some parameters of the theoretical model could be changed
to enhance the agreement with measured quantities, but the presented results are based on
the theory given in previous sections.

Figure 4.8 shows a comparison between measured and calculated values for the e�ective
coe�cient of friction in test no. 1. Good agreement is seen during most of the grounding.

To give an overall picture of the prediction of the theory compared to measurements,
Table 4.3 shows measured and calculated values for the stopping distance. Due to the uncer-
tain measurements of the underwater slope, calculations are performed with both the largest
and the smallest slope estimated. There is seen to be a tendency towards overprediction of
the stopping distance for the theoretical model but the overall agreement is good. The bad
agreement for test no. 7 waves is most likely due to the e�ect of the waves.

Table 4.3: Measured and calculated stopping distances in large scale tests.

Test Impact Slope Measured Calculated
no. vel. 1:X dist. dist.

(m/s) (m) (m)

1 2.5 12-14 9.6 10.9 - 11.6
2 5.1 9-11 16.4 16.6 - 18.1
3 5.1 4-6 12.1 9.9 - 13.4
4 4.1 4-6 8.1 8.3 - 11.1
5 4.1 10-15 16.6 14.7 - 17.3
6 5.0 8-15 17.3 16.7 - 19.8
7 4.5 11-18 13.2 17.2 - 20.7
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Figure 4.6: Measured and calculated rigid body surge, heave and surge accelerations in test
no. 4.
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Figure 4.7: Measured and calculated behaviours of vertical and horizontal ground reaction
vs. time in test no. 1.

Figure 4.8: E�ective coe�cient of friction vs. ship velocity in test no. 1. Measured and
calculated values.
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4.3 Numerical Solution Methodology: Modal Analysis

vs. Finite Element Method

As mentioned previously, the modal analysis is often an e�cient approach because the so-
lution is found in a space where the governing equations are decoupled. The cost of the
method is to �nd the base of this space, i.e. the appropriate eigenmodes. If a large num-
ber of eigenmodes are necessary, as would certainly be the case if the ground reaction did
not act near the end of the beam, the method is not necessarily the most e�cient. For the
present application the method is expected to be e�cient but it is di�cult to assess the error
introduced by using modes of a free-free beam with zero shear force at the point of contact:
The shear deformation at the front end cannot be included regardless of how many modes
are summed up. Therefore, it is interesting to see how the solution of the modal analysis
compares with that of the sti�ness method. Figure 4.9 shows the soil reaction vs. time cal-
culated by the two methods for the speci�c grounding example of a VLCC considered later
in Section 5.1. The soil reaction is suited for comparison of solutions because it is highly
sensitive to the response of both structure, soil and water. It is seen that the 
exible ship
gives a highly di�erent response and that the modal analysis and the �nite element method
lead to equivalent results.

Figure 4.9: Vertical component of soil reaction vs. time. The structural response of the ship
is calculated both by modal analysis and by the �nite element method.

Figure 4.10 shows the position of the hull girder base line after 0.95 s calculated by the two
methods. As seen from Figure 4.9 and Figure 4.10, there is very good agreement between the
two calculated responses indicating that the modal analysis, which is signi�cantly faster (50
- 100 times with the present implementations), is su�ciently accurate. The results presented
in the following sections are calculated by the modal analysis approach.
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Figure 4.10: Position of ship base line at t = 0:95 s. The structural response for the 
exible
case is calculated both by modal analysis and by the �nite element method.



Chapter 5

Examples: Soft Grounding of a Large

Tanker and Fast Vessels

With the theoretical model presented and validated in the previous sections, the foundation
is given for investigation of the grounding response of di�erent categories of ships. The
grounding types considered in the following are

� a large loaded tanker at an impact speed of up to 15 knots,

� fast vessels of up to 100 m in length grounding at a speed of up to 40 knots.

For both kinds of ships the grounding-induced sectional forces in the hull girder will be
compared to the reserve strength.

5.1 Grounding of a Large Tanker

Both accidents and analyses have shown that the grounding-induced sectional forces are
potentially critical for large tankers, [122]. The present section therefore focuses on the
grounding response of a large tanker.

5.1.1 Main Particulars of Ship and Ground

The main data for the considered grounding example is given in Table 5.1.
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The mass distribution including added mass is shown in Figure 5.1. The added mass is
calculated according to Eq. (3.6) and Eq. (3.8). The increase in mass near the bow is due
to the diminishing water depth. The distribution of sti�nesses, EIy and kzGA, is shown in
Figure 5.2 as ks(x). The sti�ness distributions are then

EIy(x) = ks(x)EIy(x = 0)

kzGA(x) = ks(x) kzGA(x = 0)

Table 5.1: Main data for the considered VLCC.

Length, L 322.7 m
Beam, B 58.2 m
Initial Draught, T 20.8 m
Block coe�cient, CB 0.81
Bulb radius, Rb 4.0 m
Water line area, Aw 1:70 � 104 m2

First moment of area w.r.t. x = 0, Sw �2:98 � 104 m3

Second moment of area w.r.t. x = 0, Iw 1:25 � 108 m4

Mass, incl. added mass, Mzz 7:64 � 108 kg
Moment of inertia, incl. added mass, Jy 4:95 � 1012 kgm
Longitudinal centre of gravity, xgz 18.5 m
Shear sti�ness amidships, kzGA 1:71 � 1011 N=m2

Bending sti�ness amidships, EIy 2:23 � 1014 N=m2

Lowest 'wet' eigen freq. (bending/shear), 
1 2:35 rad=s

Figure 5.1: Mass distribution for a VLCC
grounding on a slope with the inclination
1:6.

Figure 5.2: Sti�ness distribution, ks, for
the considered VLCC.
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In the basic example the ship is assumed to run aground with a velocity of 6 m=s on
a sand slope with the inclination 1:6. The sand is relatively coarse (dm = 2 mm) with a
frictional angle of ' = 37o. Before the induced sectional forces are compared to the reserve
strength of the hull, some of the characteristics of the solution are investigated.

5.1.2 E�ect of Hydrodynamic Damping

The e�ect of hydrodynamic damping was investigated in [99] and as shown there, the damp-
ing force contributes little to the total force equilibrium of the ship. Figure 5.3 shows the
unit response function, hz(x; t), for the considered VLCC grounding on a slope of 1:6. The
increase of hz(x; t) near the bow is due to the diminishing water depth.

Figure 5.3: Unit response function, hz(x; t), for a VLCC grounding on a slope of 1:6.

Figure 5.4 shows the soil reaction calculated for a rigid hull with and without the hydro-
dynamic damping (denoted 'memory e�ect').

Since the damping loads arise as a weighted integral of the history of the vertical velocity
of the hull sections, it does not come into play until after a while - thus the term 'memory
e�ect'. The damping reduces the stopping length in this grounding example by less than 5
%. As the e�ect of damping loads on the maximum sectional forces was shown to be even
less (about 1-2 %), [99], the damping loads are neglected in the following.
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Figure 5.4: Vertical components of soil reaction and memory e�ects, rigid hull

5.1.3 E�ect of Hull Flexibility on Grounding Dynamics

It was already shown in Figure 4.9 that introduction of hull 
exibility changes the grounding
response signi�cantly as the grounding force in the �rst peak was reduced by about 40 %
and the period of the initial impact was prolonged. The purpose of the present section is to
illustrate the e�ect of hull 
exibility on the grounding response in more detail. Figure 5.5
shows the pro�le of the bottom of the furrow generated by the penetrating bow.

It is seen that the furrow depth of the initial impact is smaller for the 
exible ship, cor-
responding to the lower peak force shown in Figure 4.9. Although the 
exible deformation
gives a smaller initial peak soil reaction and a furrow depth, the hull 'bounces back' later
and gives rise to a soil reaction and furrow depth which is even larger than for the rigid ship.
An important conclusion from Figure 5.5 is that the stopping distance (which is also the
furrow length) is practically the same for the rigid and the 
exible ship.

Figure 5.6 shows the maximum bending moment in the hull girder as a function of time
for a 
exible and a rigid VLCC. First, it is noted that the hull is in a state of sagging during
the entire grounding. The bending moment during the initial impact is largest for the rigid
ship but, as it was the case for the soil reaction shown in Figure 4.9, a dynamic ampli�cation
for the 
exible ship induces a larger maximum bending moment later (t = 6:4s). It is also
important to note that this maximum bending moment is 45 % larger than the bending
moment in the �nal resting position. This means that, although it is possible to predict
the �nal resting position with good accuracy assuming a rigid ship, the maximum bending
moment during the grounding has to be found by taking proper account of the hull 
exibility
- at least for some types of groundings. With a gentler slope, a smaller impact velocity or a
softer soil than considered here, the hull 
exibility will be less important.
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Figure 5.5: Pro�le of original sea bed and furrow generated by the penetrating bow. Results
for both rigid and 
exible hulls are shown.

Figure 5.6: Maximum bending moment in the hull girder of a VLCC as a function of time.
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5.1.4 E�ect of Hull Flexibility on Final Resting Position

In the �nal resting position, the grounding-induced loads induce a sagging of the hull as
discussed in Section 3.6. The loads acting on the hull in the �nal resting position at a
bow lift of 1 m are given in Figure 5.7. The corresponding deformed con�guration of the
considered VLCC is shown in Figure 5.8.

Figure 5.7: Static loads on a VLCC hull
in the �nal resting position. The bow lift
is 1 m (xc = L=2) and Fz;G = 33:7MN .
Flexible hull.

Figure 5.8: Vertical displacement of sec-
tions along a VLCC which is lifted at the
bow due to a grounding. Solutions for both
rigid and 
exible hulls are shown.

Figure 5.9 and Figure 5.10 show the shear force and the bending moment in the hull
girder at a bow lift of 1 m for a rigid and a 
exible VLCC.

The di�erences between the rigid and the 
exible hull response are quanti�ed in Table
5.2. It is seen here that introduction of the hull 
exibility reduces forces and moments in the
�nal resting position by 10 - 15 %. Except for the maximum shear force around midship,
the accuracy of the formulas presented by Pedersen in [122], Eq. (3.76), is also seen to be at
this level.
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Figure 5.9: Shear force in hull girder at 1m
bow lift.

Figure 5.10: Bending moment in hull girder
at 1m bow lift.

Table 5.2: E�ect of 
exibility in �nal resting position. The bow lift is 1 m.

Soil reaction (max. shear force)
FzG(rigid)=FzG(flex) 37:0MN=33:7MN 1.10
Max. shear force around midship
Q(max; rigid)=Q(max; flex) �14:8MN=� 12:9MN 1.15
Max. bending moment
M(max; rigid)=M(max; flex) �2:05 � 109Nm=� 1:81 � 109Nm 1.13

Bending moment, Pedersen [122]
Mext=M(max; flex) �2:05 � 109Nm=� 1:81 � 109Nm 1.13
Bending moment, Pedersen [122]
Mext=M(max; rgd) �2:05 � 109Nm=� 2:05 � 109Nm 1.00
Shear force, Pedersen [122]
Qext=Q(max; flex) �17:3MN=� 12:9MN 1.35
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5.1.5 Sectional Forces and Strength

The maximum shear force in the hull girder occurs at the point of contact with the ground
and, as this point of contact is assumed to be at the bow in the present analysis, the shear
force is equal to the ground reaction. It is therefore relevant to consider the distribution
of shear force at the instants of maximum soil reaction. As seen from Figure 4.9, the soil
reaction attains extremum values at t = 0:95 s and t = 6:86 s. Figure 5.11 shows the
distribution of shear force in the hull girder at these times of maximum ground reaction and
in the �nal resting position (the bow lift is 5.6 m). When compared to the IACS wave load
strength requirement it is quite clear that shear loading of the hull girder may be critical.
The strength of the hull is exceeded in the midship section but even more pronouncedly so
in the forward end of the hull. It should be mentioned here that, as the shear strength comes
from the side shell and longitudinal bulkheads it does not actually drop to zero at the fore
end as indicated in Figure 5.11. Still, even if the shear strength of the midship section was
attained throughout the length of the hull, Figure 5.11 indicates possible shear failure over
a signi�cant part of the hull.

Figure 5.11: Shear force in hull girder at selected times.

Figure 5.6 showed that the maximum bending moment in the hull girder attains several
pronounced peaks as a function of time. Figure 5.12 shows the distribution of bending
moments in the hull girder at three of these peaks (t = 1:72 s, t = 6:51 ; s and t = 10:31 s )
and in the �nal resting position. As for the shear force, it is seen that the bending moment
capacity is exhausted in the considered grounding example.

As seen in Figure 5.5, the furrow generated by the penetrating bow is only about 1 m
deep which indicates a sti� ground. Figure 5.13 shows the maximum bending moment in
the hull girder as a function of time for soils with di�erent permeabilities - given as di�erent
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Figure 5.12: Bending moment in hull girder at selected times.

grain mean diameters. It is seen that decreasing the soil permeability ('d = 1 mm') gives
higher peak bending moments and vice versa, increasing the soil permeability gives a lower
level for the maximum bending moment. In fact, Figure 5.13 shows that, for a soil with a
hardness corresponding to d = 10 mm, the bending moment capacity of the IACS wave load
is not exceeded.

As illustrated by the model experiment results in Section 4.1.2, the impact loads are a
strong function of the impact velocity. Figure 5.14 shows the maximum bending moment as
a function of the impact velocity. It is seen that, for impact velocities of up to about 5 m=s,
the bending moment capacity about midship is not exceeded. For small impact velocities the
critical period is therefore not during the grounding itself, but rather in the period between
the grounding and the re
oating where a receding tide may increase the bow lift signi�cantly.

Figure 5.15 and Figure 5.16 show the maximum shear force and bending moment in the
�nal resting position vs. bow lift. It is seen here that if the IACS wave load shear strength
amidships is attained over the length of the hull, lifting of the bow of only 1:9 m is enough
to cause the shear strength in the forward end of the ship to be exceeded. For the shear
strength about midship and the bending moment, the corresponding critical values for bow
lift are 5:0 m and 6:0 m, respectively.

Figure 5.17 and Figure 5.18 show stopping distance and bow lift for di�erent impact
velocities. For example, if the considered VLCC runs aground at a velocity of 2:5 m=s which
is a typical velocity in a di�cult manoeuvre, the bow lift is 1:7 m and it the ship is not
re
oated the water level can only lower by 0:2 m before the shear force at the fore end
reaches a critical level.
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Figure 5.13: Maximum bending moment vs. time for di�erent soils (d is mean grain diame-
ter).

Figure 5.14: Maximum bending moment vs. time for di�erent impact velocities.
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Figure 5.15: Maximum shear forces in hull
girder as a function of the bow lift.

Figure 5.16: Maximum bending moment in
hull girder as a function of the bow lift.

Figure 5.17: Stopping distance as a func-
tion of impact velocity.

Figure 5.18: Bow lift as a function of im-
pact velocity.
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5.2 Dynamics of Fast Ships

Incidents of grounding of fast ships on hard ground have demonstrated the potential fatality
of this type of accidents, [86]. When the impact speed is 35 - 40 knots and the stopping
mechanism for the ship is crushing of the bow structure, accelerations reach a potentially fatal
level. For the type of grounding considered here where the stopping mechanism is relatively
smooth, the damage concerned with regards structure rather than human lives. Below, the
grounding responses of six di�erent fast vessels are compared and as for the VLCC considered
above, the grounding-induced sectional forces are compared to approximate strength values
taken from class requirements.

5.2.1 Ship and Ground Main Particulars

The main data for the ships is given in Table 5.3.

Table 5.3: Main data for 50 m and 100 m fast ships of steel, aluminium and �bre-reinforced
plastic (FRP).

50 m ship 100 m ship

Length, L 50.0 m 100.0 m
Beam, B 7.20 m 14.4 m
Initial draught, T 1.82 m 3.64 m
Block coe�cient, CB 0.355 0.355
Water line area, Aw 2:52 � 102 m2 1:06 � 103 m2

Second moment of area, Iw 4:08 � 104 m4 6:53 � 105 m4

Long. C. of 
otation, LCF - 5.86 m - 11.71 m
Mass, incl. added mass, Mzz 7:72 � 105 kg 6:18 � 106 kg
Mass, incl. added mass, Mxx 2:50 � 105 kg 2:00 � 106 kg
Moment of inertia, incl. added m., Jy 1:11 � 108 kgm2 3:54 � 109 kgm2

Long. centre of gravity, xgz -4.70 m - 9.40 m

Shear sti�ness amids., kzGA, steel hull 3:75 � 108 N=m2 3:00 � 109 N=m2

Bending sti�ness amids., EIy, steel hull 1:88 � 1010 N=m2 6:00 � 1011 N=m2

Lowest eigen freq., 
1, steel hull 10:94 rad=s 7:74 rad=s

Shear sti�ness amids., kzGA, alu. hull 1:19 � 108 N=m2 9:50 � 108 N=m2

Bending sti�ness amids., EIy, alu. hull 5:95 � 109 N=m2 1:90 � 1011 N=m2

Lowest eigen freq., 
1, alu. hull 6:16 rad=s 4:35 rad=s

Shear sti�ness amids., kzGA, FRP hull 5:60 � 107 N=m2 4:50 � 108 N=m2

Bending sti�ness amids., EIy, FRP hull 2:80 � 109 N=m2 9:00 � 1010 N=m2

Lowest eigen freq., 
1, FRP hull 4:23 rad=s 3:00 rad=s
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The ships are assumed to run aground on a slope of 1:10 consisting of relatively coarse
sand (dm = 2 mm). In this type of grounding the ships may run completely up on the beach
and rest on the keel. If the penetration into the ground is neglected and the ship sides are
assumed to be wall-sided, the sliding length which gives contact over the length of the keel
is approximately

�X = l +
Iw � Sw l

Awl + Sw
(5.1)

where l is the distance from the longitudinal centre of 
otation to the point of contact.
As in the previous sections, Aw, Sw and Iw are the zeroth to second moment of the water
plane around midship. For a large tanker with an (almost) rectangular water plane, the
sliding length giving keel contact is simply �X = 2=3L. For the two ship sizes analysed
here, Eq. (5.1) predicts keel contact after 40 m and 80 m, respectively ( i.e. after about
�t � �X=V = 2s; 4s). Eq. (5.1) was derived from static considerations. In the dynamic
simulation, complete keel contact is found to take place after 1.6 s and 3.4 s and 31.6m and
63.5 m, respectively. Only the period before keel contact is considered in the following.

5.2.2 Accelerations, Sectional Forces and Strength

The horizontal accelerations for the two aluminium ships are shown in Figure 5.19. It is
seen that the accelerations during the initial impact reach a level around only 2 m=s2. This
is less than what can be experienced by braking a car and it is unlikely to cause fatalities.

Concerning loads in the hull girder, Figure 5.20 shows the maximum shear forces in the
hull girder during the initial impact. The maximum shear force at the fore end is equal to the
vertical component of the ground reaction, and the maximum shear force around midship
normally occurs at a small distance behind the midship section, as shown in Figure 5.11 for
the considered VLCC.

As discussed in Section 3.7, the strength curve in Figure 5.20 is approximate but the
�gure illustrates that the grounding loads and the hull girder strength are of the same order
of magnitude and, once again, that the hull 
exibility has great in
uence on the grounding-
induced sectional forces. This latter point is also illustrated in Figure 5.21 and Figure 5.22,
which show the hull displacement at the initial stages of the grounding for the considered
rigid and 
exible ships.

Figure 5.23 shows the maximum bending moment in the hull girder as a function of time
for the 100 m ships. The �gure indicates that the bending moment is not critical either
for the 
exible ships during the initial impact. For the steel ship, though, a peak bending
moment is seen after about 2:3 s, which exceeds the strength of the hull girder according to
the DNV requirements. The bow lift at this point is about 5 m, and since the initial draught
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Figure 5.19: Horizontal accelerations of aluminium ships of 50 m and 100 m during initial
impact.

of the ship was 3:5 m, the range of validity of the model for calculation of restoring loads is
exceeded. If the restoring loads were taken accurately into account the sectional loads would
be smaller than presented in this section because the loss of buoyancy is exaggerated here.

Figure 5.24 and Figure 5.25 show shear forces and bending moments for the 50 m ships.
The comments given above for the 100 m ships hold true for these ships as well: The
grounding-induced loads and the hull girder strength are at the same level and the hull

exibility is seen to reduce signi�cantly shear forces and bending moments during the impact.
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Figure 5.20: 100 m ships. Extremum shear forces in hull girders of FRP, aluminium, steel
and rigid ships as a function of time. Maximum shear force at the fore end is equal to the
vertical component of ground reaction.

Figure 5.21: Vertical displacement of hull
at t = 0:2 s. 100 m ships.

Figure 5.22: Vertical displacement of hull
at t = 0:5 s. 100 m ships.
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Figure 5.23: 100 m ships. Extremum bending moment in hull girders of FRP, aluminium,
steel and rigid ships as a function of time.

Figure 5.24: 50 m ships. Extremum shear forces in hull girders of FRP, aluminium, steel
and rigid ships as a function of time. Maximum shear force at the fore end is equal to the
vertical component of ground reaction.
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Figure 5.25: 50 m ships. Extremum bending moment in hull girders of FRP, aluminium,
steel and rigid ships as a function of time.
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Chapter 6

Theoretical Basis for the Hard

Ground Model

6.1 Introduction

The remaining chapters are concerned with ship grounding on hard ground, for example a
rock pinnacle. As for the soft grounding problem described in the previous chapters the
coupling is strong between the behaviour of the ground, the ship hull and the surrounding
water. Theoretical analyses, e.g. Lenselink and Thung [67] and Mizukami et al. [81], have
shown that it is possible to solve this type of problem in an integrated way by describing the
behaviour of each of the three components by structural or 
uid elements and solving the
complete set of equations simultaneously. To gain insight into the overall mechanics of the
problem, however, it is highly advantageous to divide it into the external dynamics and the
internal mechanics. This approach was taken by Minorsky in 1959 [80] for the ship collision
problem. An example for ship grounding was presented by Kuroiwa in 1996 [63], where a
strip theory model for the ship motion was coupled with an explicit �nite element model
(LS-DYNA3D) for the local damage process. The present solution method is based on the
same overall approach of dividing the problem into two parts. However, a primary objective
of the present model has been easy modelling and small computational e�ort. Therefore, the
model for the internal mechanics is here based on simpli�ed deformation mechanisms and
the model for the external dynamics on static equilibrium. When compared to the results
of Kuroiwa [63], these simpli�cations reduce signi�cantly pre- and post processing and also
reduce the CPU time from 450 hours to less than 1 second, i.e. by a factor of more than 106.
As it will be discussed later, however, the �nite element methodology has certain advantages
in terms of accuracy and consistency at a detailed level.

Figure 6.1 illustrates the division of the grounding problem into external dynamics and
internal mechanics. The model for the external dynamics calculates the rigid body ship
motion given a force on the hull and the model for the internal mechanics calculates the
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Figure 6.1: Division of the grounding problem into external dynamics and internal mechanics.
The internal mechanics is divided into energy dissipation in plasticity and fracture and energy
dissipation in friction.

force on the hull given a certain penetration of the rock into the hull. As it is shown later,
it is also convenient to separate the internal mechanics into energy dissipation by plastic
deformation and fracture and energy dissipation by friction.

Due to this division, it is necessary to develop only one model for the external dynamics
and one for the internal mechanics for each class of structural deformations. In accordance
with this overall dissection of the problem, the subsequent three chapters describe, respec-
tively, the developed theoretical models for the external dynamics, the internal mechanics
for a ship grounding on a wedge type reef, and the internal mechanics for a ship grounding
on a cone type rock.

Although the structural behaviour is strongly dependent on the type of rock encountered,
the underlying theory of structural resistance due to plasticity, fracture and friction is the
same. After a sketchy review of existing methods, the present chapter describes this basic
theory, which is the foundation of the two types of rocks considered in Chapters 8 and 9.

6.2 Internal Mechanics, Outline of Existing Methods

Since the overall objective of the theoretical model is to predict structural damage and
potential oil out
ow in a given grounding event, the model for the internal mechanics must
be able to predict the ground reaction and the initiation and the termination of shell plate
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fracture (i.e. opening of tanks). Several attempts to predict damage in collision accidents
have been published over time - the amount of literature on grounding is very limited. Many
of the involved failure mechanisms are the same, though. The basic di�erence between
grounding and collision is that grounding is rather a steady state process and friction plays
an important role whereas a collision is characterised by a completely transient response of
the structure with little in
uence of friction. Phenomena like deformation far into the post-
buckling region, large plastic deformations and fracture are involved in both collision and
grounding processes and the proposed models for predicting the damage are as numerous as
the phenomena are complex. The models can be divided into �ve categories:

1. Statistical methods.

2. Experimental methods.

3. Continuum based �nite element method.

4. Energy method.

5. Hybrid and idealised structural unit method.

Statistical Methods. In the area of structural damage due to collisions Minorsky's article
from 1959 [80] is most frequently quoted and referred to. Minorsky analysed 50 collisions and
found a linear relationship between the energy dissipated in the structure and the volume of
displaced material, see Figure 6.2.

Figure 6.2: Linear relationship between the volume of deformed material (Resistance Factor,
RT ) and the energy dissipated in the structure (ET ), [80].
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Minorsky recognised the complexity of the internal mechanics and made comments which
give food for thought for the present analytical approach: "... It is also rather obvious that
the resistance forces which develop during the impact period do not lend themselves to
analytical methods of calculation..." and "...as an analytical solution would of necessity rest
on many doubtful assumptions, it was preferable to follow a semi-analytical approach based
on the facts of actual collisions...".

The amount of reported statistical research in the area of grounding damage is very
scarce. It seems that, since the �rst statistical investigation of grounding was reported in
1975 by Card [27], no further statistical studies have been published in open literature. In
connection with a viability study on double bottom and segregated ballast tankers, Card
analysed 30 grounding accidents in US waters between 1969 and 1973. A major conclusion of
Card's work was that, in 27 of the 30 accidents, the maximum vertical extent of damage was
less than B=15, indicating that a double bottom with this height would prevent oil out
ow
in 90 % of the accidents.

In general, statistical analyses are hampered by insu�cient or incomplete data such as
vessel speed, extent of damage, and the shape of the underwater obstacle in the case of a
grounding event. In addition, the information is often considered proprietary or is unavailable
due to litigation.

A fundamental problem of statistical analyses for determining the grounding response of
completely new structural arrangements or materials is that prediction of the behaviour is
questionable when done by extrapolation from existing ships.

Experimental Methods. Over the years a large number of experiments have been carried
out in order to shed light on the internal mechanics of grounding and collision. Most of this
work concerns the very simpli�ed example of wedge cutting of a bare plate. A thorough lit-
erature review is given in Chapter 8. Recently Astrup, [10], reported on cutting experiments
with plates of up to 25 mm thickness. An example of such a large-scale cutting experiment
is shown in Figure 6.3.

Due to the escalation of test expenses with scale, most experiments with assembled ship
structures were carried out at a relatively small scale (1:30 - 1:10). Recently, however, series
of large-scale (1:5 - 1:4, t=3-5mm) grounding experiments were conducted, [9], [106]. Some
of these tests will be further discussed in Chapter 10.

The necessity of performing scaled tests constitutes a fundamental problem in experi-
mental analysis of grounding and collision: The energy dissipation for a fracture process is
proportional the square of the length scale (� Rc

_A), whereas the plastic 
ow is proportional
to the cube of the length scale (� �0 _V ). Therefore, the energy absorption of a given struc-
ture cannot be scaled by elementary scaling laws when the plastic 
ow is accompanied by
fracture. Moreover, if dynamic e�ects are signi�cant, which they are likely to be in ground-
ing events as well as in collisions, it has been demonstrated that scale e�ects may be severe:
Experiments have shown that the impact energy absorbed for a given amount of damage in
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Figure 6.3: Cutting of a 20 mm thick plate by a wedge, [10].

a full-scale steel structure is less than 50 % of that expected from a one-quarter scale model
which su�ers the same scaled damage, [52], [56], [24].

Continuum-Based Finite Element Method. This approach represents the most general
of the �ve listed procedures, in the sense that it can be applied to any kind of structural
problem, practically without prior knowledge of the global structural behaviour. Several
commercial codes are available, for example LS-DYNA3D, PAMCrash, ABAQUS, ADINA
and MSC/DYTRAN and the list of problems solved successfully by this method seems
endless. Relatively few have reported on successful attempts at modelling collision and - in
particular - grounding events, though. Some �nite element simulations could be mentioned:
Side collision by Lenselink and Thung [67], stranding bottom damage by Amdahl and Kavlie
[7], high-speed ferry bow collision by Kim et al. [61], grounding on a pinnacle by Kuroiwa
et al. [64], [63]. Figure 6.4 shows part of the grounding model used by Kuroiwa, [63].

Since the �nite element method is based on discretizing the structure into relatively small
structural elements and solving the dynamic equilibrium equations incrementally, it can con-
sistently take into account the coupled e�ects of elasticity, plasticity, strain hardening, strain
rate sensitivity and temperature dependencies. The �nite element method is considered to
be so accurate that it has replaced model tests in several areas, but it is true to say that the
problem of predicting fracture is not yet fully solved.

For the probabilistic design methodology described in Chapter 1, where a large number
of grounding scenarios have to be evaluated, the method is still prohibitively expensive in
terms of man and computer power, see the comments of the introduction to this chapter.

Energy Method. This class of approaches rests on more or less consistent extensions of
the 'upper bound theorem of plasticity' to �nite deformations. The method is based on
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Figure 6.4: Simulated rock and single hull VLCC with the �nite element method, [63].

the idea that the work rate (the power) of an external force must equal the rate of internal
energy dissipation in the structure. Thus, the method is also known as the "balance-of-power
approach", [22]. The procedure is to �nd the kinematically admissible deformation of the
structure which yields the lowest force ('least upper bound').

The method was applied to crushing of thin-walled structures for the �rst time by Alexan-
der, [5], in 1959. Alexander developed a simple kinematic model for axial crushing of thin
cylindrical shells and humbly noted, "...In view of the approximate nature of the analysis,
it is surprising that there is such good agreement with experiment...". Figure 6.5 shows the
deformation mode assumed in the analysis by Alexander, [5].

Several signi�cant applications of the method have been published since then, for example
in the area of crashworthiness of vehicles, [137], and in the �eld of machining and metal
forming, [22].

Once the deformation mode is known, the method can predict the involved forces with
very good accuracy. For statically indeterminate systems, however, it may be di�cult to
�nd an appropriate deformation mode. This is a major limitation of the method. For a
space frame it is possible to investigate all possible idealised failure modes and choose the
one which gives the lowest failure load ("least upper bound"), but for a complex structure
like a double bottom this becomes an extremely cumbersome task. A way of overcoming
this problem would be to combine the simpli�ed idealised collapse mechanisms of the upper
bound method with the �nite element method in a so-called hybrid approach, see below.
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Figure 6.5: A crushed circular tube, [53], and the corresponding idealised deformation mode,
[5].

Hybrid and Idealised Structural Unit Method. As seen above, the empirical, analyti-
cal and numerical methods all have advantages and disadvantages. The Idealised Structural
Unit Method (ISUM) has the potential of utilising the strong points of each of the other
methods. Like the �nite element method it is based on the sti�ness method, but instead of
using continuum based elements, it uses relatively large structural elements. The element
sti�ness is de�ned as a function of deformation and stresses so observed behaviour like plastic
deformation, buckling, and tearing can be included. The behaviour of each of the structural
units can be found from any of the methods above and by applying these 'intelligent' units,
the computational time can ideally be reduced by orders of magnitude compared to the �nite
element method, see for example Weijde and Haug, [130].

Ueda was among the �rst to introduce the concept in a computer program (for example
Ueda and Rashed, [129]) and over time it has been applied to many di�erent structural
problems in marine engineering. Paik and Pedersen, [97], recently presented a study on the
internal mechanics of side collisions based on this approach. Figure 6.6 shows an example
from [97] of the deformation of the side structure. The elements shown are the actual
elements of the calculational model so, compared to the detailed �nite element model shown
in Figure 10.9, the crude ISUM-model obviously requires much less computational e�ort.

6.3 Basic Idea of Present Internal Mechanics Model

The approach adopted here is the "Energy Method" or the "Balance of Power Method".
When external loads are applied to a deformable structure, the power (the work rate) of
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Figure 6.6: Computational model for side collision by the ISUM, [97].

these loads must be equal to the incremental energy stored elastically or dissipated in the
structure. If a rigid-plastic structure is assumed, no elastic energy can be stored and the
power of the external loads thus equals the rate of energy dissipated by plastic deformations,
fracture and frictional e�ects on the surface of the structure. This can be expressed as:

FH � V = _Ep + _Ec + _Ef = FP � V +
Z
S
p � Vrel dS (6.1)

where

FH is the resisting force of the structure in the direction of V . In the present
thesis this direction will normally be referred to as horizontal.

V is the relative velocity between ship and rock.
_Ep is the rate of plastic energy dissipation.
_Ec is the rate of energy dissipation in the crack tip zone.
_Ef is the rate of energy dissipated by frictional forces.

on the surface of the structure.
FP is the so-called plastic resistance which here includes.

both plasticity and fracture.
� is the Coulomb coe�cient of friction.
p is the normal pressure on the rock from the plate element dS.
S denotes the contact area between rock and plate.
Vrel is the relative velocity between rock and plate element, dS.

The idea is to postulate the displacement and the strain �elds of the ship bottom struc-
ture passing over a given rock and then, by use of Eq. (6.1), �nd the resisting force. The
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advantage of this type of approach over a purely experimental one is that, once the major
deformation and energy dissipating mechanisms are identi�ed, it should be possible to con-
sider consistently an assembled structure and �nd the energy dissipation and resisting force
of the total assembled structure. To derive general expressions for the resistance of such a
hull bottom assembly from experimental data alone seems to be an overwhelming task. The
idea of smearing longitudinal sti�eners is tempting, see e.g. [95], but for use in the design
of complex structures it would seem unable to capture e�ects of structural details or other
structural arrangements.

The di�culty of the present approach is to select a realistic deformation mode. When
this deformation mode is identi�ed, the energy dissipation and the reaction force are found
from the theory of the next section. The basic idea of the deformation mode adopted here is
sketchily illustrated in Figure 6.7 for a pinnacle type rock. The hull bottom structure passes
over the pinnacle leaving a path of deformed structure in the wake.

Figure 6.7: Sketch of the idea of a moving deformation zone.

The process is assumed to be in a quasi-static state so that the instantaneous rate of
energy dissipation is found by considering a constant penetration and a constant mode of
deformation. The rock penetration actually changes over time but the primary motion is
clearly in the longitudinal direction1. Thus, it is su�cient to consider the instantaneous
penetration. Transverse members also disturb the quasi-static picture but, as it will be
explained later, this e�ect is smeared out in the longitudinal direction. Dynamic e�ects are
not included in the present analysis although it has been shown, see e.g. Jones, [54], that
these could be signi�cant for full-scale grounding problems where the impact speed may be
up to 45 knots (23 m=s).

There are three energy-dissipating mechanisms in any of the considered deformation modes:

� Bending in the form of (moving) hinge lines.

