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A new calculation procedure for spatial impulse responses
in ultrasound

Jo”rgen Arendt Jensen
Department of Information Technology, Building 344, Technical University of Denmark, DK-2800 Lyngby,
Denmark

~Received 24 October 1997; revised 18 February 1999; accepted 25 February 1999!

A new procedure for the calculation of spatial impulse responses for linear sound fields is
introduced. This calculation procedure uses the well known technique of calculating the spatial
impulse response from the intersection of a circle emanating from the projected spherical wave with
the boundary of the emitting aperture. This general result holds for all aperture boundaries for a flat
transducer surface, and is used in the procedure to yield the response for all types of flat trans-
ducers. An arbitrary apodization function over the aperture can be incorporated through a
simple one-dimensional integration. The case of a soft baffle mounting of the aperture is also
included. Specific solutions for transducer boundaries made from lines are given, so that any
polygon transducer can be handled. Specific solutions for circles are also given. Finally, a solu-
tion for a general boundary is stated, and all these boundary elements can be combined to,
e.g., handle annular arrays or semi-circle transducers. Results from an implementation of the
approach are given and compared to previously developed solutions for a simple aperture, a
complex aperture, and a Gaussian apodized circular transducer. ©1999 Acoustical Society of
America.@S0001-4966~99!01406-X#

PACS numbers: 43.35.Cg, 43.20.Px@HEB#

INTRODUCTION

The calculation of linear, acoustic fields is most often
based on the spatial impulse response approach as suggested
by Tupholme and Stepanishen.1–3 Here the pulsed pressure
field is found from a convolution between the acceleration of
the transducer surface and the spatial impulse response. The
impulse response has been found for a number of geometries
~round flat piston,2 round concave,4,5 flat rectangle,6,7 and flat
triangle8!. The solutions arrived at are often complicated,
since it involves the evaluation of the Rayleigh surface inte-
gral. The response depends on the relative position of the
field point and many special cases exist, which makes both
the derivation of the solution difficult and the evaluation of
the responses cumbersome. For example, to evaluate the re-
sponse from a rectangle, four synthetic rectangles are intro-
duced, and when evaluating a triangle, three synthetic tri-
angles are introduced to account for the 15 different possible
cases of triangle shape and field point positions. This makes
it necessary to use computers for evaluating and interpreting
the responses, since the formulas do not readily give a useful
perception of the solution.

It would be appropriate to arrive at general solutions for
any geometry that would be both easy to derive analytically
and fast to evaluate with a computer. This has previously
been achieved by dividing the aperture surface into smaller
elements like rectangles9 or triangles,10 and then summing
the response for the sub-elements. Often the transducer must
be divided into many elements and only a piecewise approxi-
mation to the apodization is obtained. The fitting to the ac-
tual surface is also only approximative for round or oval
surfaces; even when using a triangular shape.

Spatial impulse responses from bounded and non-
apodized apertures always have discontinuities due to their
sharp edges, which makes it difficult to keep the full energy
and spectral content in a sampled evaluation. Various tech-
niques have been applied for coping with the discontinuities
in the spatial impulse response. This has included using very
high sampling frequencies, making a time adapted evalua-
tion, or using the integrated response. Computer evaluation
is, thus, always necessary, when evaluating spatial impulse
responses.

This paper therefore suggests a new procedure for cal-
culating the spatial impulse response in which the computer
is involved at an earlier stage in the evaluation of the re-
sponses. The response is determined by the crossings of the
boundary of the aperture by the spherical wave emitted from
the field point. For flat apertures this observation makes it
possible to derive a general approach for calculating the spa-
tial impulse response for any aperture geometry and find the
response with no approximation. The paper derives impulse
responses for apertures described by bounding lines and
circles and outlines how the response can be evaluated for
apertures bounded by any polynomial in the plane’s coordi-
nates (x,y). Some of the intersections need not always be
calculated, and this is used to devise an optimized algorithm
that only needs to find the minimum number of intersections.
It is also shown in Sec. III how an arbitrary apodization can
be introduced through a previously developed simple one-
dimensional integration, and how the solution also can be
applied to both the soft baffle and rigid baffle situations. A
number of examples from use of the approach are given in
Sec. VII. Among these is a comparison between the tradi-

3266 3266J. Acoust. Soc. Am. 105 (6), June 1999 0001-4966/99/105(6)/3266/9/$15.00 © 1999 Acoustical Society of America

Downloaded 28 Jun 2010 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



tional solution for a rectangle and the new approach, which
both yield the same response.

