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Ultrasound fields from triangular apertures
Jo”rgen Arendt Jensen
Department of Information Technology, Building 344, Technical University of Denmark, DK-2800 Lyngby,
Denmark

~Received 18 October 1995; revised 15 March 1996; accepted 25 March 1996!

The pulsed field from a triangular aperture mounted in an infinite, rigid baffle is calculated. The
approach of spatial impulse responses, as developed by Tupholme and Stepanishen, is used. By this
both the emitted and received pulsed ultrasound field can be found for any transducer excitation and
electromechanical impulse response. The continuous wave field is also readily obtainable through a
simple Fourier transform. The spatial impulse response is calculated without approximation, and the
solution is valid in the half-space in front of the aperture for a homogeneous, nonattenuating
medium. The solution can be used in finite element programs for calculating fields from arbitrary
transducer geometries. ©1996 Acoustical Society of America.

PACS numbers: 43.20.Rz, 43.20.Px, 43.35.Wa@JEG#

INTRODUCTION

The medical ultrasound scanners of today increasingly
use advanced transducer geometries for creating ultrasound
fields suitable for probing the human body. Different types
of one-dimensional and 1.5- and 2-D arrays are used.
Apodizing of elements and weighting between elements are
used for decreasing sidelobes and increasing the depth of
field. A first characterization of these transducers and their
optimization is based on computer simulation of the fields.
One possible method for making a simulation is to split the
transducer aperture into squares and sum the individual re-
sponses to yield the field.1 This works well for array trans-
ducers with square elements, but an inordinate amount of
elements must be used for circular transducers and annular
arrays. A better choice of elementary subdivision would be
to use a triangularly shaped element, since this better fits
circular shapes. Thereby a smaller number of elements are
used, which can lead to shorter computation times. Unfortu-
nately the field has not been calculated for this type of ele-
ment, and that has hampered the development of such a
simulation program. This paper presents a full calculation of
the field from a triangular aperture.

A number of different methods for calculating ultra-
sound fields exists.2 The most powerful approach seems to
be the one developed by Tupholme and Stepanishen.3–5They
derived a method for determining the spatial impulse re-
sponse of an aperture, yielding the time response received at
a specific point in space for a given transducer surface ve-
locity. The approach relies on linear systems theory and as-
sumes the ultrasound propagation to be linear and to take
place in a nonattenuating, homogeneous medium. The field
is found with no approximations, if the aperture is flat and is
mounted in an infinite rigid baffle. For slightly curved trans-
ducers the solution is still applicable, if the radius of curva-
ture is large compared to the wavelength of the ultrasound
field. It is, thus possible with this method to calculate the
spatially nonstationary field for all points and for all time,
and for any transducer surface velocity.

A number of authors have derived equations for the spa-
tial impulse response for different apertures. Stepanishen4

derived the response for a flat, circular aperture, and Pent-
tinen and Luukkala6 and Arditi et al.7 gave equations for
radiation from a concave transducer. The field from a rect-
angular aperture has been derived by Lockwood and
Willette.8

I. BASIC THEORY

The basic setup is shown in Fig. 1. The triangularly
shaped aperture is placed in an infinite, rigid baffle on which
the velocity normal to the plane is zero, except at the aper-
ture. The field point is denoted byr1 and the aperture byr2.
The pressure field generated by the aperture is then found by
the Rayleigh integral9

p~r1 ,t !5
r0
2p E

S

]vn~r2 ,t2ur12r2u/c!/]t

ur12r2u
dS, ~1!

wherevn is the velocity normal to the transducer surface,c is
the speed of sound, andr is the density of the medium. The
integral is a statement of Huyghen’s principle that the field is
found by integrating the contributions from all the infinitesi-
mally small area elements that make up the aperture. This
integral formulation assumes linearity and propagation in a
homogeneous medium without attenuation. Further, the radi-
ating aperture is assumed flat, so no reradiation takes place.
Exchanging the integration and the partial derivative, the in-
tegral can be written as

p~r1 ,t !5
r0
2p

]E
S

vn~r2 ,t2ur12r2u/c!

ur12r2u
dS

]t
. ~2!

It is convenient to introduce the velocity potentialc that
satisfies the equations10

v~r ,t !52“c~r ,t !, p~r ,t !5r0
]c~r ,t !

]t
. ~3!

The convenience of introducing this potential function is that
only a scalar quantity need be calculated, and that all field
quantities can be derived from it. The surface integral is then
equal to the velocity potential:

c~r1 ,t !5E
S

vn~r2 ,t2ur12r2u/c!

2pur12r2u
dS. ~4!
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The excitation pulse can be separated from the transducer
geometry by introducing a time convolution with a delta
function as

c~r1 ,t !5E
S
E
T

vn~r2 ,t2!d~ t2t22ur12r2u/c!