1Typically, the damage length is 50 - 100 times larger than the penetration, see for example [27].
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� Membrane deformation of plate �elds.

� Material separation in a crack tip zone, if the plate material has fractured.

Actually, there is no clear distinction between these mechanisms, but it has been shown
in several areas of sheet metal deformation and fracture that such a separation of energy
absorbing mechanisms often adequately represents the observed behaviour leading to great
simpli�cations of the theoretical analysis, see e.g. Alexander, [5], Atkins, [11], and Wierzbicki
and Abramowicz, [137].

It must be emphasised that the present approach assumes that the structure only frac-
tures at the rock tip - for example there is assumed to be no separation of longitudinals,
girders, 
oors or bulkheads from the shell plating. In many of the simpli�ed approaches
presented in the �eld of crashworthiness, this assumption of no fracture at element intersec-
tions has been implicitly used without further justi�cation, for example [60], [97], [100]. A
large part of the simpli�ed theory was developed for car body parts, which normally have
a plate thickness of less than 1 mm. Most of the experimental evidence therefore shows a
considerably more ductile behaviour than is the case for ship structures built of plates in
the order of 10-20 mm. To shed light on this problem Thomsen [124], recently performed
crushing experiments with large-scale aluminium cruciforms (full-scale according to a newly
built fast ferry), Figure 6.8.

Figure 6.8: Photograph of crushed aluminium specimens. The collapse of the full-scale
specimen to the left was dominated by fracture (t = 8 mm). The small specimen to the
right collapsed without fracture as seen in several previous tests, [113].

As shown in Figure 6.8, the experiments revealed a signi�cant portion of fracture for the
full scale specimens with a plate thickness of 8 mm and the simpli�ed theory overestimated
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the energy absorption by a factor of two, see also [113]. For equivalent 4 mm specimens
practically no fracture was observed and the simpli�ed theory was found to agree with the
experimental results. The example above illustrates the importance of including fracture
and strength of intersections in a consistent manner and it encourages further research in
this area.

6.4 Basic Equations for Energy Dissipation in Plastic-

ity and Fracture

It is worth noting that the material 
ows through the deformation zone shown in Figure
6.7 in contrast to many structural problems where the volume of deformation is stationary
within the structure. This means that any straining of material or bending of a plate section
has to move continuously forward. In fact, the present deformation pattern resembles one
of steady 
uid 
ow around a blunt body. Therefore, similar to most 
uid 
ow solutions an
Eulerian description of material motion is used. The material 
ow is described in a (�; �)
coordinate system where � follows the streamlines and � is in the perpendicular direction,
Figure 6.7. The theory is divided into energy dissipation in the far �eld and in the tip zone.
The latter is the small plastic zone right around the crack tip and the far �eld is the rest of
the deforming zone. Inertia and strain rate e�ects are neglected.

Plastic Energy Dissipation in Far Field
With rigid-plastic material obeying von Mises' yield criterion, the plane stress yield condition
can be written as

Fvm = �2xx + �xx�yy + �2yy + 3�2xy � �20 = 0 (6.2)

where �0 is the uniaxial yield stress. For real construction materials �0 is a function of strain
history and strain rate. Here, �0 is considered to be constant and equal to an average 
ow
stress for the process concerned. Thus, the 
ow stress is higher than the initial yield stress
but lower than the ultimate stress, �u. In the following a 
ow stress of �0 = (�y + �u)=2
is used but more advanced approaches taking into account the speci�c deformation process
could be taken. Depending on the process other values have been suggested, for example
�0 = 0:92 � �u, [2].

For a deforming plate of area S, the rate of internal energy dissipation can be expressed
as

_EP = _Em + _Eb =
Z
S
N�� _"�� dS +

Z
S
M�� _��� dS (6.3)
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where N��, M�� are components of the membrane force and bending moment tensors, and
_"��, _��� are the corresponding generalised strain and curvature rates calculated in the de-
formed con�guration. The two terms in the above equation represent the rate of membrane
and bending energy dissipation, _Em and _Eb, respectively. In general, N�� and M�� in Eq.
(6.3) are related by the yield condition, Eq. (6.2). However, this interaction between mo-
ments and membrane forces is very cumbersome to handle analytically and it is neglected
in the present analysis.

It is assumed that the deformation zone consists of a series of discrete moving hinge lines
and a number of deforming plate elements. If the rock is regarded as stationary, the hull
deformation can be thought of as a steady-state 
ow of hull material past the rock. Since
the material moves through a deformation zone, it is convenient to introduce the spatial-
Eulerian coordinate system (�,�) shown in Figure 6.7, where � is directed along the material
stream lines and � is perpendicular to them.

The material derivative of a given �eld variable X = X(x; t) is in general composed of
two parts [42], [75] (x refers to space and t to time):

DX

D t
=
@ X

@ t
+rX�V�

T (6.4)

where the components of the gradient vector, r, and the velocity vector, V�, are

r =

"
@=@�
@=@�

#
VT

� =

"
@�

@t
;
@�

@t

#
(6.5)

For a steady-state process, the change in time of any quantity, X, at a given location
is zero. Therefore, the �rst term in Eq. (6.4) vanishes. Furthermore, since material points
follow the stream lines at a velocity of V , @�=@t = 0 and @�=@t = V . For steady state 
ow
Eq. (6.4) thus reduces to

DX

D t
= V

@ X

@ �
(6.6)

The rate of membrane energy dissipation in Eq. (6.3) for a plate strip of width d� can
be expressed as

d _Em = t
Z �b

�a
��� _"�� d� d� (6.7)
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where t is now plate thickness and (�a; �b) are boundaries of the local plastically deforming
zone. By application of the yield condition, Eq. (6.2), and the associate 
ow rule, Eq. (6.7)
can be written as

d _Em =
2p
3
�0 t

Z �b

�a

q
_"2�� + _"2�� + _"�� _"�� + _"2�� d� d� (6.8)

For a steady-state process Eq. (6.6) can be used to transform the time derivatives of the
strain in Eq. (6.8) into space derivatives. By assuming that the strains are varying linearly
along a stream line, the expression under the square root in Eq. (6.8) becomes a constant.
Then, performing the integration over the length of the deformaton zone from �a to �b, the
expression for the rate of membrane energy dissipation becomes

d _Em = �0V t["eq] d� (6.9)

where ["eq] is the change in equivalent strain of a material element from entering to leaving
the deformation zone. The equivalent strain is given by

"eq =
2p
3

q
"2�� + "2�� + "��"�� + "2�� (6.10)

By use of Eq. (6.6) it can be shown [114] that the rate of bending energy dissipation,
d _Eb, for a plate strip of width d� is

d _Eb = VnM0[�nn]dL = VM0[�nn] d� (6.11)

where dL is the length of the hinge line, [�nn] is the jump in curvature over a hinge line,
Vn the normal velocity of the hinge line, and M0 is the plane strain fully plastic bending
moment per unit length

M0 =
2p
3

�0 t
2

4
(6.12)

The expression Eq. (6.11) should be integrated over all hinge lines in the given problem.

Note that the equations above should be used with consistent de�nitions of stresses,
strains and the volume of integration. In the present approach stress and strain is related
to the original volume of material.
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Energy Dissipation in Crack Tip Zone
A major challenge of developing a simpli�ed method for the prediction of grounding damage
is to include fracture consistently. Section 6.5 below discusses criteria for predicting the
onset and the termination of fracture. When the shell plating fractures the global mode of
deformation changes because large transverse membrane stresses in the plating are released.
At the same time, an additional energy-dissipating mechanism is introduced: material sep-
aration. Di�erent views on how to determine theoretically the tip zone process have been
presented over time, see for example [13], [70].

One approach is to use the ductile fracture toughness, Rc, giving a rate of energy dissi-
pation in the tip zone of

_Ec = Rc
_A = Rc t V (6.13)

where _A = t V is the rate by which new area is generated.

Eq. (6.13) poses the disadvantage and di�culty that Rc is highly dependent on the actual
strain history up to the point of fracture. For mild steel, Rc varies from 200 to 1000 kJ=m2

depending on the mode of fracture, [12].

In special cases - for example the wedge cutting considered in Chapter 8, the plate is not
separated in a true fracture mode, but the material is rather forced to 
ow around the rock
(the wedge) making the use of a fracture toughness parameter questionable. The rate of
energy dissipation for this alternative mode of purely plastic 
ow is an integral of the plastic
energy dissipation over the volume of the tip zone:

_Ec =
Z
S
�0 _"eq t dStip zone (6.14)

The question of whether fracture should be included or not is further discussed in Chapter
8. For an assembled plate bottom structure being deformed by a rock, the choice of crack
tip process modelling is not critical because the energy dissipation of the crack tip is not
signi�cant. However, it is signi�cant which global deformation mode to choose depending
on the fracture state of the plate material, as further described in Section 6.5.

6.5 Onset of Fracture

As noted above, a major challenge in any theoretical hard grounding analysis is prediction
of the onset and the termination of fracture in the shell plating. Prediction of fracture is
important because it determines which compartments are torn open, as well as it in
uences
the overall deformation mode and thus the amount of damage to the hull. The problem of
predicting the onset of fracture can be divided into two parts:
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1. Determination of the strain history of material elements up to fracture.

2. Determination of the fracture locus, i.e. the limiting length of the strain path (in a
strain space) which causes fracture.

The present section is concerned with the latter, i.e. the general failure behaviour of
a plate material element. Item 1 is dealt with in the speci�c chapter about grounding
resistance of an assembled ship bottom, Chapter 9. In a detailed numerical solution, the
�rst item does not constitute a major problem apart from the fact that calculated stress and
strain concentrations generally increase with decreasing element size. Prediction of fracture
therefore normally becomes sensitive to the discretization.

Since a simpli�ed approach like the present is based on overall deformation mechanisms
it is not possible to trace accurately the stress/strain history of material elements at a very
detailed level. Hence, it has proved necessary in many simpli�ed analyses to use unrealisti-
cally low values for the fracture strain, for example "cr = 3 % by Kierkegaard [60] or 5 % by
Paik and Pedersen [97]. A similar problem is encountered in the following section concern-
ing friction because the detailed deformation of the plate on the rock and the corresponding
pressure distribution does not come from the simpli�ed solution. For friction and fracture
it is therefore necessary to couple the overall deformation model with more detailed local
solutions. Such a local solution for the failure of shell plating attached to a rigid structure
like a bulkhead was presented by Atmadja and McClintock, [17] and [78]. For the present
problem, a local solution for a sphere indentation into a circular plate is presented in Chapter
9.

Item 2, determination of the fracture locus, is an even more di�cult task than the �rst.
Fracture often follows closely after necking, and as shown below this necking can be predicted
with a good level of accuracy if the strain hardening properties of the material are known.
The mechanism leading to the �nal material separation, however, is not yet fully understood
and it has proved very di�cult to make a theoretical or empirical model which applies to
fracture problems in general.

Due to the di�culties mentioned above, it is too ambitious at the present stage to try
to incorporate advanced models for the fracture mechanics of the ship bottom structure. In
the work presented by Simonsen et al. [114], a critical penetration to rupture was calculated
from the rock tip radius, the spacing between longitudinals and the fracture strain from a
uniaxial tension test. Although based on a very simple one-dimensional model of the material
straining in the wake of the rock, the model included some of the major parameters of the
problem and it could probably be tuned to give reasonable overall prediction of fracture.
The plate deformation around the rock is clearly 3-dimensional, however. In recognition of
this complication, the present approach is based on theory and experience gained in the �eld
of plate forming. Our problem of fracture in sheet metals after extensive plastic 
ow is also
of concern to metal formers who attempt to make pressings like sinks or car body parts.
The strain distribution in such complicated pressings is inevitably non-uniform and it can
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be highly non-uniform in certain regions of the pressings. Regions of high local strain or
high strain gradients are critical with respect to plate failure and there has long been an urge
in this area of engineering to understand the failure mechanisms. Some industries use large
deformation elasto-plastic �nite element codes with thermodynamically coupled constitutive
equations to identify critical areas of plate straining. At a more simple level, metal formers
extensively use the so-called 'Forming Limit Diagram', FLD. The FLD shows the locus of
necking in a diagram of the major in-plane strain pairs, ("1; "2). Several authors have used
the idea of showing the fracture locus in the same diagram - then a Fracture Forming Limit
Diagram, FFLD. An example of an FFLD is given later in Figure 6.12.

6.5.1 Plastic Instabilities

Plastic instabilities can be seen in a uniaxial tension test, see Figure 6.9. When the plate
specimen is deformed, the deformation initially spreads along the length of the specimen.
At a certain point, the forming of a di�use neck is initiated and at further deformation the
neck is strongly localised in a local neck.

Figure 6.9: Di�use and local necks formed in a uni-axial tension test of a plate specimen,
[108].

The di�use neck corresponds to a very gradual and mild thinning of the sheet, the extent
of which is many times the sheet thickness. Because, in many sheet forming operations such
as stretching, the sheet is clamped around its entire periphery, the symmetry pro�le radius
observed during di�use necking in a sheet tensile test is often not detectable. Moreover,
substantial amounts of deformation is frequently obtainable even after the onset of di�use
necking. For this reason, the process of di�use necking is normally considered as merely a
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precursor to the second necking mode, that of the localised neck, which actually determines
the formability of the sheet metal.

Initiation of the di�use necking was predicted �rst by Consider�e, [32]. If elastic deforma-
tions are neglected, the volume of the test specimen is constant during the deformation:

d(l � A) = 0 ) (6.15)

l dA+ Adl = 0 ) (6.16)

dl

l
= �dA

A
= d" (6.17)

where l and A represent the length and the cross-sectional area of the specimen, respectively.
The axial load in the specimen is equal to the true stress times the area, P = � �A. During
the deformation, the material hardens and � increases but at the same time A decreases.
As long as the decrease in cross sectional area is counterbalanced by a larger increase in �
the process is stable. The deformation is distributed along the length of the specimen. At
some point, however, the geometric softening takes over, and the deformation will localize
in the di�use neck. At further deformation the local through-thickness neck is formed. The
forming of the di�use neck is initiated when dP = d (�A) = 0, i.e.

d�

�
+
dA

A
= 0 (6.18)

Combining Eq. (6.17) and Eq. (6.18) gives

d�

d"
= � (6.19)

The actual point of instability depends on the material hardening characteristics. Plastic
behaviour of normal construction materials can often be modelled by the power law, accord-
ing to which the equivalent stress �� is related to the equivalent strain �" by the relation

�� = C (B + �")n (6.20)

where n, B and C are material constants. In particular, n is the hardening exponent.
Eq. (6.20) is often used with B = 0. For a material following Eq. (6.20), Eq. (6.19) gives the
axial strain at the initiation of di�use necking:

" = ln

 
l0 +�l

l0

!
= n� B (6.21)
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The strain limits for di�use necking in sheets can be found from a similar approach, again
with the instability limit as the point where the increase in stress due to strain hardening
is equilibrated by the decrease in the cross-sectional area, i.e. d(�xAx) = d(�yAy) = 0.
The criterion, often referred to as 'Swift's Criterion for Di�use Necking', [35], is the biaxial
equivalent to Eq. (6.21) and it can be expressed as:

�" =
2p
3

q
"21 + "22 + "1"2 = Zd n�B

Zd =
4(1�X +X2)3=2

4� 3X � 3X2 + 4X3
(6.22)

X =
�2
�1

=
2"2="1 + 1

2 + "2="1

Several attempts at predicting the local necking which follows the di�use necking in
biaxially loaded sheets have been presented over time. As shown below, classical plasticity
theory predicts the existence of necking in the drawing region ( _"1 > 0, _"2 < 0) whereas the
problem in the stretching region ( _"1 > 0, _"2 > 0) has proved to be more di�cult. For the
drawing region Hill, [49], presented the following results for localised necking: As necks are
normally in a state of plane strain the neck must form along a characteristic line of zero
extension in the plane of the sheet, i.e. "yy = 0 in Figure 6.10.

Figure 6.10: Onset of a necking band of zero extension, according to Hill's analysis for
localised necking in sheets.

This uniquely de�nes the orientation of the neck as

tan =

s
� _"2
_"1

(6.23)

For the conditions of a uniaxial test ( _"1= _"2 = -2), Eq. (6.23) gives  = 35o, which
corresponds well with the orientation of the neck in Figure 6.9. It can be shown, for example
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[38], that if simultaneous stationarity is required, d(�xx t) = d(�xy t) = 0, and a power-law
material (Eq. (6.20) with B = 0) is assumed, the limiting strain pair at necking is

"1 + "2 = n for "2 < 0 (6.24)

It is evident from Eq. (6.23) that Hill's prediction of local necking is restricted to the
deep-drawing range ( _"1 > 0, _"2 < 0). It is also worth noting that the instability limits given
by Eqs. (6.21) and (6.24) are independent of the assumed yield locus but dependent on the
material hardening law.

A major di�culty is encountered in theoretical prediction of local necking in the stretching
range ( _"1 > 0, _"2 > 0). With 
ow theory and in the absence of a pointed vertex on the yield
surface, forming limits can be predicted only by postulating the existence of initial defects in
the sheet, [76], or by making use of a perturbation analysis for studying the rate of growth
of instabilities, [36]. In another approach initiated by St�oren and Rice, [119], it is shown
how deformation theory can be used to simulate the destabilising e�ect of a vertex on the
yield surface, see also [51]. As discussed by Ferron and Zeghloul, [38], however, the theory
only applies to metals with no strain rate sensitivity and it can therefore hardly be applied
to metals in general.

For the present grounding analysis where the actual strain, strain rates, curvatures, im-
perfections etc. cannot be quanti�ed, implementation of complicated models for the material
in the stretching range cannot be justi�ed. Instead, according to Atkins, [14], an empirical
formula which relates the necking locus to the material in the stretching range is simply

"1 � 1=2 "2 = n for "2 > 0 (6.25)

The necking locus for the shell plating is now fully de�ned by Eqs. (6.24 and 6.25). Figure
6.11 shows this empirical relation together with the Hill and Swift criteria for local and
di�use necking, respectively.

It should be emphasised that the e�ects of strain rate and geometry on the necking
and the fracture are truely profound and consequently a simple locus as that de�ned by
Eqs. (6.24) and (6.25) cannot be accurate in general. As an example of the severe e�ect
of geometry, it can be mentioned that Mellor, [79], and Hill, [50], have shown that, for
cylindrical shells exposed to tension/compression and an internal pressure, the necking locus
is

"1 + 2 "2 = n for "2 > 0

"1 = n for "2 < 0

rather than the locus de�ned by Eqs. (6.24 and 6.25) for a plane plate.
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Figure 6.11: Necking criteria: Swift, Hill and empirical.

6.5.2 Ductile Fracture

The range of engineering problems in which fracture has relevance is enormous and the
list of attempts at predicting fracture seems endless. Much of the work has been devoted
to prediction of fatigue failure, which is characterised by cyclic successive development and
growth of cracks at a relatively low level of plastic straining. In the present problem, fracture
is preceded by a signi�cant plastic 
ow and much of the theory developed for fatigue failure
does not apply.

A thorough review of empirical criteria for ductile fracture is given by Atkins and Mai,
[15]. These criteria include simple maximum stress or maximum strain theories, critical
combinations of stress and strain and variations on these themes. Some of the criteria are
entirely empirical, some are based on micromechanical models. Simple empirical criteria
may represent the failure data of the particular experimental conditions from which they
were derived but experiments show that many of these most simple theories cannot be true
in general. The straining path up to the point of fracture is important. This observation
has also been adopted in several of the empirical models by assuming that fracture occurs
when some product of stress and strain, for example

R
�H d�", reaches a critical value (�H is

the hydrostatic stress).

The theoretical approach which has gained most popularity is that of void coalescence
and growth. The basic idea is that holes are nucleated from inclusions or hard second-phase
particles and that these grow and coalesce to give fracture. The holes grow in size and also
change their shape. The average radial growth is proportional to the mean (hydrostatic)
stress �H , and the change of shape depends on the shear stress �eld. Some of the theoretical
models for void coalescence and growth are implemented as standard options in commercial
non-linear �nite element codes. For example Yu [144] used the model by Gurson [45] within
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the framework of MARC and showed good agreement between measured and theoretically
predicted initiation of rupture. The early models, for example proposed by McClintock and
coworkers and Rice and Tracey in the 1960s, were based on ideas and solutions from viscous
solids. Inclusions are modelled as regular arrays of cylindrical holes with known spacing-
to-size (l=2r) ratios and fracture is assumed to occur when holes touch each other. In its
simplest form the McClintock criteria can be written as

Z �H
��
d�" = ln(l=2r) (6.26)

A valuable simpli�cation of the McClintock type of criteria arises as it surprisingly turns
out that the integral is somewhat path-independent. Using von Mises' yield surface, Atkins
[15] has shown that the McClintock criterion for a plate in plane stress reduces to a very
convenient form:

"1 + "2 = �"3 = 3

2
ln

 
l

2r

!
(6.27)

This simple result corresponds well to the experimental evidence that fracture in sheets
under di�erent load biaxialities often takes place at a speci�c through-thickness strain char-
acteristic of the material.

An alternative approach is to assume fracture when the plastic work per unit volume has
attained a certain critical value. When the material is strained to a state just at fracture,
the energy dissipated at the (virtual) crack tip RcdA, where Rc is the fracture toughness
and dA is area of the new surface which is generated. The volume in which this energy is
absorbed is HdA where H is some measure of the in-plane width of the plastic zone. The
critical work per unit volume is therefore Ecrit = RcdA=HdA = Rc=H. For a material that
follows the power law, the plastic work per unit volume is

E =
Z
��d�" =

�0�"
n+1

(n+ 1)
(6.28)

The e�ective strain at fracture is therefore de�ned by the locus

�" =
2p
3

q
"21 + "22 + "1"2 =

 
(n + 1)Rc

�0H

!1=(n+1)

(6.29)

The fracture toughness, Rc can be determined by a double edged notch test, see e.g. [15]
or [16]. The e�ective width of the plastic zone, H, is basically unknown, however. In a
theoretical discussion by Atkins and Mai [16], it is suggested using the plate thickness, i.e.
H = t. Figure 6.12 shows fair agreement between experiments and Eq. (6.29) for H = t.
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6.5.3 Failure Criteria Adopted in the Present Analysis

As indicated above, a signi�cant amount of scienti�c work has been devoted to understand-
ing metal plate failure. Most of the proposed theoretical models require input parameters
completely unknown to the practising naval architect, and they are at a level of detail and
complexity which presently does not comply with the uncertainties in an assembled ship
bottom structure. It is clear that the input data for the theoretical model must be at a rel-
atively simple level, ideally only a traditional uniaxial stress-strain diagram should be given
as material data input. Based on the idea that the far �eld displacements from necking to
fracture are small due to the localisation of deformation, the present analysis adopts local
necking as the governing failure mode. In summary, the necking locus is therefore given by

"1 + "2 = n for "2 < 0

"1 � 1=2 "2 = n for "2 > 0 (6.30)

An example of measured necking and fracture strains is shown in Figure 6.12 which also
shows the failure locus adopted in the present analysis, Eq. (6.30) together with Eq. (6.22),
Eq. (6.27) and Eq. (6.29).

Figure 6.12: Failure of a plate sheet under di�erent proportional biaxial loading paths.
Comparison between measurements, [82], and theory for necking and fracture. K1 is taken
to give a best �t of Eq. (6.27). K2 is calculated from Eq. (6.29) corresponding to H = t.

The results were presented in [82] and are for a low-carbon steel plate with a thickness
of t = 0:8 mm. The material can be described by the power law, Eq. (6.20) with B = 0,
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C = 548 N=mm2 and n = 0:21. The fracture toughness was measured in a double edged
notch test, see e.g. [15], to be R = 240 kJ=m2.

6.6 Friction and Perpendicular Reaction

Friction is an important energy dissipating mechanism in a grounding event. For cutting of
a plate by a wedge with the semi-angle, �, Wierzbicki and Thomas, [140], and Ohtsubo and
Wang, [90], used a factor for the e�ect of friction on the plate resistance, F :

g =
FH
FP

= 1 +
�

tan�
(6.31)

which indicates that friction increases the resistance by 52 % for the example of � = 0:3
and � = 30o. In a study of tube splitting on a 
at die, Stronge et al. [121], used a friction
factor of g = 1=(1 � �). For the case of aluminium against a steel die, they measured a
coe�cient of friction of � = 0:56 giving a friction factor of g = 2:27.

As indicated by Eq. (6.1), the present study assumes a Coulomb type of friction where
the frictional stress at the interface between plate and rock is proportional to the normal
pressure. The friction factor, g, can then be consistently derived from Eq. (6.1) and the
requirement of equilibrium in the direction of the overall plate motion if the distribution
of normal pressure on the rock is known. Below, this is illustrated for the example of a
prismatic wedge cutting through a plate which is perpendicular to the wedge edge. The
approach can be extended to any rock geometry. The critical point is to determine the
distribution of normal pressure, as this is not predicted by the upper bound method. For a
wedge with plane surfaces, however, the whole normal pressure works in the same direction2

so this distribution has no relevance for the solution. If it is noted that the surface, S, in
Eq. (6.1) is plane and it is assumed that Vrel is constant over this surface the balance of work
rates can be expressed as

FH V = FP V + 2�N Vrel (6.32)

where N is the normal force on the front wedge sides, i.e. the integral of the normal pressure.
The relative velocity, Vrel, between the plate and the wedge in the contact area is assumed
to be inclined an angle, �, from the plane of the plate, Figure 6.13. This angle depends on
the rolling of the plate curls on the wedge and it can be shown geometrically that � must
be bound by 0 and �, 0 � � � �. In reality, the direction of motion (�) for material on the
wedge face changes: First there is an upward component but around the wedge shoulder,
material 
ows horizontally.

2E�ects of the wedge shoulders are neglected.
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Figure 6.13: De�nition of the direction of relative velocity and free body diagram for a
wedge.

Pippenger, [103], reported scouring traces on a � = 45o wedge with � = 22:5o and
� = 17:9o for experiments with wedges inclined respectively � = 70o and � = 45o from
perpendicular. As an estimate it is therefore reasonable to use � = �=2, which also makes
sense intuitively.

The tangential friction force on the wedge is in the same direction as Vrel. Figure 6.13
shows the direction of Vrel and a free body diagram of the wedge. It is seen that horizontal
equilibrium can be expressed as

FH
2

= N sin� + �N cos� cos� ) (6.33)

N =
FH

2(sin� + � cos� cos�)
(6.34)

Insertion of Vrel = V into Eq. (6.32) gives

FH = FP

 
1� �

sin� + � cos� cos�

!�1
(6.35)

For the example of � = �=2 and � = �=2, corresponding to the tube splitting process,
the friction factor becomes g = 1=(1� �), which is the same expression as used by Stronge
et al. [121]. Inserting � = �=2 in Eq. (6.34) gives the �nal expression for the friction factor;

g(�; �) =
FH
FP

=

 
1� �

sin� + � cos� cos(�=2)

!�1
(6.36)

It is seen that this expression is di�erent from that used by Wierzbicki and Thomas, [140],
and Ohtsubo and Wang, [90], Eq. (6.31) which gives lower values for g than Eq. (6.36). At
� = 0:3 and � = 10o; 30o; 45o the di�erence is 3.2 %, 9.0 % and 13 % respectively.
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The reaction force, FV , on the plate perpendicular to the direction of motion is the
vertical component of the friction force �N :

FV = �2�N sin�

= FH
�� sin�

sin� + � cos� cos�
(6.37)

Note that the vertical force on the plate is downward due to the upward rolling of the
plate 
aps. With � = �=2 the ratio between the vertical reaction and the horizontal resistance
thus becomes

k(�; �) =
FV
FH

=
�� sin(�=2)

sin� + � cos� cos(�=2)
(6.38)

This method for �nding the friction factor, g, and the vertical to horizontal force ratio,
k, is also adopted in Chapter 8 and Chapter 9. A very signi�cant shortcoming of the present
friction modelling is that the coe�cient of friction, �, on which the whole formulation rests,
is basically unknown as it has been reported to vary between 0.3 and 0.8. Future studies are
needed to quantify coe�cients of friction for di�erent ship platings, coatings and rock types.
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Chapter 7

External Dynamics of Grounding on a

Pinnacle

As it was discussed in Chapter 6 it is convenient to divide theoretical modelling of a grounding
scenario into external dynamics and internal mechanics, see Figure 6.1. In the �rst part of
the thesis concerning grounding on sand banks, the two-dimensional character of the ground
allowed for considerations of only surge, heave and pitch, neglecting the other three degrees
of freedom. When a ship runs aground on a sharp rock like a pinnacle, however, it is clear
that, if the rock is not exactly at the centre line, all six degrees of freedom are activated.
The vertical component of the ground reaction causes the ship to heave, roll and pitch,
while the horizontal component in
uences the surge, sway and yaw motions. In the present
chapter a simpli�ed model for the external mechanics is proposed. From an analysis of
the ship motion in the horizontal plane (surge, sway and yaw), it is �rst argued that the
sway and yaw motions can be neglected. The surge motion can be determined from energy
considerations. Then, in a separate analysis, the motion (heave, pitch and roll) due to the
vertical ground reaction is considered and a relationship between ship motion and ground
reaction is developed on the basis of static equilibrium.

7.1 Ship Motion in the Horizontal Plane - Damage

Path

When a ship runs aground on a rock which is not in the symmetry plane, the ship begins
to rotate as illustrated in Figure 7.1. It would clearly be most convenient to immediately
neglect the sway and yaw motions but in order to justify such an assumption at least three
items must be investigated:

1. Can the damage path be assumed to be linear?

99



100 Chapter 7. External Dynamics of Grounding on a Pinnacle

2. Does the damage path stay within the ship or leave it?

3. Does a substantial part of the initial kinetic energy go into a rotation mode of the
ship?

In order to answer these questions accurately, it is necessary to solve the equations
of motion for the ship numerically. If it is found necessary, closed-form expressions for
the above-mentioned e�ects can be developed subsequently. It should be emphasised here
that the objective of the present analysis is not to determine the damage length of a given
grounding event, but rather to �nd the ship motion and the shape of the damage path given
a certain damage length.

Figure 7.1: Horizontal ship motion in a grounding scenario where the rock is not at the
symmetry plane. De�nition of local and global coordinate systems, xyz and XY Z.

For the numerical solution with �nite rotations, it is convenient to introduce two co-
ordinate systems: a local coordinate system, xyz, which is �xed in the ship, and a global
coordinate system, XY Z, which is �xed on the rock, see Figure 7.1. The local coordinate
system has its origin in the hull symmetry plane amidships. The x-axis points forward, the
y-axis points horizontally towards the port side and the direction of the z-axis is upwards.
The global system has its origin at the rock centre. The X-axis points in the direction of
the initial velocity of the ship, the Z-axis points upward as the z-axis and the Y -axis is
perpendicular to the X and Z axes, Figure 7.1.

In the planar motion the two displacements and the rotation in the xyz-coordinate system
are described by u; v and 	, respectively. The coordinates of the local origin ((x; y) = (0; 0))
in the global coordinate system are (XS; YS) and the rotation 	 is the same as in the local
system.

Since only the motion in the horizontal plane is considered, gravitational and hydrostatic
loads do not a�ect the motion, and the loads to be considered are therefore contact forces
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from the rock and hydrodynamic pressure. In the following two sections these loads are
discussed before the equations of motion are presented.

7.1.1 Loads on Hull from Ground

The ground reaction force depends strongly on the structure and on the rock. At this point in
the analysis, certain assumptions are therefore necessary. The magnitude of the grounding
force is here assumed to be constant throughout a grounding event, and the direction is
assumed to coincide with the rock velocity relative to the hull. This is illustrated in Figure
7.2. In a real ship structure, major longitudinal members give signi�cant resistance against
the rock moving in the transverse direction and the present analysis therefore gives an upper
bound for the deviation of the damage path from a straight line.

Figure 7.2: Assumption of ground reaction force acting in the opposite direction of the
relative velocity between rock and ship bottom.

Consistent with the above de�nition of the coordinate systems, the velocity of the rock
relative to the ship bottom at the position of the rock is given by:

Vrel;X = �
�
_XS + YS _	

�
(7.1)

Vrel;Y = �
�
_YS �XS

_	
�

(7.2)

Hence, the total relative velocity between the rock and the ship bottom at the position of
the rock is

Vrel =
q
V 2
rel;X + V 2

rel;Y (7.3)
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The components of the grounding force in the global coordinate system can now be expressed
as

FG;X =
Vrel;X
Vrel

FG (7.4)

FG;Y =
Vrel;Y
Vrel

FG (7.5)

where FG is the magnitude of the grounding force. As mentioned, this force is assumed
to be constant throughout the analysis and equal to an average grounding force. Actually,
the magnitude of the force may change with the rock position. This changes the calculated
trajectory slightly without altering the main conclusion. The direction of the force varies
according to Eq. (7.4) and Eq. (7.5) above.

7.1.2 Hydrodynamic Loads

The hydrodynamic loads are modelled by a two dimensional strip theory and the application
of an impulse response technique as in Chapter 6, Section 3.2.2. The transverse hydrody-
namic load on a segment of the hull per unit length can be expressed as

qhd;y(x; t) = ��y(x)�v(x; t)�
Z 1

0
hy(x; �) _v(x; t� �)d� (7.6)

where �y(x) is the added mass at in�nite frequency;

�y(x) = lim
!!1 ay(x; !) (7.7)

and the unit response function, hy(x; t), is the cosine transformation of damping;

hy(x; t) =
2

�

Z 1

0
by(x; !) cos(!t)d! (7.8)

Added mass, ay(x; !), and damping, by(x; !), is found by use of conformal mapping. The
speci�c numerical example considered here is taken from Petersen [102]. The convolution
integral of Eq. (7.6) can be expressed in a computationally more convenient form as

Z 1

0
hy(x; �) _v(x; t� �)d� =

Z t

0
hy(x; �) ( _v(x; t� �)� _v(x; 0)) d� (7.9)

The hydrodynamic loads on the entire ship hull at a given time can now be found by inte-
gration of Eq. (7.6) along the ship length, L.
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7.1.3 Equations of Motion

By treating the hydrodynamic loads as described above, the system of equations of motion
in the ship coordinate system can be expressed as in Chapter 3:

2
64 Mxx 0 0

0 Myy xgyMyy

0 xgyMyy Jzz

3
75
8><
>:

�u
�v
�	

9>=
>; =

8><
>:

Fx
Fy
Mz

9>=
>;
ground

+

8><
>:

Fx
Fy
Mz

9>=
>;
damp

+

8>><
>>:

Myy

�
_v _	 + xgy _	

2
�

�Mxx _u _	

(Mxx �Myy) _u _v + xgyMyy _u _	

9>>=
>>; (7.10)

where

Mxx =
Z
L
(m(x) + �x(x)) dx

Myy =
Z
L
(m(x) + �y(x)) dx

Jzz =
Z
L
x2 (m(x) + �y(x)) dx

xgy =
Z
L
x (m(x) + �y(x)) dx=Myy

where m(x) is the mass of the ship per unit length and �x and �y denote added mass at
in�nite frequency in the longitudinal and the transverse direction, respectively. The added
mass in the longitudinal direction cannot be determined by simple means so as for the soft
grounding problem described in Chapter 3, it is taken to be 5 % of the ship mass.

