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Abstract

��� modulation is widely used in high�performance data converters� The modulation
process encodes a high�resolution discrete�time signal into a two�level �i�e� one�bit� signal
with an increased sample rate� This provides speed to be traded for resolution� In the
spectral domain� this e�ect is known as noise�shaping� i�e�� the error of the one�bit signal
is removed from a low�frequency band and concentrated at high frequencies�

A ��� modulator consists of a one�bit quantizer embedded in a feedback loop with a
linear loop �lter� Consequently� these modulators are highly nonlinear dynamical systems�
For some types of loop �lters� the modulators may be chaotic� One of the major drawbacks
of ��� modulators is the potential risk of instability� This is especially the case for
modulators with high�order loop �lters� Instability is normally considered as the major
problem of ��� modulator design�

The stability problem is pursued in this thesis� This is initially done from a nonlinear
dynamics point of view� One of the conclusions is that chaotic modulators loose the
stability due to a boundary crisis emerging when the attractor collides with the associated
basin of attraction� The degree of instability is characterized by the so�called escape rate�

The stability is also investigated using symbolic dynamics� It is shown that the stability
is closely related to the number of admissible limit cycles�

Some modulators are de�ned as being unreliable� i�e�� the transition to the unstable
regime is not a well de�ned point� Such modulators can be seemingly stable using simu�
lations of moderate length� The instability will only appear in real�time implementations
or very long simulations�

The thesis presents constrained optimization methods which are capable of �nding re�
liable modulators with optimum signal�to�noise ratio� The method combines exact state�
space analysis with approximate quasilinear modeling� The optimization tools have been
used for the design of a �� times oversampling th order ��� audio D�A�converter imple�
mented using Field Programmable Gate Array �FPGA� circuits

Methods for suppression of the predominant tones near half the sample rate are inves�
tigated� The use of dithering and chaos are found to be equally e!cient and equivalent
in many respects� A new method for designing chaotic modulators is also introduced� i�e��
the use of all�pass terms in the noise transfer function�

Finally� a new class of modulators using one�bit vector quantization is proposed� It is
shown that the introduction of a vector quantizer can enhance the stability� Furthermore�
the vector quantizer seems to reduce the amplitude of the tone near half the sample rate�
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Chapter �

Introduction

��� Oversampled One�bit Signal Encoding

When a signal is to be transmitted through a channel� a signal encoding scheme or a
modulation is needed� The encoder accommodates the information of the signal into a
form suitable for the channel� It is very common that the channel accepts a sequence of
binary symbols� i�e�� a one�bit signal�

A general signal transmission system using a one�bit channel is shown in Fig� ���� The
signal source is in this case a discrete�time continuous amplitude signal which is low�pass
�ltered� i�e�� the encoder input x�n� is oversampled by the factor R� fs

�fc
where fs is the

sample rate and fc is the �lter cut�o� frequency� The encoder transforms this oversampled
signal into a one�bit signal ready for the channel� The decoder produces an estimate "x�n�
which approximates x�k��

The performance of a signal transmission system can be assessed using a distortion
measure such as the Mean Square Error �MSE�� i�e�� the mean value of �x�n� � "x�n����
It is also common to express the maximal signal�to�noise ratio �SNR�� i�e�� the maximum
ratio between the signal power and the MSE� The SNR s typically measured for sinusoidal
input�

In terms of information theory� the information capacity �rate� of the channel is one bit
per sample� For a given signal source and information rate� the minimum attainable MSE
is given by the so�called Rate�Distortion curve of the source ���� The performance given

fc �
fs
�R

LP �lter
Encoder Decoder� � � �

signal
source x�n� y�n� 	 f��� �g

Channel

"x�n�

Figure ���� Oversampled one�bit signal transmission

�
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by the rate�distortion curve is an upper limit� which is only attained using an optimum
choice of encoder and decoder�

In a Pulse Code Modulation �PCM� system� the oversampled signal x�n� is downsam�

pled R times and sampled using a quantizer with �R levels� i�e�� an R�bit quantizer� For a
uniform and �busy� quantizer� the MSE is approx� ����� where � is the quantization step
size ��
�� When a system is claimed to have R�bits of resolution� the MSE is similar to
that of an R�bit PCM system� In general� resolution is traded for speed� i�e�� lower MSE
requires a higher oversampling factor R�

The decoding process in a PCM system is generally nonlinear� the incoming bits must
be grouped together in order to form R�bit binary words� The signi�cances or weights of
the bits depend on the bit position within the word and this makes the decoder nonlinear�

��� The Linear Decoding Constraint

The decoder can be designed as a linear system� i�e�� the decoder is a �lter characterized
by a transfer function or an impulse response� The use of linear decoding limits obviously
the attainable performance of the transmission system� i�e�� the encoder must take the
linear decoding into account� The subject of this dissertation is encoders designed for use
with an ideal lowpass �lter as decoder� The linear decoding constraint makes it impossible
to obtain R�bits of performance for R times oversampling�

One�bit encoding for use with linear decoding is very useful for the construction of
data converters �
�� If a one�bit encoder is inserted in a general D�A converter� only
a simple switch producing a two�level analog signal is needed� The two�level signal is
then �decoded� using an analog reconstruction low�pass �lter� This approach simpli�es the
analog circuitry needed for a converter at the expense of a higher sample rate �R times
oversampling� and a more complex digital encoding scheme� In an A�D converter� an
analog one�bit encoder can be used as a front�end and the high�rate digital one�bit signal
is then decoded using a digital decimation �lter� Also in this case� the analog circuitry
is simpli�ed at the expense of more complex digital post�processing� Thanks to the rapid
progress of digital VLSI technology� the use of oversampling one�bit converters has become
widespread�

��� ��� Modulation

The designation ��� modulation �or ��� modulation� covers a class of one�bit encoders
which is well suited for linear decoding �see �� and ��	� for a general introduction�� The �rst
member of this class was the � modulator which only needs an integrator for decoding �see
Fig� ����� A � modulator compares the input signal with the integrated encoder output
signal and if the input is higher than the integrator output� a �� code is generated� In
the opposite case� a �� code is generated� This primitive type of encoder can only encode
the di�erence ��� from sample to sample� hence the name � modulation�

The � modulator has very poor performance at low frequencies due to the di�erencing
and therefore an integrator could pro�tably be placed before the � modulator� The overall
system was named a ��� modulator due to the � modulator being preceded by an inte�
grator ���� Using a simple system transformation� the ��� modulator can be constructed
using only one integrator which accumulates the di�erence between the modulator input
and output� This system is shown in Fig� ���� The � modulator actually contains a
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Figure ���� First order ��� modulator� The block marked
R
is a discrete�time delaying

integrator�

decoder �i�e�� an integrator� and the output code decision is based on a comparison of
the input and the decoded output� i�e�� the encoder is constructed from a decoder using a
feedback loop�

The simple discrete�time delaying integrator of Fig� ��� with transfer function ���z���
can be replaced by a more complex higher order feedback �lter with transfer function H�z��
The r"ole of the �lter is unchanged� the �lter locally decodes the output code and error
feedback is used to generate the output code� The feedback �lter output e�n� is the
�ltered di�erence between the modulator input and output� The feedback action tries to
minimize the magnitude of this error signal� Consequently� if H�z� is a low�pass �lter�
the coding error will be low for low frequencies due to the feedback� This phenomenon
is known as noise shaping� i�e�� the coding error �quantization noise� is concentrated at
higher frequencies where the decoder �a low�pass �lter� removes most of the error� For a
�rst order loop �lter with a pole at z � �� the MSE is reduced 
dB for each doubling of
the oversampling ratio R ���

The use of a more complex second order feedback �lter was suggested in ��� This
allows a �	dB reduction in MSE for each doubling of R� i�e�� a more selective noise shap�
ing� However� the author of �� warned that feedback �lters containing more than two
integrators resulted in unstable modulators�

The stability problem was �and is� a severe obstacle to practical use of higher order ��
� modulators� A major step forward was made by the authors of ���� ��� who proposed a
general topology for high�order modulators which was shown to comprise practically useful
and stable modulators� There are currently many commercial data converters using high�
order modulators ��� ��� based on the pioneering work of ����� The widespread scepticism
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about the stability of high�order modulators seems to prevail even despite such commercial
devices� However� there are still many issues of the stability problem which need to be
clari�ed�

The general �high�order� ��� modulator is a useful family of one�bit signal encoders
that are constrained by a demand for linear �LP �lter� decoding� The demand for sta�
bility is another encoder constraint which limits the attainable performance� An obvious
question is of course� is it possible to �nd a better class of encoders which do not su�er
from the stability problem#