I. BASIC THEORY

A short review of the calculation of spatial impulse re-
sponses is given in this section to facilitate the development
of the new calculation procedure.

The spatial impulse response is found from the Rayleigh
integral given by:2,11

h~r1 ,t !5E
S

dS t2
ur12r2u

c D
2pur12r2u

dS ~1!

when the apertureS is mounted in an infinite, rigid baffle.
Here r1 denotes the position of the field point,r2 denotes a
position on the aperture,c is the speed of sound, andt is
time. The integral is essentially a statement of Huyghen’s
principle that the field is found by summing the radiated
spherical waves from all parts of the aperture. This can also
be reformulated, due to acoustic reciprocity, as finding the
part of the spherical wave emanating from the field point that
intersects the aperture. The task is, thus, to project the field
point onto the plane coinciding with the aperture, and then
find the intersection of the projected spherical wave~the
circle! with the active aperture as shown in Fig. 1.

Rewriting the integral into polar coordinates gives: h~r1 ,t !5E
Q1

Q2E
d1

d2
dS t2

R

c D
2pR

r dr dQ, ~2!

where r is the radius of the projected circle andR is the
distance from the field point to the aperture given byR2

5r 21zp
2. Here zp is the field point height above thex2y

plane of the aperture. The projected distancesd1 ,d2 are de-
termined by the aperture and are the distance closest to and
furthest away from the aperture, andQ1 ,Q2 are the corre-
sponding angles for a given time~see Fig. 2!.

Introducing the substitution 2R dR52r dr gives

h~r1 ,t !5
1

2p E
Q1

Q2E
R1

R2
dS t2

R

c DdR dQ. ~3!

The variablesR1 and R2 denote the edges closest to and
furthest away from the field point. Finally using the substi-
tution t85R/c gives

FIG. 2. Definition of distances and angles in the aperture plan for evaluating
the Rayleigh integral.

FIG. 3. Flow chart for the simple approach for calculating the spatial im-
pulse response.

FIG. 1. Intersection of spherical waves from the field point by the aperture,
when the field point is projected onto the plane of the aperture.

3267 3267J. Acoust. Soc. Am., Vol. 105, No. 6, June 1999 Jo”rgen Arendt Jensen: Spatial impulse response in ultrasound

Downloaded 28 Jun 2010 to 192.38.67.112. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



h~r1 ,t !5
c

2p E
Q1

Q2E
t1

t2
d~ t2t8!dt8 dQ. ~4!

For a given time instance the contribution along the arc is
constant and the integral gives

h~r1 ,t !5
Q22Q1

2p
c ~5!

when assuming the circle arc is only intersected once by the
aperture. The anglesQ1 andQ2 are determined by the inter-
section of the aperture and the projected spherical wave, and
the spatial impulse response is, thus, solely determined by
these intersections, when no apodization of the aperture is
used. The response can therefore be evaluated by keeping
track of the intersections as a function of time.

II. A NEW CALCULATION PROCEDURE

From the derivation in the last section it can be seen that
the spatial impulse response in general can be expressed as

h~r1 ,t !5
c

2p (
i 51

N~ t !

@Q2
~ i !~ t !2Q1

~ i !~ t !#, ~6!

where N(t) is the number of arc segments that crosses
the boundary of the aperture for a given time andQ2

( i )(t),
Q1

( i )(t) are the associated angles of the arc. This was also
noted by Stepanishen.12 The calculation can, thus, be formu-

lated as finding the angles of the aperture edge’s intersec-
tions with the projected spherical wave, sorting the angles,
and then summing the arc angles that belong to the aperture.
Finding the intersections can be done from the description of
the edges of the aperture. A triangle can be described by
three lines, a rectangle by four, and the intersections are then
found from the intersections of the circle with the lines. This
makes it possible to devise a general procedure for calculat-
ing spatial impulse responses for any flat, bounded aperture,
since the task is just to find the intersections of the boundary
with the circle.

The spatial impulse response is calculated from the time
the aperture first is intersected by a spherical wave to the
time for the intersection furthest away. The intersections are
found for every time instance and the corresponding angles
are sorted. The angles lie in the interval from 0 to 2p. It is
then found whether the arc between two angles belongs to
the aperture, and the angle difference is added to the sum, if
the arc segment is inside the aperture. This yields the spatial
impulse response according to Eq.~6!. The approach can be
described by the flow chart shown in Fig. 3.

The only part of the algorithm specific to the aperture is
the determination of the intersections and the whether the
point is inside the aperture. Section IV shows how this is
done for polygons, Sec. V for circles, and Sec. VI for higher-
order parametric boundaries.