The grounding load in Eq. (7.10) is found by transforming Eq. (7.4) and Eq. (7.5) into
the ship coordinate system:
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The damping load resulting from the generation of waves can be expressed as:
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where

hy(�) =
Z
L
hy(x; �)dx

hyx(�) =
Z
L
xhy(x; �)dx

hyx2(�) =
Z
L
x2hy(x; �)dx

Eq. (7.10) is solved for the accelerations in the ship coordinate system and these local
accelerations are transformed into the global coordinate system by the relations

�Xs = �u cos	� �v sin	� _	 ( _u sin	 + _v cos	)

�Ys = �u sin	 + �v cos 	� _	 (� _u cos	 + _v sin	) (7.12)

�	s = �	

Given the initial conditions, the global accelerations,
n
�Xs; �Ys; �	s

o
, can then be integrated

numerically to give the velocity and position of the ship as a function of time.

The time simulation is stopped when the relative velocity between ship bottom and rock
is zero, i.e. Vrel = 0, see Eq. (7.3). At this point the ship rotates around the rock and
the damage does not increase further in the longitudinal direction. This corresponds to the
approach most often used in the analysis of side collisions: The collision damage is assumed
to stop when the relative velocity at the contact point between the struck and the striking
ship has diminished to zero.

7.1.4 Numerical Example and Results of Calculations

In this section the motion of a 300,000 DWT tanker is investigated. The main particulars
of the considered vessel are:

Length between perpendiculars, L 322.7 m
Beam, B 58.2 m
Draught, T 21.0 m
Block Coe�cient, CB 0.81
Displacement, MS 327,000 tons

The unit response functions for the considered ship, hy(�) and hyx2(�), are shown in Figure
7.3.

The initial distance from the rock to the ship symmetry plane (the so-called rock eccen-
tricity) is 26 m, which is the maximum possible distance from the ship symmetry plane. The
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Figure 7.3: Unit response functions hy(�) and hyx2(�)

analysis will therefore give an upper bound estimate of the e�ect of ship rotation. The rock
does not touch the hull until 12 m aft of FP.

Consider �rst a series of groundings at an initial velocity of 12 knots. The initial kinetic
energy of the ship is the Ekin;init = 1=2MxxV

2 = 6:55 109 J . The force level is chosen to give
stopping distances of approximately 25 m, 50 m, 75 m, 100 m and 150 m. For example, for
a desired stopping distance of approximately 100 m, the grounding force should be

FG =
6:55 109 J

100 m
= 6:55 107 N

In Table 7.1 below, the results are summarised for �ve numerical simulations. The
following notation is used:

FG Magnitude of the grounding force used in numerical simulation.
Ekin;init
FG

This quantity would be stopping distance if the ship was

restrained from rotation.
�XS The calculated length (so-called 'stopping distance').
Ekin;term
Ekin;init

The ratio between the kinetic energy when the grounding

has terminated and the initial kinetic energy. If the ship was
restrained from rotation, this quantity would be zero.

�max The maximum deviation of the damage path from a straight line.
	term The yaw angle of the ship when the grounding terminates.

Figure 7.4 shows the damage for the �ve considered cases. The damage path is shown as
the deviation of the path from a straight line as a function of distance from the point of �rst
contact. Positive deviation means that the damage path has moved towards the symmetry
plane of the ship.

Table 7.2 summarises results for the analysis of the e�ect of impact velocity. An analysis
equivalent to the one above is carried out for impact velocities of 4 knots, 8 knots, 12 knots,
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Table 7.1: Summary of the results for analysis of the e�ect of force level on the horizontal
motion. The initial velocity is 12 knots (6.17 m/s).

FG (MN)
Ekin;init
FG

(m) �XS (m)
Ekin;term
Ekin;init

(%) �max (m) 	term (deg)

1 262.0 25.0 25.1 1.13 2.15 1.6
2 131.0 50.0 50.2 1.51 3.93 3.6
3 87.3 75.0 75.3 2.01 5.03 6.2
4 65.5 100.0 100.0 2.66 4.93 9.2
5 43.7 150.0 149.1 3.75 2.49 15.7

Figure 7.4: Calculated damage paths for the �ve levels of the ground reaction force considered
in Table 7.1. The impact velocity is 12 knots.

and 16 knots. The grounding force is chosen to be one which led to the maximum deviation
of the damage path from a straight line in the previous analysis, i.e. FG = 87:3 MN .

Figure 7.5 shows the calculated damage paths for the di�erent impact velocities. It is
seen that the shapes of these paths are similar to the paths found in Figure 7.4 for di�erent
grounding forces.

An important conclusion from the analysis is that the rock initially moves towards the
ship symmetry line (if initial contact is forward of amidships). This means that if a ship just
barely strikes a rock with the bilge, the rock will "lock" onto the ship and the rotation of
the ship will cause the damage to extend further into the hull structure - the rock will not
tend to leave the structure, as might be expected.

Concerning the question of whether the damage path leaves the ship at some point, the
present analysis suggests that, if the initial point of contact is at the fore end of the ship and
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Table 7.2: Summary of the results for analysis of the e�ect of impact velocity on horizontal
motion. The grounding force is FG = 87:3 MN

V (knots)
Ekin;init
FG

(m) �XS (m)
Ekin;term
Ekin;init

(%) �max (m) 	term (deg)

6 4.0 8.33 8.40 0.95 0.75 0.48
7 8.0 33.3 33.6 1.25 2.84 2.2
8 12.0 75.0 75.3 2.01 5.03 6.2
9 16.0 133.3 132.8 3.72 2.91 13.4

Figure 7.5: Calculated damage paths for the four di�erent impact velocities considered in
Table 7.2. The ground reaction force is 87.3 MN .

the expected stopping distance (i.e. Ekin;init=FG) is between L=2 and L, the damage path
leaves the ship. However, this part of the analysis requires further investigation because
the strength of the structure in the transverse direction must be properly included in the
present model. It should also be noted that considering the rock at the bilge gives the highest
possible ship rotation. The rotation vanishes if the rock is in the ship symmetry plane.

It is seen from Table 7.1 and Table 7.2 that the deviation of the damage path from a
straight line, �max, has a maximum of approximately 5 m and that the maximum amount of
the initial kinetic energy that goes into the rotation is 3.72 %. Comparing columns 3 and 4,
the analysis also shows that, if the horizontal force can be determined, the stopping distance
can be found with very good accuracy by ignoring the rotation mode and simply equating
the initial kinetic energy to the work of horizontal force. This observation supports the
validity of the energy balance approach proposed below, where the yaw and sway motions
of the ship are neglected.
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7.2 Static Equilibrium of a Grounding Ship

In this section a relationship is established between the vertical component of the ground
reaction and the heave, roll and pitch of the ship. As mentioned, this relationship is based on
static equilibrium so that the horizontal reaction force does not contribute to the equilibrium
equations. The e�ect of neglecting vertical inertia forces is believed to be small although it
is recognised that, when sturdy transverse members are encountered, inertia will invariably
have some e�ect which cannot be taken into account in a purely static approach. A natural
future expansion of the model would be to solve the equations of motion taking account of
inertia terms.

Consider a ship (initially 
oating freely) which is exposed to a vertical force, FZ, at an
arbitrary position on the ship bottom. The objective is to �nd changes in heave, surge and
pitch from the initial equilibrium position corresponding to equilibrium in the new position.
Changes in heave, pitch, and roll are here denoted wh, �p and 'r. The change in heave
is measured at the Longitudinal Centre of Flotation, LCF, and the position of the point
of contact, P , is measured from the symmetry plane at the LCF. The longitudinal and
transverse distances to P are denoted l and s respectively, see Figure 7.6.

Figure 7.6: De�nition sketch for static equilibrium.

For small rotations and displacements, the lift of the hull, �Z, at the point P can in terms
of heave, pitch and roll be expressed as:

�Z = wh + l�p + s'r (7.13)

The condition for static equilibrium can be expressed as

FZ = �w g Awpwh (7.14)
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Mx = �w grGMT 'r ; Mx = FZ s (7.15)

My = �w grGML �p ; My = FZ l (7.16)

On the basis of Eqs. (7.13 - 7.16), the relation between the vertical reaction and the lift of
the hull at the position of the rock can now be expressed as

FZ =
�wgAwp

1 +
l2

r2
+
s2

p2

�Z (7.17)

Two new parameters are introduced here, the equivalent radii of inertia:

r2 =
rGML

Awp
and p2 =

rGMT

Awp
(7.18)

where

r is the displacement volume of the ship.
Awp is the area of the water plane.
GML is the longitudinal metacentric height.
GML is the transverse metacentric height.

7.2.1 Numerical Example

In order to illustrate how the vertical reaction force depends on the point of attack, P , for
the ground reaction, consider Eq. (7.17) in a non-dimensional form:

F 0Z =
FZ

�wgAwp�Z
=

1

1 +

 
l

r

!2

+

 
s

p

!2 (7.19)

For the tanker considered in the previous section in a fully loaded condition, the following
maximum values were found

l

r
= 2:0 at FP in the ship symmetry plane

s

p
= 2:8 at the foremost point at the bilge
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For a unit displacement at di�erent locations on the ship bottom, the vertical force (equiva-
lent to the 'sti�ness' of the 
oating ship) can then be found from Eq. (7.19), see also Figure
7.7:

Force at symmetry line amidships (max. force) F 0Z = 1
Force at symmetry FP F 0Z = 0:20
Force at bilge amidships F 0Z = 0:11
Force at bilge at fore end F 0Z = 0:078

Figure 7.7: Illustration of the vertical force required to lift the ship a unit displacement at
di�erent locations on the ship bottom. The four �gures illustrate the ship water plane and
the force at the four positions considered above.

The results above illustrate the signi�cant decrease in 'sti�ness' of the 
oating ship as
the distance from the LCF to the contact point increases. It is clear from these results that
the penetration of the rock into the ship structure will be largest if the rock is at the ship
symmetry plane and smallest if the rock is at the bilge.

The potential energy due to a grounding-induced lift, �Z, of the ship can be found from
Eq. (7.17) as the work of the external force, FZ , required to bring the ship to the given
condition:

Epot =
Z �Z

0
FZ(Z)dZ =

1

2

�wgAwp 
1 +

l2

r2
+
s2

p2

! (�Z)2 (7.20)

The next section describes how Eq. (7.17) and Eq. (7.20) can be used in a simpli�ed
model for the external dynamics.

7.3 Simpli�ed Model for the External Dynamics

The main results of the analyses of global ship motion presented above can be summarised
as follows:
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� The sway and yaw motions can be neglected with little loss of accuracy for most
grounding events. Thus, the damage path can be assumed to be linear and the kinetic
energy of the rotation mode can be neglected.

� The relation between the vertical component of the ground reaction and heave, pitch,
and roll was established on the basis of static equilibrium, Eq. (7.17).

� The expression for the potential energy of the ship due to the grounding event was
derived, Eq. (7.20).

Based on these results the present section presents a simpli�ed theoretical model for deter-
mination of the equilibrium path and determination of the point when the ship has been
brought to a stop.

Figure 7.8 de�nes the main parameters of the problem. In consistency with the analysis
above, the X-axis points forward and has its origin at the rock centre. The longitudinal
position of the ship is described by the coordinate amidships, XS, and the position of the
ship at the initial contact is denoted X0.

Figure 7.8: De�nition sketch for determination of equilibrium path and stopping position of
ship.

The basic idea is to increment the ship forward and at each increment �nd the rock
penetration, the ground reaction, and the heave, pitch and roll motion corresponding to the
static equilibrium of the ship. As the ship is incremented forward the work of the horizontal
force tracked all along. When the work of the ground reaction plus the potential energy of
the ship equals the initial kinetic energy, the ship has been brought to a stop.

The structural model derived in the subsequent chapters expresses the horizontal and the
vertical components of the ground reaction, (FH ; FV ), in terms of the rock penetration, �R,
into the hull. It is assumed that the contact area between the hull and the rock is a point,
P , on the ship bottom. The rock penetration at point P if there were no heave, pitch and
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roll is denoted �R0 and, as before, the vertical rigid body lift at point P is called �Z. The
net penetration into the hull is then:

�R = �R0 ��Z (7.21)

The condition for equilibrium can now be expressed as the solution, �Z, to the non-linear
equation:

FZ(�Z) = FV (�R0 ��Z) (7.22)

where FZ(�Z) is given by Eq. (7.17) and FV (�R0 � �Z) is the vertical reaction force.
Expressions for FV (�R) are derived in the subsequent chapters about internal mechanics.
Due to fracture in the structure, the function FV (�R) is a discontinuous function, which
causes certain complications of determining the global equilibrium because several points
may satisfy the equilibrium conditions. This is illustrated in Figure 7.9, which, in principle,
shows the two functions of Eq. (7.22). The problem of several equilibrium paths is often
encountered in the solution of non-linear di�erential equations. It complicates the analysis
because the solution can be very sensitive to the initial conditions.

Figure 7.9: Illustration of multiple root equation for global equilibrium.

The procedure for the external dynamics can be summarised as follows:

1. When contact is initially established, determine the equilibrium condition which is �rst
encountered when the rock penetrates the hull (i.e. the largest possible root, �Z in
Eq. (7.22), see Figure 7.9 ). Calculate the horizontal resistance, FH .

2. The ship position is incremented forward by a distance �XS.
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3. A new equilibrium position is sought around the previously found equilibrium con�g-
uration. If more equilibria are found, the new equilibrium is considered to be the one
closest to the previous.

4. When the appropriate equilibrium is found, the horizontal component of the ground
reaction FH and the potential energy of the ship can be calculated. The current kinetic
energy of the ship can then be calculated from the principle of conservation of energy:

Ekin(XS) = Ekin;init � Epot(XS)�
Z XS

X0

FH(X)dX (7.23)

When Ekin(XS) = 0, the ship has been brought to a stop and the calculation is
terminated. The damage length of the hull is then �XS = XS �X0. If Ekin(XS) > 0
the loop is entered at point 2.
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Chapter 8

Internal Mechanics for a Bare Plate

Cut by a Wedge

8.1 Introduction

One of the energy-absorbing mechanisms in a grounding or collision event is the so-called
plate cutting process. However, considering the complexity of an assembled ship bottom
structure deformed in a grounding event, the problem of only plate cutting seems to be
of minor importance. Nevertheless, many experimental results and much work have been
devoted to this problem and it is also treated here. Most authors use the terms 'cutting'
or 'tearing' although some of the observed failure modes are quite complex and bear little
resemblance to the original meaning of these words. The mechanics of the cutting process
is complicated as it may involve plastic 
ow of the plate in the vicinity of the wedge tip,
ductile fracture, friction between wedge and plate, membrane deformation of the plate, and
large-scale bending of the plate '
aps' remote from the wedge tip into various scroll motifs
and other folding patterns.

In this chapter, the plate cutting phenomenon is described qualitatively, some of the
most signi�cant previous work is discussed and summarised, and new theories are derived
for steady-state plate cutting by a wedge.

Depending on the deformation mode which develops, the plate cutting phenomena de-
scribed in the literature can be divided into three categories, see Figure 8.1:

1. Stable or clean curling cut. The plate is separated at the tip or in front of the wedge
and rolls and folds to the same side during the entire process.

2. Braided cut. The plate separates at the wedge tip as in the clean curling cut but the
deformed 
aps fold back and forth.

115
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3. Concertina tearing. The plate folds back and forth in front of the wedge while it is
torn at remote boundaries.

The experimental and theoretical analyses of these three classes fall into two main cate-
gories:

� "Initiation or transient wedge penetration". The wedge penetration is considered from
the point of initial contact between wedge tip and plate edge to the point where the
mean resistance force reaches a constant level. Normally, the initiation phase can be
assumed to terminate when the shoulders of the wedge enter the plate, [69]. Since the
maximum width of the penetrator into the plate increases with the penetration, the re-
action force is also an increasing function of the penetration. This process was initially
considered as an idealisation of a rigid ship bow penetrating into the deck-plating of
another ship in a collision but, recently, it has also been applied to groundings. Several
authors, for example [90], [10] and [95], have applied results or models for this process
as an approximation to problems of 'steady-state penetration' described below.

� "Steady-state penetration". If the penetrator has a �nite width, the plate reaction
force reaches a constant mean level after a certain penetration and the process is then
said to be in a steady state. This process is considered to be an idealisation of a rock
pinnacle or ice reef cutting through a ship bottom in a grounding or ice collision event.

For each of the three examples shown in Figure 8.1, the deformation was large enough
for the steady state to be reached, so the �gure shows the deformation and the reaction in
both the initiation and the steady state phases.

The present chapter is concerned with the steady state clean curled cutting. Whenever
the term 'cutting' is used in the following without further explanation it refers to this speci�c
cutting mode.
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Figure 8.1: Photographs of three cutting modes: clean curling cut, braided cut, and con-
certina tearing with corresponding force-displacement (F; l)-diagrams.
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8.2 Previous Work

A thorough literature review was presented by Lu and Calladine, [69], but since then the
list of relevant publications has been expanded. A brief summary of literature pertinent to
the �eld of plate cutting is given below.

The basic geometric features of the cutting set-up used in the reported experimental work
is shown in Figure 8.2.

Figure 8.2: Cutting set-up.

The de�nition of the inclination angle, �w, varies. Some perform experiments with an
inclined plate and some incline the cutting edge as shown in Figure 8.2.

Earlier experiments were performed with drop-hammer tests but to eliminate dynamic
e�ects - which are di�cult to interpret - most recent work is based on quasi-static testing.

Several authors developed simple formulas giving the energy absorption,W , as a function
of the penetration, l, into the plate. The reaction force, F , is then calculated from W (l) as
F (l) = dW

d l
with a correction factor when needed, due to the inconsistency of the dimensions.

In the next section the formulas are compared.

The notation used in the present chapter is given below.
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F Reaction force from plate on wedge (N).
W Absorbed energy (Nm).
l Length of penetration into plate (mm).
t Plate thickness (mm).
�t Crack tip opening displacement (mm).
�t Non dimensional crack tip opening displacement, �t = �t=t.
2� Wedge angle, i.e. angle between wedge faces.
2B Shoulder width of wedge.
b Spacing between longitudinal sti�eners.
� Coe�cient of friction.
�w Angle between cutting edge and normal to plate.
�y Initial yield stress.
�0 Energy equivalent 
ow stress.

Not all of the empirical formulas listed in the following are dimensionally consistent,
i.e. they are not independent of the dimensions of the involved parameters. If not de�ned
otherwise, F is in [N ], W is in [Nm(= J)], and l; t is in [m].

Akita, Ando, Fujito and Kitamura (1972), [3] and [4], conducted tests with pene-
tration of a rigid wedge (� = 30; 400) into a 3.2 mm steel plate to analyse the response of
a ship side in collision. They proposed a simple conceptual model in which the plate exerts
a normal compressive stress of �y onto the plate over the nominal contact area. From static
equilibrium the plate resistance force becomes

F = 2:0�y t l tan� (8.1)

Since the portion of the plate in contact with the wedge is deformed due to tearing and
denting it was proposed to reduce the resistance force by 20 %. However, the analysis does
not take the actual deformation mode of rolling plate 
aps consistently into account and, as
it is shown in Figure 8.3 of the next section, the proposed formula, Eq. (8.1), over predicts
the actual plate resistance.

Vaughan (1978,80), [132], [133], used the experimental data of Akita and Kitamura,
[4], together with Minorsky's formula, [80], to estimate the damage su�ered by a ship bottom
cut by a reef or ice. Vaughan assumed that the energy would be absorbed in two mechanisms,
plastic deformation and creation of new surfaces by fracture, and thus came up with an two
term empirical expression for the energy absorption and plate resistance force:

W = 3:3 � 107 l t+ 9:3 � 107 l2 t tan� (8.2)

F = 3:3 � 107 t+ 1:9 � 108 l t tan� (8.3)
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Vaughan subsequently performed sixty-four drop-hammer experiments with plates of mild
steel, [133], with t = 0:752; 0:958; 1:181; 1:867 mm and � = 5; 15; 300. Based on the same
idea of two major energy-absorbing mechanisms, he obtained an expression for the energy
absorption:

W = 1:7 � 108 l t1:5 + 4:4 � 109 l2 t2 tan� (8.4)

F = 1:7 � 108 t1:5 + 8:8 � 109 l t2 tan� (8.5)

All experiments were performed with the plate tilted at an angle, of �w = 100, because it was
discovered that, with this orientation, the cutting of the plates occurred by 
aps rolling up
on one side ('clean curling cut'), in contrast to the more complicated back-and-forth bending
('braided cut'), which is characteristic when �w = 00.

The expression for the reaction force, Eq. (8.5), is seen to have a �nite value at zero pen-
etration so that for small penetrations, these formulas do not correspond to actual reaction
forces.

Woisin (1982), [141], analysed drop-hammer tests reported by GKSS in Germany. In a
series of 13 tests, two equal plates (t = 2� 10 mm) cut into each other and Woisin proposed
the following formula for the energy absorption:

W = 6:0 � 108 l t1:7 (8.6)

F = 6:0 � 108 t1:7 (8.7)

In a series of 19 tests, rigid wedges (�w = 00, � = 15; 35; 500) were forced into plates of
mild steel with thicknesses between 2 and 4 mm. In seven of these tests the plate did not
rupture although the penetration amounted to l=t = 30. The resistance of a plate of mild
steel before fracture was found to be well approximated by the expression

F = 6:0 � 109 t2 (8.8)

when 12 � l=t � 30 and 5 mm � t � 10 mm.

In the remaining cases where the plate ruptured the proposed expressions are

W = 2:5 � 109 l t2
(
0:5 + 30

�
t

l

�
+
� � 200

150

 
0:05 + 0:002

l

t

!)
(8.9)

F = 2:5 � 109 t2
(
0:5 +

� � 200

150

 
0:05 + 0:004

l

t

!)
(8.10)
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for 200 � � � 500 and 24 � l=t � 60.

By considering the cutting response of plates of di�erent thicknesses the complexity of
scaling was noted.

Jones, Jouri, and Birch (1984-87), [52] , [55], and [56], performed drop-hammer tests
on plates of mild steel. In the most recent work, [55], eighty-four specimens were cut with
�w = 00, t = 1:501�5:95 mm, and 2� = 30, 45, and 600. The energy-absorbing mechanisms
- cutting, bending, elasticity and friction - were identi�ed and an attempt was made to
partition between them the energy delivered. The bending and the friction energies were
found to amount to about 10 % each, elasticity e�ects were negligible, and the remaining -
i.e. the energy absorbed in cutting - was found to be given by the formulas

W = 8:1 � 107 l t1:44 (8.11)

F = 8:1 � 107 t1:44 (8.12)

for t = 1:501 mm and �0 = 255MPa and

W = 5:9 � 107 l t1:305 (8.13)

F = 5:9 � 107 t1:305 (8.14)

for t = 3:25; 4:955; 5:95 mm and �0 = 398:5MPa.

It is seen that the reaction force is not a function of the penetration. This does not
correspond to observations from quasi-static tests where the reaction force is a continuously
increasing function of the penetration, see Figure 8.1.

It is argued that material strain rate e�ects are insigni�cant for the test results. Scaling
is discussed and it is illustrated that the geometrically similar scaling principles are not
satis�ed for the plate cutting problem.

Atkins (1988), [11], presents the scaling laws for bodies undergoing simultaneous plastic

ow and crack propagation. If rigid-plastic behaviour is assumed the energy scaling for the
prototype (p) and the model (m) follows:

Wp

Wm

=
�2(��+ 1)

(�+ 1)
(8.15)

where � is the geometric scale factor and � is the ratio between the rate of energy dissipation
in the far �eld deformation and the rate of energy in the crack tip zone in one scale (provided
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the energy dissipation at the crack tip is proportional to the length scale squared and the
energy dissipation in the far �eld is proportional to the length scale cubed).

It is argued that fracture is a governing parameter for the plate cutting process, see also
[13]. By analysing the results of Jones, Jouri and Birch, [55], [56], and Lu and Calladine, [69],
Atkins made an attempt to separate the energy dissipating mechanisms and �nd the variance
of �. Several di�culties were encountered, though, and it seems that more experimental data
is needed before an approach of scaling is applicable to practical problems. It should be noted
that in the work outlined below (for example Lu and Calladine, [69]) all energy is assumed to
be dissipated in plastic 
ow, so that the scaling of energy, Wp=Wm, follows �

3 corresponding
to � =1.

Lu and Calladine (1990), [69], performed quasi-static cutting tests with 35 hardened
plates of mild steel (t = 0:72 � 2:0mm, �w = 00; 100; 200 and 2� = 200; 400) and by using
Buckingham's dimensional analysis they found the formula

W = C1:3 �y l
1:3 t1:7 for 5 < l=t < 150

F = 1:3C1:3 �y l
0:3 t1:7 for 5 < l=t < 150

(8.16)

where C1:3 is a purely empirical constant, which depends on the cutting conditions such as
wedge and tilt angles. Unlike Eqs. (8.2-8.14), the formulas by Lu and Calladine are seen to
be dimensionally consistent.

As it will be discussed in more detail later, Lu and Calladine made valuable contributions
to the �eld by discussing the e�ect of friction, fracture and dynamics. [69] also presents the
�rst attempt to investigate the e�ect of a �nite shoulder width and thus the phase of steady-
state cutting.

Wierzbicki and Thomas (1993), [140], developed an analytical model for prediction
of the cutting force and derived an expression, identical in form and characteristics to the
results presented by Lu and Calladine:

F = 3:28 �0 �
0:4 l0:4 t1:6 �

0:2

t (8.17)

for a coe�cient of friction, 0:1 < � < 0:4, and a wedge angle, 100 < � < 300. It is the
�rst publication where a coe�cient of friction, �, and a fracture parameter, �t, enter the
expression explicitly.

Paik (1994,95), [95] and [96], investigated the cutting response of sti�ened steel plates.
In [95], the analysis is based on dimensional analysis, �fty cutting experiments (t = 3:4 �
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7:8mm, 2� = 15; 45; 600), and the hypothesis that longitudinal sti�eners can be included
by using an area-equivalent plate thickness, teq. Applying a least-square best �t to the
experimental data, Paik expressed the energy absorption and the cutting force as

W = C1:5Cf�0 t
1:5
eq l

1:5 (8.18)

F = 1:5C1:5Cf�0 t
1:5
eq l

0:5 (8.19)

with the coe�cient, C1:5, being a function of wedge angle alone:

C1:5 = 1:112� 1:156� + 3:760�2 (8.20)

and the dynamic correction factor, Cf , expressed as a function of the initial impact velocity,
V, as

Cf = 1:0� 0:042V + 0:001V 2 (8.21)

In accordance with Lu and Calladine, [69], Paik considered inertia e�ects to be negligible
whereas strain rate e�ects tend to raise the load level and dynamic e�ects on friction tend to
lower the load. All in all, it is interesting to note that Cf is found to be a decreasing function
of the impact velocity, for example Cf = 1 at V = 0m=s and Cf = 0:67 at V = 8m=s. It
should be noted that the correction factor, Cf , is found from the drop-hammer results of
Jones and Jouri, [55]. In drop-hammer tests the velocity decreases from V to zero but this
change in velocity has not been taken into account in the derivation of Cf . Thus, Eq. (8.21)
cannot necessarily be used in Eq. (8.19) for an instantaneous velocity.

In [96], Paik and Lee discuss the e�ect of transverse sti�eners and it is proposed that
these should be included in the analysis in a discrete manner (as opposed to the continuous
'smearing' technique proposed for longitudinal members).

Wierzbicki (1994), [135], developed a closed form solution for the reaction force when a
concertina tearing deformation mode (see Figure 8.1) develops. By assuming a deformation
mode and applying the principle of virtual work, the mean resistance force was found to be

F = 2
p
3�0t

2

2
4 2p

3

 
b

t

!1=3

+
�t
t

3
5 (8.22)

Experimental results with plates of mild steel (t = 0:74 � 1:14mm) are presented for vali-
dation of the model.
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Astrup (1994), [10], conducted experiments (2� = 600, �w = 100, 2B = 250 mm,
t = 15; 20mm) to investigate the cutting of thick plates with a wedge of �nite width. The
observed failure modes were quite complex in that both stable plate cutting and concertina
tearing modes were seen. It is noted in [10] that the measured reaction force was generally
60 - 75 % higher than that predicted by the formula of Lu and Calladine. It is argued
that this di�erence is due to strain rate e�ects and frictional e�ects. Another reason is
that the test wedge had a �nite shoulder width whereas the formula of Lu and Calladine is
based on the initial penetration. This means that, after the wedge shoulders have entered
the plate, a cutting mode di�erent from that observed in Lu and Calladine's experiments
develops. Large scours were observed on the cut specimens and it is argued that a coe�cient
of friction equal to 0.5 - 0.55 seems reasonable. By comparison of the energy absorption in
the initial deformation with the drop-hammer tests of Jones et al., [55], it is found that there
are no signi�cant size e�ects in the cutting phenomenon.

Zheng and Wierzbicki (1995), [145], developed a closed-form solution for the reaction
force after the steady state has been reached. It is assumed that the cutting process consists
of three di�erent energy absorbing mechanisms:

1. Ductile fracture in a small zone in front of the wedge.

2. Bending of the plate in moving hinge lines.

3. Membrane deformation.

A suitable model was postulated for the kinematics with one free parameter, the so-called
plate rolling radius, R. The rate of energy dissipation in each of the three mechanisms listed
above is expressed as a function of this rolling radius. In compliance with the idea of a
least upper bound, the total resistance is found by minimising the total resistance force with
respect to the rolling radius.

The resistance force is given by

F =
�0t

2

4

"
2
B +R

R
+ 1:27

R

t
cos � + 1:28�2

cos(�=2)

cos �

(R +B)2

R t

#
(1 + �cot�) (8.23)

with the rolling radius

R = B

vuut 2(t=B) + 1:28�2 cos(�=2)= cos �

1:27 cos � + 1:28�2 cos(�=2)= cos �
(8.24)
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Ohtsubo and Wang (1995), [90], present an analysis method somewhat similar to that
of Wierzbicki and Thomas, [140]. A kinematic model is proposed and the energy dissipation
of the plastic 
ow in the tip zone and in the rolling hinge lines is calculated. The proposed
expression for the cutting force is

F = 1:51 �0t
1:5l0:5 sin0:5(�)

�
1 +

�

tan �

�
(8.25)

8.3 Comparison of Formulas for Initiation Cutting

As a general comparison of the proposed formulas is di�cult, this section compares the
formulas for two speci�c set-ups: Cutting of a thin (0.9 mm) plate of mild steel and cutting
of a high-strength steel plate with a thickness (15 mm) relevant for ship building. It should
be noted that a few of the formulas are shown outside the proposed range of validity.

Figure 8.3 shows a comparison of the proposed formulas with the results of one of the
experiments reported in [69]. The input data for the calculations is given in Table 8.1.

Table 8.1: Main data for comparison with the experiment of Lu and Calladine, [69].

Plate thickness, t 0.9 mm
Wedge angle, 2 � 40 o

Flow stress, �0 = �y 272 MPa
Coe�cient of friction, � 0.3
Non-dimensional crack opening displacement, �t 1 .
Length of penetration, l 0-80 mm

It is seen that there is a signi�cant di�erence between the formulas. However, the latest
formulas proposed by Lu and Calladine, Wierzbicki and Thomas, Paik, and Ohtsubo and
Wang show a similar trend which corresponds quite well with the experimental result.

Figure 8.4 shows a comparison of the proposed formulas with the results of one of the
experiments reported in [10]. The input data for the calculations is given in Table 8.2.

As in the case of Figure 8.3, Figure 8.4 shows a considerable scatter between theoretical
predictions. It is seen that up to the point (l = 216 mm) where the wedge shoulders enter
the plate, there is a fair correspondence between most of the formulas and the experimental
curve.
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Figure 8.3: Comparison of several formulas proposed in the literature with the result of one
of Lu and Calladine's experiments, [69].

Table 8.2: Main data for comparison with the experiment of Astrup, [10].

Plate thickness, t 15.0 mm
Wedge angle, 2 � 60 o

Yield stress, �y 417 MPa
Flow stress, �0 = �u 544 MPa
Coe�cient of friction, � 0.3
Non-dimensional crack opening displacement, �t 1 .
Length of penetration, l 0-432 mm
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Figure 8.4: Comparison of several formulas proposed in the literature with the result of one
of Astrup's experiments, [10], for a 15 mm plate. The wedge shoulders enter the plate at
l = 216mm.
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8.4 Prediction of Steady State Cutting Force with Ex-

isting Formulas

Lu and Calladine, [69], and Paik and Lee, [96], Astrup, [10], Yahiaoui et al., [142], and Zheng
and Wierzbicki, [145], performed tests with wedges of �nite width but the only formula
in which the wedge width enters explicitly is due to Zheng and Wierzbicki, [145]. The
experimental results of Lu and Calladine, [69], Yahiaoui et al., [142], and Astrup, [10], are
summarised in Table 8.3. In all of the reported tests, the wedge angle was inclined at an
angle of �w = 100 in order to obtain the clean curling cutting mode shown in Figure 8.1.

Table 8.3: Experimental results for steady-state cutting. In all experiments the wedge was
inclined at an angle of, �w = 10o.

Experiments by �0 � 2B t F
(Mpa) (o) (mm) (mm) (kN)

1. Lu & Calladine, [69] 272 10 10 1.6 6.0
2. Yahiaoui et al., [142] 270 45 19 0.75 2.5
3. Astrup, [10] 526 30 250 20 2250

Lu and Calladine, [69], observed that the main features of the physical behaviour and of
the resulting load-deformation curve are of the same kind as in the initiation cutting, until
the upper edge of the plate reaches the shoulder of the wedge whereupon the resisting force
remains practically constant, as the wedge penetrates further. On the other hand, Thomas,
[123], found that the initiation phase goes beyond the point where the shoulders enter the
plate - it is rather twice as long as suggested by Lu and Calladine. The experimental curve
of Astrup shown in Figure 8.4 does not show a distinct penetration at which steady state
is reached, because the deformation initiates a mode of braided cutting, see Figure 8.1. On
the observations of Thomas and Lu and Calladine, it seems realistic to use the proposed
formulas for initiation cutting up to a certain point of penetration, l, and assume that the
load level is retained from this point of penetration throughout the rest of the deformation.
This penetration, l, is then

l = �ini
2B

tan �
(8.26)

with �ini = 1 � 2. Table 8.4 below presents results of this approach, i.e. the penetration,
l, of Eq. (8.26) is used in the formulas for initiation cutting, Eqs. (8.16, 8.17, 8.19, 8.25).
Corresponding to the �ndings of Lu and Calladine and Thomas, the value of �ini is taken
to be respectively 1 and 2 in Table 8.4. Clearly, the approach is approximative because the
deformation pattern shifts from a mode of cutting and curling in the initiation mode to a
mode of cutting, curling and membrane deformation in the steady-state phase. The partic-
ular deformation mode of the steady-state phase was considered by Zheng and Wierzbicki,
[145], who derived Eq. (8.23).
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The input values of the formulas used in Table 8.4 (B, t etc.) are taken in agreement
with the experimental results presented in Table 8.3. The coe�cient of friction is assumed
to be �=0.3.