2pur12r2u
dt2 dS,

~5!

where d is the Dirac delta function. Assume now that the
surface velocity is uniform over the aperture making it inde-
pendent ofr2, then

c~r1 ,t !5vn~ t !* E
S

d~ t2ur12r2u/c!

2pur12r2u
dS, ~6!

where * denotes convolution in time. The integral in this
equation

h~r1 ,t !5E
S

d~ t2ur12r2u/c!

2pur12r2u
dS ~7!

is called the spatial impulse response and characterizes the
three-dimensional extent of the field for a particular trans-
ducer geometry. Note that this is a function of the relative
position between the aperture and the field. The calculation
assumes linearity and any complex-shaped transducer can
therefore be divided into smaller apertures and the response
found by adding the responses from the subapertures. The
integral can be seen as a statement of Huyghen’s principle of
summing contributions from all areas of the aperture. A sec-
ond interpretation is found from using the acoustic reciproc-
ity theorem,11 which says that source and receiver can be
interchanged. Emitting a spherical wave from the field point
and finding the wave’s intersection with the aperture also
yields the spatial impulse response. This is the approach used
in this paper.

Using the spatial impulse response the pressure is writ-
ten as

p~r1 ,t !5r
]vn~ t !

]t * h~r1 ,t !, ~8!

which equals the emitted pressure. The continuous wave
field can be found from the Fourier transform of~8!. The

received response for a collection of scatterers can also be
found from the spatial impulse response.12,13Thus the calcu-
lation of the spatial impulse response makes it possible to
find all ultrasound fields of interest.

II. GEOMETRIC CONSIDERATIONS

The spatial impulse response is found by emitting a
spherical wave from the field point and then find the inter-
section of the wave and the triangle. The situation is depicted
in Fig. 2. The calculation of the impulse response is eased by
projecting the field point onto the plane of the triangle. The
task is then reduced to a two-dimensional problem and the
field point is given as a (x,y) coordinate set and a heightz
above the plane. The three-dimensional spherical waves are
then reduced to circles in thex-y plane with origo at the
position of the projected field point.

The situation is shown in Fig. 3. The spatial impulse
response is determined by the relative length of the part of
the arc that intersects the triangle~see Sec. III!, and quite a
number of different intersections between the wave and the

FIG. 3. Intersection of spherical waves from the field point by the triangle,
when the field point is projected onto the plane of the triangle.

FIG. 1. Position of transducer, field point, and coordinate system.

FIG. 2. Emission of spherical wave from the field point and its intersection
of the triangle.
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triangle can arise making the evaluation cumbersome. The
calculation is therefore eased by introducing three new tri-
angles as shown in Fig. 4. All three triangles have one corner
point at the field point, and the other points are given by the
corner points of the aperture. The response of the aperture is
then found as a linear combination of the three responses due
to the linear propagation. The trianglesT1 andT2 are indi-
cated by dashed lines,T3 by a dotted line, and the aperture
by a solid line. The spatial impulse response of each of these
triangles is derived in the next section.

Three different cases exists for the orientation of the
triangles as shown in Fig. 4. The spatial impulse response of
the aperture is in case I given by

h~r1 ,t !5hT3~r1 ,t !2hT1~r1 ,t !2hT2~r1 ,t !. ~9!

Here triangleT3 have corner points at the edges of the aper-
ture, andT1 andT2 are formed by a dividing line through the
center point of the aperture and the lines to the two edges
~see Fig. 4!. The response in case II is

h~r1 ,t !5hT1~r1 ,t !1hT2~r1 ,t !2hT3~r1 ,t !. ~10!

The response is

h~r1 ,t !5hT1~r1 ,t !1hT2~r1 ,t !1hT3~r1 ,t ! ~11!

in case III, where the field point is inside the triangle.
The problem is hereby reduced to finding the response

from a triangle, where the field point is positioned at one of
the edges.

III. SPATIAL IMPULSE RESPONSE AT A CORNER
POINT

The position of the triangle and the field point along
with associated variables are shown in Fig. 5. The origo of
the coordinate system is placed at the field point and coin-
cides with one of the triangles corner points. The spherical

waves are also centered at origo. The corner points are de-
noted byCa , Cb , andCc , i.e.,Ca5(xa ,ya).

The spatial impulse response is given by the surface
integral

h~r1 ,t !5E
S

d~ t2ur12r2u/c!

2pur12r2u
dS, ~12!

wherer1 indicates the position of the field point andr2 the
position on the aperture. Conversion to a polar coordinate
system is given by

E E
S
f ~x,y!dx dy5E

0

r E
0

2p

r f ~r ,u!du dr. ~13!

The projected circles have a radius ofr and the distance to
the field point is thus

R5Az21r 2, ~14!

wherez is the field point’s height above thex-y plane. The
relation between time and radius is

r5A~ct!22z2. ~15!