All the intersections need not be found for all times.
New intersections are only introduced, when a new edge or

FIG. 4. Flow chart for the optimized
approach for calculating the spatial
impulse response.
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corner of the aperture is met. Between times when two such
corners or edges are encountered the number of intersections
remains constant and only intersections, which belong to
points inside the aperture need be found. Note that an aper-
ture edge gives rise to a discontinuity in the spatial impulse
response. Also testing whether the point is inside the aper-
ture is often superfluous, since this only needs to be found
once after each discontinuity in the response. These two ob-
servations can significantly reduce the number of calcula-
tions, since only the intersections affecting the response are
found. The flow chart for the optimized approach is shown in
Fig. 4.

The procedure first finds the number of discontinuities.
Then only intersection influencing the response are calcu-
lated between two discontinuity points. This can potentially
make the approach faster than the traditional approach,
where the response from a number of different rectangles or
triangles must be calculated.

III. APODIZATION AND SOFT BAFFLE

Often ultrasound transducers do not vibrate as a piston
over the aperture. This can be due to the clamping of the
active surface at its edges, or intentionally to reduce side
lobes in the field. Applying for example a Gaussian apodiza-
tion will significantly lower side lobes and generate a field
with a more uniform point spread function as a function of
depth. Apodization has previously been found and is intro-
duced in Eq.~2! by writing13

h~r1 ,t !5E
Q1

Q2E
d1

d2
ap~r ,Q!

dS t2
R

c D
2pR

r dr dQ ~7!

in which ap(r ,Q) is the apodization over the aperture. Using
the same substitutions as before yields

h~r1 ,t !5
c

2p E
Q1

Q2E
t1

t2
ap1~ t8,Q!d~ t2t8!dt8 dQ, ~8!

whereap1(t8,Q)5ap(A(ct8)22zp
2,Q). The inner integral is

a convolution of the apodization function with ad-function
and readily yields

h~r1 ,t !5
c

2p E
Q1

Q2
ap1~ t,Q!dQ ~9!

as noted by several authors.13–15 The response for a given
time point can, thus, be found by integrating the apodization
function along the fixed arc with a radius ofr 5A(ct)22zp

2

for the angles for the active aperture. Any apodization func-
tion can therefore be incorporated into the calculation by
employing numerical integration.

Often the assumption of an infinite rigid baffle for the
transducer mounting is not appropriate and another form of
the Rayleigh integral must be used. For a soft baffle, in
which the pressure on the baffle surface is zero, the
Rayleigh–Sommerfeld integral is used. This is~Ref. 16, pp.
46–50!

hs~r1 ,t !5E
S

dS t2
ur12r2u

c D
2pur12r2u

cosw dS, ~10!

assuming thatur12r2u@l. Here cosw is the angle between
the line through the field point orthogonal to the aperture
plane and the radius of the spherical wave as shown in Fig.
5. The anglesw is fixed for a given radius of the projected
spherical wave and thus for a given time. It is given by

cosw5
zp

R
5

zp

ct
. ~11!

Using the substitutions from Sec. I the Rayleigh–
Sommerfeld integral can then be rewritten as

hs~r1 ,t !5
zp

2p
c~Q22Q1!E

t1

t2 d~ t2t8!

ct8
dt8. ~12!

Using the property of thed-function that

E
2`

1`

g~ t8!d~ t2t8!dt85g~ t ! ~13!

then gives

hs~r1 ,t !5
zp

ct

Q22Q1

2p
c5

zp

ct
h~r1 ,t !. ~14!

The spatial impulse response can, thus, be found from the
spatial impulse response for the rigid baffle case by multi-
plying with zp /(ct).

FIG. 5. Definition of angle used for a soft baffle.

FIG. 6. Definition of bounding lines for polygon transducer. The arrows
indicates the half-planes for the active aperture.
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IV. SOLUTION FOR POLYGONS

The boundary of any polygon can be defined by a set of
bounding lines as shown in Fig. 6. The active aperture is then
defined as lying on one side of the line as indicated by the
arrows, and a point on the aperture must be placed correctly
in relation to all lines. The test whether a point is on the
aperture is thus to go through all lines and test whether the
point lies in the active half space for the line, and stop if it is
not. The point is inside the aperture, if it passes the test for
all the lines.

The intersections are found from the individual intersec-
tions between the projected circle and the lines. They are
determined from the equations for the projected spherical
wave and the line:

r 25~x2x0!21~y2y0!2,

y5ax1y1 , ~15!

r 25~ct!22zp
2.