Table 8.4: Theoretical prediction of steady-state cutting for the experimental results of Table
8.3. The following abbreviations are used for the formulas: L/C: Lu and Calladine, W/T:
Wierzbicki and Thomas, O/W: Ohtsubo and Wang, Z/W: Zheng and Wierzbicki.

Theoretical Prediction, �ini = 1
Experiments by L/C W/T Paik O/W Z/W

Eq. (8.16) Eq. (8.17) Eq. (8.19) Eq. (8.25) Eq. (8.23)
(kN) (kN) (kN) (kN) (kN)

1. Lu & Calladine, [69] 5.81 5.88 6.37 7.05 3.81
2. Yahiaoui et al., [142] 1.14 1.12 2.89 1.26 3.28
3. Astrup, [10] 1514 1459 2258 1588 1580

Theoretical Prediction, �ini = 2
Experiments by L/C W/T Paik O/W

Eq. (8.16) Eq. (8.17) Eq. (8.19) Eq. (8.25)
(kN) (kN) (kN) (kN)

1. Lu & Calladine, [69] 7.15 7.76 9.01 9.97
2. Yahiaoui et al., [142] 1.41 1.48 4.08 1.78
3. Astrup, [10] 1864 1925 3193 2246

As in Figure 8.3 and Figure 8.4, the di�erence between various theoretical predictions is
seen to be quite remarkable. It is interesting to note that the formula of Paik, Eq. (8.19),
corresponds well with all of the observed results when �ini = 1 is used. It should be noted
that, if the coe�cient of friction is increased to � = 0:55 as proposed by Astrup, [10], the
theoretical prediction for Astrup's results of Ohtsubo/Wang (�ini = 1) and Zheng/Wierzbicki
rises from 1588 kN, 1580 kN to 2041 kN and 2030 kN, respectively. These results are seen
to correspond quite well to the experimental value of 2250 kN.
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8.5 Problem Statement and Basic Idea of New Theo-

retical Model

The remainder of the present chapter is concerned with the derivation and the veri�cation
of a new theoretical model for the analysis of steady-state cutting of an unsti�ened metal
plate by a prismatic wedge. The ultimate goal of these studies is to be able to analyse an
assembled ship bottom structure which is signi�cantly more complex than just a bare plate.

A picture from a plate cutting experiment is shown in Figure 8.5. A prismatic wedge
cuts through a ductile plate which separates at the line of symmetry.

Figure 8.5: Picture of plate cutting by a wedge.

To quantify the energy dissipation according to Eq. (6.1), the plate is assumed to deform
as shown in Figure 8.6. The necessary amount of membrane straining is illustrated in Figure
8.7 which could be constructed of paper (which is not extensible). The assumed mode of
deformation with plane 
aps conforming to the wedge corresponds well to the experimental
observations of Astrup, [10], Yahiaoui, [142], Rodd and MacCampbell, [106], and Lu and
Calladine, [69]. The assumed kinematics of the deformation has one free parameter, the
plate rolling radius R, and it is postulated that the actual deformation mode minimises the
total rate of energy dissipation.

Supporting the present approach, Atkins, [11], [12], has shown that the rigid-plastic
approximations to tearing problems often adequately represent observed behaviour when
fracture is accompanied by, or preceded by, extensive plastic 
ow. Examples (other than
plate cutting) which include both fracture and far �eld deformation are tensile tearing of
a deep double-edge notched specimen and trouser tearing. The basic idea of the methods
for �nding the speci�c work of fracture, Rc, is to perform experiments to determine all
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parameters except _Ec in Eq. (6.1). Then, from _Ec and the kinematics of the speci�c problem,
Rc can be determined. As mentioned, the distinction between a crack tip zone and the far
�eld presented by Atkins is also applied in the present analysis.

Figure 8.6: Assumed mode of deformation.

Figure 8.7: Necessary straining illustrated by gap width.
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8.6 Energy Dissipation in Plasticity and Fracture

The basics of the development of the expressions for the rate of energy dissipation in the
tip zone and in the far �eld have been described in the previous Section 8.5 and in Chapter
6, Section 6.4. The �nal expressions are derived below. The deformation in the far �eld is
divided into bending (moving hinge lines and membrane deformation).

Far Field, Moving Hinge Lines

As illustrated by Figure 8.7, the steady-state cutting process involves several areas of
bending. The relevant bending radii are the radius at the side of the wedge, R, and the
radius in front of the wedge, Rt.

The three primary bending mechanisms are:

1. Initial curling. The curvature of the undeformed plate changes from 0 to 1=Rt (hinge
line OP).

2. Hinge lines at wedge front. The plate is straightened out so that the curvature reverts
from 1=Rt to 0 for a part of the plate (hinge line CD).

3. Bending around the wedge shoulder (line PT).

The hinge lines of point 2 and 3 above are in areas of high membrane straining so, if the
true interaction on the yield curve (Eq. (6.2)) was taken into account, these hinges would
give very limited resistance and they are therefore neglected in the following.

The rolling radius, Rt, is kept as a variable in the formulation and taken to be the value
which gives the lowest rate of energy dissipation. In the wake of the wedge, the rolling radius
is R = Rt= cos �.

Since the jump in curvature is [�nn] = 1=Rt = 1=R cos � and the total width of the hinge
line perpendicular to the direction of motion is B + R, the �nal expression for the rate of
energy dissipation due to bending becomes (see Eq. (6.11))

_Eb = 2
Z
V M0 [�nn] d� (8.27)

=
�0 t

2 (B +R)Vp
3R cos �

(8.28)

Far Field, Membrane Deformation
Figure 8.7 shows the geometry which is observed if the plate is cut at the centre line and
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along the edges PT, PQ and folded without membrane deformation of the plate (this could
be done with a piece of paper and a pair of scissors). Then, the gaps between the plate
edges PT and PQ are indicative of the amount of membrane straining necessary for material
continuity during the cutting process. In the large scale tests of Astrup, [10], a few lateral
cracks were also observed (along line PT in Figure 8.7) but for thin plates this is not seen.

The necessary straining can be accommodated by an in�nite number of possible strain
�elds. The actual strain rate �eld is the one which minimises the instantaneous rate of
energy dissipation of material 
ow, fracture and friction. Little is published about the
strain �eld in steady-state cutting but useful information can be obtained from inspection
of cut specimens. The cut plate transmits direct tensile (or compressive) stresses in the �
direction, and likewise tensile strains develop. This can be deduced from Figure 8.1 for the
curled cut where the deformed plate is seen to be buckled. During the cutting process, the
longitudinal plate �bres are stretched in the deforming zone at the wedge front, and instead
of recompressing to the original length, leaving straight 
aps in the wake, the plate buckles.
As mentioned, however, the plating of a ship structure has sti�eners, attached to it and the
presence of longitudinal sti�eners which are often quite substantial, tends to prevent the
development of tensile deformation in the longitudinal direction of the hull structure when
the deformation is large enough for the longitudinals to be involved.

The hull plating rather deforms in a mode where longitudinal �bres are sheared with
respect to each other. Such a deformation mode of predominant shear in the (�; �) coordinate
system (see Figure 8.6) was reported by Turgeon, [128], for small-scale tests without fracture
and by Rodd and MacCampbell, [106], for large scale grounding tests with a double bottom
being deformed by a conical rock.

Moreover, in the large-scale cutting tests of Astrup, [10], the deformed plate 
aps were
seen to be nearly plane, indicating shear rather than tensile deformation, see Figure 8.8.
Based on these observations, the present formulation for the membrane deformation rests
on the assumption that the in-plane strains in the far �eld are all shear strains (in the (�,
�) coordinate system) . It is recognised that this is not always the case but, as it will be
argued later, this assumption greatly simpli�es the analysis. Since longitudinal �bres are
not stretched, the present model also provides a realistic basic deformation pattern model
for the case of a longitudinally sti�ened plate.
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Figure 8.8: Cutting of a 20 mm plate by a wedge, [10].

With this assumption of dominant shear strains, "��, the rate of energy dissipation can
be derived. From Eq. (6.9) the rate of energy dissipation is found as an integral of the
equivalent strain over the width of the plastic zone in the wake of the wedge, for example
along the PT-line, see Figure 8.7:
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=
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3
�0 V t [uP � uT ] =

2p
3
�0 V t u0 (8.31)

where u0 is the distance between Q and T in Figure 8.7. In Appendix A it is shown that
u0 � B � so that the �nal expression becomes

_Em =
2p
3
�0 V tB � (8.32)

Near Tip Plate Separation. Although the process of the near tip crack zone has been
considered explicitly by several authors no-one has yet applied a theory to the problem
of plate cutting which covers in detail and in general the material splitting process. Lu
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and Calladine, [71], argue that the cutting process can be described at a su�cient level of
accuracy with the 
ow stress as the only material parameter. A discussion on this topic is
given by Atkins and Lu and Calladine in [13] and [70]. Stronge et al., [120], [121], performed
an experimental and theoretical study on the problem of tube splitting and concluded that
the relative contribution of the tearing energy to the total energy dissipation is small. This
supports those of the presented analyses of Section 8.2 where fracture parameters are not
included. Several authors leave material fracture parameters out of the analysis based on
the observation that the crack tip stays right at the wedge tip so that the separation process
is one of plastic 
ow rather than fracture. For highly ductile specimens being cut by a sharp
wedge as those thin plates of mild steel used in several of the reported model tests, it is true
and not too surprising that the plate separates at the cutting edge. However, for less ductile
specimens - for example thick hull plating, [10], or other types of material, [69] - or blunt
nosed wedges, [106], [77], the crack was observed to run ahead of the wedge and a general
theory should therefore cover this situation and thus consider the fracture toughness of the
material.

In the large-scale double bottom grounding tests reported in [106], an unstable crack
was seen to unzip a part of the structure in front of the wedge. A stable crack in the outer
bottom propagated with the penetration of the rock but, at a certain point of penetration, the
crack suddenly propagated through a transverse bulkhead far into the inner hull plating. To
capture this complex type of behaviour would require very detailed elasto-plastic calculations.
Theoretically, the �nite element method would be applicable but for practical use in design
it is too labour-intensive.

The question of whether fracture should be included or not is handled in the present
mathematical model by choosing between purely plastic 
ow or fracture, depending on which
of the two alternative modes gives the lowest energy dissipation. This corresponds to normal
fracture criteria for ductile materials, see for example Atkins, [12].

The energy dissipation rates for these di�erent plate separation processes are given by
Eqs. (6.13) and (6.14). In order to evaluate the integral of Eq. (6.14), it is assumed that
the strain �eld is dominated by tensile strains in the lateral (�) direction. This is not fully
consistent with the assumption that the PT-PQ gap in Figure 8.7 is accommodated by shear
strains alone but estimates indicate that the e�ect of shear in the tip zone is small. Indeed,
due to symmetry, the shear must be zero at the centre line.

According to Eq. (6.14) it is su�cient to consider the total equivalent strain of the
material in the wake of the cutting edge. With "�� = "�� = 0, the �nal expression is found
as an integral over the width of the plastic zone in the wake of the cutting edge:

_Ec = 2 �0 V t
Z
["eq] d� (8.33)
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=
4p
3
�0 V t v0 (8.35)

where �l and �u denote lower and upper boundaries for the strain �eld in the lateral direction
on one side of the centre line and v0 is half of the maximum gap width between the plate
curls in front of the wedge.

In Appendix A it is shown that

v0 � 0:16R cos2 � (1 + 0:55 �2) (8.36)

giving the �nal expression as

_Ec =
0:64p
3
�0 V tR cos2 � (1 + 0:55 �2) (8.37)

8.7 Friction

Using the approach described in Section 6.6, Pippenger, [103], derived the relations cor-
responding to Eqs. (6.36, 6.38) for the case of a wedge which is inclined at an angle �w
(see Figure 8.2), from the direction perpendicular to the plate. Keeping the relations in
their most general form but modifying Pippenger's expressions according to the assumption
Vrel = V gives:

FH
FP

= g(�; �; �w) =

 
1� �

sin� sin �0 + � (cos �0 cos � + sin � cos � sin �0)

!�1
(8.38)

FV
FH

= k(�; �; �w) =
cos � � � sin � sin �

sin� sin �0 + � (cos �0 cos � + sin � sin �0 cos �)
(8.39)

where �0 is the projected wedge angle and � is an intermediate value:

�0(�; �w) = tan�1(tan � cos�w) (8.40)

�(�; �w) = tan�1(1=(sin �0 tan�w)) (8.41)

For �w = 0, it is seen that �0 = �, � = �=2 and with � = �=2 Eqs. (8.38, 8.39) reduce to
Eqs. (6.36, 6.38) as expected.

Figure 8.9 shows the friction factor, g, as a function of the wedge angle, �, for � =
0:3; 0:45; 0:6 and �w = 10o. Taking � = 0:3, �w = 10o and � = 10o, 30o and 45o gives
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friction factors, g, of 2.8, 1.7 and 1.5, respectively, indicating a very signi�cant contribution
of friction to the total plate resistance.

It should be noted that the e�ect of friction comes as a factor which is independent of
the rolling radius, R. Likewise, the plastic/fracture resistance derived in the previous section
was found to be independent of � so that the radius which minimises the resistance force
becomes independent of �. This does probably not re
ect reality1 but at present there is
not su�cient information available about this problem to improve the model in this respect.

Figure 8.9: Friction factor, g. � = 0:3; 0:45; 0:6 and �w = 10o.

Moreover, it should be noted that the whole contact pressure is assumed to be on the
front plane sides of the wedge. However, the corner point at the shoulders and the front tip
might transmit some force. The e�ect of the shoulders tends to increase the friction factor
whereas the force on the front tip tends to lower it. For wedges with sharp edges, the e�ect
of these edge irregularities is believed to be small but for some types of idealised rocks, like
for example the cone shaped rock analysed by Rodd and MacCampbell, [106], these e�ects
are dominant and prediction of g and k becomes a cumbersome task.

Figure 8.10 shows k as a function of the wedge inclination angle, �w, for � = 45o and
� = 0:3; 0:45; 0:6. For small inclination angles, �w, the vertical component of the frictional
force dominates over the normal force, and the total vertical force is thus negative.

1For the tube splitting process, Stronge et al., [121] use, an expression for the plate rolling radius which
is a strong function of �.
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Figure 8.10: Ratio between the vertical and horizontal force, k. � = 45o and � = 0:3; 0:45; 0:6.

8.8 Total Reaction and Veri�cation

The problem of two alternative deformation modes in the tip zone in front of the cutting
edge was described in Sections 8.5 and 6.4. Below, the resistance force is derived for both
alternative modes.

Combining Eqs. (6.1, 8.37, 8.32, 8.28 and 8.38) gives the plastic/fracture resistance force
on the plate for the mode where the crack does not run ahead of the wedge:

FH = g(�; �; �w)
_Ec + _Em + _Eb

V

= g(�; �; �w) f0:64p
3
�0 t R cos2 � (1 + 0:55 �2) + (8.42)

2p
3
�0 t B � +

�0 t
2 (B +R)p
3R cos �

g

R � B
1

�=2� 1
= 1:75B (8.43)

The limit of R, Eq. (8.43), comes from the general kinematic requirement that the deformed
plate 
aps must be in contact with the wedge. The rolling radius, R, which gives the lowest
resisting force, becomes

R =

s
B t

0:64 (1 + 0:55�2) cos3 �
(8.44)
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In the alternative crack tip deformation mode where the crack runs ahead of the wedge,
the rate of energy dissipation in the tip zone is not a function of R and the total rate of energy
dissipation does therefore not have a mathematical minimum as above. It is a monotonically
decreasing function of the rolling radius. Using the maximum allowable rolling radius for
kinematic consistency, Eq. (8.43), with Eqs. (6.1, 6.13, 8.32, 8.28 and 8.38) then gives the
resistance force as

FH = g(�; �; �w) fRc t+
2p
3
�0 t B � +

1:57 �0 t
2

p
3 cos �

g (8.45)

In order to verify the derived equations, the experimental results shown in Section 8.2 are
considered again. Application of Eq. (8.45) raises the di�culty that the fracture parameter,
Rc, is unknown. Lu et al., [71], performed an experimental study on tearing energy in
splitting metal tubes and presented an expression and test results for mild steel plates,
which seems to be independent of plate thickness (at least for thicknesses between 0.5 mm
and 1.5 mm):

Rc = 8:8mm�u "f (8.46)

On the assumption that the separation process in plate cutting resembles that of tube
splitting, this relation is applied below. However, as also it is stated by Lu et al., the
parameter, Rc, is a crude one to use in other problems than the speci�c one considered in
the test because the tearing energy is highly dependent on the detailed stress-strain state in
the process. This was also noted by Atkins, [12], who reported values for Rc ranging from
200 - 1000 kJ=m2 depending on the type of tearing process. Therefore, to apply expressions
like Eqs. (8.45, 8.46) really requires further work on the detailed ductile separation process.

The friction factors, g, in the following veri�cation examples are calculated from Eq. (8.38)
using � = 0:3 and �w = 10o. The fracture strains of the three experiments are assumed to
be 0:25, 0:25 and 0:15, respectively, giving fracture toughnesses of 600kJ=m2, 600kJ=m2 and
700kJ=m2 .

Table 8.5 shows a comparison between the theoretical prediction of the two presented
models and the experimental results which were also presented in Table 8.3.

The theory, Eq. (8.42) with Eq. (8.44), overpredicts the forces of the three reported tests
by - 7 %, 41 % and 5 %. Thus, except for the test of Yahiaoui et al. [142], very good
agreement between theory and experiments is seen even though the scale of the problems is
di�erent by an order of magnitude. Moreover, it is noted that the di�erence between the two
calculation models, Eq. (8.42) and Eq. (8.45), is small. If values for the fracture toughness,
Rc, were su�ciently accurate the relative magnitude of the numbers in column four and
�ve would indicate which of the two presented models would develop. The actual numbers
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Table 8.5: Steady-state cutting. Theoretical predictions and experimental results for three
tests.

Experiments by g from R (mm) F (kN) F (kN) F (kN)
Eq. (6.36) Eq. (8.44) Eq. (8.42) Eq. (8.45) Measured

1. Lu & Calladine, [69] 2.81 3.59 5.58 5.72 6.0
2. Yahiaoui et al., [142] 1.50 4.85 3.53 3.58 2.5
3. Astrup, [10] 1.67 72.3 2372 1722 2250

in Table 8.5 indicate that the plate was cut (purely plastic 
ow) in the two experiments
with thin plates but it fractured in the experiment of Astrup. Actually, this seems to be in
accordance with the reported experimental results. It is true to say, however, that the above
model with fracture as the material separation process requires further work on quantifying
Rc. It is likely that the �nite element method can contribute to clarifying points about the
energy dissipation at the crack tip.

Table 8.6 shows how the energy dissipation is distributed between deformation mecha-
nisms and friction when the plate resistance is calculated from Eq. (8.42).

Table 8.6: Partitioning of energy between deformation mechanisms and friction. The calcu-
lation model assumes a purely plastic 
ow at the wedge tip. Etot = Ec + Eb + Em.

Experiments by Friction Front tip Shear Bending
(g�1)
g

Ec
Etot

Em
Etot

Eb
Etot

(Em+Eb)
Ec

1. Lu & Calladine, [69] 64 % 29 % 22 % 49 % 2.5
2. Yahiaoui et al., [142] 33 % 10 % 74 % 16 % 8.7
3. Astrup, [10] 40 % 17 % 56 % 27 % 4.9

It is interesting to note how di�erently the energy is distributed in the three examples
due to di�erent wedge angles, plate thicknesses and wedge width. This indicates why it is
di�cult to derive formulas which capture all dependencies on a purely empirical basis. It
is noted that the e�ect of friction is signi�cant. The last column in Table 8.6 shows the
importance of the far �eld deformation relative to the tip zone process. It is clear that the
far �eld energy dissipation is dominant in these examples. The corresponding values for the
alternative model with material fracture instead of plastic 
ow at the crack tip are � = 1:12,
4.31 and 72.5. These values of � are the ones to be used in the scaling formula presented by
Atkins, Eq. (8.15), assuming a fracture process at the crack tip.



Chapter 9

Internal Mechanics of a Sti�ened Ship

Bottom on a Conical Rock

9.1 Introduction

As discussed in the previous chapter, most of the work concerning grounding damage has
been devoted to the problem of cutting of a bare plate by a wedge. Indeed, this mode
of deformation - often referred to as 'bottom raking' - has been observed in accidental
groundings but it is only a limited part of the damage processes that can be found in
grounding on rocks. The present chapter extends the theory of Chapter 8 to cover more
complex structures than just a bare plate. Obviously, it would be desirable to cover the
grounding response of all types of ship structures on all types of rock geometries. As the
method is based on assumed deformation modes, however, it cannot immediately capture
the response of completely new structural arrangements and the types of rocks involved also
have to be limited. The group of rock geometries considered here is shown in Figure 9.1.
The rocks have a conical base de�ned by the semi-apex angle, ', and a rounded tip with
radius, RR.

The typical components of a ship bottom structure are shown in Figure 9.2 for trans-
versely as well as longitudinally sti�ened structures. Ships of over about 90 m length are
mostly longitudinally sti�ened, [88], so ship bottoms of large tankers are typically of the
type to the right in Figure 9.2 - possibly without the inner bottom.

The number of parameters necessary to characterise a structure like shown in Figure 9.2
in a general manner is so large that any attempt of mapping the general grounding response
experimentally will either fail or be prohibitively costly. For the present simpli�ed approach it
is clear that it would be most convenient to develop a theoretical model in which individual
structural components can be considered separately and then be consistently assembled.
Simpli�ed analyses of speci�c assembled structures have been developed with great succes,

141
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Figure 9.1: Geometry of the conical rock with a rounded tip. Photo of arti�cial rock used
in the tests conducted by Naval Surface Warfare Centre, USA.

see for example [125] but it is by no means obvious how such an approach can be extended
to cover assembled structures in a general scheme.

The approach taken here is to postulate an overall mode for the deformation zone in
which there is compatibility between structural components. By compatibility is meant
that intersections between components stay together during the deformation process. The
underlying philosophy of this approach is that intersections do not fail but as discussed in
Section 6.3, that assumption is not completely undebateable.

9.2 Global Deformation Kinematics

Since principle structural elements are attached to the shell- or the inner bottom plating it
is convenient to use the deformation of the plating as the basis for the global deformation
mode. Then, to assure compatibility between structural elements, it must be required that
all elements attached to the plating, consistently follow the plating during the deformation
process. The deforming shape of the hull plating is shown in Figure 9.3. Figure 9.3 a and b
show the deformation modes with and without fracture, respectively.

During passage of the deformation zone, a material element will experience bending,
stretching and fracture depending on the deformation mode. As illustrated by Figure 9.3
the mode of deformation and thus the energy dissipation in each of the three mechanisms
will depend on whether the plating has fractured and also on the size of the deformation
zone. Sections 9.4 and 9.5 of this chapter are devoted to these two aspects of the problem,
respectively.

An attempt of describing the displacement �eld of the deformation shown Figure 9.3 b was
presented by Jocelyn, [128]. Even very simple trigonometric functions for the displacement
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Figure 9.2: Typical ship bottom structures for longitudinally sti�ened ships, [118].

�eld appear to give expressions for the rate of energy dissipation that cannot be handled
analytically. To get simple closed form solutions, the present approach is therefore based
on using two simpli�ed deformation models to quantify the membrane- and the bending
deformations, respectively. Refer to [109] and [110] for an overview of the approach.

Figure 9.4 shows the model used to calculate the membrane deformations. The shown
geometry can be reproduced by folding a piece of (inextensible) paper cut along the OS- and
Q0P � lines. It is shown in Appendix B that the longitudinal- and transverse gap openings,
u0 and v0 respectively, are given by

u0 = Bde

q
(1� cos�)2 sin2 � + (1� cos �)2 sin2 � (9.1)

v0 = Bde (1= cos�� 1) (9.2)

where Bde is the half width of the deforming zone, � is the angle from horizontal to the
'
aps' and � is the so-called 'plate split angle'. The model can be used both before and after
the plate has fractured at the center line. Before fracture, the plate deformation extends
the distance Bde away from rock centre and with a rock tip penetration of � the 
ap angle
becomes, � = tan�1 �=Bde. When the plate has fractured, the plate conforms to the rock
so the 
ap angle becomes equal to �=2 minus the semi-apex angle, ', and the width of the
deformation, Bde becomes equal to the base of the rock in the plate of the undisturbed plate.
The plate split angle is indicative of how far the deformation zone extends ahead of the
rock. From the width of the deformation zone, Bde, the length of the zone, OQ, becomes
Lde = Bde= tan �. During the deformation process, the rock is moving through transverse
members which will prevent the deformation from extending far ahead - i.e. transverse
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Figure 9.3: Deformation mode for hull plating, i.e. shell plating and inner bottom plating.

members will have the e�ect of increasing the e�ective plate split angle, �. The plate split
angle, �, is treated as an unknown variable throughout the theoretical derivations of the
following sections. In general, the plastic resistance is a decreasing function of � and the
frictional resistance is an increasing function of �. The total resistance of the structure
therefore normally has a minimum with respect to �. In the �nal application of the theory
the plate split angle is taken as the value that minimizes the energy dissipation, i.e. the
resistance force of the structure.

Experiments show that the plate is unlikely to fail along transverse lines (PQ), so the
gap between PQ and PR has to be accomodated by in-plane straining of material. For small
penetrations, the plate does not fracture at all so the gap between OQ and OQ' also has to
be closed by membrane plate straining. For larger rock penetrations, the plate ruptures at
the center line so that OQRS becomes a free edge. However, material continuity over the
gap between PQ and PR still has to be accomodated by straining of plate material. The
question is which strain �eld closes the shown gaps. This problem was also discussed in
Chapter 8 about plate cutting (see page 133) and it will be touched on again in the sections
below about plate resistance. A structure with heavy longitudinal sti�eners is unlikely to
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Figure 9.4: Deformation mode assumed for calculation of membrane straining.

be stretched in the longitudinal (�) direction. The hull plating will rather deform in a mode
where longitudinal �bres are predominantly sheared with respect to each other with limited
tensile deformation. From a computational point of view, a mode with zero tensile strains
in the longitudinal direction is very convenient because no assumptions are necessary of
the length over which a material �ber is stretched. Also, examination of the failure modes
reported by Rodd and MacCampbell, [106], clearly justify the assumption of dominating
shear deformations. Figure 9.5 shows the failure mode of the test reported by Rodd and
MacCampbell. Signi�cant shear bands are observed in the bottom plating.

The simpli�ed deformation mode shown in Figure 9.4 is not kinematically admissible since
the hinge lines have in�nite curvature. To quantify the bending of plating or longitudinals
attached to the plating, these curvatures therefore have to be smoothed over the length of
the deforming zone. The basic idea of this smoothing is shown for one longitudinal �bre
in Figure 9.6. As a structural element passes the �rst hinge, the longitudinal curvature is
changed from 0 to 1=R. At the second hinge the curvature is reversed to �1=R and at the
�nal hinge the element is straightened out to a curvature of 0. In all, the material element
experienced changes of curvature equal to [�] = 4=R as it passed through the deforming
zone.
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Figure 9.5: Failure mode of ship bottom observed in NSWC Test no 1, [106], (frog's eye
view). The photo to the left shows the path of the rock through the ship bottom. The photo
to the right shows a close-up of the shell plate deformation (the rock moved from right to
left). The photo to the right shows fracture of both shell and inner bottom plating leaving
an opening (horizontal white area) to the tank.

Figure 9.6: Assumed bending deformation of a longitudinal plate �bre or a longitudinal
sti�ener.
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Given the length of the deforming zone, �l and the vertical displacement at one end,
�l the rolling radii, R, produced by the moving hinges can be found from geometrical
considerations to be

R =
�2l +�2

l

4�l
(9.3)

Now a structural member attached to inner or outer bottom plating is assumed to follow
the deformation modes shown in Figure 9.4 and Figure 9.6 and so the plastic resistance of
the member can be calculated accordingly. Since longitudinal �bres in the plating are not
stretched, the requirement of compatibility between components also prescribe zero exten-
sional deformation of longitudinals attached to the plating. Consequently, the deformation
mode of a longitudinal will be pure bending and twisting and the deformation mode of a
longitudinal girder �xed between the shell plating and the inner bottom plating will be com-
bined shearing and bending. A transverse member, on the other hand will be deformed in
tension (according to the gap v0 in Figure 9.4) in addition to shearing, bending or twisting.

9.3 Local Deformation Around Rock before Fracture

As discussed above it is possible to get a good estimate of the energy absorption in the
structure from a gross overall model, like the one presented above in Figure 9.4. For friction
and fracture, however, it is necessary to have one or more re�ned models for the plate
deformation at important details. Below, such a model is derived for the shell plating
wrapping on the rock. As they are derived, more local models could be implemented for
other important phenomena such as welding failure, failure of shell plating at a bulkhead
etc.

The speci�c problem considered here is that of plating wrapping around a conical rock
with a rounded tip. In a ship bottom structure the shell plating is attached to various
sti�eners but for simplicity the problem of a bare plate is considered here. Since material

ows through the deforming zone it is not immediately possible to derive an exact solution
for the mode of deformation. However, careful inspection of plate specimens deformed by
a rock moving in the in-plane direction reveals that the mode of deformation in front of
the rock resembles that of a plate deformed by an indentor moving in the lateral direction.
For the latter axis-symmetric problem an exact rigid-plastic solution can be derived. Due to
friction and the incremental nature of plasticity, however, the force levels associated with the
two deformation modes cannot be expected to be equal. The idea of the present approach
is that the local wrapping of material on the rock tip is the same for the two problems. The
punch indentation problem was considered previously for investigation of failure criteria,
[144], for collision, [139], and for ballistic limits [57], [58], [59].
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9.3.1 Theoretical Solution

Figure 9.7 shows the geometry of the considered problem. The tip of a spherical indentor
mounted on a conical base is displaced a vertical distance, �, into the centre of a circular plate
of thickness t and radius R. The problem is axis-symmetric and the deformation is described
in a (w; r)�coordinate system where w and r are the vertical and the radial coordinates,
respectively. The angle from horizontal to the plate at a certain distance from the center, is
 (r). The radius of the sphere is Rb and the plate is in contact with the indentor from the
centre to point C, i.e. for 0 < r < rC and 0 <  <  C . The vertical punch force is P .

Figure 9.7: De�nition sketch for derivation of plate punch solution.

The plate is assumed to be in a membrane state (bending is neglected) and material
is assumed to be rigid-plastic following von Mises yield locus. The strain hardening char-
acteristics of the material could be taken into account, [58] and [144], but introduction of
another uncertain parameter into the present analysis complicates it unnecessarily. Material
elements are assumed to be displaced only vertically leading to the following expressions for
the natural strain components

"rr = �"tt = ln

 
1

cos 

!
(9.4)

"  = " r = 0 (9.5)

where t is a thickness coordinate. Vertical equilibrium of the central part of the plate can
be stated as

P = 2�N0r sin (r) for rC < r < R (9.6)
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where N0 = 2�0t=
p
3 is the plane strain fully plastic membrane force according to von

Mises yield locus. According to the assumption of only vertical displacement of material
elements, all the deformation takes place outside point C, i.e. for rC < r < R. The
present model cannot give information about the pressure distribution within the contact
area, 0 < r < rC . In particular, at point C, r = rC = Rb sin C and Eq. (9.6) becomes

P = 2�N0Rb sin
2  C (9.7)

With the geometric relation

sin =
dwp

dw2 + dr2
=

dw=drq
1 + (dw=dr)2

(9.8)

Eq. (9.6) can be transformed into the di�erential equation

dw

dr
=

P=(2�N0Rb)q
(r=Rb)

2 � (P=(2�N0Rb)
2

(9.9)

The solution, w(r), is found by separation of variables and the boundary conditionw(r) =
0 at r = R:

w =
P

2�N0
ln

2
4 r +

q
r2 � (P=(2�N0)

2

R +
q
R2 � (P=(2�N0)

2

3
5 for rC < r < R (9.10)

The displacement of the indentor tip, � is the sum of the plate displacement at C,
w(r = rC) and the height of the sphere from the centre to point C, i.e.

� = Rb(1� cos C)� w(r = rC) (9.11)

From Eq. (9.10) and Eq. (9.11) the punch displacement is given as a function of  C which
is related to the punch force by Eq. (9.7). In non-dimensional form the punch displacement
is

�

Rb

= 1� cos C + sin2  C ln

2
4R=Rb +

q
(R=Rb)2 � sin4  C

sin C (1 + cos C)

3
5 (9.12)
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With Eq. (9.7) and Eq. (9.12) the indentor displacement is now given as a function of
the punch load.

After a certain penetration the plate fails and the load drops. According to the results
presented in Section 6.5 and the plane strain condition, Eq. (9.5), the plate will �rst neck
and then fracture. The maximum strain and the initial failure will be at point C when
"rr = "cr = n. If the strain at failure is denoted "cr, Eq. (9.4) gives the wrapping angle at
failure:

 C;cr = cos�1
�
e�"cr

�
(9.13)

Note that if the sphere is mounted on a cone with a semi-apex angle ', the plate does
not fail if the cone is su�ciently blunt, i.e. ' > �=2�  C;cr = sin�1[e�"cr ].

Approximations
In the equations above, load, penetration and failure are expressed in terms of the inter-
mediate parameter,  C . As a non-linear equation consequently must be solved to �nd the
load, P , or the wrapping angle,  C , as a function of penetration, the inconvenience of this
formulation is obvious. By least squares approximations it is found, however, that the rela-
tionship between the wrapping angle and the penetration, Eq. (9.12), is well approximated
by the expression

 C = 0:883 (�=R)0:625 (R=Rb)
0:440 or (9.14)

�

R
= 1:220 (R=Rb)

�0:7032  1:559
C (9.15)

The error introduced by simplifying the expressions is less than 5 % for the parameter ranges
0:02 < �=R < 0:2, 5 < R=Rb < 40 and 0 <  C < 50o. With the approximations above, the
punch load and the penetration to failure become

P = 2 � N0Rb sin
2
h
0:883 (�=R)0:625 (R=Rb)

0:440
i

(9.16) 
�

R

!
failure

= 1:220 (R=Rb)
�0:7032 �cos�1 �e�"cr��1:559 (9.17)

For calculations by hand, the expressions above are convenient and they could even be further
simpli�ed as it turns out that the force-penetration relationship is almost linear in the initial
stage of the deformation. When they are implemented in a computer program, however, it is
not necessary to introduce the approximations, as Eq. (9.12) gives the penetration explicitly
for  C = cos�1 (e�"cr) and as Eq. (9.12) is easily solved numerically for the plate wrapping
angle  C given �, Rb and R.
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9.3.2 Comparison to Experiments

Kamano, Kaminishi and co-workers, [59] and [57], published results of steady-state punch
indentation into mild steel plates. The main data from the experimental set-up of the three
relevant tests is given in Table 9.1.