The integral is then

h~r1 ,t !5E
0

r E
0

2p

r
d~ t2uRu/c!

2puRu
du dr. ~16!

The spatial impulse response is dependent on the arrival time
of the spherical waves at the triangle. The response is zero
until the first response arrives at timet5t15z/c, hereafter
the fixed part of the circle between the anglesub and uc
contributes to the response. The impulse response changes
when either the pointPd or the corner pointCb or Cc is
reached, whichever is closest. Until these points the spatial
impulse response is given by

FIG. 4. Triangles used for calculating the spatial impulse response.

FIG. 5. Position of triangle and field point.
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hT~r1 ,t !5E
0

r E
ub

uc
r

dS t2 uRu
c D

2puRu
du dr

5
uc2ub
2p E

0

r

r

dS t2 uRu
c D

uRu
dr ~17!

with the angles defined in Fig. 5. Introducing the substitution
2R dR52r dr gives @see Eq.~14!#

hT~r1 ,t !5
uc2ub
2p E

z

Az21r2
R

d~ t2uRu/c!

uRu
dR

5
uc2ub
2p E

z

Az21r2
dS t2 uRu

c DdR ~18!

since the distance always is positive. Using the time substi-
tution R/c5t8 finally results in

hT~r1 ,t !5
uc2ub
2p

cE
z/c

Az21r2/c
d~ t2t8!dt8

5
uc2ub
2p

cE
t1

tx
d~ t2t8!dt8

5
~uc2ub!c

2p
for t1<t<tx . ~19!

The timetx equals the corresponding time for the point clos-
est to origo. The spatial impulse response is, thus constant
until either the pointCb , Cc , or Pd is reached, and it then
drops of as a function of the angle difference.

The spatial impulse response is dependent on the length
of the arc intersecting the triangle, and the calculation is,
thus eased by rotating the triangle so that one side runs along
the x axis, and so that the other corner point always has a
positivey value. The angles are given by

ub5arctan~yb ,xb!, uc5arctan~yc ,xc!. ~20!

A four quadrant arcus tangent should be used here yielding
values from 0 to 2p. If ub.uc and (ub2uc),p then the
rotation angle should beu r5uc , else if (ub2uc).p then
u r5ub . The reverse is true ifub,uc @i.e., u r5ub for
(uc2ub),p#. The rotated points are then found from

xn5x cos~u r !1y sin~u r !,
~21!

yn52x sin~u r !1y cos~u r !,

where (xn ,yn) are the new coordinates in the rotated coor-
dinate system. The different situations and the associated
variables are then depicted in Fig. 6. The rotated points are
called C15(x1 ,y1), C25(x2 ,y2), C35(x3 ,y3), and
P45(x4 ,y4), respectively. The spatial impulse responses are
easily derived when keeping in mind that it is the angle of
the arc intersected by the triangle that determines the re-
sponse. The arc is determined by the time through Eq.~15!
and discontinuities are found in the response when one of the
corner points are meet. The different arrival times are

t15
z

c
, t25

Az21x2
21y2

2

c
,

~22!

t35
Az21x3

21y3
2

c
, t45

Az21x4
21y4

2

c
.

The point P4 is found as the intersection between the
C22C3 line and a line perpendicular to theC22C3 line and
going throughC1. The lineC22C3 is given by

y5b~x2x2!, b5
y3

x32x2
. ~23!

The line perpendicular to this has a slope ofa521/b and the
intersection of the lines is given by

x45
b2x2
11b2 , y45b~x42x2!. ~24!

The spatial impulse response is determined by the angles
shown in Fig. 6. For situation 0 the response is

hT~r1 ,t !55
0, t1.t,

u0c

2p
, t1<t<t2 ,

„u02u3~ t !…c

2p
, t2<t<t3 ,

0, t3,t,

~25!

whereu3(t) is determined by the intersection of the spherical
wave and theC22C3 line. The angles are

u05arccosS x3

Ay321x3
2D , u3~ t !5arccosS x3

r ~ t !D ,
~26!

r ~ t !5A~ct!22z2.

All other responses are determined from the angle differ-
ences shown in Fig. 6. The anglesu1(t) andu2(t) are deter-
mined by the intersection of theC22C3 line with the spheri-
cal wave. The angles are

u1~ t !5arccosS x2b21A~11b2!r 2~ t !2x2
2b2

~11b2!r ~ t !
D ,

~27!

u2~ t !5arccosS x2b22A~11b2!r 2~ t !2x2
2b2

~11b2!r ~ t !
D .