Here (x0 ,y0) is the center of the circle,a the slope of the
line, andy1 its intersect with they-axis. The intersections are
given from the solutions to:

05~11a2!x21~2ay122x022y0a!x

1~y0
21y1

21x0
222y0y12r 2!

5Ax21Bx1C,
~16!

D5B224AC.

The angles are

Q5arctanS y2y0

x2x0
D . ~17!

Intersections between the line and the circle are only found if
D.0. A determinantD,0 indicates that the circle did not
intersect the line. If the line has infinite slope, the solution is
found from the equation:

x5x1 ,
~18!

05y222y0y1y0
21~x12x0!22r 2

5A`y21B`y1C` ,

in which A` , B` , C` replacesA, B, C, respectively,
and the solutions are found fory rather thanx. Herex1 is the
line’s intersection with thex-axis.

The times for discontinuities in the spatial impulse re-
sponse are given by the intersections of the lines that define
the aperture’s edges and by the minimum distance from the
projected field point to the lines. The minimum distance is
found from a line passing through the field point that is or-
thogonal to the bounding line. The intersection between the
orthogonal line and the bounding line is:

x5
ayp1xp2ay1

a211
,

~19!
y5ax1y1 ,

where (xp ,yp ,zp) is the position of the field point. For an
infinite slope line the solution isx5x1 andy5yp . The cor-
responding time is:

t i5
A~x2xp!21~y2yp!21zp

2

c
. ~20!

The intersections of the lines are also found, and the corre-
sponding times are calculated by Eq.~20! and sorted in as-
cending order. They indicate the start and end time for the
response and the time points for discontinuities in the re-
sponse.

V. SOLUTION FOR CIRCULAR SURFACES

The other basic shape for a transducer apart from rect-
angular shapes is the flat, round surface used for single ele-
ment piston transducers and annular arrays. For these the
intersections are determined by two circles as depicted in
Fig. 7. HereO1 is the center of the aperture with radiusr a

FIG. 7. Geometry for determining intersections between circles. The top
graph shows the geometry when the field point denoted byO2 is outside the
aperture, and the bottom graph when it is inside.
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and the projected spherical wave is centered atO2 with ra-
dius r b(t)5A(ct)22zp

2. The lengthha(t) is given by~Ref.
17, p. 66!

ha~ t !5
2Ap~ t !~p~ t !2a!~p~ t !2r a!~p~ t !2r b~ t !!

a
,

a5iO12O2i , ~21!

p~ t !5
a1r a1r b~ t !

2
.

In a coordinate system centered atO1 and anx-axis in the
O12O2 direction, the intersections are at

y5ha~ t !,
~22!

l 56Ar b
2~ t !2ha

2~ t !.

The sign forl depends on the position of the intersections. A
negative sign is used if the intersections are for negative
values ofx, and positive sign is used for positivex positions.

When the field point is outside the active aperture the
spatial impulse response is

h~r1 ,t !5
uQ22Q1u

2p
c5

c

p
arctanS ha~ t !

l D ,

~23!
Q25arctanS ha~ t !

l D52Q1 .

It must be noted that a proper four-quadrant arctan should be
used to give the correct response. An alternative formula is
~Ref. 18, p. 19!

h~r1 ,t !5
c

2p
arcsin

3S 2Ap~ t !~p~ t !2a!~p~ t !2r a!~p~ t !2r b~ t !!

r b
2~ t ! D ,

5
c

2p
arcsinS aha~ t !

r b
2~ t ! D . ~24!

The start timets for the response is found from

FIG. 8. Spatial impulse response calculated from a rect-
angular transducer of 435 mm. The top graph shows
the result from using traditional evaluation and the bot-
tom graph is when using the new method with four
bounding lines. The axial distance to the field point is
10 mm and the response is calculated for lateral dis-
tances from 0 to 21 mm off-axis in steps of 1 mm.
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r a1r b~ t !5iO12O2i ,
~25!

ts5
Ar b

2~ t !1zp
2

c
5

A~ iO12O2i2r a!21zp
2

c
,

and the response ends at the timete when

r b~ t !5r a1iO12O2i ,
~26!

te5
Ar b

2~ t !1zp
2

c
5

A~ iO12O2i1r a!21zp
2

c
.

When the field point is inside the aperture, the response is

h~r1 ,t !5c for
Zp

c
<t<

A~r a2iO12O2i !21zp
2

c
;

~27!

thereafter the arc lying outside the aperture should be sub-
tracted, so that

h~r1 ,t !5
2p2uQ22Q1u

2p
c. ~28!