Table 9.1: Main data of experimental results given by Kamano, Kaminishi and co-workers,
[59] and [57]. In the calculations the indentor radius is taken to be Rb + t=2.

Con�guration t R Rb �y �u �0 = 0:5(�y + �u)
no (mm) (mm) (mm) (MPa) (MPa) (MPa)
1 2.1 100 2.75 208 319 264
2 2.1 100 10.0 208 319 264
3 1.0 100 2.75 234 323 279

Figure 9.8 shows the calculated force-displacement relationship for the three test con�g-
urations together with the theoretical predictions from Eq. (9.16). Theory overestimates the
punch load by only 0 - 10 %. This discrepancy can easily be ascribed to the uncertain choice
of 
ow stress, �0, in the rigid-plastic theory.

In connection with application to a theoretical grounding model, prediction of the wrap-
ping angle,  C and prediction of strains and plate failure is most interesting. From Figure
9.8 it is seen that the measured plate resistance force dropped or levelled o� abruptly when
the penetration reached a distinct level. According to the theory of the previous section,
this level of penetration corresponds to the point where the strain at the boundary of the
contact zone reaches a value equal to the strain hardening exponent, n. The actual value of
n is only given for Con�guration III as n = 0:22 but assuming it is the same for all three
con�gurations gives a theoretical prediction, as shown in the third column of Table 9.2. The
actual strain at crack initiation was measured to be about 0.7, so the validity of using this
value for the failure strain is also investigated in Table 9.2.
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Figure 9.8: Measured and calculated force-displacement relationships for the three con�g-
urations. The experiments were carried out with di�erent cone apex angles, denoted 0�0

above, [57], [59].
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Table 9.2: Penetrations to failure. Experimental values and theory (Eq. (9.17)) with assumed
critical strains to failure of "cr = n = 0:22 and "cr = 0:7.

Con�guration Experiment Theory, "cr = n = 0:22 Theory, "cr = 0:70
no �frac (mm) �frac (mm) �frac (mm)
1 13.0 6.0 13.3
2 28.0 13.3 28.1
3 11.0 5.4 11.9

It is seen that, by using the failure criterion, "cr = n = 0:22, the theory underestimates
the penetration to failure severely. The reason for this de�ciency of theory emerges from
a closer inspection of the experiments of Kawano et al., [59]. The strain �eld was here
measured for experiments with a smaller specimen radius than in the experiments above
but otherwise the same material and set-up (R = 45 mm, t = 2:1 mm, Rb = 2:75 mm and
Rb = 10m m). In Figure 9.9 and Figure 9.10 the measured and calculated strain �elds are
compared.

Figure 9.9: Measured and calculated strain �elds for R = 45 mm, t = 2:1 mm, Rb =
2:75 mm, [59]. In the left diagram, � denotes penetration, i.e. � = �.
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Figure 9.10: Measured and calculated strain �elds for R = 45mm, t = 2:1mm, Rb = 10mm,
[59]. In the left diagram, � denotes penetration, i.e. � = �.

The major conclusions to be drawn are:

1. The experimental results show signi�cant straining at the centre, r = 0, indicating
that the assumption of no in-plane material displacement is not valid. At a certain
penetration, however, it is true to say that the central part is not further strained.

2. The theory predicts a very localised strain distribution over a small width of the plate.
This corresponds to the experimental data where a neck was formed around the pene-
trator. Since the theoretical solution for the strain distribution shows the same kind of
localisation as was seen in the experiments, using the theoretical limit of "max = "cr = n
gives a signi�cant underestimation of the penetration to failure (see Table 9.2). The
experiments showed maximum strains of about 0.7 and as seen in Table 9.2 use of this
critical strain gives very good correspondence between theory and experiments.

3. The discrepancies between measured and calculated strain �elds indicate an in-plane
displacement of material elements (not only vertical) which causes a circumferential
strain. This means that the state of strain is in the stretching region of a fracture
forming limit diagram, FFLD, and the assumed necking criterion "rr = n corresponding
to plane strain is therefore no longer valid.

All in all, it is seen that even for this relatively simple example of punch indentation,
prediction of plate failure is by no means simple and the problem needs further investigation
for clari�cation. The results above indicate that the strain limit should be the fracture strain.
In a grounding scenario, however, results which are given later show that use of the necking
strain, "cr = n, gives good agreement between theory and measurements for the penetration
to fracture.
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Figure 9.11 shows a comparison between measured and calculated maximum strains as
a function of penetration for the two di�erent indentor radii. The correspondence between
theory and experimental results is seen to be fair. This was also to be anticipated since
insertion of the measured failure strain into the failure criterion led to a good prediction of
penetration to failure, see Table 9.2. The conclusion is that if the failure strain, "cr of the
material is known, the theory presented above, Eq. (9.17), gives the penetration depth at
which failure occurs.

Figure 9.11: Measured and calculated maximum strains at di�erent levels of penetration.
R = 45 mm, t = 2:1 mm, Rb = 2:75; 10 mm, [59].

As it is shown later, the 'wrapping angle',  C , is relevant in connection with prediction
of the e�ect of friction. In the experimental results shown in Figure 9.9 and Figure 9.10, the
outer limits of the contact area is indicated by the triangles. Denoting the radial coordinate
of the contact zone limit, rC , the information is easily converted to wrapping angles as
 C = sin�1(rC=Rb). Then, the experimental wrapping angles of Figure 9.9 and Figure 9.10
can be compared to those predicted by Eq. (9.14). The comparison is shown in Figure 9.12.
Theory tends to slightly overestimate the angle for the small indentor but gives very good
correspondance for the larger. In view of the uncertainties that must be connected with the
measurements, the agreement is very good.

The conclusion to the present analysis of punch indentation into circular plates is that a
theory is established which gives the relations between the penetration-maximum strain and
the penetration-wrapping angle, respectively. The results will be applied to the grounding
problem by assuming that the mode of plate wrapping on the rock is the same as the mode
of plate wrapping on the indentor. In the following, Eq. (9.12) can therefore be used with
R = Bde and Rb = RR.
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Figure 9.12: Measured and calculated wrapping angles at di�erent levels of penetration.
R = 45mm, t = 2:1mm, Rb = 2:75; 10mm, [59].

9.4 Necking and Fracture of a Plate in Shear and Ten-

sion

As discussed in Section 6.5, prediction of fracture is by no means simple. This was illustrated
by the di�culties of predicting plate failure in the very 'clean' and simplest possible plate
punch problem of the previous section. Compared to this plate punch problem, the problem
of fracture in an assembled ship bottom is further complicated by the e�ect of sti�eners,
welds and di�erent kinds of imperfections as well as by the fact that the indentor does not
move perpendicularly to the plane of the plate but rather in the plane. Successful attempts
at modelling the strength of welds and so-called 'hard points' have been presented, but the
�eld has not yet matured for application to a simpli�ed methodology like the present, so
welds and component intersections are assumed to stay intact.

The idea of the present approach is that a plate strip in the transverse direction deforms
as in the plate punch problem above, with the modi�cation of a superimposed shear strain.
This is consistent with the overall 'shear model' presented in Section 9.2 and the approach
is illustrated in Figure 9.13. The straining of a material element must be largest when it
leaves the deformation zone. Thus, it is su�cient to consider the fracture criterion here -
i.e. at the transverse strip shown in Figure 9.13.

In the plate punch problem, material was assumed to be deformed in a state of plane
strain. Here, by superimposing a shear strain, both in-plane major strains, "1 and "2, will
be present and proper account has to be taken of the two-dimensional strain limits shown
in the fracture forming limit diagram, Figure 6.12.
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Figure 9.13: Basic idea of fracture criterion. A transverse plate strip deforms as in the plate
punch problem with a superimposed shear deformation.

In order to use the strain limits given in Figure 6.12, the strain pair ("rr; "r�) has to be
transformed to the major strain pair ("1; "2). The assumption of proportional strain paths
is made here although arguments will be given later in Section 9.7 that this may not be the
case:

"rr
"r�

= Constant (9.18)

Mohr's circle for the strain in a material element therefore expands concentrically as the
element passes through the zone of deformation. The radius is given by

R =
q
"2rr=4 + "2r� (9.19)

and the major strain pair by

"1 = "rr=2 +R (9.20)

"2 = "rr=2� R (9.21)

It should be noted that the major strains are positive and negative, respectively, indicating
a process in the second quadrant in an FFLD. Adding Eq. (9.20) and Eq. (9.21) gives

"1 + "2 = "rr (9.22)
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The plate failure locus in the drawing region is given by a similar expression, "1+"2 = "cr
(Eq. (6.30)), so that the �nal failure criterion simply becomes

"rr = "cr (9.23)

This is exactly the criterion of the plate punch problem so super imposing a shear strain
does not change the fracture criterion. Hence, the expression from the previous section for
the penetration to failure directly applies here. If the rock is su�ciently blunt, the strains
never reach a critical level. In terms of the cone semi-apex angle, ', this can be expressed
as: no fracture if sin' > e�"cr . For smaller cone semi-apex angles, the penetration to failure
is

�frac = RR

8<
:1� cos C + sin2  C ln

2
4Bde=RR +

q
(Bde=RR)2 � sin4  C

sin C (1 + cos C)

3
5
9=
; (9.24)

where Bde is the lateral extent of deformation, RR is the radius of the rock tip,  C =
cos�1 (e�"cr) and "cr is the critical plate straining, which should be taken to be "cr = n. It
is noted that with RR = 0 the penetration to failure is zero. Clearly, this is not physical
because the mode of deformation will be di�erent from the wrapping mode assumed above
for the punch type deformation. However, the penetration to rupture for such a needle type
rock is very limited, [83], so in most cases the error of using Eq. (9.24) even for this rock
geometry is not large.

9.5 Extent of Deforming Zone and Fracture Criterion

The above sections concerning energy dissipation and fracture are all based on a given extent
of the deformation: Bde in Figure 9.4, �l in Figure 9.6 and R in Figure 9.7. Indeed, the
plate of the punch indentation problem had a well de�ned clamped boundary condition but,
for an assembled ship bottom structure as shown in Figure 9.2, boundary conditions are far
more complicated.

In many of the previous applications of the upper bound method to crashworthiness,
statically determinate problems like axial crushing of columns (for example [5] and [137])
or more complicated structures like a ship bow, [60], have been analysed. When such a
statically determinate problem is considered, the size of the deforming zone is known because
the deformation takes place in that part of the structure where stresses (which are known
by static equilibrium alone) �rst exceed the strength. For example, in axial crushing of a
prismatic beam, the axial force is the same at all cross-sections so that a repeated deformation
mode along the length of the beam can be anticipated. In a statically indeterminate system,
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however, stresses are unknown unless the sti�ness of the structure is taken into account.
Thus, in a simpli�ed approach as this one where the 
exibility is not considered, the problem
of �nding the extent of the deforming zone becomes apparent.

In the problem of plate cutting by a wedge, which was treated in Chapter 8, the size
of the deforming zone was found by introducing an unknown geometric parameter, the so-
called plate rolling radius, and postulating that this rolling radius adjusts itself to giving
the lowest instantaneous resistance force of the plate. This approach is in accordance with
the idea of �nding a least upper bound and it is convenient for the simplest geometries.
For an assembled ship bottom structure, however, searching for the deformation mode with
the smallest rate of energy dissipation becomes very cumbersome and at present it is not
possible.

Figure 9.14: Frog's eye view of a double bottom deformed by a conical rock with a rounded
tip. Example of how strong sti�eners on the longitudinal girders introduce hard points,
early shell rupture and possibly bad energy absorption. From experiments conducted by the
NSWC, USA, [106].

In the work of Thunes, [125], which is summarised by Amdahl, [6], a simpli�ed model is
presented for the problem of lateral indentation of a cone into a double bottom. It is here
assumed that the deformation process extends to the nearest principal sti�eners outside the
base of the rock before the plate fractures. This method is the simplest possible and in
several cases it has proved to be su�ciently accurate. However, as noted in several analyses
of side collisions, for example [28] and [139], membrane forces in the side shell may cause
the deformation to extend beyond the nearest sti�eners. This spread of the deforming zone
may be important to capture, because it a�ects the rate of energy dissipation as more
material is deformed and it delays the onset of fracture as 'hard points' are not arti�cially
introduced. Figure 9.14 shows an example of a ship bottom which may be well engineered
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for the environmental loads but, due to the very rigid sti�ening structure on the longitudinal
girders, the structure shows early fracture and bad energy absorption capabilities.

The following sections describe how the extent of the deforming zone in the longitudinal
and transverse directions is calculated in the present study.

9.5.1 Longitudinal Extent of Deformation

For a double bottom with densely spaced 
oors and girders, the experiments performed by
the NSWC, [106] and [105], showed that the deformed structure conformed closely to the
rock on the front face of the rock. For a bottom structure with heavy longitudinals, the
deformation is not necessarily con�ned to a small area between two frames - it may shoot
into bays ahead of the rock. Photographic evidence of the damaged hull of the Exxon Valdez
shows such failure modes where longitudinals are lifted up through the transverse frames. As
shown in [139], the same phenomenon is present in a side collision where the �nite strength
of transverse frames allows the deformation to spread over several frames delaying shell
fracture. In order to determine the length of the deformation zone, �l in Figure 9.6, consider
the two simpli�ed failure modes shown in Figure 9.15.

Figure 9.15: Two of the possible global failure modes for longitudinals and local failure of
intersection between longitudinal and transverse.

In a grounding event, the load is more complex than just a vertical point force, but for
estimation of the length of the deformation, the model shown in Figure 9.15 is considered
su�ciently accurate. The bending moment capacity of the longitudinal is denoted Mo and
the resistance of the transverse frame is Ftr. The distance between the frames is �t. When
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the rock is su�ciently far away from the frame, the deformation mode giving the lowest
force, PI , is Mode I. The vertical force is then

PI =
M0

dl
(9.25)

At some point as the rock approaches the transverse frame, the bending hinge jumps to
the next frame in order to minimise the rate of energy dissipation, Figure 9.15. The force
for this Mode II is

PII =
M0

dl + �t
+

�t
dl + �t

Ftr (9.26)

If it is assumed that the deformation mode adjusts itself to giving the lowest force, the
point of transition between modes is found by solving PI = PII for dl = dl;0. The result is
simple:

dl;0 =
M0

Ftr
(9.27)

The model is only valid for dl;0 � �t.

The connection between the transverse and the longitudinal �rst fails by shear of the
connection to the web, Figure 9.15. On the assumption that the web is e�ectively welded to
the transverse over 2/3 of its height, Dw, the fully plastic resistance becomes

Ftr;shear =
�0p
3

�
2

3
Dw

�
tt (9.28)

This initial failure is followed by contact between the 
ange of the longitudinal and the
transverse and subsequent concertina tearing of the plating in the transverse, see Figure
9.15 and Figure 8.1. The problem of concertina tearing is thoroughly treated by Wierzbicki,
[136]. It is shown here that a fair estimate of the load in the initial phase of the deformation
is equal to the squash load

Ftr;tear = �0 df tt (9.29)
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Figure 9.16: Longitudinal extent of the deformation, �l, as a function of the rock position, s,
between two frames. The deformation jumps to the next transverse frame when the distance
to the frame ahead of the rock is dl;0. General and numerical example of the Exxon Valdez.

where df is the width of the 
ange and tt is the thickness of the transverse. An estimate
of the average resistance of the transverse to the lifting of the longitudinal is here taken to
be

Ftr =
Ftr;shear + Ftr;tear

2
=
�0
2

 
2

3
p
3
Dw tt + df tt

!
(9.30)

For a given ship bottom structure with heavy longitudinals, the longitudinal extent of
deformation, �l, can now be calculated from the theory above. Figure 9.16 depicts �l as a
function of the rock position between two frames.

The average extent becomes

�l;av =
Z �t

0
�l ds =

1

2
�t + dl;0 =

1

2
�t +

M0

Ftr
(9.31)

and according to the limits given for Eq. (9.27) the model is only valid for �l;av � 1:5�t.
With the scantlings of the Exxon Valdez as an example, the following data can be found;

�t = 4:9 m

M0 = 2:20 MNm

Ftr;shear = 1:13 MN

Ftr;tear = 1:53 MN

Ftr = 1:33 MN
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According to Eq. (9.27) the deformation zone jumps through the transverse frame ahead of
the rock when the distance to this frame is dl;0 = 1:7 m. Then Eq. (9.31) gives an average
length of the deforming zone of �l;av = 4:1m. The length of the deforming zone as a function
of the position of the rock is shown in Figure 9.16. With a spacing between frames of 4.9 m,
the results above indicate that the average length of the deforming zone is about the same
as the spacing between the frames. Thus, it is assumed that �l;av = �t.

9.5.2 Transverse Extent of Deformation and Fracture Criterion

The simple theoretical model above depicts the observed phenomenon of a larger extension of
the deforming zone in the longitudinal direction for weaker supporting structures. As noted
in connection with Figure 9.14, the spreading of deformation in the transverse direction
may also be important, as membrane stresses in shell plating and transverse members drive
the deformation beyond the longitudinal sti�eners pushed directly by the rock. To capture
this spreading in a general scheme is not simple by any means. By considering the ship
bottom as a grillage - somewhat as indicated in Figure 9.15 - it is possible to �nd the extent
of deformation in a traditionally sti�ened single bottom but, for a double bottom with
crushable girders and 
oors and a very strong interaction between outer and inner bottom
the problem is exceedingly complex and represents well the type of problems at which the
�nite element method is superior to the simpli�ed methods.

In order to �nd a realistic model for the transverse extent of deformation within the
framework of the present simpli�ed approach, the results derived in the previous sections
about local deformation and fracture should be considered. The strain in the transverse
direction is related to the inclination,  , of the plate from horizontal via Eq. (9.4). This
means that if the cone apex angle is su�ciently large, the inclination of the plate cannot
exceed the critical strain, and the plate does consequently not fail. Inserting  = �=2� 'c
and "rr = "cr in Eq. (9.4) gives the critical cone semi-apex angle:

cos = e�"cr ) (9.32)

'c = sin�1
h
e�"cr

i
(9.33)

Then, if ' > 'c, the shell never fractures and if ' < 'c, the plating fractures at a certain
penetration. Taking as an example "cr = n = 0:22 gives 'c = 53:4o. The following consid-
erations are for a rock with ' < 'c, i.e. the plate fractures at a penetration which can be
calculated from Eq. (9.24) given the width of the deforming zone, Bde.

For an initial estimate of Bde, assume that the deformation of the plating extends to the
�rst principal sti�ener outside the base of the rock in the plane of the undeformed plating.
In other words, Bde = sl where sl is the transverse distance to the considered longitudinal
sti�ener. If the rock tip radius is su�ciently large, longitudinals are pushed by direct contact
of the rock before the plate fractures. When the dome of the rock touches a longitudinal
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at the position sl;i, the maximum inclination of a plate element from horizontal is denoted
 i;max. The geometric relation is

sin i;max =
sl;i
RR

(9.34)

This relation together with Eq. (9.32) now gives a critical transverse position of a longi-
tudinal sti�ener as

sl;c = RR

p
1� e�2"cr (9.35)

so that all sti�eners closer to the rock than sl;c are pushed directly by the rock and the
�rst sti�ener outside sl;c is not touched before the plating has fractured.

The present approach for the outer bottom is based on the idea that the deformation
before fracture extends to the �rst sti�ener outside sl;c. After fracture, the structure conforms
to the rock so the width of the deformation is simply equal to the base of the rock in the
plane of the undeformed plating.

For the inner shell, the problem is more complex because it interacts with the outer
bottom through 
oors and girders, even before the rock tip touches the plating. At the same
time, it is important to have an accurate prediction of inner bottom fracture because this is
the last barrier against out
ow of oil. Figure 9.17 shows the deformation mode of a double
hull from one of the experiments performed by the NSWC, [105]. The picture shows the
deformation at a stage just before fracture of the inner hull but with fracture of the outer
bottom.

Figure 9.17: Deformation of double hull ('ADH/PD328 ') just before fracture of the inner
hull, [105]. The shell plating is fractured.

It is clear from Figure 9.17 that there is strong interaction between the deformation of the
shell plating and the inner bottom through the girders. Consequently, the assumption for the
outer bottom of longitudinals only moving by direct contact with the rock clearly does not
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hold true for the inner bottom, because the longitudinals are here pushed from below. The
basic assumption here is that the deformation of the inner bottom before fracture extends to
the �rst longitudinal sti�ener outside both sl;c and longitudinal girders pushed by the outer
bottom, i.e. longitudinal girders within the deformation zone of the outer bottom.

On the basis of the assumptions listed above, the extent of deformation is now de�ned
for both inner and outer bottom before and after fracture is initiated. The procedure is
described in detail in the sections containing the summary of calculation routines, Sections
C.2.3 and C.3.2.

As an example, consider the grounding event shown in Figure 9.17. The rock tip radius
is RR = 0:178 m so with "cr = n = 0:22, the critical position of a longitudinal becomes
sl;c = 0:106m. The distance between the longitudinal girders is 0:17m. The rock tip is at the
centre between two girders so that the transverse distances to the girders are sl;1 = 0:085 m,
sl;2 = 0:255 m, sl;3 = 0:425 m, sl;4 = 0:595 m etc. According to the assumptions above, the
deformation of the outer bottom will extend to the second girder before the plate fractures,
i.e.

Bde;out = sl;2 = 0:255 m (9.36)

With "cr = n = 0:22 the penetration to fracture of the outer hull becomes �frac;out =
0:096 m.

When the rock tip touches the inner bottom, the shell plating has fractured so that the
width of the deformation is assumed to be equal to the width of the base of the rock, which
is BR;out = Bde;out = 0:474 m. According to the assumptions above, this implies that the
�rst three girders are pushed by the rock and hence the deformation of the inner bottom
extends to the fourth girder, i.e.

Bde;inn = sl;4 = 0:595 m (9.37)

Due to the very dense spacing of girders in this structure, another girder is actually pushed
before the inner bottom fractures because the width of the outer bottom deformation has
increased to Bout = 0:674 m. It is assumed here, however, that the boundary of the inner
bottom deformation stays at the fourth girder all the way to fracture. Figure 9.18 shows the
assumed deformation compared to the measured deformation mode.

Inserting the width of the deforming zone from Eq. (9.37) in Eq. (9.24) gives a penetration
into the inner bottom of �frac;inn = 0:15 m. The height of the inner bottom is 0:40 m so the
total penetration at fracture is 0:55 m. As the experiments were conducted at a scale of 1:5,
this corresponds to a full-scale penetration of 2:75 m. Rodd, [105], reported the full-scale
penetration to fracture to be approx. 3:0 m, see Figure 9.18. Thus, the theory predicts
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Figure 9.18: Comparison between measured and assumed deformation modes. The measured
deformation mode is from Rodd, [105].

this penetration with an error of only 8 %. As this comparison is a�ected by the height of
the double bottom, which is 2 m in full scale, it is interesting to compare the penetrations
into the inner bottom. The measured penetration into the inner bottom before fracture was
1:0 m whereas the theory gives 0:75 m, so the error is now 25 %, which is still very good,
considering the complexity of the problem.

If the speci�c structure shown in Figure 9.17 should be analysed, it would be reasonable to
assume that the plating was deformed all the way to the boundaries because these boundaries
are quite close to the rock. If the extent of the deformation zone is taken to be this distance,
i.e. Bde = 127 cm, Eq. (9.24) gives a penetration into the inner bottom to fracture of
�frac;inn = 99:5 cm. The result is signi�cant because this is exactly the penetration which
was measured in all four tests reported by Rodd, [105]. Results presented below in Section
9.7 indicate an equivalent correspondence between Eq. (9.24) and small scale experiments.
Hence, with all available experimental data, there are good reasons to believe in the validity
of Eq. (9.24).

9.6 Friction and Vertical Reaction

By use of the approach outlined in Section 6.6, the e�ect of friction, g, and the ratio, k,
between the vertical and the horizontal reaction can be derived for any rock geometry. It
is necessary, however, to assume the distribution of pressure (the amplitude comes from the
upper bound equations) and the direction of the relative velocity between the rock and the
plate. It is assumed that the mode of deformation is determined by the inner or outer bottom
plating so it is convenient to divide the analysis, depending on the fracture conditions of this
plating.
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9.6.1 Intact Plating

When the plating has not fractured, the mode of deformation for the plating in front of the
rock is assumed to be equivalent to that found for the plate punch problem in Section 9.3.
For this problem contact was found from the tip of the rock to an angle,  C , from vertical.
Consider now a longitudinal plate strip in front of the rock, Figure 9.19.

Figure 9.19: Side view of the contact area and distribution of the normal pressure, p, and
the frictional stresses, � = � p, on the rock when the plating is intact.

The rock is in contact with the plate for 0 <  <  C . The normal pressure on the
rock from the plate is distributed as p( ) = Ap0( ). The amplitude, A, cancels in the �nal
expressions for the friction factor and the ratio between vertical and horizontal forces, k.
Equilibrium in the direction of motion can be expressed as

FH = A
Z  C

0
[p0 sin + �p0 cos ]Rd (9.38)

The friction factor, g, which is the ratio between the total horizontal force and the plastic
resistance force can now be found from Eq. (6.1) and Eq. (9.38) to be

g =
FH
FP

=

 
1�

R  C
0 � p0( ) d R  C

0 [sin p0( ) + � cos p0( )] d 

!�1
(9.39)

The vertical force on the plate is

FV = A
Z  C

0
[p0( ) cos � �p0( ) sin ]Rd (9.40)

The vertical to horizontal force ratio, k, emerges as the ratio between Eq. (9.40) and
Eq. (9.38). For any shape of pressure distribution p0( ), g and k can now be evaluated.
It turns out that, if p0( ) is symmetric about  C=2, the pressure can be assumed to be
condensed in a point at  =  C=2 with a very good accuracy. The error of this simpli�cation
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for the friction factor and the vertical force is less than 2 % for any reasonable pressure
distribution. Thus, assuming that the normal pressure is symmetrically distributed about
 =  C=2 the expressions for the friction factor and the force ratio are simpli�ed to the
convenient forms:

g =
FH
FP

=

 
1� �

sin ( C=2) + � cos( C=2)

!�1
(9.41)

k =
FV
FH

=
1� � tan( C=2)

tan( C=2) + �
(9.42)

The wrapping angle,  C , is found by solving Eq. (9.12) for  C . As the penetration
approaches zero the wrapping angle also approaches zero and g and k go towards in�nity.
Since the basic assumption of the model is rigid-plasticity, however, it is only valid after a
certain penetration corresponding to full plasti�cation. At present this is taken into account

by introducing a simple lower limit for the wrapping angle,  C;min =
q
2�y=E. The wrapping

angle should not be taken less than  C;min.

The friction factor and the vertical to horizontal force ratio given in Eq. (9.41) and
Eq. (9.42) are shown in Figure 9.20 and Eq. (9.21) as a function of the plate wrapping angle,
 C for two di�erent values of the coe�cient of friction.

Figure 9.20: Friction factor g as a function
of the plate wrapping angle for two values
of the coe�cient of friction.

Figure 9.21: Force ratio k as a function of
the plate wrapping angle for two values of
the coe�cient of friction.
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9.6.2 Fractured Hull Plating

When the plate fractures, stresses in the transverse direction are brought to zero and, instead
of only touching the rock in a small area near the tip, the bottom structure conforms more
to the rock. Again, to derive expressions for the friction factor and the vertical to horizontal
force ratio, it is necessary to assume or calculate a pressure distribution over a certain
contact area. Experiments reveal a quite complex process of plate wrapping on the cone and
deriving a local plate wrapping solution as it was done for the deformation before fracture,
seems to be a very di�cult task. Instead, to be consistent with the assumed overall mode
of deformation, it is here assumed that the contact area between rock and plate is equal to
the contact area between the conical rock shown in Figure 9.1 and the simpli�ed mode of
deformation shown in Figure 9.3. This is a line contact along a generator of the cone. Figure
9.22 shows the geometry of the problem.

Figure 9.22: Sketch of geometry for the derivation of the friction factor, g = FH=FP , and
force ratio, k = FV =FH .

The undeformed plate is moving horizontally at a velocity ~V , but the relative motion
between the rock and the deformed plate is displaced an angle � from ~V in the plane of the
plate '
ap'. Horizontal equilibrium for the plate can be expressed as

FH = N(cos' sin � + � cos � cos �) (9.43)

Insertion into Eq. (6.1) then gives the friction factor as

g =
FH
FP

=

 
1� �

cos' sin � + � cos � cos �

!�1
(9.44)
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The ratio between the vertical and the horizontal force becomes

k =
FV
FH

=
sin'� � sin � cos'

cos' sin � + � cos � cos �
(9.45)

From geometrical considerations, it can be found that the angle � between ~V and the
relative velocity in the contact area must be bound, 0 < � < �. As in the wedge cutting
problem, a value of � = �=2 is used here. The friction factor and the vertical to horizontal
force ratio given in Eq. (9.44) and Eq. (9.45) are shown in Figure 9.23 and Figure 9.24 as a
function of the plate splitting angle, � for two di�erent values of the coe�cient of friction �
and the cone semi-apex angle, '.

Figure 9.23: Friction factor g for fractured
plating as a function of the plate split an-
gle for di�erent values of the coe�cient of
friction � and the cone semi-apex angle, '.

Figure 9.24: Force ratio k for fractured
plating as a function of the plate split an-
gle for di�erent values of the coe�cient of
friction � and the cone semi-apex angle, '.

9.7 Plate Resistance before Fracture

With the basic theory for plasticity and friction given in Chapter 6 and the modes of de-
formation shown above in Figure 9.4 and Figure 9.6, the basis is made for calculating the
resistance of the inner and the outer bottom plating. In the present section the resistance
of an unsti�ened plate is considered but the assumed mode of deformation is kept in the
analysis of sti�eners so that their resistance can be added subsequently, see also [111].
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9.7.1 Membrane Deformation

It is assumed that the deformation takes place within the triangular area OPQ in Figure
9.4. Unfortunately, very few results have been presented about the strain �eld in a moving
plastic zone like this one. In metal forming, it is common practice to consider only the �nal
state of the deformation and assume proportional strain paths. The membrane deformation
of the present problem, however, should probably be considered at two stages at least: As
a material element passes the OP -line it is assumed to be strained to a direct strain of
"�� = v0=Bde and a shear angle of "�� = �v0=(2Lde). The �nal deformation is assumed to
be the direct strain "�� = v0=Bde and the shear angle "�� = u0=(2Bde), so a strain �eld has
to connect these two states. Figure 9.25 shows how the strains are assumed to change as a
material element passes through the deformation zone.

Figure 9.25: Strain path of a plate material element passing through the zone of deformation,
see also Figure 9.4. As a material element passes over the OP line it is assumed to be strained
to a transverse direct strain of "�� = v0=Bde and a shear strain of "�� = �v0=(2Lde). The
�nal strain is "�� = v0=Bde and the shear strain "�� = u0=(2Bde).

The total change in equivalent strain should be calculated in two steps, one contribution
as the material element passes the OP line and one contribution as the element passes
through the deformation zone from OP to PQ. With proportional strain paths over the
OP -line and linear strain paths through the deforming zone, as shown in Figure 9.25, the
strain rates over the deforming zone become constant. Eqs. (6.6 - 6.10) then give the total
energy equivalent strain to be

["]eq = ["]eq;OP + ["]eq;OP�PQ =
2p
3

8<
:
s�

v0
Bde

�2
+
1

4

�
v0
Lde

�2
+
1

2

�
v0
Lde

+
u0
Bde

�9=
; (9.46)

It is true to say that much work is needed to understand fully the strain �eld and
the associated energy dissipation in a moving plastic zone. Some longitudinal straining
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is invariably present and transverse members have a signi�cant in
uence on the mode of
deformation. According to Eq. (6.9) and with Bde=Lde = tan �, the rate of energy dissipation
in plastic membrane deformation on both sides of the symmetry line becomes

_Em =
4p
3
�0 t v0 V

8<
:
s
1 +

1

4
tan2 � +

1

2

�
u0
v0

+ tan �
�9=
; (9.47)

9.7.2 Bending Deformation

The plate is bent both longitudinally and transversely and the energy dissipation for these
two bending processes is considered separately.

A transverse strip �xed at the outer boundaries and deformed at the mid span, has been
subjected to a total bending angle of � = 4 tan�1(�=Bde). The energy absorbed per unit
length is therefore 4M0 tan

�1(�=Bde) and as deformed material leaves the deforming zone
at a velocity of V , the rate of energy dissipation for the transverse bending becomes

_Eb;t = 4M0 V tan�1 (�=Bde) (9.48)

The rate of energy dissipation for a longitudinal strip should be calculated according to
Eq. (6.11) and the mode of deformation shown in Figure 9.6. The jump in plate curvature
over one of the four hinges is [�] = [�nn] = 1=R. The rate of energy dissipation is a decreasing
function of �l so - as in the case of a stationary deformation zone - the deformation of a
longitudinal tends to extend as far ahead as possible. As discussed in Section 9.5 transverse
bulkheads and frames prevent the deformation from extending far ahead and, due to these
supporting structures, the length of the deforming zone is not constant over time. It is
assumed here, however, that the length of the deforming zone is Lde = Bde= tan � so that it
is included in the choice of �. In order to calculate the total rate of bending energy dissipation
over the width of the deforming zone, it is convenient to introduce a coordinate, s, at the
boundary of the deforming zone pointing towards the symmetry axis of the rock. Figure
9.26 shows two models for the longitudinal bending deformation modes. The functions for
the longitudinal extent of deformation, �l, and the lifting, �l, as a function of the transverse
coordinate, s, are given in the �gure.

More advanced models could be found but the two models shown in Figure 9.26 seem to
resemble the actual deformation pattern well and they give analytically integrable expressions
for the jump in curvature, [�](s):

Z Bde

0
[�] ds =

Z Bde

0

4�l

�2
l + �2l

ds =
2Bde

�
ln

2
4 �

Lde

!2

+ 1

3
5 for Model 1 (9.49)

Z Bde

0
[�] ds =

Z Bde

0

4�l

�2
l + �2l

ds =
4 � Bde

Lde
q
�2 +B2

de

for Model 2 (9.50)
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Figure 9.26: Models for longitudinal bending deformation.