The response for the different times and situations are then
readily found. The response for situation 4 is, e.g.,
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hT~r1 ,t !5

{
0, t1.t,

u0c

2p
, t1<t<t4 ,

@u02„u2~ t !2u1~ t !…#c

2p
, t4<t<t2 ,

„u02u2~ t !…c

2p
, t2<t<t3 ,

0, t3,t.

~28!

The other situations are derived along the same lines and the
complete solution is given in Sec. IV.

IV. SPATIAL IMPULSE RESPONSE OF TRIANGLE

The field point denoted byr1 is relative to the coordinate
system, where thex andy axis lie in the plane of the triangle
and thez axis is height above the plane. The definition of the
different regions is shown in Fig. 7, and the various variables
are defined in Fig. 4 and Fig. 6.

The complete equation for the spatial impulse response
of a triangle is then given by

case I: h~r1 ,t !5hT3~r1 ,t !2hT1~r1 ,t !2hT2~r1 ,t !,

FIG. 6. The possible placements of the triangles and the field point.

FIG. 7. Regions used in Eq.~29!.
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case II: h~r1 ,t !5hT1~r1 ,t !1hT2~r1 ,t !2hT3~r1 ,t !,

~29!

case III: h~r1 ,t !5hT1~r1 ,t !1hT2~r1 ,t !1hT3~r1 ,t !,

wherehT~r ,t! for the different situations are given by
Situation 0:x25x3

hT~r1 ,t !55
0, t1.t,

c

2p
u0 , t1<t<t2 ,

c

2p
„u02u3~ t !…, t2<t<t3 ,

0, t3,t.

~30!

Situation 1:t3,t2 ,y4>y3

hT~r1 ,t !55
0, t1.t,

c

2p
u0 , t1<t<t3 ,

c

2p
u1~ t !, t3<t<t2 ,

0, t2,t.

~31!

Situation 2:t2,t3 ,y4,0

hT~r1 ,t !55
0, t1.t,

c

2p
u0 , t1<t<t2 ,

c

2p
„u02u1~ t !…, t2<t<t3 ,

0, t3,t.

~32!

Situation 3:t3<t2 ,y4,y3 ,y4.0

hT~r1 ,t !5

{
0, t1.t,

c

2p
u0 , t1<t<t4 ,

c

2p
@u02„u2~ t !2u1~ t !…#, t4<t<t3 ,

c

2p
„u02u1~ t !…, t3<t<t2 ,

0, t2,t.

~33!

Situation 4:t2,t3 ,y4,y3 ,y4.0

hT~r1 ,t !5

{
0, t1.t,

c

2p
u0 , t1<t<t4 ,

c

2p
@u02„u2~ t !2u1~ t !…#, t4<t<t2 ,

c

2p
~u02u2~ t !!, t2<t<t3 ,

0, t3,t.

~34!

The different variables used are given by

FIG. 8. Spatial impulse response of triangle. The top graph indicates the
triangle position and size, and the circles indicates the field point positions
for the spatial impulse responses shown in the bottom graph.

FIG. 9. Spatial impulse responses calculated for a triangle at the positions
indicated by the crosses in Fig. 8.
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t15
z

c
, t25

Az21x2
21y2

2

c
,

t35
Az21x3

21y3
2

c
, t45

Az21x4
21y4

2

c
,

b5
y3

x32x2
, x45

b2x2
11b2 , y45b~x42x2!,

r ~ t !5A~ct!22z2, u05arccosS x3

Ay321x3
2D ,

u1~ t !5arccosS x2b21A~11b2!r 2~ t !2x2
2b2

~11b2!r ~ t !
D ,

u2~ t !5arccosS x2b22A~11b2!r 2~ t !2x2
2b2

~11b2!r ~ t !
D ,

u3~ t !5arccosS x3
r ~ t ! D .

V. FIELDS FROM TRIANGLES AND SQUARES

In conclusion a few examples of use of these equations
are shown. The first example is for a triangle and shows the
spatial impulse response for point locations as indicated in
the top graph in Fig. 8. A mesh plot is shown in Fig. 8, and
the responses indicated by a cross and a circle is shown in
Fig. 9. The height above the plane isz560 mm and the
speed of sound is 1540 m/s. It is seen how the reaching of an
edge by the spherical wave is accompanied by a discontinu-
ity in the response at the corresponding time. Note that the
number of discontinuities varies with the field position, and
that there are at most five discontinuities.

The field in the second example in Fig. 10 stems from a
rectangle divided into four triangles. This example is shown
for reference and is compared to the equations for a rect-
angle. The height above the plane is 60 mm and the speed of
sound is 1540 m/s. The same response is obtained for both
calculations.

The triangular shape is ideally suited as the basic shape
for modeling complex three-dimensional shapes, as is done
in nearly all finite element programs. The derivation of the
response from a triangle, thus, makes it possible to create a
general acoustic field program as the one described in Ref. 1
using triangles instead of squares.
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