The response ends when

r b~ t !5r a1iO12O2i ,
~29!

te5
A~ iO12O2i1r a!21zp

2

c
.

The determination of which part of the arc that subtracts or
adds to the response is determined by what the active aper-
ture is. One ring in an annular array can be defined as con-
sisting of an active aperture outside a circle combined with
an active aperture inside a circle for defining the inner and
outer rim of the aperture. A circular aperture can also be
combined with a line for defining the active area of a split
aperture used for continuous wave probing.

VI. SOLUTION FOR PARAMETRIC SURFACES

For ellipses or other higher-order parametric surfaces it
is in general not easy to find analytic solutions for the spatial
impulse response. The procedure described can, however,
devise a simple solution to the problem, since the intersec-
tions between the projected spherical wave and the edge of
the aperture uniquely determine the spatial impulse response.
It is therefore possible to use root finding for a set of~non-
linear! equations for finding these intersections. The problem
is to find when both the spherical wave and the aperture have
crossing contours in the plane of the aperture, i.e., when

~ct!22zp
22~x2xp!22~y2yp!250,

~30!
S~x,y!50,

in which S(x,y)50 defines the boundary of the aperture.
The problem of numerically finding these roots is in general
not easy, if a good initial guess on the position of the inter-

FIG. 9. Bounding lines defining a complex aperture. The arrows indicates
the half-plane for the active aperture.

FIG. 10. Spatial impulse response
from the complex aperture defined in
Fig. 9. The axial distance to the field
point is 10 mm and the response is cal-
culated for lateral distances from 0 to
21 mm off-axis in thex-direction.
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sections is not found~Ref. 19, pp. 286–289!. Good initial
values are, however, found here, since the intersections must
lie on the projected circle and the intersections only move
slightly from time point to time point. An efficient Newton–
Raphson algorithm can therefore be devised for finding the
intersections, and the procedure detailed here can be made to
find the spatial impulse response for any flat transducer ge-
ometry with an arbitrary apodization and both hard and soft
baffle mounting.

VII. EXAMPLES

The first example shows a comparison between the tra-
ditional method for calculating spatial impulse responses and
the new method. The response from a 435 mm rectangle is
found for different spatial positions 10 mm from the front
face of the transducer. The responses are found from the

center of the rectangle and out in steps of 1 mm in the
x-direction to 21 mm away from the center of the rectangle.
The results are shown in Fig. 8. It is seen that the two meth-
ods give identical results.

The second example is for a more complicated aperture,
where its bounding lines are shown in Fig. 9. The calculated
spatial impulse response is shown in Fig. 10. Responses have
been calculated from the center position forx50 mm, y
50 mm to the positionx514 mm, y50 mm in increments
of 1 mm. The distance to the transducer surface was always
10 mm~5z!. A complicated response with a number of dis-
continuities is seen due to the many edges of the aperture.

The last example shows the response from a circular, flat
transducer calculated with the new method. Two different
cases are shown in Fig. 11. The top graph shows the tradi-

FIG. 11. Spatial impulse response
from a circular aperture calculated
with the new method. Graphs are
shown without apodization of the ap-
erture ~top! and with a Gaussian
apodization function~bottom!. The ra-
dius of the aperture is 5 mm and the
field is calculated 10 mm from the
transducer surface.
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tional spatial impulse response when no apodization is used,
so that the aperture vibrates as a piston. The field is calcu-
lated 10 mm from the front face of the transducer starting at
the center axis of the aperture. Twenty-one responses for
lateral distance of 0–20 mm off-axis are then shown. The
same calculation is repeated in the bottom graph, when a
Gaussian apodization has been imposed on the aperture. The
vibration amplitude is a factor of 1/exp~4! less at the edges of
the aperture than at the center. It is seen how the apodization
reduces some of the sharp discontinuities in the spatial im-
pulse response.

VIII. SUMMARY

The general theory for the calculation of spatial impulse
responses for flat transducer apertures has been reviewed. It
was shown that the response can be found from the intersec-
tions of the projected spherical wave with the edges of the
aperture. This made it possible to derive a general procedure
for calculating these responses, which can be used for any
flat geometry. It was also shown that the calculation easily
can include hard and soft baffle mountings and the incorpo-
ration of any apodization function over the aperture. The
approach makes it possible to make simulation programs that
can handle arbitrary, flat, apodized aperture geometries with-
out making approximations in the evaluation of the spatial
impulse response for the hard baffle case.
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