The jump in curvature, [�], and the energy dissipation are very sensitive to the choice of �l
and �l. To compare Eq. (9.49) and Eq. (9.50), it can be assumed that Lde = Bde. A Taylor
expansion with respect to �=Lde then reveals that Model 2 gives a rate of energy dissipation
in bending which is twice as high as that of Model 1. A close inspection of Model 2 shows
that for some penetrations, [�] is greater at s = 0 than at the rock tip. This counter-intuitive
behaviour of [�(s)] is found for several of the deformation modes which, at �rst glance seem
to resemble the actual deformation well. In conclusion, Model 1 will be used in the following.
With Eq. (6.11) the total rate of energy dissipation for the longitudinal bending deformation
on both sides of the symmetry line becomes

_Eb;l = 2
Z Bde

0
4 [�]M0 V ds

= 8M0 V
Z Bde

0
[�]ds

=
16M0 V Bde

�
ln

2
4 �
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!2

+ 1

3
5 (9.51)
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9.7.3 Total Resistance and Comparison to Experiments

The total plastic resistance of the plating can be calculated from Eqs. (6.1), (9.47), (9.48)
and (9.51):

FP =
_Em + _Eb;l

V
= 2N0 v0

8<
:
s
1 +

1

4
tan2 � +

1

2

�
u0
v0

+ tan �
�9=
;

+ 4M0 tan
�1
 
�

Bde

!
+
16M0Bde

�
ln

2
4 �

Lde

!2

+ 1

3
5 (9.52)

where N0 = 2�0t=
p
3 and M0 = �0t

2=(2
p
3). All expressions are now derived for calculating

the total horizontal and vertical reaction forces including plasticity and friction. In summary,
the equations to be applied together with Eq. (9.52) are

u0 = Bde

q
(1� cos�)2 sin2 � + (1� cos �)2 sin2 � (9.53)

v0 = Bde (1= cos�� 1) (9.54)

� = tan�1 (�=Bde) (9.55)

FH = g FP (9.56)

FV = k FH = g k FP (9.57)

g =

 
1� �

sin ( C=2) + � cos( C=2)

!�1
(9.58)

k =
1� � tan( C=2)

tan( C=2) + �
(9.59)

 C = 0:883 (�=Bde)
0:625 (Bde=Rb)

0:440 (9.60)

�frac =

(
1:22Bde (RR=Bde)

0:7032 (cos�1 (e�"cr))
1:559

for sin' < e�"cr

1 for sin' � e�"cr
(9.61)

Note that the approximations for  C and �frac are not generally valid but they are applicable
to the experiments considered below. The general expressions are given in Section 9.3.

Unfortunately, the amount of experimental data published on the subject of the present
problem is very limited. Turgeon, [128], investigated the problem of a transversely sti�ened
plate deformed by a parabolic rock both theoretically and experimentally. The theoretical
model was based on an assumed deformation mode and rigid-plastic theory. All displacement
functions u, v and w were described by trigonometric functions. Bending curvatures and
membrane straining were quanti�ed by theory for moderately large de
ections. Assuming
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rigid-plastic material Turgeon found that the bending energy could be neglected and that
the plastic resistance of the plating for the membrane deformation (both tension and shear)
was well approximated by the expression

FP = 2:25 �0 t �
2=Bde (9.62)

The formula is compared to Eq. (9.52) below. The experiments showed a very strong
in
uence of the transverse sti�eners and, for the present problem, it is di�cult to separate
the plate resistance from the total measured forces. The study of Turgeon indicated that the
e�ect of friction is signi�cant and as in the present analysis it was found di�cult to quantify
theoretically frictional e�ects, due to uncertainties in determination of the wrapping angle,
 C . Force ratios, k = FV =FH , of up to 6 were measured indicating a coe�cient of friction of
maximum � = 1=6 = 0:17 (!) according to Eq. (9.58).

Muscat-Fenech, [82], conducted experiments with indentation of a spherical indentor into
mild steel plates. The principal idea of the experimental set-up is shown in Figure 9.27.

Figure 9.27: Sketch of the experimental set-up used by Muscat-Fenech, [82], to investigate
the plate resistance before fracture.

The main data for the experiments are given in Table 9.3.

For comparison with theory - and for use in general - a proper value for the plate split
angle, �, has to be selected, see Figure 9.4. Figure 9.28 shows the plastic resistance, FP ,
from Eq. (9.52) as a function of the plate split angle, �, and the penetration, �. Note that
with the present modelling the plastic resistance is not a function of the radius of the rock.

As � approaches zero, the plastic resistance of the plate approaches a value corresponding
to only transverse bending and stretching. Taylor expansions of the trigonometric functions
give a simple expression for the plastic resistance:

FP;min = N0 �
2=Bde + 4M0 �=Bde (9.63)



176 Chapter 9. Internal Mechanics of a Sti�ened Ship Bottom on a Conical Rock

Table 9.3: Main data for experiments performed by Muscat-Fenech, [82].

Radius of rock tip, RR 12.7-50.8 mm
Penetration, � 0-50 mm
Half width of deformation, Bde 150 mm
Plate thickness, t 0.80 mm
Material 'Mild Steel'
Yield stress, �y 214 MPa
Flow stress (assumed), �0 275 MPa
Coe�cient in Power law, Eq. (6.20), C 548 MPa
Parameter in Power law, Eq. (6.20), B 0 :
Strain hardening exponent, n 0.21 :
Ductile fracture toughness, R 240 kJ=m2

If the transverse bending, which accounts for less than 3 % of the energy absorption in the
present problem, is neglected, Eq. (9.63) is further simpli�ed to

FP;min =
2p
3
�0 t �

2=Bde = 1:15 �0 t �
2=Bde (9.64)

This equation has the same form as the expression found by Turgeon, Eq. (9.62), but the
magnitude of Eq. (9.64) is only about half of Turgeon's result, due to the neglect of shear
deformation. Table 9.4 shows a comparison between measured and calculated values for the
horizontal and vertical forces reported by Muscat-Fenech, [82]. Since � is basically unknown,
the theoretical results are presented for both � = 0 and � = 20o.

The comparison between measured and calculated results does not immediately reveal a
very convincing performance of the derived theory. For � = 20o the present theory generally
overestimates the forces seriously. However, a closer look at the experimental results in Table
9.4 reveals tendencies which call for further experimental investigation. For example, it is
surprising if, at one particular penetration (� = 10 mm) the resistance is �rst an increasing
function of the penetrator radius (tests nos. 1 and 2) then a decreasing (test no. 2 and 4)
and �nally an increasing (tests nos. 4 and 6). In connection with the comparison between
theory and tests some points concerning the experimental results should be emphasised:

� Elastic e�ects. With a plate thickness of t = 0:8 mm, a span of 2Bde = 300 mm
and a deformation of only � = 10 � 20 mm, elasticity might have a signi�cant e�ect
and use of a rigid-plastic model is questionable. Due to the boundary conditions of
the present problem, it is not immediately possible to quantify accurately the elastic
deformation. However, a simple string model (" = 1

2
(�=Bde)

2) predicts full plasti�cation

when � = Bde

q
2�y=E � 0:045Bde. With Bde = 150mm this gives � = 6:7mm so
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Figure 9.28: Plastic resistance of plating, FP Eq. (9.52), as a function of plate split angle,
�, and penetration, �.

although this is a crude estimate, it indicates an e�ect of elasticity which may be
signi�cant. Accurate solutions for a circular plate of radius Bde predict an equivalent
level of elastic deformation, [127].

� Boundary Slippage. The initial tests performed at MIT showed that it is di�cult to
provide a fully clamped boundary condition for the plate, see [142]. At MIT it was
found necessary to provide the plate support with draw beads, i.e. during mounting
the plate is plastically deformed into a recess in the support structure. Such a �xation
was not provided in the tests presented by Fenech-Muscat so it is likely that the plate
has slipped a bit from the support. Note that if the deformation shape was triangular,
the plate only had to slide 0.3 mm at the support to give zero membrane deformation
at � = 10 mm!

With the derived theory and the points above in mind, it would be very interesting to
conduct more tests. Muscat-Fenech performed tests with di�erent penetrations, so that the
penetrations to fracture can be extracted from the test results. These measured penetrations
to failure and the corresponding values calculated by Eq. (9.61) are given in Table 9.5.

It is seen that, except for one con�guration (RR = 38:1mm) the theoretically determined
penetrations to fracture agree with the experimental bounds when a failure strain of "cr = n
is used in Eq. (9.61).
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Table 9.4: Experimental results reported by Muscat-Fenech, [82], and corresponding theo-
retical values, which are based on a coe�cient of friction of � = 0:3. Numbers in brackets
correspond to deviation from experimental values.

Experimental Results:
Test No RR � FH FV k = FV =FH

mm mm kN kN
1 12.7 10.0 0.28 0.70 2.5
2 25.4 10.0 0.63 1.1 1.8
3 25.4 20.0 1.8 3.3 1.8
4 38.1 10.0 0.32 0.69 2.1
5 38.1 20.0 1.4 2.6 1.8
6 50.8 10.0 1.2 2.0 1.7

Theoretical Prediction:
� = 20o � = 0o

Test g k FH FV FH FV
No kN kN kN kN
1 2.3 1.7 (-32 %) 0.82 (+192 %) 1.4 (+100 %) 0.42 (+50 %) 0.72 (+3 %)
2 2.7 2.0 (+14 %) 0.98 (+56 %) 1.9 (+73 %) 0.50 (-21 %) 0.99 (-10 %)
3 2.2 1.6 (-11 %) 2.3 (+28 %) 3.7(+12 %) 1.5 (-17 %) 2.4 (-27 %)
4 3.1 2.1 (+0 %) 1.1 (+244 %) 2.3 (+233 %) 0.56 (+75 %) 1.2 (+74 %)
5 2.4 1.7 (-6 %) 2.6 (+86 %) 4.5 (+73 %) 1.7 (+21 %) 2.9 (+12 %)
6 3.3 2.2 (+29 %) 1.2 (+0 %) 2.6 (+30 %) 0.61(-49 %) 1.4 (-30 %)

Table 9.5: Penetration to fracture. Experiments by Muscat-Fenech, [82], and theory from
Eq. (9.61).

Experiments Eq. (9.61) Eq. (9.61)
"cr = n = 0:21 "cr = 0:7

RR (mm) �frac (mm) �frac (mm)
12.7 10mm < �frac < 20mm 15.9 mm 35.2 mm
25.4 20mm < �frac < 30mm 25.8 mm 57.2 mm
38.1 40mm < �frac < 50mm 34.3 mm 75.9 mm
50.8 40mm < �frac < 50mm 41.9 mm 92.9 mm
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9.8 Plate Resistance after Fracture

After the plate has fractured, stresses in the transverse direction are released and instead
of being stretched all the way to the remote boundaries, the plate conforms to the rock.
Theoretical analysis of this problem is performed in a manner similar to that for cutting
by a wedge presented in Chapter 8. There are di�erences, however, which complicate the
analysis of plate cutting by a cone: The prismatic wedge has a well de�ned plate splitting
angle, � (see Figure 8.2), and since the wedge faces are plane, the direction of the normal and
the frictional forces is uniquely determined. For the present problem the deformation mode
shown in Figure 9.4 is still applied but the plate split angle, �, is now basically unknown. It is
shown below, however, that by choosing the plate split angle which minimises the horizontal
resistance, the horizontal and vertical cutting forces can be determined theoretically with
very good accuracy.

9.8.1 Energy Dissipation by Plasticity, Fracture and Friction

The plate separates in front of the cone, and since the cone does not have a sharp well de�ned
cutting edge, the material separation process must be one of ductile fracture. For the wedge
cutting problem analysed in Chapter 8, it was noted that some experiments revealed a crack
process of pure plastic 
ow around the cutting edge rather than fracture. With a fracture
toughness of Rc, the rate of energy dissipation for the crack tip process becomes

_Ec = Rc t V (9.65)

To calculate the rate of energy dissipation for the membrane deformation, Figure 9.4 is
used. The plate fractures along the centre line but the PQ�PR gap has to be accommodated
by straining for material continuity. The strain �eld requiring least energy is shearing of
longitudinal �bres to a shear angle of 
 = 2 "�� = u0=Bde. According to Eqs. (6.9, 6.10), the
rate of energy dissipation for the membrane straining becomes

_Em = 2 �0 t Bde ["eq]V = 2 �0 t Bde

 
2p
3

1

2

u0
Bde

!
V = N0 u0 V (9.66)

where the gap width, u0, is calculated from Eq. (9.1) with � = �=2� ' and Bde = � tan'.

In a simpli�ed method like the present, taking improper account of the interaction be-
tween individual failure modes may lead to erroneous results. Eqs. (9.65, 9.66) were derived
on the assumption that fracture and membrane deformation could be considered as separate
processes. The problem with this approach is that a part of the fracture energy included
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in Rc is actually plastic membrane deformations at the crack tip. This means that the en-
ergy absorbed by plastic deformations at the crack tip is included in both Eq. (9.65) and
Eq. (9.66). Instead of Eq. (9.66) the membrane energy dissipation rate is therefore taken to
be

_Em =

(
0 if N0 u0 < Rc t
(N0 u0 � Rc t)V if N0 u0 > Rc t

(9.67)

For large scale problems like grounding on a rock Rc t << N0 u0 so the modi�cation in
Eq. (9.67) is neglectable. For the small scale experimental results referred to later, however,
the modi�cation is important.

The deformed plate in the wake of the cone has been bent from horizontal to an angle of
�=2� ', so the rate of energy dissipation for this bending process is

_Eb = 2M0 (�=2� ') V (9.68)

where ' is the semi-apex angle of the cone, see Figure 9.1. Longitudinal bending is
present as well but, the contribution for a bare plate is small. The contribution of plate
bending is further discussed in Section 9.8.2 concerning longitudinal sti�eners. The total
plastic resistance of the plate can now be obtained from Eqs. (9.65, 9.67, 9.68):

FP =
_Ec + _Em + _Eb

V
=

(
Rc t+ 2M0 (�=2� ') if N0 u0 < Rc t
N0 u0 + 2M0 (�=2� ') if N0 u0 > Rc t

(9.69)

With Eq. (9.69), Eq. (9.44) and Eq. (9.45), the horizontal and vertical reaction forces
can be calculated in the usual manner as FH = g FP and FV = k FH = k g FP .

9.8.2 Comparison to Experimental Results

Muscat-Fenech, [83], conducted experiments with cutting of a thin plate by a cone. The ex-
perimental set-up is shown schematically in Figure 9.29 together with two force-displacement
plots for (2' = 45o, � = 10mm ) and (2' = 60o ,� = 40mm). Of interest here is the steady
state force which is reached after a certain penetration. As indicated by the lower of the
force-displacement plots in Figure 9.29 the steady-state forces were not unambiguously ex-
tracted from the all the tests.

The data of the experimental set-up is identical to that given in Table 9.3, except that
the indentor was conical with cone apex angles of 2' = 30o; 45o and 60o, respectively.



9.8. Plate Resistance after Fracture 181

Figure 9.29: Sketch of experimental set-up to investigate the resistance of plating cut by a
cone together with two force-displacement plots: (2' = 45o ,� = 10mm) and (2' = 60o,
� = 40 mm). Results from Muscat-Fenech, [83].

Typical measured force-displacement plots are shown in Figure 9.29. The main results of
the force-displacement measurements are given in Table 9.6.

In order to compare the results of Table 9.6 with the theory derived above, the plate
split angle, �, must be determined. Since the current theoretical approach is a kind of
'upper bound method', � is here taken to be the value which minimises the resistance force
of the plating - i.e. with this value of the plate split angle, the theoretical solution is a 'least
upper bound'. Figure 9.30 shows the horizontal resistance force as a function of � for a cone
with a semi-apex angle of ' = 22:5o. Depending on the penetration, the plate split angle
giving the least resistance is seen to vary over a small interval from 5o to 14o.

The dependence of the resistance on � is seen to be relatively weak around the minima,
Figure 9.30. As it also turns out that the variation of the optimum value for � is a weak
function of cone geometry, the following analysis is based on a constant value of �, namely
the average value for all the experimental con�gurations. With this average value of � = 9:7o

the theoretical model is fully de�ned by Eqs. (9.44, 9.45, 9.69).
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Table 9.6: Measured steady-state forces in cutting of a plate by a cone, Muscat-Fenech, [83].

Indentor � FH FV k = FH=FV
semi-apex angle mm kN kN
' = 15o 10 1.25 0.80 0.64

20 1.30 0.90 0.69
30 1.25 0.90 0.72
40 1.35 0.90 0.67
50 1.20 1.20 1.00

' = 22:5o 10 1.00 0.80 0.80
20 1.30 1.00 0.77
30 1.20 1.00 0.83
40 1.60 1.30 0.81
50 1.60 1.25 0.78

' = 30o 10 1.10 1.10 1.0
20 1.10 1.10 1.0
30 1.30 1.30 1.0
40 1.70 1.70 1.0
50 2.00 2.00 1.0

Figure 9.30: Theoretical horizontal resistance of a cone with ' = 22:5o as a function of �, at
di�erent levels of penetration.
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To verify the theoretical model for the friction factor, g, and the vertical to horizontal
force ratio, k, Figure 9.31 compares measured and calculated values for k as a function of
the cone semi-apex angle, '.

Figure 9.31: Measured and calculated ra-
tios of vertical to horizontal reaction force,
k, vs. cone semi-apex angle, '. � = 9:7o

and � = 0:3.

Figure 9.32: Friction factor, g, vs. cone
semi-apex angle, ' for � = 9:7o and � =
0:3.

The theoretical curve in Figure 9.31 shows a steeper behaviour than the experimental
data but the overall agreement is good. If the variation of plate split angle with penetration
was taken into account, k would be an increasing function of penetration which does not
seem to be the case for the experimental data of Table 9.6. A good prediction of the vertical
to horizontal force ratio, k, as shown in Figure 9.31 indicates a good estimate of the point
of attack for the forces on the cone. It is consequently reasonable to assume an equally
good prediction of the friction factor, g. As shown in Figure 9.32 g is about 3 for � � 10o

indicating a very signi�cant contribution of friction.

Figures 9.33 - 9.38 show comparisons between measured and calculated horizontal and
vertical forces. If the minimum resistance force was taken at all penetrations, the horizontal
force in Figure 9.37 would vary between 0:73 kN and 2:2 kN (see Figure 9.30 ) instead of
1 kN and 2:5 kN .
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Figure 9.33: Horizontal plate resistance
force as a function of the penetration. The
cone semi-apex angle is ' = 15o.

Figure 9.34: Vertical plate reaction force
as a function of the penetration. The cone
semi-apex angle is ' = 15o.

Considering the complexity of the problem, the agreement between theory and experi-
mental results is seen to be very good. Even the kink predicted by the theory can be observed
in some of the tests. It is true to say that the present method for taking into account the
interaction between the fracture process and the membrane deformation zone can be modi-
�ed according to other hypotheses but it is seen to work well for the considered scale. Part
of the reason why the theoretical model performs so well must be ascribed to the fact that
most of the energy in plasticity and fracture is dissipated by the fracture process and the
fracture toughness, Rc, was measured directly. With g = 3, friction accounts for two thirds
of the energy, however, and thus friction is apparently predicted equally well. It would be
interesting to see how well the theoretical model performs on a larger scale where the crack
tip process is of minor importance. All in all it can be concluded that the major e�ects of
plasticity, fracture and friction in the cutting of a plate by a cone has been quanti�ed in a
simple closed form mathematical model which gives excellent prediction of the vertical and
the horizontal forces in model scale.
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Figure 9.35: Horizontal plate resistance
force as a function of the penetration. The
cone semi-apex angle is ' = 22:5o.

Figure 9.36: Vertical plate reaction force
as a function of the penetration. The cone
semi-apex angle is ' = 22:5o.

Figure 9.37: Horizontal plate resistance
force as a function of the penetration. Cone
semi-apex angle is ' = 30o.

Figure 9.38: Vertical plate reaction force as
a function of the penetration. Cone semi-
apex angle is ' = 30o.
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9.9 Resistance of Longitudinal Members

Tests and accidental grounding events show that longitudinal members are twisted, bent and
locally crushed during a grounding event. An example is given in Figure 9.39, which shows
a photo of the bottom of the Sea Empress after a grounding event.

Figure 9.39: Damage to the starboard side of the 'Sea Empress' after multiple grounding
events on the rocks o� Milford Haven, [23].

The response of the longitudinals depends on their scantlings, boundary conditions and
the nature of the load, so that formulation of a general theory for longitudinals becomes
quite complicated. In this section, the grounding resistance of the three most typical types
of longitudinal members is considered:

1. Web girder connecting the inner and outer bottom in a double bottom.

2. Longitudinal bulkhead.

3. Longitudinal sti�ener attached to either outer or inner bottom.

All three types of longitudinal members can be seen in Figure 9.2.

9.9.1 Web Girders

When a longitudinal web girder is forced past the rock, it collapses and energy is dissipated in
bending, membrane deformation and friction. For simplicity the following analysis considers
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a bare unsti�ened girder although - as it was illustrated by Figure 9.14 - the sti�ening may
have decisive in
uence on the grounding response.

The present approach is based on the assumption that the membrane deformation of
the girder is the major energy-absorbing mechanism. Out-of-plane bending could easily be
included as well but due to the high in-plane strains, the contribution would be small. The
girder is mounted between the outer and inner bottoms which are both assumed to deform
as illustrated in Figure 9.4. Figure 9.40 shows a longitudinal girder or bulkhead attached to
the shell plating.

Figure 9.40: Deformation mode of a longitudinal girder or bulkhead passing through the
deformation zone. Deformation of the shell plating corresponds to the global deformation
mode of Figure 9.4.

As it is assumed that longitudinal �bres in the bottom plating are not stretched, �bres
in a longitudinal web girder are not stretched either. Instead, the gap openings shown in
Figure 9.40 are accommodated by shear straining as for the bottom plating. The average
change in shear angle as a girder material element passes through the deformation zone is

[
] =
u0;l;out � u0;l;inn

Dl
(9.70)

where Dl is the height of a longitudinal girder (or the height of the deformation in a
bulkhead), and u0;l;out and u0;l;inn are the longitudinal gap openings in the outer and inner
hull platings in the position of the web girder, see Figure 9.40. Application of Eq. (6.10)
with "�� = 
=2 and with "�� = "�� = 0 gives a mean jump in equivalent strain over the
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deformation zone of ["eq] = [
]=
p
3. Eq. (6.9) then gives the rate energy dissipation for the

membrane deformation of the girder as

_El =
�0p
3
tlDl V [
] =

�0p
3
tl (u0;l;out � u0;l;inn) V (9.71)

where tl is the plate thickness of the web plating. The plastic resistance is now

FP;l =
_El
V

=
�0p
3
tl (u0;l;out � u0;l;inn) (9.72)

and the associated horizontal and vertical forces can be calculated as FH = g FP and FV =
g k FP , where g and k are calculated from Eqs. (9.41, 9.42, 9.44, 9.45). The gap widths
in the plating in the position of the considered longitudinal should be calculated depending
on whether the plating has fractured. The transverse distance from the rock tip to the
considered longitudinal is denoted sl. According to Eq. (9.1), the gap width in the position
of a longitudinal with the transverse coordinate sl becomes

u0;l = (Bde � sl)
q
(1� cos�)2 sin2 � + (1� cos �)2 sin2 � (9.73)

The angle, �, from horizontal to the plate 
aps shown in Figure 9.4 depends on the
fracture state of the plating. Before fracture, the deformation spreads out and after fracture
the plate conforms to the rock. As discussed in Section 9.5 this is quanti�ed by the '
ipping
angle' as

� =

(
tan�1 (�R=Bde) no fracture, i.e. �R < �frac
�=2� ' fracture, i.e. �R � �frac

(9.74)

Before fracture, � remains relatively small, so the trigonometric functions can be accu-
rately represented by their Taylor expansions. All in all, the gap width at the outer bottom,
u0;l;out, can then be calculated as

u0;l;out =

8>>>>>>>>>><
>>>>>>>>>>:

0 for sl � Bde;out

�R;out(1� sl=Bde;out)� for sl < Bde;out andq
1
4
(�R;out=Bde;out)

2 sin2 � + (1� cos �)2 �R;out < �frac;out

(Bde;out � sl)� for sl < Bde;out andq
(1� sin')2 sin2 � + cos2 '(1� cos �)2 �R;out � �frac;out

(9.75)
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where �frac;out is the penetration into the outer bottom causing rupture, Bde;out is the
width of the deformation in the outer bottom and �R;out is the rock tip penetration into
the outer bottom. The gap width at the inner bottom in the position of the considered
longitudinal girder is

u0;l;inn =

8>>>>>>>>>><
>>>>>>>>>>:

0 for sl � Bde;inn

�R;inn(1� sl=Bde;inn)� for sl < Bde;inn andq
1
4
(�R;inn=Bde;inn)

2 sin2 � + (1� cos �)2 �R;inn < �frac;inn

(Bde;inn � sl)� for sl < Bde;inn andq
(1� sin')2 sin2 � + cos2 '(1� cos �)2 �R;inn � �frac;inn

(9.76)

The plastic resistance of a longitudinal web girder can now be calculated from Eq. (9.72),
Eq. (9.75) and Eq. (9.76). The associated horizontal and vertical forces can be calculated as
FH = g FP and FV = g k FP , where g and k are calculated from Eqs. (9.41, 9.42, 9.44, 9.45).

9.9.2 Longitudinal Bulkheads

The response of a longitudinal bulkhead is the same as in a longitudinal girder, except that
the height is unlimited. The equations above can therefore be applied with u0;l;inn = 0. The
plastic resistance of a bulkhead is thus:

FP;l =
_El
V

=
�0p
3
tl u0;l;out (9.77)

and the associated horizontal and vertical forces can be calculated as FH = g FP and FV =
g k FP , where g and k are calculated from Eqs. (9.41, 9.42, 9.44, 9.45). The gap width u0;l;out
is calculated from Eq. (9.75).

9.9.3 Longitudinals

Photographic evidence from accidental grounding events indicates that bending is the major
energy-dissipating mechanism for longitudinal sti�eners. The overall mode of deformation
for longitudinals was discussed in Section 9.2 (see p. 147) and it was shown in Section 9.5
how the average length of the deforming zone �l;av can be calculated.
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According to the deformation mode shown in Figure 9.6, the deformation zone is assumed
to consist of three moving hinges. The forward hinge changes the curvature of the unde-
formed longitudinal from 0 to 1=R, the intermediate hinge reverses the curvature from 1=R
to �1=R and the aft hinge changes the curvature from �1=R to 0. According to Eq. (6.11)
the rate of internal energy dissipation for a longitudinal in this deformation mode becomes

_Eb = V
3X
i=1

M i
0;l[�]

i (9.78)

where V is the forward velocity and M i
0;l, [�]

i is the fully plastic bending moment and
the jump in curvature of the i'th hinge, respectively. During the deformation process, the
longitudinals deform out of their original plane in the so-called tripping mode which changes
the plastic bending moment capacity. Therefore, depending on this tripping deformation,
the plastic bending moment might be di�erent for each of the three moving hinges. In the
following, it is assumed that the bending moment capacity is the same at each of the hinges
and the longitudinal is assumed to lay down - trip - so that the bending moment of the
longitudinal is minimised. The expression for the rate of energy dissipation then becomes

_Eb = V M0;lf[�] + 2[�] + [�]g = 4M0;l [�]V (9.79)

With a length of the deforming zone equal to �l;av, Eq. (9.3) and Eq. (9.78) give the rate
of energy dissipation for bending of a longitudinal:

_Eb = 16V M0;l
�l

�2l;av +�2
l

(9.80)

where �l is the maximum lifting of the longitudinal in the plane of bending, see Figure
9.6. In the calculation of the fully plastic bending moment, M0;l, it should be noted that
as the shell plating is already in a state of full plasti�cation it should not be fully included
in the bending moment capacity. When the web of the longitudinal is perpendicular the
bending moment capacity is minimum:

M0;l =
�0
4

�
tf d

2
f + Dw t

2
w

�
(9.81)

where df is the width of the 
ange, tf is the thickness of the 
ange, Dw is the height of the
web and tw is the thickness of the web. Brackets are normally mounted to the longitudinals to
prevent tripping but they do not prevent tripping under the extreme deformations considered
here, see Figure 9.39.
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Figure 9.41: Lifting of a longitudinal for intact and fractured bottom plating respectively.

To derive the �nal expressions for the plastic resistance, consider �rst the state before
fracture, i.e. �R < �R;frac. Figure 9.41 shows the mode of deformation in a transverse section.
As the shell plating is stretched, the longitudinal is displaced vertically upwards.

According to the deformation mode shown in Figure 9.41, the lifting of a longitudinal is

�l = �R
(Bde � sl)

Bde
= �R (1� sl=Bde) (9.82)

The plastic resistance can now be expressed as

FP =
4 �0 �R (1� sl=Bde)

�
tf d

2
f +Dw t

2
w

�
�2R (1� sl=Bde)

2 + �2l;av
(9.83)

and the horizontal and vertical forces can be calculated as FH = g FP and FV = g k FP ,
where g and k are calculated from Eqs. (9.41, 9.42).

After the bottom plating has fractured, �R > �R;frac, the plate is assumed to conform to
the rock. Figure 9.41 shows the deformation mode in a transverse section.

The lifting, �l, in the plane of the bending is

�l = 2 (Bde � sl) tan
�
�

4
� '

2

�
(9.84)

so the plastic resistance of the longitudinal becomes
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FP =
8 �0 (Bde � sl)

�
tf d

2
f + Dw t

2
w

�
tan

�
�
4
� '

2

�
4(Bde � sl)2 tan2

�
�
4
� '

2

�
+ �2l;av

(9.85)

and the horizontal and vertical forces can be calculated as FH = g FP and FV = g k FP
where g and k are calculated from Eqs. (9.44, 9.45).

9.10 Resistance of Transverse Members

For relatively large ships the transverse sti�ening structure attached to the bottom shell
plating is primarily bulkheads, deep frames in single bottom ships and solid 
oors in double
bottom ships. Examples of solid 
oors in a double bottom ship are seen in Figure 9.2 and
Figure 9.42 shows the transverse framing in a longitudinally sti�ened single hull ship.

Figure 9.42: Example of transverse frames in a single hull ship, [44].

These transverse components are seldom just bare plates but are normally �tted with
sti�eners or reduced by cutouts for weight saving or pipe tunnels. As for longitudinal gird-
ers and bulkheads, the secondary sti�eners may have signi�cant in
uence on the structural
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response. When well engineered, they increase the energy absorption of the components
but bad designs introduce hard points and induce early fracture, see Figure 9.14. For the
present analysis the transverse is assumed to be a bare homogenous plate. The basic defor-
mation mode is depicted in Figure 9.43 and it is seen to be fully compatible with the plate
deformation mode shown in Figure 9.3.

Figure 9.43: Assumed deformation mode for transverse structures. The bottom plating
follows the global deformation mode shown in Figure 9.4.

Theoretical and experimental investigation of the response of a web girder was previously
conducted at MIT, see [29], [30], [34], [138]. In the work by Wierzbicki and Simonsen, [139],
the geometric description of the girder folding was simpli�ed and the idea of the mean
crushing force with respect to the deformation depth 2Ht was adapted. The present work is
a further development of the analysis [139] as the geometric description is enhanced, theory
is compared to experiments, girders of �nite depth are considered and fracture is included.

Figure 9.43 shows that the energy-absorbing mechanisms are again bending and mem-
brane deformation and possibly fracture. As the component is deformed by an indentor
moving in the longitudinal direction friction is also present.

For unfractured plating, the gap width shown in Figure 9.43 illustrates necessary mem-
brane straining of the material. It is seen that this gap width is largest in the middle of
the buckle, and it is even larger here than in the plating. This simple model therefore helps
to explain the experimental evidence, [106], that transverse members may serve as crack
initiators.
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9.10.1 Energy Dissipation in Plastic Deformation

Below, the plastic resistance is derived for a girder with a 
ange being deformed at the
midspan, Figure 9.44.

Figure 9.44: De�nition sketch for crushing of a web girder. In a grounding scenario the
penetration and the crushing force are in a direction opposite to that shown here.

The deformation is idealised by 6 hinge lines and a membrane deformation zone. The
deformation takes place within an area of 2Bde by 2Ht. The maximum possible extent of the
deformation is given by the boundaries and is equal to 2Bmax by 2Hmax. The wave length
of the plastic buckle is 2Ht so, when the deformation of the �rst fold is fully exhausted, the
penetration depth is � = 2Ht.



9.10. Resistance of Transverse Members 195

Global equilibrium can be expressed by the principle of virtual work:

P _� = _Eb + _Em (9.86)

where indices b and m indicate bending and membrane deformation respectively. The
mean crushing force, Pm, can be found from the total energies at the end of the deformation
process when � = 2Ht:

Pm 2Ht = Eb + Em (9.87)

The bending hinge lines each have a length of approximately Bde so, with a plastic
bending moment per unit length of M0 = �0t

2=(2
p
3), the rate of energy dissipation for the

bending becomes

_Eb = 8M0Bde _� (9.88)

where � is the angle of bending, see Figure 9.44. Penetration depth and bending angle
are geometrically related as � = 2Ht(1�cos�). Hence, the rate of the bending angle becomes

_� =
_�

2Ht

0
@1�

 
1� �

2Ht

!2
1
A
�1=2

(9.89)

Integration of Eq. (9.88) up to the point where the �rst fold is fully exhausted (� = �=2)
gives a total bending energy of

Eb = 4 �M0Bde (9.90)

For the membrane deformation, only direct strains in the transverse direction are con-
sidered so the rate of energy dissipation for this process can be expressed as

_Em =
Z
S
�0 tt _"yy ds (9.91)

where S = 4HtBde in the area of deformation. For the 
ange and the upper �bre in
the web, the strain and the strain rate can according to the theory of moderately large
de
ections, be calculated as
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"yy;f =
1

2

 
�

Bde

!2

(9.92)

_"yy;f =
� _�

B2
de

(9.93)

When the deformation mode is fully exhausted at � = 2Ht, the gap width from the plate

ap edge to the midspan is constant and equal to Bde"yy;f between the two upper hinge lines
and zero at the lower hinge line. The average gap width and the average strain are therefore
only 3/4 of the values at the upper �bre. With an average strain rate of _"yy;av = 3=4 _"yy;f ,
the rate of membrane energy dissipation for the entire zone of deformation becomes

_Em = 4BdeHt�0tt _"yy;av =
3�0ttHt� _�

Bde
(9.94)

When the fold is completely folded at � = 2Ht the energy absorbed by the membrane
deformation is

Em =
6 �0 ttH

3
t

Bde
(9.95)

For comparison of the theory with experiments performed at MIT, the 
ange shown in
Figure 9.44 has to be included in the theory. With a strain and strain rate given by Eqs.
(9.92, 9.93) and a volume of deformation of 2Bdedf tf , the rate of energy dissipation and the
total deformation energy at � = 2Ht becomes

_Em;f = 2
�0 tf df �

Bde

_� (9.96)

Em;f = 4
�0 tf df H

2
t

Bde

(9.97)

The instantaneous and the mean crushing forces can now be expressed as
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P =
_Eb + _Em + _Em;f

_�
=

4M0Bde

Ht

r
1�

�
1� �

2Ht

�2 + 3 �0 ttHt �

Bde
+
2 �0 tf df �

Bde
(9.98)

Pm =
Eb + Em + Em;f

2Ht

=
2 �M0Bde

Ht

+
3 �0 ttH

2
t

Bde

+ 2
�0 tf df Ht

Bde

(9.99)

The values of Ht and Bde are yet to be determined. The experiments performed at MIT
indicate that once a deformation mode is initiated, the hinges are stationary until the mode
is exhausted. In the tests at MIT the deformation was seen to extend all the way to the
vertical boundaries (Bde = Bmax), but not all the way to the horizontal boundary as 2Ht was
only about 2/3 of the depth of the girder. This indicates that the deformation in general
extends at least to one boundary. The present approach is then based on the idea that
the deformation buckle extends to one boundary, and that the extent in the other direction
adjusts itself so that the mean indentation force is minimised as given by Eq. (9.99). On
the assumption that the deformation extends over the depth of the girder (Ht = Hmax) the
width of deformation, Bde, which minimises the mean crushing force, is

@ Pm
@ Bde

�����
Ht=Hmax

= 0 ) (9.100)

Bopt = Hmax

vuutp3
�

 
3
Hmax

tt
+
2 df tf
t2t

!
(9.101)

Likewise, if the deformation extends all the way to the vertical boundaries, the depth of
deformation minimising the mean crushing force can be found by minimisation of Eq. (9.99)
with respect to Ht. In this case, however, the deformation of the 
ange is completely
kinematically de�ned so the minimisation should only be performed for the energy absorption
in the girder, i.e. for the �rst two terms in Eq. (9.99). Minimising these with respect to Ht

for Bde = Bmax gives a half folding wave length of

Hopt =

 
�

6
p
3
B2
max tt

!1=3

= Bmax

 
�

6
p
3

tt
Bmax

!1=3

(9.102)

The procedure for �nding the extent of the deformation (2Ht; 2Bde) is then to compare the
optimum values with the maximum possible values de�ned by the boundaries:
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Ht = min (Hmax; Hopt) (9.103)

Bde = min (Bmax; Bopt) (9.104)

When the deformation extends to the vertical boundary, Ht = Hmax, Eq. (9.99) and
Eq. (9.101) give the mean crushing force

Pm = 2

r�
�=
p
3
�
�0 t

3=2
t H1=2

max

s
3 + 2

tf df
ttHmax

(9.105)

With no 
ange the mean resistance of the transverse becomes Pm = 4:67 �0 t
3=2H1=2

max. If
the deformation extends to the vertical boundaries, the deformation is de�ned by Bde = Bmax

and Ht = Hopt and the mean crushing force up to a penetration of � = 2Hopt is given by
Eq. (9.99) and Eq. (9.102):

Pm = 4:05 �0 t
5=3
t B1=3

max + 1:34 �0 tf df

�
tt

Bmax

�1=3
(9.106)

9.10.2 Comparison to Experiments

The problem of web crushing was extensively investigated at MIT. Main data of the exper-
iments is given in Table 9.7.

Table 9.7: Main data of web crushing experiments performed at MIT. The 
ow stress was
determined from a calculated mean strain and a uniaxial tension test, [29].

Yield stress, �y 175 MPa
Flow stress, �0 236 MPa
Girder depth, D = 2Hmax 41.7 mm
Half girder width, Bmax = 2Hmax 83.4 mm
Flange width, df 41.7 mm
Plate thickness, tt = tf 0.737 mm

First, to �nd whether the deformation extends to the sides or to the horizontal boundary,
insert into Eqs. (9.101, 9.102 ):
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Bopt = 217:9 mm

Hopt = 11:6 mm

With Bmax = 83:4 mm and Hmax = 20:85 mm this means that the deformation should
extend to the sides, Bde = Bmax = 83:4 mm, but not all the way to the horizontal boundary,
Ht = Hopt = 11:6 mm. Comparison to the experimental results of Choi et al., [29], reveals
a surprisingly good agreement, as the experiments showed that the girder was stretched all
the way to the sides and the depth of deformation was about 2/3 of the girder depth, in
other words, Bde = Bmax = 83:4 mm, Ht = 13:9 mm. In the theoretical model presented
previously by Choi et al, [29] and [30], the depth of the deformation was taken from the
experimental observations to be one third of the girder depth, Ht = D=3 = 13:9 mm.
Obviously, it is highly advantageous to be able to calculate the extent of the deformation
from minimisation rather than assume it.

Now given Bde = Bmax and Ht = Hopt, the instantaneous and the mean crushing forces
can be calculated from Eq. (9.98) and Eq. (9.106), respectively. The mean crushing force
becomes

Pm = 4520 N (9.107)

Figure 9.45 shows a comparison between the force measurements reported in [30] and the
calculated crushing forces from Eq. (9.98) and Eq. (9.106).

During the initial stage of deformation, the rate of energy dissipation for the bending
decreases from in�nity (see Eq. (9.89) ) so the theoretical model does not capture this �rst
part of the process accurately. The problem could be solved by introducing an initial plate
imperfection or by considering the elastic buckling limit but, for the present analysis, it is
irrelevant as the energy of this �rst phase is small. The agreement for the remaining part
of the process is seen to be excellent with a slight tendency of overestimation by theory.
By choosing a lower 
ow stress (for example 180 MPa as in [30]) a perfect agreement can
be obtained but as seen, it is not necessary for validation of the model. In conclusion, the
proposed mathematical model is assumed to be su�ciently accurate for further development
and application to the theoretical grounding model.
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Figure 9.45: Comparison between measured and calculated crushing forces for a web girder.

9.10.3 Subsequent Folding and Members of Limited Height

As the transverse is deformed beyond the �rst fold, subsequent buckles are formed. Figure
9.46 shows a photo of a solid 
oor in a double bottom deformed by a conical rock and
several folds are seen. At the midspan of the girder the rock tip has penetrated past the
inner bottom, leaving the 
oor in a state of complete compression.

As seen from the example of the previous section and as seen in Figure 9.46, the de-
formation extends to the side boundaries, even for very shallow girders. The following
developments are therefore based on the assumption that the half width and depth of the
deformation are respectively Bde = Bmax and Ht = Hopt. As the energy dissipation of the
plating is considered separately elsewhere, the 
ange which was included in the theory above
is not considered in the following. The 
ange is only deformed in membrane straining and
has no in
uence on the deformation mode of the girder so it could very easily be included
later if web crushing was to be analysed.

The theory derived above is valid only up to the point of total compression of the �rst
fold. As this height is quite limited the theory has to be extended to cover the response in
the process of forming subsequent folds. At some level of penetration, the material ruptures
and instead of membrane deformation, fracture is the major energy-dissipating mechanism.
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Figure 9.46: Floor in a double bottom after grounding on a conical rock. From the 1:5 scale
test series performed by the NSWC, USA, [106].

After the �rst fold has been formed, � = 2Hopt the maximum strain is approximately

"max =
1

2

 
�

Bmax

!2

=
1

2

�
2Hopt

Bmax

�2
� 0:9

�
tt

Bmax

�2=3
(9.108)

where Hopt was given by Eq. (9.102). For the example shown in Figure 9.46, plate
thickness and 
oor width were tt = 3 mm and Bmax = 1:27 m respectively. These values
give a maximum strain of "max = 0:016. Although local strains are larger there is a large
reserve before fracture and so - as seen - subsequent folds will form.

To derive the theory for subsequent folding, consider �rst a girder of in�nite depth. The
basic assumption is that the subsequent folds have the same geometry as the �rst, depicted
in Figure 9.43. When a fold is deformed beyond its total collapse it only dissipates energy
in membrane straining so if the deformation extends over several folds, the bending energy
can be neglected as a good approximation. With the optimum buckle depth, Hopt, from
Eq. (9.102) and retaining only the second term in Eq. (9.98), the crushing resistance of the
girder becomes

P =
3 �0 tt �

Bmax

Bmax

 
�

6
p
3

tt
Bmax

!1=3

= 2:0 �0 t
2
t

�
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tt

�2=3 �
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(9.109)
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The load is seen to be proportional to the penetration as for a plastic string. The non-
dimensional load can be de�ned from Eq. (9.109) as

�P =
P

2:0 �0 t2t
�
Bmax

tt

�2=3 (9.110)

According to the idea of folds being subsequently formed and strained during the pro-
gressive folding process, the force-penetration relationship up to the folding of the N 'th fold
can be expressed as

�P =

8>>>>>><
>>>>>>:

1
Bmax

� in �rst fold, 0 < � < 2Ht

1
Bmax

(� + � � 2Ht) in second fold, 2Ht < � < 4Ht

1
Bmax

(� + � � 2Ht + � � 4Ht) in third fold, 4Ht < � < 6Ht

N
Bmax

(� � (N � 1)Ht) in N 0th fold, 2(N � 1)Ht < � < 2N Ht

(9.111)

This successive inclusion of new material in the stretching area gives a piecewise linear
behaviour of the force as depicted in Figure 9.47.

Figure 9.47: Force penetration relationship as new folds are formed. Neglecting bending
deformation gives piecewise linear behaviour.

For deformation over several buckles the number of buckles is most conveniently taken
to be a continuous function of the penetration, N = �=(2Ht). For transverse components
limited in the vertical extent by their height, Dt, such as the frame in Figure 9.42 or the

oor in Figure 9.46, the maximum number of folds is N = Dt=(2Ht). With this formulation
it is now possible to consider a component of limited height simply by limiting the number
of buckles formed and contributing to the resistance:

N =

8<
:

�
2Ht

for � � Dt

Dt

2Ht
for � > Dt

(9.112)
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Inserting Eq. (9.112) into Eq. (9.111) now gives the crushing force as a function of pen-
etration in a very convenient form for components of arbitrary height, Dt:

�P =

8><
>:
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4Ht
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2

o
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Dt �
2Ht

+ Dt

2
� D2

t

4Ht

o
for � � Dt

(9.113)

The force is seen to increase parabolically up to �P = D2
t =(4Ht) +Dt=2 at � = Dt and it

then increases linearly from there, see also Figure 9.47.

Eq. (9.113) can be integrated to give the energy dissipation in the unfractured plating
corresponding to a rock penetration of �R:
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9.10.4 Resistance of a Fractured Transverse

It was observed by Rodd and MacCampbell, [106], that once a fracture is initiated it rapidly
travels from the shell plating to the transverse and vice verse. Hence, the fracture criterion
for the transverse is here assumed to be the same as for the shell plating. It is assumed that
when the transverse component has fractured a crack extends as far into the member as the
rock tip. Due to the rupture the transverse opens up as illustrated by the gaps in Figure
9.43. Expressed by the fracture toughness, Rc, the energy to form the crack is

Ec =

8<
:
Rct�R for �R � Dt

RctDt for �R > Dt

(9.115)

Eq. (9.115) represents a �rst estimate of the energy absorbed by the transverse. As shown
in Section 9.8 about plate resistance after fracture, some additional membrane straining
which is neglected here should be taken into account. On the assumption of the same type
of deformation with six hinge lines per fold and the same length of the folds, Ht, the bending
energy is

Eb = 4 �M0BmaxN (9.116)

where the number of folds is given by Eq. (9.112).
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9.10.5 Application to Theoretical Grounding Model

Eq. (9.113) gives the force-penetration relationship for crushing of a transverse component
of height Dt before fracture is induced. The load considered was moving in the plane of the
plate so it would be the type of load experienced in a stranding scenario. For a longitudinal
bottom raking process, however, the rock moves in the perpendicular (longitudinal) direction,
so the indentation into the transverse is a result of lifting of longitudinals and inclined faces
of the rock. Despite these apparent di�erences in the origin of the load, the results derived
above can be applied consistently to the present grounding analysis.

Consider any transverse member which, at a rock indentation of �R, has absorbed the
energy Et after passage of the rock. This energy is dissipated over a certain length which
could conveniently be taken to be the distance between transverse members, �t. The time
it takes to dissipate this energy is then � t = �t=V , so the mean rate of plastic energy
dissipation due to the deformation of the transverse becomes

_Et =
Et
� t

=
Et
�t
V (9.117)

The so-called plastic force (see Eq. (6.1)) is consequently

FP =
Et
�t

(9.118)

and the associated horizontal and vertical forces can be calculated as FH = g FP and FV =
g k FP , where g and k can be calculated from Eqs. (9.41 9.42, 9.44, 9.45 ).

By application of Eqs. (9.118, 9.114), the plastic force before fracture can now be expressed
as
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and the plastic resistance after fracture is given by
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The half folding wave length is taken to be the optimum wave length, given the width of
the deformation zone, i.e.

Ht = Hopt =
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tt
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: (9.121)

The associated horizontal and vertical forces can be calculated as FH = g FP and FV =
g k FP , where g and k can be calculated from Eq. (9.41) and Eq. (9.42).

From Eqs. (9.118, 9.115, 9.116) the plastic resistance force for a fractured transverse
member becomes

FP =
Ec + Eb
�t

=

8><
>:
�
RC tt +

2�M0 Bmax

Ht

�
�R
�t

for �R � Dt�
RC tt +
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(9.122)

where Ht is calculated from Eq. (9.121). The associated horizontal and vertical forces can
be calculated as FH = g FP and FV = g k FP , where g and k are given by Eq. (9.44) and
Eq. (9.45). The resistance is seen to be a linear function of penetration up to a penetration
corresponding to the depth of the girder. For larger penetration the transverse o�ers no
additional resistance.
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Chapter 10

Veri�cation of Theoretical Hard

Grounding Model

A full veri�cation of the theoretical model presented in the previous three chapters would
require an extensive e�ort in the sense that the number of theoretical elements to verify is
large and in the sense that performing full-scale grounding experiments is extremely labour
and cost intensive. Parts of the theoretical model were already compared to experiments,
however, and good agreement was found in the speci�c paragraphs concerning:

1. Plate cutting by a wedge in Chapter 8.

2. Punch plate deformation and fracture in Section 9.3.

3. Extent of deformation and penetration to fracture in Section 9.5.

4. Plate resistance before fracture in Section 9.7.

5. Plate resistance after fracture in Section 9.8.

6. Resistance of transverse members in Section 9.10.

The present chapter is devoted to veri�cation of the theory for an assembled ship bottom
structure. In the �rst part, the 1:5 scale grounding tests of the Naval Surface Warfare
Centre, Carderock Division, USA, are considered. The idea behind these tests is to force
an assembled ship bottom structure over a rock in a horizontal �xed-pitch motion, so the
coupling of the damage process to the heave, roll and pitch motion is excluded. As discussed
earlier, it is di�cult to scale the energy absorption of a process like the present in which
there is both plastic 
ow and fracture. The idea here is, however, that if the theory performs
well in a scale of 1:5, it also works in full scale.
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In the second part of the chapter, the accidental grounding of a large oil tanker on a reef
o� the coast of Singapore in 1973 is reconstructed by use of the theoretical model.

Refer to [110] for further validation and for application in terms of calculation of proba-
bilistic extents of damage in the ship bottom.

10.1 Grounding Tests by the NSWC

10.1.1 Experimental Set-up

The grounding tests were performed by the Naval Surface Warfare Centre, Carderock Di-
vision, at the HI-Test Laboratories in Arvonia, Virginia, USA. The testing facilities were
developed to simulate grounding of an assembled ship bottom structure on a pinnacle rock
at a scale of 1:5 corresponding to an oil tanker of about 30,000 to 40,000 DWT. Figure 10.1
shows the experimental set-up schematically.

Figure 10.1: Experimental set-up of the grounding tests conducted by the Naval Surface
Warfare Centre (NSWC) at the HI-Test Labaratories, Virginia, USA.

The ship bottom test specimen is mounted to a railway car which is pulled to the top of a
hill to accumulate potential energy. The idea of the tests is to release the car from the hill and
let it run over an arti�cial rock which is connected to vertical and horizontal load cells. The
test specimens have a length of approximately 6-7 m, a width of about 2.5 m and a double
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bottom height of about 0.4 m (corresponding to 2.0 m in a scale of 1:5). The specimens are
mounted to the railway car such that the rock tip enters the model structure about 5 cm (2
inches) below the inner shell. The inclination of the double bottoms to horizontal is so that
when the rock is at the aft bulkhead, the rock tip penetration into the inner bottom is equal
to the double bottom spacing, Figure 10.1 . This set-up ensures that rupture of the inner
hull is initiated as the rock passes through the specimen. Table 10.1 gives main data of the
experimental set-up.

Table 10.1: Main data of the grounding tests by the NSWC, USA. (�: assumed values).

Weight of test vehicle 223 tons
Impact speed of test vehicle, V 12 knots
Rock tip radius, RR 0.17 m
Rock semi-apex angle, ' 45o

Material ASTM A569
Material yield strength, �y 283 MPa
Material ultimate strength, �u 345 MPa
Material 
ow stress, �0 = (�y + �u)=2 314 MPa
Material fracture toughness�, Rc 240 kJ=m2

Material strain hardening�, n 0.22

The results of four tests were reported by Rodd in [105] and these results will be compared
to the corresponding theoretical predictions in the following. The four test specimens are
shown in Figures 10.2 - 10.4. Main characteristics are1:

NSWC 1 Conventional double bottom construction with 
oors, girders and longitudinal
sti�eners on both inner and outer bottom plating, Figure 10.2.

NSWC 2 Advanced Double Hull Design. The structure has no 
oors between the transverse
bulkheads, Figure 10.3.

NSWC 3 Advanced Double Hull Design further developed from the ADHD above. Com-
pared to the NSWC 2 structure this structure has tighter girder spacing and sti�ened
double-plated transverse bulkheads. Longitudinal girders are sti�ened with horizontal

at bar sti�eners and the inner bottom plating is thicker than the shell plating, Figure
10.4.

NSWC 4 Essentially like the NSWC 3 structure but with tight vertical spacing on the lon-
gitudinal girders instead of the horizontal sti�ening and with an increase in girder
thickness from 3 mm in NSWC 3 to 3.4 mm, Figure 10.4.

1The NSWC numbering neither corresponds to NSWC's own numbering nor to a chronological order of
the tests.
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Figure 10.2: Main characteristics of the NSWC 1 structure ("CONV/PD328").

Before comparing the experimental results with theory, it is interesting to consider the
energy absorbed in the four tests and see if these could have been predicted by the formula
presented by Minorsky in 1959, [80], see Figure 6.2. If the o�-set in the formula is neglected,
it writes E = 415:5RT , where the energy is in ton knots2 and the deformed steel volume RT

is in ft2 in. By transformation of the formula to SI-units it becomes

E = 46:6MJ=m3RT (10.1)

Since the energy absorbed in plastic 
ow is E = �0 �"RT , the formula can be converted to
an average e�ective strain if the 
ow stress, �0, is known. The ships analysed by Minorsky
were built before 1959 so they were built of mild steel, i.e. it can be assumed that �0 =
250 MPa, corresponding to a mean e�ective strain of �" = 0:19. Since the necking limit
is about 0.22, a mean strain of 0.19 seems unrealistically high. The high level of strain
indicated by Eq. (10.1) can be due to underestimation of the actual volume of deformed
material, overestimation of the energy or due to the neglect of fracture energy (Vaughan
included this energy later, [132] and [133]). Table 10.2 lists the energy absorbed in the four
NSWC tests over the �rst 5.46 m of contact, the volume of the test specimens (which is
equal to RT as all of the structure was deformed) and the energy absorbed per volume of
test specimen steel.

Since the energy per steel volume, E=RT , is seen to vary between 11.3 MJ=m3 and 20.3
MJ=m3 there is not immediately good correlation to Minorsky's value of 46.6 MJ=m3 - i.e.
the mean e�ective strain was far below the Minorsky value of �" = 0:19. As proposed in
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Figure 10.3: Main characteristics of the NSWC 2 structure ("ADH/PB").

Table 10.2: Measured energy E over the �rst 17.9 feet (5.46 m) of contact, steel volume of
each test specimen RT , energy per cubic meter steel E=RT .

Energy Steel Volume Energy pr Steel Volume
E(MJ) RT (m

3) E=RT (MJ=m3)
NSWC 1 3.25 0.245 13.3
NSWC 2 2.65 0.235 11.3
NSWC 3 5.34 0.277 19.3
NSWC 4 6.03 0.297 20.3

the approach taken by Choi and Wierzbicki, [31], the analysis above could be enhanced by
taking only the material in the direct path of the rock as RT . Although this approach is not
consistent with Minorsky's measurements (RT was the total volume of deformed material
in an accident), it would take into account the increasing resistance with penetration. In
conclusion, an approach like Minorsky's can give an estimate of the energy absorption in
the right order of magnitude. However, the results in Table 10.2 clearly show the often
proved fact that the energy absorption capability of a given structure depends not only
on the amount of material deformed (as suggested by Minorsky's formula Eq. (10.1)) but
also on the geometry of the structure. In order to optimise a structure with respect to its
crashworthiness, it is therefore necessary to have a theory which is more advanced than
Minorsky's.

In the following, the measured forces and absorbed energies will be compared to the corre-
sponding values calculated with the theory derived in the present thesis. The main scantlings
used in the numerical modelling of the experiments are given in Table 10.3. Tertiary sti�eners
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Figure 10.4: Main characteristics of the NSWC 3 and NSWC 4 structures ("ADH/PD328"
and " ADH/PD328V").

are taken into account by increasing the plate thickness of girders and bulkheads according
to a volumewise smearing.

In the theoretical model derived in Chapter 9 and summarised in Appendix C there are
only three parameters which are not fully known for the present modelling:

1. The ductile material fracture toughness, Rc.

2. The coe�cient of friction, �.

3. The plate splitting angle, �.

The ductile material fracture toughness, Rc, was not measured for the used material
and as shown in Table 10.3 it is assumed here to be Rc = 240 kJ=m2, according to the
small-scale tests of Atkins. A sensitivity analysis with respect to this parameter reveals
that the energy absorption is very insensitive to Rc. The reason for this is that the energy
dissipation of the crack tip process is small when the zone of deformation is wider than a
few plate thicknesses. A rough estimate of the scale of problems at which fracture energy
dominates can be found by assuming a uniform plane straining up to fracture in an area
of width kt. The energy dissipation rates for plastic 
ow and fracture are then respectively
V �0"crt(kt) and V Rc t. The deformation width at which fracture and plastic 
ow energy are
equal becomes kt = Rc=(�0"cr). For the numerical example below k = 1:2, which means that
when the width of the deformation is larger than 1.2 plate thicknesses (3.6 mm) plastic 
ow
dominates. In the NSWC tests the width of deformation is in the order of one metre so it
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Table 10.3: Main scantlings used in numerical modelling of the four tests performed by the
NSWC, [105]. Notice that component plate thicknesses are increased according to a volume
wise smearing.

NSWC 1 NSWC 2 NSWC 3 NSWC 4
Length (m) 7.32 7.30 6.09 6.09
Width (m) 2.54 2.50 2.55 2.55
DB spacing (m) 0.38 0.37 0.40 0.40
Pitch angle (deg) 3.38 3.59 4.69 4.69
Plate thickness inner bottom (mm) 3.0 3.0 3.4 3.4
Plate thickness of shell (mm) 3.0 3.0 3.0 3.0
Plate thickness of 
oors (mm) 2.3 - - -
Plate thickness of girders (mm) 2.3 3.4 3.4 4.0
Pl. thickness of transv. blkh. (mm) 6.0 6.0 10.0 10.0

is clear that membrane deformation dominates. As a numerical example of the insensitivity,
increasing Rc from 240 kJ=m2 to 600 kJ=m2 as suggested in Chapter 8, increases the energy
absorption in the NSWC 1 specimen by only 0.4 %. The uncertainty of the parameter has
therefore no practical in
uence on the theoretical modelling.

As the coe�cient of friction is relatively simple to measure (standard techniques are
developed within plate forming technology) it is unfortunate that it must be estimated here.
Future tests should exclude this uncertainty. The present theoretical analysis is performed
with two values for the coe�cient of friction, � = 0:3 and � = 0:4.

The plate split angle, �, is related to the plate deformation around the rock, see Figure 9.4,
and it cannot immediately be determined from simple geometrical considerations. As it was
shown in Section 9.8 about plate resistance after fracture, the resistance of the structure has
a minimum with respect to � so the analysis below uses this optimum value of �. The plate
split angle is assumed to be the same throughout each test. Figure 10.5 shows the energy
absorbed over the �rst 17.9 feet (5.46 m) of contact as a function of the plate splitting angle
for � = 0:4.

The calculated absorbed energy is seen to have a well de�ned minimum for � between 10o

and 20o. These optimum values of the plate split angle are used in the following, � = �opt.
The only completely free parameter of the theory has thus been �xed.

Table 10.4 compares measured and calculated results for energy absorption and for pen-
etration to inner bottom rupture.

The exact measured penetrations to fracture were not published explicitly but it is stated
in [105] that in all four tests, the penetration to inner plate fracture was about 3 m in full
scale, i.e. 0.6 m in model scale. The theoretical predictions of �frac;out given in the last
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Figure 10.5: Energy absorbed over the �rst 5.46 m of contact as a function of plate split
angle, �. The coe�cient of friction is � = 0:4.

column of Table 10.4 therefore indicate a maximum deviation from experiments of 10 -
15 %, theory underestimating the penetration to fracture. The penetration to fracture of
�frac;out = 0:55m for NSWC 3, 4 was also calculated in Chapter 9, Section 9.5.2.

With � = 0:4 the deviations between theoretical and experimental energies are only 1.5
%, 1.9 %, 0.3 % and 6.5 %. Such agreement between calculated and measured energies is well
within the uncertainty of the input data and it indicates a surprisingly good performance of
the theory.

More veri�cation examples are needed however, before the model can be claimed to have
a general accuracy of about 5 %, but the results of Table 10.4 are certainly very encouraging.

Figure 10.6 shows comparisons between measured and calculated forces. As there was

Table 10.4: Measured and calculated absorbed energies, E, over the �rst 17.9 feet (5.46 m)
of contact. Also measured and calculated rock tip penetrations, �frac;out, into outer bottom
at fracture of inner bottom plating.

Experiment Theory, � = 0:3 Theory, � = 0:4 Experiment Theory
E/MJ �opt/

o E/MJ �opt/
o E/MJ �frac;out/m �frac;out/m

NSWC 1 3.25 18 2.71 19 3.30 0.6 0.52
NSWC 2 2.65 10 2.08 11 2.60 0.6 0.52
NSWC 3 5.34 14 4.34 15 5.36 0.6 0.55
NSWC 4 6.03 14 4.57 15 5.64 0.6 0.55
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good agreement between energies it is not surprising that the agreement between horizontal
forces is also good. The hump on the curves which is due to the transverse is seen to be
slightly underestimated by theory.

There is seen to be very good agreement between vertical forces also. As seen in Figure
9.21 and Figure 9.24 the ratio of vertical to horizontal force is quite sensitive to the coe�cient
of friction. Therefore, the fact that there is good agreement between vertical to horizontal
force ratios indicates that the coe�cient of friction is really abuout 0.4 as assumed.

Figure 10.6: Calculated (� = 0:4) and measured horizontal and vertical forces for the NSWC
1 specimen.
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10.2 Actual Grounding of Single Skin VLCC

Being able to predict the internal mechanics it is relevant to consider the full grounding
problem including the coupling of internal mechanics to external dynamics. Many real
accidental grounding accidents have occurred over time but, due to lack of information
about ship and ground, few of them can be used for veri�cation purposes. Kuroiwa, [63],
published the data of an accidental grounding event together with calculated results of �nite
element simulations. The grounding accident occurred on January 6 1975 as a 240,000 d.w.t.
single skin oil tanker ran onto the Bu�olo Reef o� the coast of Singapore. Figure 10.7 shows
the reported damage to the hull structure. The bottom of the ship was torn about 180 m
from the bow to the middle of centre tank no 3. The ship was stuck 10 days on the reef
expanding the damage around centre tank no. 3. More than 10,000 tons of oil was spilled.

Figure 10.7: Ship bottom damage to a single skin VLCC due to grounding on Bu�alo Reef
on January 6, 1975. From [63].

Figure 10.8 shows a photo of the damaged hull. The grounding was simulated successfully
with LS �DYNA3D by Kuroiwa and co-workers, [63], and part of the simulation result is
shown in Figure 10.9.
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Figure 10.8: Picture of damaged hull of single hull VLCC. From [63].

Figure 10.9: LS �DYNA3D simulation of ship grounding.
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As mentioned in Chapter 6 the computational e�ort in a �nite element calculation as
shown in Figure 10.9 is enormous - even by current computer standards. With the fastest of
the workstations at the Department of Naval Architecture and O�shore Engineering, DTU,
(HP 735 rated SPECfp92=201), the CPU time for one grounding calculation would be about
6.7 weeks. Table 10.5 lists the data used in the present numerical modelling of the accident.
With the present implementation of theory it takes about 20 minutes to input the data and
the CPU time for one grounding calculation is 0.3 s.

Table 10.5: Data used in numerical modelling of grounding accident on Bu�alo Reef.

Length, L 304 m
Beam, B 53.4 m
Depth, D 25.7 m
Design draught, T 19.8 m
Displacement, MS 273,000 t
Longitudinal Centre of Flotation aft of midship, LCF -4.4 m
Longitudinal Metacentric Height, GML 330 m
Transverse Metacentric Height, GMT 5.3 m
Impact velocity, V 12 knots
Rock penetration amidships, �R0 3-5 m
Rock eccentricity, s 3.0 m
Trim, TAP � TFP 0 m
Coe�cient of friction, � 0.4
Bottom plate thickness, tout 35.0 mm
Bottom plate 
ow stress, �0 275 MPa
Bottom plate strain hardening, n = "cr 0.22
Spacing between transverse frames 5.0 m
Plate thickness of transverse frames, tt 15 mm
Flow stress of transverse frames, �0 275 MPa
Spacing between longitudinals 1.0 m
Longitudinal web plate height, Dw 840 mm
Longitudinal web plate thickness, tw 17.5 mm
Longitudinal 
ange width, df 200.0 mm
Longitudinal 
ange thickness, tf 30.0 mm
Flow stress of longitudinals, �0 315 MPa

The shell plate thickness was 28.5 mm but due to smearing of the deformed part of the
keel plate, it was taken to be 35 mm in the calculations. The plate split angle, �, was found
as in the previous section from minimisation to be � = 7o. The rock shape and height2 are
not known. As seen in Table 10.5 the rock is modelled as conical with a rounded tip with
radius RR = 1 m and a semi-apex angle of ' = 50o. Figure 10.10 shows the calculated

2The 'rock height' or 'reference rock penetration' �R0 refers to the rock penetration amidships if the ship
was not allowed to heave, roll or pitch.
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damaged length of the hull as a function of the rock height together with the measured
damage length of 180 m.

Figure 10.10: Damage length to a single hull VLCC vs. reference rock penetration.

As expected, the damage length is a decreasing function of rock penetration and it is seen
that the observed damage length of 180 m is obtained from theory with a rock penetration
of about 4.4 m. From the transverse section in Figure 10.7 it can be found that the actual
maximum rock penetration was around 5 m. However, since the ship was stuck to the reef
for 10 days, the measured damage path in the given transverse section was expanded after
the grounding so the measured rock penetration of 5 m represents an absolute upper bound.
Hence, although very accurate comparisons are impossible due to the uncertain shape of the
rock, there is very good agreement between the damage seen in the actual grounding and
the corresponding calculated damage. With a reference rock penetration of 4.4 m the initial
kinetic energy is absorbed in the following way: 0.2 % is stored as potential energy, 35 %
is absorbed by the shell plating, 47 % is absorbed by longitudinals and 18 % is absorbed
by transverse frames and bulkheads. The following section further discusses how di�erent
structural members contribute di�erently to the energy absorption.

To illustrate the importance of the coupling between external dynamics and internal
mechanics, Figure 10.11 shows the rock path through the hull for di�erent transverse rock
positions, s. If the ship was locked in a horizontal motion without heave, roll and pitch,
its kinetic energy would be dissipated in only 145 m. As seen in Figure 10.11 the damage
length becomes signi�cantly larger when the ship is free to heave, roll and pitch.
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Figure 10.11: Rock penetration into hull for di�erent values of the rock eccentricity. Rock
height is �R0 = 4:4m.

10.3 Design for Ship Bottom Raking

With con�dence in the theory it can be used to optimise the crashworthiness of ship bottom
structures. It is not the purpose of the present thesis to give guidelines for such an optimiza-
tion but rather to show, how di�erent structural members contribute more or less e�ectively
to the energy absorption of the structure.

Moreover, if operational data of a ship can be obtained in terms of probability density
functions (p.d.f.s) for ship velocity, draught etc. and the hit grounds can be characterised
correspondingly by p.d.f.s, the theoretical model can be used to calculate the extents of
damage in a probabilistic format, see [110], instead of basing the oil out
ow calculation on
damage statistics obtained from existing ships. Ultimately, such a probabilistic calculation
extended to cover the oil out
ow could replace existing rules for ship design (e.g. the double
hull requirement) to prevent environmental damage due to tanker operation.

Table 10.6 shows how the energy was distributed very di�erently between structural
components in the four NSWC tests. For optimisation of the structure with respect to the
energy absorption capabilities, it is essential that the distribution of energy among structural
members is calculated accurately. It is very di�cult in experiments to quantify the energy
absorption of the individual members, however. A possible future method of verifying the
numbers in Table 10.6 would be to tune a �nite element model to give the measured absorbed
energy and then from the �nite element solution extract the energy absorption of individual
members.

It is clear that optimisation with respect to crashworthiness has to consider also the
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Table 10.6: Contribution of the structural members to the energy absorption.

NSWC 1 NSWC 2 NSWC 3 NSWC 4
Outer plate (%) 29.9 29.7 18.9 17.9
Longitudinals on shell plate (%) 28.3 - - -
Transverse members (%) 18.9 29.5 42.6 40.5
Longitudinal girders (%) 6.2 31.0 30.3 33.9
Inner bottom plate (%) 9.8 9.9 8.2 7.8
Longitudinals on inner btm. (%) 7.0 - - -

traditional design loads but it is interesting to see how e�ective the di�erent structural
members in the four NSWC tests were in terms of energy absorption per unit volume of
steel, Table 10.7. Conclusions about the most e�ective use of steel with respect to energy
absorption could be derived from Table 10.7 but considerations should also be given to
fracture resistance of the structure so such important conclusions are left for future studies.

Table 10.7: Energy absorption per unit volume of steel for each class of structural members
in the four NSWC tests.

NSWC 1 NSWC 2 NSWC 3 NSWC 4
Outer plate (MJ=m3) 17.7 14.0 21.5 21.5
Longitudinals on shell plate (MJ=m3) 23.1 - - -
Transverse members (MJ=m3) 9.6 22.9 37.1 37.1
Longitudinal girders (MJ=m3) 31.7 8.7 14.0 13.9
Inner bottom plate (MJ=m3) 5.8 4.7 8.3 8.3
Longitudinals on inner btm. (MJ=m3) 8.7 - - -
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Chapter 11

Conclusions and Recommendations

for Further Work

11.1 Conclusion

The purpose of the present thesis has been to contribute to the understanding of The Me-
chanics of Ship Grounding. The overall objective of this study is to develop rational proce-
dures for design of ship structures for accidental loads. In other areas of the transportation
industry - especially automotive and aviation - design for accidental loads have long been
mandatory and a branch of engineering has evolved around this topic. In naval architecture,
design for the so-called crash-worthiness of a structure has not traditionally been considered
extensively. Recent large grounding accidents, in particular that of the Exxon Valdez, and
subsequent governmental requirements have lead to an intense international focus on the
topic, however. To assess the risks associated with shipping, it is necessary to have proce-
dures for quantifying both the frequency and the consequences of accidents. According to
the title, the present thesis focuses on the consequences of grounding events but a few results
have been included to illustrate the application of a method for quantifying the frequency
and likelihood of grounding events.

The �rst part of the thesis describes such a procedure for calculating the frequency of
grounding events for a certain tra�c in a certain geographic area. Comparison of the calcu-
lated expected number of grounding events for the Esbjerg - Fan� ferry route in Denmark
with the number of observed grounding events over three years shows an encouraging agree-
ment.

For prediction of the consequences several approaches can be taken. General-purpose
non-linear �nite element codes have proved their ability to simulate grounding events but
application of these programs for design is still prohibitively expensive in terms of man hours
and computer power. The objective of the main part of the thesis has been to derive theoret-
ical models which capture the grounding response in detail without tremendous modelling

223
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e�ort. This objective has been achieved through a series of simpli�cations and by replacing
generality with a limited number of degrees of freedom based on observed behaviour. The
main steps taken to arrive at a rational basis for calculating the ship response to a given
grounding event are:

� Establishment of a theoretical model for calculating the ship behaviour in grounding
on soft sea beds. The overall approach is time simulation, i.e. the equations of motion
for the ship surge, heave and pitch are solved in time. The hull girder is modelled by
linear elastic Timoshenko beam theory and the loads considered are gravity, hydrostatic
pressure, hydrodynamic pressure and the ground reaction. The major di�culty is
calculating the ground response to the intruding bow. Based on results of model tests,
a simple, yet e�ective, phenomenological model for the ground reaction is derived,
which takes into account the strong in
uence of pore water.

� Establishment of a theoretical model for calculating the grounding bottom damage
and ship motion over a pinnacle shaped rock. The overall approach is to divide the
problem into external dynamics and internal mechanics and couple these two problems
through equilibrium of contact forces. The model for the external dynamics is based
on a pseudo time integration scheme where vertical inertia forces are neglected and the
surge motion is found from energy considerations. The model for the internal mechanics
is based on the so-called "upper bound approach" - i.e. the structural resistance force
in the direction of motion is calculated from the energy dissipation rate of an assumed
mode of deformation. Several theoretical solutions which are further described below
are derived to the involved problems of plasticity, fracture and friction.

The following main conclusions can be drawn from this thesis:

1. A relatively simple rational model for estimation of grounding frequency has been
presented. As the model is based on a series of estimates concerning events leading to
a grounding event there are uncertainties associated with the model which need further
investigation but the �rst results of the model are very encouraging.

2. The consequences regarding structural failure associated with ship grounding on soft
sea beds can be calculated. The proposed theoretical model was veri�ed by measure-
ments of small scale tests and controlled large scale tests. Calculations for a VLCC and
six di�erent fast vessels show that the grounding induced sectional forces may exceed
the hull girder strength. Indeed, the accidental grounding of the Alvenus on a sand
bar in 1984 demonstrated the potential seriousness of this type of accident.

3. The consequences in terms of hull damage associated with ship grounding on a pinnacle-
shaped rock can be calculated. The derived theoretical model for the internal mechanics
was compared to four grounding tests performed by the NSWC, USA. A remarkable
accuracy was found as the energy absorption and the penetration to fracture was pre-
dicted with maximum errors of respectively 6 % and 13 %. The model has only one
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'free' parameter, the coe�cient of friction, which was set to 0.4 (which is very reason-
able) to give the above-mentioned accuracy. The performance of the total grounding
model was checked against an accidental grounding event on a reef o� the coast of
Singapore in 1975. The shape of the underwater rock was unknown but use of a rock
shape estimated from the damage path of the deformed ship led to very good agreement
between calculated and the observed ship damage. The derivation of the theoretical
model for grounding on a pinnacle brought about several partial results:

� In a study of the global ship motion, it was found that even if the rock is at the
side of the ship, the induced sway and yaw motion can be neglected - at least if
the damage length is less than half the ship length. If the damage length is larger,
the induced horizontal rotation of the ship tends to cause the rock to leave the
ship hull.

� A theoretical solution was derived for steady-state plate cutting by a wedge. The
mechanisms of plasticity, fracture and friction were quanti�ed and it was shown
that the derived model can predict the forces of three cutting experiments with
plate thicknesses varying from 0.7 mm to 25 mm. The errors of the predictions
were 7 %, 41 % and 5 % but the coe�cients of friction were not measured, so this
uncertainty may explain the discrepancy between theory and measurements.

� A global deformation mode for a ship bottom deformed by a longitudinally moving
rock was proposed. Description of the deformation was based on assumed defor-
mation modes for the inner and outer bottom plating. All members attached to
the plating were assumed to follow the plating in a compatible manner so that
component intersections stayed intact.

� A theoretical solution for punch indentation of a sphere into a circular plate was
considered with the objective of �nding a solution for the local plate deformation
around a conical rock with a rounded tip. The theoretical solution was compared
to experiments and good agreement was found for both forces, strain �elds and
penetrations to fracture. It was noted, however, that work is still needed before
the onset of fracture can be accurately predicted.

� A theoretical model was derived for resistance of a plate which has not fractured.
By comparing the theoretical model with experimental results, errors of up to 75
% were found but this discrepancy can be ascribed to the test specimen slipping
at the boundary or to elastic e�ects.

� A theoretical model was derived for plate 'cutting' by a cone. Since the cone
does not have a sharp cutting edge, the material separation process must be
ductile fracture. Based on the assumed global mode of deformation the energy
dissipation rate for plasticity, fracture and friction could be quanti�ed and the
resistance force could be calculated. An agreement of about +/- 15 % between
theory and experimental results was found both for the horizontal and the vertical
forces.

� A theoretical model for the resistance of longitudinal members (bulkheads, girders
and sti�eners) was derived. The expressions cannot immediately be veri�ed as no
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usable experimental results seem to be available.

� A theoretical model was derived for the resistance of transverse members. The
problem of web girder crushing was considered and based on a very simple mode
of deformation compatible to the plate deformation, the expressions for crushing
force and energy absorption of a transverse member were derived. The length or
the width of the plastic buckle was found by minimisation of the mean crushing
force. Comparison of the theoretical model to results of model-scale experiments
showed very good agreement both as regards the plastic wave length and between
the measured and the calculated crushing force. The theory was extended to
cover deformation of members of �nite height, deformation over several buckles,
and deformation after fracture.

11.2 Recommendations for Future Work

With the long term objective of making Rational Design of Ship Structures for Accidental
Loads, the list of possible research topics for future work seems endless. Within the frame-
work of grounding, the present study has pinpointed a number of topics which need to be
further investigated for clari�cation of associated risks. First the results for both soft and
hard grounding should be implemented in an integrated risk analysis model. In addition to
frequency estimation and grounding response, such a model should include the post-accident
behaviour, i.e. residiual hull girder strength, oil out
ow, damage stability etc.

11.2.1 Grounding on Soft Sea Beds

� For the soft-grounding analysis, a further study of rupture of sand would be relevant.
Understanding this phenomenon and being able to quantify it would also help in other
areas of engineering where submerged foundations or piles are rapidly - for example
accidentally - loaded.

� For veri�cation of the theoretical model for soft grounding, data of the Alvenus accident
has been obtained from the United States Coast Guard through Lt. Daniel Pippenger.
The Alvenus su�ered serious hull girder failure due to grounding on a sand bar and
theoretical reconstruction of this accident would shed light on hull girder failure in soft
grounding events.

� In several areas around the world (for example India) large tankers are scrapped by
running them at full speed up on beaches. It is very likely that valuable information
about ship motion and hull girder damage could be obtained by observing and maybe
monitoring these grounding events.



11.2. Recommendations for Future Work 227

11.2.2 Grounding on Rocks

The developed model for the internal mechanics was shown to predict the energy absorption
of four experiments with an error of less than 6 %. Such agreement is remarkable and taking
into account the complexity of the problem, it cannot be expected that theoretical solutions
will ever come closer than this. In fact, even a similar experiment could not be expected to
reproduce the results with such accuracy.

Although the agreement is encouraging for these speci�c four tests, there are yet many
problems which need clari�cation, however:

� It is essential that the extent of damage around the rock can be accurately determined.
The extent of damage has in
uence both on the resistance of the structure and on the
penetration to fracture. At present the damage is assumed to extend to certain primary
sti�eners away from the rock, but this assumption should probably be replaced by an
evaluation of the strength of the structure around the rock. Good understanding of
the spread of deformation could also be applied to simpli�ed models for damage to a
ship side in a collision.

� The fracture criterion should be developed further both in terms of determining the
strain path up to fracture and in terms of �nding a proper fracture locus. Results
derived for the metal forming industry such as fracture forming limit diagrams should
be further investigated. The possibility of transverse members acting as crack initiators
should be investigated. Strength of weldings should also be further investigated.

� For prediction of fracture and energy dissipation, the strain �eld in plate deformation
before fracture should be further studied.

� For quanti�cation of frictional e�ects, the coe�cient of friction should be measured for
rock/ship-bottom contact. Applicable experimental set-ups were developed within the
area of sheet forming.

� The presented study of web crushing (resistance of transverse members) should be
followed up by more experiments to see if the theory works as well as indicated for
other plate aspect ratios. If it does, the solution can be widely applied to collision and
grounding problems.

� The developed solutions for longitudinal members are based on quite simplistic de-
formation modes. It would be interesting to study further their contribution to the
structural response.

� Dynamic e�ects have been neglected despite numerous observations indicating their
possible importance. Dynamic e�ects should be considered, possibly with the objective
of justifying their future neglect.
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� As they are released, the large-scale tests of the NSWC should be used for veri�cation of
the model for the internal mechanics. Valuable results were also produced in grounding
tests conducted by the the Association for Structural Improvement of Shipbuilding
Industry in the Netherlands in 1994.

� The grounding model should be extended to cover other rock geometries - for example
a two-dimensional wide rock (like a beach).

� As for soft grounding events it would be very interesting to perform full-scale grounding
tests with tankers which are going to be scrapped.

Most of the topics suggested above concerning grounding on rock can be produced in very
simple experiments. However, it is often di�cult - not to say impossible - to determine from a
deformed specimen how the absorbed energy is distributed between the various deformation
mechanisms and what the local strain �elds are. For such quanti�cation of strain �elds and
energy dissipation, the �nite element method could prove to be very useful together with
experiments.



Appendix A

Geometry for Plate Cut by Wedge

The objective of this section is to �nd the gap openings u0 and 2v0 shown in Figure 8.7
expressed in terms of the rolling radius, R(= Rt=cos�), the wedge shoulder width, 2B and
the wedge semi angle, �.

Gap opening at wedge front

It is convenient to introduce two coordinate systems, a global system, (X; Y; Z)G, and a local
system, (x; y; z)l, both with origin at point O. The z� and Z-axes point vertically upwards,
the XG�axis is in the symmetri line pointing towards the wedge tip and the xl�axis is in
the bending hinge line, OP . The yl� and YG�axes are de�ned from the other axes. An arc
line coordinate, s, which follows the curling edge of the plate is also introduced, see Figure
A.1. The s-axis also has origin at point O.

A point on the edge with the arc line coordinate, s, has the local coordinates

xl = s cos�

yl = �Rt sin

 
s sin�

Rt

!
(A.1)

zl = Rt

 
1� cos

 
s sin�

Rt

!!

The general relation between local and global coordinates is given by the transformation
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XG = xl cos� � yl sin�

YG = xl sin� + yl cos� (A.2)

ZG = zl

Figure A.1: De�nitions used for �nding the gap width at the wedge tip.

Inserting Eq. (A.1) into Eq. (A.2) gives the global coordinates for a point on the plate
edge with coordinate s;

XG = (s cos�) cos� �
 
�Rt sin

 
s sin�

Rt

!!
sin� (A.3)

YG = (s cos�) sin� +

 
�Rt sin

 
s sin�

Rt

!!
cos� (A.4)

ZG = zl (A.5)

Since the gap opening is 2 v0 = 2YG it is now given from Eq. (A.4) as a function of s, R
and �;

2 v0 = 2
�
s cos� sin� � Rcos2� sin

�
s

R
tan�

��
(A.6)
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The objective is to �nd the gap width at the cutting edge, i.e. at the point where
XG = lp = Rt=sin� = R=tan�, see Figure A.1. Eq. (A.3) is too complex to be solved in a
closed form for s, otherwise this value of s should be inserted into Eq. (A.6) giving the �nal
expression sought. It has to be done numerically.

As an initial guess we could calculate the gap width at s = lp = R=tan�. From Eq. (A.6)
the expression becomes

2 v0 = 2Rcos2� (1� sin1) = 0:317Rcos2� (A.7)

By comparing this expression to the exact solution found from numerical solution of Eqs.
(A.3, A.6) it is found that the �nal exression for the gap width, 2v0 at the cutting edge is
very well approximated by the expression

2 v0 = 0:317Rcos2�
�
1 + 0:55 �2

�
(A.8)

The error of Eq. (A.8) at 10o, 30o, 45o is respectively 0.25 %, 1.3 % and 0.18 %.

Gap opening at wedge shoulders

It is convenient to de�ne a coordinate system, (X; Y; Z), at the shoulder in the plane of the
undeformed plate. The Z-axis points vertically upwards along the shoulder line, the Y -axis
is in the plane of the undeformed plate and it is perpendicular to the Z-axis and to the
wedge sides. The X-axis is de�ned from the Y� and Z axes, see Figure A.2.

The total width of the deformed plate on one side of the symmetry line is R+B and the
length of the curved part of the 
ap is �R=2 so the width of the straight part of the 
ap at
the wedge sides becomes

bfs = (R +B)� �R=2 = B �R(�=2� 1) (A.9)

Likewise, it can be shown that the width of the straight part of the 
ap at the wedge
front becomes

bff = cos� (B � R(�=2� 1)) (A.10)

We require the tangent of the deformed plate 
aps to conform to the wedge as shown in
Figure A.2 giving the requirement
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Figure A.2: De�nitions used for �nding the gap width at the wedge sides.

bf � 0) (A.11)

R � B

�=2� 1
� 1:75B (A.12)

The position of point T is

0
B@ X
Y
Z

1
CA
T

=

0
B@ 0

0
B +R(2� �=2)

1
CA (A.13)

and the position of point Q is

0
B@ X
Y
Z

1
CA
Q

=

0
B@ B sin� cos�

�B sin2�
(B +R(2� �=2)) cos�

1
CA (A.14)

The distance between T and Q is then given by

u0 =
�
(XT �XQ)

2 + (YT � YQ)
2 + (ZT � ZQ)

2
�0:5

=
�
B2 sin2� + (1� cos�)2 (B +R(2� �=2))2

�0:5
(A.15)
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Figure A.3 and Figure A.4 show the variation of the gap width with rolling radius and
wedge angle from Eq. (A.15).

Figure A.3: Variation of gap width with rolling radius.

It is seen from Figure A.3 that u0=B is a very weak function of the rolling radius and
Figure A.4 illustrates that Eq. (A.15) is well approximated by the expression

u0 = B � (A.16)

for the considered ranges of � and R.
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Figure A.4: Variation of gap width with wedge angle.



Appendix B

Geometry of Plane Flap Model

Derivation of geometric properties for the straight 
ap model. The following properties are
introduced (Figure 9.4 and B.1).

u0(�; �; Bde) maximum width of a 'side gap', i.e. distance between Q and R in
Figure 9.4 ,

v0(�; �; Bde) half width of center gap, i.e. distance between R and center plane in the
direction of the plate 
ap,

� angle from horizontal to 
aps measured in a plane perpendicular to
the hinges,

� plate splitting angle,
Bde 
ap width.

The rock penetration causes the two 
aps, QPR and PRST , to rotate an angle, �, from
the horizontal about the lines OP and PT repectively. The objective is to �nd the distance,
u0, between Q and R and the distance, v0, between the center plane and Q as a function of
�, � and Bde.

A Cartesian coordiante system, xyz, is introduced, Figure B.1. Its origin is at P , the
x-axis is parallel to the symmetry plane, it points forward and lies in the plane of the
undeformed plate. The y-axis is also in the plane of the undeformed plate and it points
towards the symmetry plane. The z-axis points upwards.

Consider two vectors, ~a and ~b. The vector ~a is in the plane of the front 
ap, QPR. Its
origin is at the OP -line, it is perpendicular to OP , and its endpoint is at Q. The vector ~b
connects points P and R. The idea of the following derivation is to rotate ~a and ~b around
OP and PT and �nd the distance between the endpoints.

Supscript '0' is used for the origin of a vector, and subscript '1' is used for the endpoint
of a vector. As an example, ~a = ~a1 � ~a0.
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Figure B.1: Geometry of half of the deformation pattern (aerial view)

The origins of the vectors are;

~a0 =

0
B@ x
y
z

1
CA = Bde

0
B@ cos � sin �

1� cos2 �
0

1
CA , ~b0 =

0
B@ x
y
z

1
CA = Bde

0
B@ 0

0
0

1
CA

Before rotation, the vectors are;

~a0 =

0
B@ x
y
z

1
CA = Bde

0
B@ � cos � sin �

cos2 �
0

1
CA , ~b00 =

0
B@ x
y
z

1
CA = Bde

0
B@ 0

1
0

1
CA

Rotating ~a0 and ~b00 an angle, �, from horizontal gives;

~a =

0
B@ x
y
z

1
CA = Bde

0
B@ � cos � sin � cos�

cos2 � cos�
cos � sin�

1
CA , ~b0 =

0
B@ x
y
z

1
CA = Bde

0
B@ 0

cos�
sin�

1
CA

The coordinates of the endpoints are now given as;

~a1 = ~a0 + ~a = Bde

0
B@ � cos � sin �(1� cos�)

1� cos2 �(1� cos�)
cos � sin�

1
CA , ~b1 = ~b0 +~b = Bde

0
B@ 0

cos�
sin�

1
CA
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The distance between these endpoints is

u0(�; �; Bde) = Bde

r�
(1� cos�)2 sin2 � + (1� cos �)2 sin2 �

�

From Figure B.1 it can be found that the distance from point R to the symmetry plane in
the direction of the tilted plate 
ap is

v0 = Bde

�
1

cos�
� 1

�
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Appendix C

Summary of Calculation Routines

The present chapter presents a summary of calculation routines for analysis of grounding
of a ship on a conical rock with a rounded tip. Previously derived formulas [114], were
implemented in the computer program DAMAGE under the Joint MIT-Industry Program
on Tanker Safety. An overview of implementation of theory and use of DAMAGE is given
by Sinmao, Abramowicz and Wierzbicki, [115]. The present theory is implemented in a
FORTRAN computer program.

The following sections list necessary equations for calculating the force from the rock to
the structure given structural data and the penetration of the rock into the ship bottom.
Coupled with the model for the external dynamics given in Chapter 7 this set of equations
represent all necessary expressions for calculating the grounding response of the considered
ship-rock con�guration.

C.1 Input Parameters

Input to the problem is conveniently separated into four categories;

1. Structure

2. Rock Geometry

3. Global Ship Parameters

4. Ship-Rock Interaction
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Structure The structure is de�ned by the geometry and the material of inner and outer
bottom plating and all connected sti�eners. The level of detail is limited to principal dimen-
sions of primary and secondary structure.

Rock. The rock is de�ned by the type and the geometry. A conical rock with a rounded tip
is de�ned by the cone semi-apex angle, ', and the tip radius, RR.

Global Ship Parameters. Corresponding to the simple model for the external dynamics,
the necessary global ship parameters are: mass MXX , length between perpendiculars Lpp,
beam B, longitudinal centre of 
oatation, LCF , water line area Aw, longitudinal metacentric
height GML and transverse metacentric height GMT .

C.2 Internal Mechanics for a Single Bottom deformed

by a Conical Rock

The following sections summarize how the horizontal and vertical forces from the rock are
calculated given the penetration, �out into the outer hull. All formulas for the structural
resistance are expressed in terms of the plate split angle, �. The used value of � is the one
that minimizes the total resistance of the structure.

The basic idea is to �nd the extent of deformation and add the resistance of all structural
components within the zone of deformation.

C.2.1 Nomenclature

Bde Width of deformation,
DDB Spacing between inner and outer bottom,
df Width of 
ange,
Dw Height of a web, for example of a longitudinal,
E Young's modulus,
FH Horizontal resistance force,
FP Plastic resistance force,
FV Vertical reaction force,
g friction factor,

M0 Fully plastic bending moment of plate, 2=
p
3�0t

2=4,
n Material strain hardening. Often "cr = n,

N0 Fully plastic membrane force of plate, 2=
p
3�0t,

k Vertical to horizontal force ratio,
Rc Ductile fracture toughness of material,
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sl Distance from rock tip to a longitudinal,
tf Thickness of 
ange,
tt Thickness of a transverse member,
tw Thickness of a web,
RR Radius of rock tip,
�l Longitudinal extent of deformation for a longitudinal,
� Penetration of rock into ship bottom,
�R Penetration of rock into ship bottom,
�R;out Penetration of rock into outer ship bottom,
�R;inn Penetration of rock into inner ship bottom,
�frac Penetration to fracture,
' Semi-apex angle of rock cone,
 C Wrapping (contact) angle for plate on rock tip,
�y Yield strengt of material,
�0 Flow stress of material,
"cr Critical strain to rupture,
�l;av Average longitudinal extent of deformation for a longitudinal,

C.2.2 Basic Geometric Parameters

The penetration into the outer bottom is � = �out. The half width of the rock in the base of
the undeformed bottom plating is

Bout =

( q
R2
R � (�out � RR)

2 for �out < RR(1� sin')
tan' (�out +RR(1= sin'� 1)) for �out � RR(1� sin')

(C.1)

C.2.3 Penetration to Fracture and Lateral Extent of Damage

If the rock is su�ciently blunt, the plating will never fracture. The critical cone semi-apex
angle is 'c = sin�1(e�n) so if ' < sin�1(e�n) the plating will fracture at a certain penetration,
�frac.

The following equations are for ' < sin�1(e�n). A critical transverse position, sl;c for a
longitudinal is calculated as

sl;c = RR

p
1� e�2n (C.2)

Before fracture, the deformation will extend to the �rst longitudinal sti�ener outside -
i.e. further away from the rock tip than - sl;c. The distance to this sti�ener is denoted sl;f .
I.e. before fracture the width of deformation is Bde;out = sl;f .
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The penetration to fracture is

�frac = RR

8<
:1� cos C + sin2  C ln

2
4sl;f=RR +

q
(sl;f=RR)2 � sin4  C

sin C (1 + cos C)

3
5
9=
; (C.3)

where  C = cos�1 (e�n). The width of the deformation is

Bde = Bde;out =

(
sl;f for �out < �frac
Bout for �out � �frac

(C.4)

C.2.4 Friction factor g, and Force Ratio k

g and k for Intact Shell Plating

The wrapping angle,  C is calculated by solving the equation

� = RR

8<
:1� cos C + sin2  C ln

2
4Bde=RR +

q
(Bde=RR)2 � sin4  C

sin C (1 + cos C)

3
5
9=
; (C.5)

Since the model is only considered after full plasti�cation, it is only valid after a certain
penetration. The wrapping,  C therefore has a �nite minimum value and it should not be

taken less than  C;min =
q
2�y=E.

The friction factor and force ratio are calculated as

g =
FH
FP

=

 
1� �

sin ( C=2) + � cos( C=2)

!�1
(C.6)

k =
FV
FH

=
1� � tan( C=2)

tan( C=2) + �
(C.7)

g and k for Fractured Shell Plating

g =
FH
FP

=

 
1� �

cos' sin � + � cos � cos(�=2)

!�1
(C.8)

k =
FV
FH

=
sin'� � sin(�=2) cos'

cos' sin � + � cos � cos(�=2)
(C.9)
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C.2.5 Resistance of Plating

Intact Plating

FP = 2N0 v0

8<
:
s
1 +

1

4
tan2 � +

1

2

�
u0
v0

+ tan �
�9=
; (C.10)

u0 = sl;f
q
(1� cos�)2 sin2 � + (1� cos �)2 sin2 � (C.11)

v0 = sl;f (1= cos�� 1) (C.12)

where � = tan�1(�out=sl;f).

The horizontal resistance of the plating can now be calculated as FH = g FP and the
vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.6) and Eq. (C.7).

Fractured Plating

FP =

(
Rc t + 2M0 (�=2� ') if N0 u0 < Rc t
N0 u0 + 2M0 (�=2� ') if N0 u0 > Rc t

(C.13)

where

u0 = Bout

q
(1� sin')2 sin2 � + (1� cos �)2 cos2 ' (C.14)

The horizontal resistance of the plating is calculated as FH = g FP and the vertical
reaction is calculated as FV = k FH = g k FP where g and k are calculated from Eq. (C.8)
and Eq. (C.9).
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C.2.6 Resistance of Longitudinal Bulkheads

Intact Plating

FP =

8>>>><
>>>>:

0 for sl � sl;f

�0 tl �out(1� sl=Bde;out)=
p
3 �q

1
4
(�out=Bde;out)

2 sin2 � + (1� cos �)2 0 < sl < sl;f

(C.15)

The horizontal resistance of the plating can now be calculated as FH = g FP and the vertical
reaction is calculated as FV = k FH = g k FP where g and k are calculated from Eq. (C.6)
and Eq. (C.7).

Fractured Plating

FP =

8>>>><
>>>>:

0 for sl � Bout

�0 tl (Bout � sl)=
p
3 �q

(1� sin')2 sin2 � + cos2 '(1� cos �)2 for sl < Bout

(C.16)

The horizontal resistance of the plating is calculated as FH = g FP and the vertical reaction
is calculated as FV = k FH = g k FP where g and k are calculated from Eq. (C.8) and
Eq. (C.9).

C.2.7 Resistance of Longitudinal Sti�eners

Each longitudinal sti�ener within the deformation zone (i.e. sl < Bde) is considered sepa-
rately and its resistance and vertical reaction is added to the total quantities. The mean
longitudinal extent of deformation for the considered longitudinal is assumed to be equal to
the distance between major transverse members:

�l;av = �t (C.17)



C.2. Internal Mechanics for a Single Bottom deformed by a Conical Rock 245

Intact Plating

FP =
4 �0 �R (1� sl=Bde)

�
tf d

2
f +Dw t

2
w

�
�2R (1� sl=Bde)

2 + �2l;av
(C.18)

The total horizontal resistance of the considered longitudinal is calculated as FH = g FP
and the vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated
from Eq. (C.6) and Eq. (C.7).

Fractured Plating

FP =
8 �0 (Bde � sl)

�
tf d

2
f + Dw t

2
w

�
tan

�
�
4
� '

2

�
4(Bde � sl)2 tan2

�
�
4
� '

2

�
+ �2l;av

(C.19)

The total horizontal resistance of the considered longitudinal is calculated as FH = g FP and
the vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.8) and Eq. (C.9).

C.2.8 Resistance of Transverse Bulkheads, Floors or Frames

Intact Plating

FP =

8><
>:

2:0�0 t2t
�tBde

�
Bde
tt

�2=3 h �3out
12Ht

+
�2out
4

i
for �out � Dt

2:0�0 t2t
�tBde

�
Bde
tt

�2=3 h D3

t

12Ht
� D2

t

4
+ Dt�2out

4Ht
+
�
Dt

2
� D2

t

4Ht

�
�out

i
for �out > Dt

(C.20)

where the optimum half folding wave length is

Ht = Bde

 
�

6
p
3

tt
Bde

!1=3

(C.21)

The horizontal resistance of the plating can now be calculated as FH = g FP and the
vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.6) and Eq. (C.7).
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Fractured Plating

FP =

8><
>:
�
RC tt +

2�M0 Bde
Ht

�
�out
�t

for �out � Dt�
RC tt +

2�M0 Bde
Ht

�
Dt

�t
for �out > Dt

(C.22)

Ht = Bde

 
�

6
p
3

tt
Bde

!1=3

(C.23)

The horizontal resistance of the plating is calculated as FH = g FP and the vertical
reaction is calculated as FV = k FH = g k FP where g and k are calculated from Eq. (C.8)
and Eq. (C.9).

C.3 Modi�cation from Single Bottom to Double Bot-

tom

The following sections summarize how the horizontal and vertical forces from the inner
bottom and the members attached to the inner bottom are calculated given the penetration,
�out into the outer hull. All formulas for the structural resistance are expressed in terms of
the plate split angle, �. The used value of � is the one that minimizes the total resistance of
the structure.

The basic idea is to �nd the extent of deformation and add the resistance of all structural
components within the zone of deformation.

C.3.1 Basic Geometric Parameters

The penetration into the outer bottom is � = �out and the penetration into the inner hull is
then

�inn =

(
0 for �out �Ddb � 0
�out �Ddb for �out �Ddb > 0

(C.24)

where Ddb is the spacing between inner and outer bottom plating. The half width of the
rock in the base of the undeformed inner bottom plating is then

Binn =

( q
R2
R � (�inn � RR)

2 for �inn < RR(1� sin')
tan' (�inn +RR(1= sin'� 1)) for �inn � RR(1� sin')

(C.25)
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C.3.2 Penetration to Fracture and Lateral Extent of Damage

If the rock is su�ciently blunt, the plating will never fracture. The critical cone semi-apex
angle is 'c = sin�1(e�n) so if ' < sin�1(e�n) the plating will fracture at a certain penetration,
�frac;inn.

The following equations are for ' < sin�1(e�n). A critical transverse position, sl;c;inn for
a longitudinal is calculated as

sl;c;inn = RR

p
1� e�2n (C.26)

To determine the extent of deformation before fracture �nd the longitudinal girders closer
to the rock than Bout. These girders are pushed by the rock from below so the deformation
for the inner bottom extends further out than these sti�eners. Then determine the transverse
position of the �rst longitudinal sti�ener outside sl;c;inn and outside the girders pushed by
the rock from below. The position of this longitudinal sti�ener is denoted sl;f;inn. The width
of the deforming zone before fracture is then Bde;inn = sl;f;inn.

The penetration into the inner bottom to fracture of the inner bottom is

�frac;inn = RR

8<
:1� cos C + sin2  C ln

2
4sl;f;inn=RR +

q
(sl;f;inn=RR)2 � sin4  C

sin C (1 + cos C)

3
5
9=
;(C.27)

where  C = cos�1 (e�n). The width of the deformation is

Bde;inn =

(
sl;f;inn for �inn < �frac;inn
Binn for �;inn � �frac;inn

(C.28)

C.3.3 Friction Factor g, and Force Ratio k

The state of the inner bottom plating determines the g and k factors for inner plating and
sti�eners attached to only the outer bottom.
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g and k for Intact Shell Plating

The wrapping angle,  C is calculated by solving the equation

� = RR

8<
:1� cos C + sin2  C ln

2
4Bde=RR +

q
(Bde=RR)2 � sin4  C

sin C (1 + cos C)

3
5
9=
; (C.29)

Since the model is only considered after full plasti�cation, it is only valid after a certain
penetration. The wrapping,  C therefore has a �nite minimum value and it should not be

taken less than  C;min =
q
2�y=E.

The friction factor and force ratio are calculated as

g =

 
1� �

sin ( C;inn=2) + � cos( C;inn=2)

!�1
(C.30)

k =
1� � tan( C;inn=2)

tan( C;inn=2) + �
(C.31)

g and k for Fractured Shell Plating

g =
FH
FP

=

 
1� �

cos' sin � + � cos � cos(�=2)

!�1
(C.32)

k =
FV
FH

=
sin'� � sin(�=2) cos'

cos' sin � + � cos � cos(�=2)
(C.33)

C.3.4 Resistance of Plating

Intact Plating

FP = 2N0 v0

8<
:
s
1 +

1

4
tan2 � +

1

2

�
u0
v0

+ tan �
�9=
; (C.34)

where

u0 = sl;f;inn
q
(1� cos�)2 sin2 � + (1� cos �)2 sin2 � (C.35)

v0 = sl;f;inn (1= cos�� 1) (C.36)
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and � = tan�1 (�inn=sl;f;inn).

The horizontal resistance of the plating can now be calculated as FH = g FP and the
vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.30) and Eq. (C.31).

Fractured Plating

FP =

(
Rc t + 2M0 (�=2� ') if N0 u0 < Rc t
N0 u0 + 2M0 (�=2� ') if N0 u0 > Rc t

(C.37)

u0 = Binn

q
(1� sin')2 sin2 � + (1� cos �)2 cos2 ' (C.38)

The horizontal resistance of the plating is calculated as FH = g FP and the vertical
reaction is calculated as FV = k FH = g k FP where g and k are calculated from Eq. (C.32)
and Eq. (C.33).

C.3.5 Resistance of Longitudinal Web Girders

The plastic resistance is

FP;l =
�0p
3
tl (u0;l;out � u0;l;inn) (C.39)

where

u0;l;out =

8>>>>>>>>>><
>>>>>>>>>>:

0 for sl � Bde;out

�out(1� sl=Bde;out)� for sl < Bde;out andq
1
4
(�out=Bde;out)

2 sin2 � + (1� cos �)2 �out < �frac;out

(Bde;out � sl)� for sl < Bde;out andq
(1� sin')2 sin2 � + cos2 '(1� cos �)2 �out � �frac;out

(C.40)

and

u0;l;inn =

8>>>>>>>>>><
>>>>>>>>>>:

0 for sl � Bde;inn

�inn(1� sl=Bde;inn)� for sl < Bde;inn andq
1
4
(�inn=Bde;inn)

2 sin2 � + (1� cos �)2 �inn < �frac;inn

(Bde;inn � sl)� for sl < Bde;inn andq
(1� sin')2 sin2 � + cos2 '(1� cos �)2 �inn � �frac;inn

(C.41)
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If �out < �frac;out, the horizontal resistance of the plating is calculated as FH = g FP and
the vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.6) and Eq. (C.7).

If �out > �frac;out, the horizontal resistance of the plating is calculated as FH = g FP and
the vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.8) and Eq. (C.9).

C.3.6 Resistance of Longitudinal Sti�eners

Each longitudinal sti�ener within the deformation zone (i.e. sl < Bde) is considered sepa-
rately and its resistance and vertical reaction is added to the total quantities. The mean
longitudinal extent of deformation for the considered longitudinal is assumed to be equal to
the distance between major transverse members:

�l;av = �t (C.42)

Intact Plating

FP =
4 �0 �R (1� sl=Bde)

�
tf d

2
f +Dw t

2
w

�
�2R (1� sl=Bde)

2 + �2l;av
(C.43)

The total horizontal resistance of the considered longitudinal is calculated as FH = g FP
and the vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated
from Eq. (C.30) and Eq. (C.31).

Fractured Plating

FP =
8 �0 (Bde � sl)

�
tf d

2
f + Dw t

2
w

�
tan

�
�
4
� '

2

�
4(Bde � sl)2 tan2

�
�
4
� '

2

�
+ �2l;av

(C.44)

The total horizontal resistance of the considered longitudinal is calculated as FH = g FP and
the vertical reaction is calculated as FV = k FH = g k FP where g and k are calculated from
Eq. (C.32) and Eq. (C.33).
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