��� ��� Modulation with Nonlinear Decoding

It has recently been discovered that the use of nonlinear decoding in conjunction with a
��� modulator as encoder can reduce the MSE compared to linear decoding ��	� �
�� The
proposed algorithms utilize a more speci�c knowledge of the non�linear encoding process�

Nonlinear decoding can be useful in A�D data converters where the decoding process
is digital� A general nonlinear decoder may also compensate for circuit nonidealities in
the analog encoder� However� for D�A converters� the decoding process takes place in the
analog domain and this virtually excludes the possibility of nonlinear decoding�

��� Overview

The objective of the present dissertation is to clarify the complex issue of modulator
stability and present methods for systematic and automated design of practically useful
modulators� Everywhere� it is assumed that the used decoding is linear�

The dissertation is divided into two parts� Part I �Ch� �$	� is devoted to fundamental
stability analysis� Ch� � introduces the ��� modulator as a dynamical system using a
rather mathematical description� Subsequently� basic properties of dynamical systems are
discussed �e�g�� chaos� limit cycles etc��� The purpose of the mathematical description is
to isolate the modulator functionality from the more technological aspects and to provide
a solid foundation for later stability analysis� In order to provide a good overview of the
many di�erent modulator topologies� the concept of modulator equivalence is introduced�

Ch� � focuses on chaotic modulators and various aspects of the onset of instability� The
theory is accompanied by numerous examples and a measure of the degree of instability
is introduced� Chaotic modulators are interesting for at least two reasons� they produce
nonperiodic output and the use of chaos can help to suppress possible spurious tones in
the modulator output spectrum� Secondly� the question of stability in conjunction with
chaotic modulators is conceptually simpler than for nonchaotic modulators�

Ch� � introduces a framework of stability analysis based on symbolic dynamics� i�e��
the study of the possible code sequences produced by a modulator�

Ch� 	 focuses on the stability of nonchaotic modulators� It is shown that nonchaotic
high�order modulators are very complex and di!cult to describe as either stable or un�
stable�

Part II �Ch� �$
� presents methods and tools for systematic modulator design and
optimization�

Ch� � introduces an analysis framework called quasilinear modeling� i�e�� the use of
linearized models� This chapter is an extension of ��
� 	��� The chapter leads to the
introduction of an approximate stability criterion�
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Ch� � presents methods for systematic and automated modulator optimization� Useful
constraints are found which ensures the design of stable and reliable modulators� The
analysis in this chapter is a synthesis of the results obtained in part I and Ch� ��

Ch�  is devoted to the problem of spurious modulator tones and noise modulation
which are highly objectionable adverse e�ects in audio systems� A comparison of dithering
�i�e�� the addition of random noise� and the use of chaos for tone suppression is presented
in an accompanying paper reprinted in App� A� The similarities between dithering and
chaos are pointed out using results from information theory and symbolic dynamics �from
Ch� ���

Ch� 
 introduces a novel modulator topology which comprises a general vector quan�
tizer� This is an attempt to answer the question� is it possible to �nd better one�bit
encoders than ��� modulators# The use of vector quantization is used to enhance the
stability of conventional modulators� This is shown in an accompanying paper reprinted
in App� B�

App� C is an independent paper which is based on the methods presented in this disser�
tation� The paper describes the practical implementation of an entire eighth�order audio
D�A converter for �� times oversampling� Details of both the analog and digital circuitry
are presented along with theory concerning possible error sources in D�A conversion �e�g��
clock jitter and inter symbol interference��
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Chapter �

The ��� Modulator as a

Dynamical System

��� Introduction

��� modulators in analog�to�digital or digital�to�analog converters can be implemented in
many ways% there are especially many di�erent approaches related to di�erent technologies�
some designs are based on continuous time circuits and others are based on discrete�
time switched capacitor or even switched current techniques� In addition� many di�erent
topologies are used�

This diversity of real implementations makes it at �rst sight very di!cult to describe
and analyze ��� modulators as one class of systems� In order to be able to understand
and analyze such complex systems it is absolutely necessary to use a description which is
technology independent� Therefore� a more mathematical approach� i�e�� the concept of
nonlinear dynamical systems will be introduced in the next sections� This will probably
be regarded as just another way to introduce confusion by many readers not familiar
with such mathematical description� The real purpose is� however� to give the reader
a better overview and ability to see through di�erent implementations� For instance�
many seemingly di�erent circuits can in fact be equivalent� i�e�� they do the same signal
processing but are implemented di�erently�

The mathematical description is especially useful for the design of ��� modulators�
at �rst the modulator is optimized for functionality in the mathematical domain and�
subsequently� the design is transferred to real circuit elements�

��� Introducing Dynamical Systems

In this section� a brief introduction to time�discrete dynamical systems will be given�

A given discrete�time dynamical system is characterized by a state�space S and two
mappings F � S � I 
 S and O � S 
 O� The state�space is the set of possible states of
the system and the F mapping describes the next state as a function of the current state
and an independent system input taken from the set I � The output mapping O generates
the system output as a function of the current system state and input�

xn�� � F�xn� in� �F � S � I 
 S

on � O�xn� in� �O � S � I 
 O
�����
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where xn 	 S� in 	 I and on 	 O are the system state� input and output at time�step n�
respectively�

An Nth order system can be described by N independent state�coordinates which
form an N �dimensional state�space� The chosen state�coordinates will generally describe
physical properties of the system� e�g�� voltages in circuit nodes� physical displacements�
etc� The choice of state�coordinates for a given system is ambiguous� i�e�� a multitude of
di�erent state�space descriptions of the same system can be given corresponding to di�er�
ent choices of independent state�variables� All of these state�space descriptions result in
the same output signal sequence for the same input signal sequence� Generally� two state�
space description of the same system have state�coordinates which are related through a
one�to�one �bijective� transform T � This fact motivates following de�nition�

Denition ��� Two dynamical systems described by the maps F� � S� � I 
 S�� O� �
S� � I 
 O� F� � S� � I 
 S� and O� � S� � I 
 O� are de�ned as being equivalent if

and only if a one�to�one map T � S� 
 S� exists satisfying�

F��yn� in� � T ���F��T �yn�� in�� � yn 	 S�

O��yn� in� � O��T �yn�� in� �����

The dynamical systems discussed so far� as described by Eq� ������ have been operating
with an independent input signal sequence� A certain subset of the dynamical systems are
the so�called autonomous systems which operate without input�

The sequence of states corresponding to time step n for an autonomous system is thus
given by applying a mapping F � S 
 S iteratively on an initial state x� 	 S�

xn � Fn�x�� � n 	 IN �����

Consequently� the study of the dynamics of autonomous systems is equivalent to the study
of the iterations of a mapping� In fact� Eq� ����� de�nes a mapping between the initial
state and the output state sequence which is called the orbit corresponding to the initial
state x�� i�e�� the sequence fxng�n���

If the input signal of a given nonautonomous system can be generated from an au�
tonomous system� the nonautonomous system and the input generating system can be
merged into a single autonomous system� Especially� systems with constant input signal
can generally be described as autonomous when the constant input is �built� into the F
mapping� This procedure will be used extensively in the following�

��� Basic Properties of Dynamical Systems

The discussion on dynamical systems will be focused on autonomous time�discrete systems
cf� Eq� ������ Recall� that the initial condition x� de�nes the orbit of the system� The
steady state of a system refers to the asymptotic behavior as n 
 �� The di�erence
between the orbit and the steady state is called the transient� The following de�nitions
are from �����
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����� Limit Sets

Denition ��� A point y of x� for the map F is called a limit point of x� if� for every

neighborhood O of y� the orbit Fn�x�� repeatedly enters O as n
��

The set L�x�� of all limit points of x� is called the limit set of x��

The limit set L of an initial condition x� is the set in state�space the orbit visits
frequently in steady state� In other words� a limit set characterizes a steady�state solution�
A fundamental property of linear systems is that there is either one limit set or in�nitely
many limit sets� Nonlinear system may have a �nite number of coexisting limit sets�

Denition ��� A limit set L is attracting or asymptotically stable if there exists an

open neighborhood O of L such that L�x� � L for all x 	 O� The union of all such

neighborhoods O is called the basin of attraction BL of an attracting limit set L�

The basin of attraction is the set of points which are asymptotically attracted to the
limit set� Stable linear systems have only one limit set� Furthermore� the limit set is
attracting and the basin of attraction is the entire state�space� i�e�� the limit set of a stable
linear system is globally attracting�

Denition ��� A �xed point or a equilibrium point x� of a map F is a point for which

F�x�� � x�� The limit set of a �xed point is the �xed point itself�

Stable linear systems with constant input have precisely one �xed point and this �xed
point is the only limit set�

Denition ��� A periodic point xp of a map F is a point for which a number k 	 IN
exists satisfying Fk�xp� � xp� The least number K for which FK�xp� � xp� is called the

prime period of the periodic point� A periodic point with prime period K is called a period�

K point� The closed orbit fxp�F�xp�� ���FK�xp�g is called a limit cycle or a periodic orbit
which is the limit set of the period�K point�

����� The Stability of Fixed and Periodic points

The stability of �xed points and periodic points can be studied by linearization� Let x�

be a �xed point of a map F � The orbit xn corresponding to the initial condition x�� �x�
can then be approximated to �rst order by�

xn � Fn�x� � �x�� � x� � �DFjx��n�x� �����

where DFjx� is the functional �Jacobian� matrix of F � i�e� a matrix with the N � N

partial derivatives evaluated at x � x��
The stability of the orbit� cf� Eq� ������ can in some cases be determined by the

eigenvalues f�ig of the linearized system� i�e� the eigenvalues of DFjx� � If j�ij � � for
all i then all su!ciently small perturbations will tend toward zero as n 
 �� and the
�xed point is attracting or asymptotically stable� Conversely� if any of the eigenvalues has
modulus greater than unity� then perturbations in certain directions will grow with time�
and the �xed point is consequently unstable�

Since a period�K point xp of a map F is a �xed point of the map FK � the stability of
limit cycles can be determined from the eigenvalues of DFK�x�� Using the chain rule�

DFKjxp � DFjxK�� �DFjxK�� � � �DFjx� ���	�

where xi � F i�xp� is the corresponding orbit or limit cycle�
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����� Chaos

Some nonlinear dynamical systems have asymptotic orbits that are completely nonperi�
odic� This can be the case when the orbit can be dissolved into a countable sum of periodic
functions each of whose periods are an integer combination of frequencies taken from a
�nite base set ����� Such asymptotic behavior is called quasiperiodic and the orbits are
nonperiodic but predictable on any time scale� For instance� the sum of two sine waves
with incommensurable frequencies is nonperiodic but easily predictable� Even a single
discrete�time sinusoidal signal with irrational frequency is nonperiodic�

In some cases a nonlinear dynamical system can exhibit another nonperiodic steady
state behavior called chaos� Chaos can loosely be de�ned as a nonperiodic motion that
is not quasiperiodic� i�e�� a chaotic orbit cannot be described by a �nite number base fre�
quencies and the orbit cannot be predicted on long time scales� There is no commonly
accepted de�nition for chaos but most de�nitions have the same ingredients stated in dif�
ferent ways� Most de�nitions require at least the �rst two of the following three properties
to be ful�lled� A system map F is chaotic on a domain L if

�� There is a sensitivity to initial conditions� i�e�� two nearby orbits diverge and will
eventually become uncorrelated� This makes long term prediction impossible�

�� The system map is topologically transitive on L� i�e�� points within any given neigh�
borhood of L can eventually hit any point in L� This basically ensures that the
entire domain L is visited repeatedly� i�e�� L is actually a limit set� cf� De�nition ����

�� The periodic points are dense in L� i�e�� every neighborhood of a point in L contains
at least one periodic point�

Such mathematical de�nitions do not guarantee the existence of a nonperiodic solution�
However� for most nice systems� ful�lling the above requirements� there will be a nonpe�
riodic dense orbit that comes arbitrarily close to any point in the limit set�

A chaotic limit set is from a practical point of view just the union of in�nitely many
unstable limit cycles� A given initial point can always be perturbed slightly in order to get
a periodic orbit of some period length� A chaotic limit set cannot contain any stable limit
cycles since each stable limit cycle forms a stable limit set with a corresponding basin of
attraction where there is no sensitivity to initial conditions�

A chaotic orbit is always close to many limit cycles but the orbit will be nonperiodic
since every limit cycle is repelling� The unstable limit cycles will therefore form the skeleton
of a chaotic limit set� the short cycles shows the basic structure and the longer cycles add
more details ����� Chaotic limit sets are often very complex geometric objects with a fractal
dimension� A stable and fractal limit set is often called a strange attractor�Conversely� an
asymptotically unstable chaotic and fractal limit set is a strange repeller�

��� The ��� Modulator

A ��� modulator is a linear �lter with a binary feedback signal formed as the negated
sign of the �lter output �see Fig� ����� A linear and causal Nth order �lter is a dynamical
system as described by Eq� ����� for which the state�space is the Euclidean space� S � IRN �
and both of the mappings F and O are linear� The linear �lter H�z� in Fig� ��� can thus
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Figure ���� ��� modulator�

be described in state�space as follows ����

xn�� � Axn � bi�n�

e�n� � c�xn � di�n� �����

Where i�n� and e�n� are the �scalar� �lter input and output signals� respectively� The
transition matrix A is an �N�N� matrix and b� c and the state vector xn are column
vectors of length N � The parameter d determines obviously the impulse response value
at time zero� i�e�� h��� � d� The transfer function H�z� of the �lter can be found from
Eq� ����� using the z�transform and linear algebra�

zX�z� � AX�z� � bI�z� �
X�z� � ��A�Ez���bI�z�
E�z� � c�X�z� � dI�z�

� H�z�I�z� � �d� c��A�Ez���b�I�z� �����

Where X�z�� E�z� and I�z� are the z�transforms of the state vector sequence xn and the
�lter output and input� respectively� The matrix E is the �N�N� unit matrix�

Eq� ����� shows that the poles of H�z� are the z�values for which Eq� ����� becomes
singular� i�e�� the poles of H�z� are equal to the roots of the characteristic polynomial of
A� In other words� the eigenvalues ofA are poles of H�z�� The zeros of H�z� are generally
determined by b� c and d�

For a given state�space description of a �lter� the transfer function will be uniquely
determined by Eq� �����% however� a multitude of state�space descriptions result in a given
transfer function� A well known result from linear system theory is that two �lters with
the same transfer function generate identical output for identical input when proper initial
conditions are used� i�e�� �lters with identical transfer function H�z� are equivalent� cf�
De�nition ����

Using Eq� ������ an Nth order ��� modulator corresponding to Fig� ��� can be char�
acterized in state�space matrix�vector notation�

xn�� � Axn � b�i�n�� sgn�c�xn��� xn 	 IRN

y�n� � sgn�c�xn� ����

where y�n� is the modulator output sequence and sgn��� denotes the signum function� i�e��

sgn�x�
�
� � for positive x and sgn�x�

�
� ��� otherwise�
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Using the system description of Eq� ������ this general Nth order ��� modulator can
be characterized by�

xn�� � F�xn� i�n�� � Axn � b�i�n�� O�xn��

y�n� � O�xn� � sgn�c�xn� ���
�

The feedback loop of Fig� ��� including the signum function cannot be realized if the
�lter is delay free� i�e�� the �lter impulse response must have the property h��� � �� where
h�n� is the impulse reponse ofH�z�� This is the reason why the parameter d from Eq� �����
is omitted in Eq� �����

For most ��� modulator topologies� the feedback �lter transfer function H�z� is not
immediately observable� In these cases� the modulator has to be described in state�space
at �rst before H�z� can be derived using Eq� ������

Example ��� Consider the second order modulator of Fig� ��� with three
parameters� b�� b� and a� The feedback �lter is composed of a cascade of
discrete�time integrators with distributed input� This approach is extensively
used for construction of high�order modulators ��� 		� ��� and the resulting
coe!cient sensitivity is low compared to other structures ��
�� The two vari�
ables x��n� and x��n� are chosen as state�coordinates� i�e�� the state�vector
is xn � � x��n� x��n� ��� This choice results in the following state�space
description�

xn�� � Axn � b
�
i�n�� sgn

�
c�xn

��

A �

�
� �

�a �

�

b �
h
b� b�

i�
c �

h
� �

i�
������

The feedback transfer function H�z� can now be derived using Eq� ������

H�z� � �c� �A�Ez��� b

�
h
� �

i ��
z� � �z � � � a

�
�� z ��
a �� z

� �
b�
b�

�

�
b�z

�� � �b� � b��z��

�� �z�� � �� � a�z��
������

Notice that b� and b� determine the zero ofH�z� and thatH�z� has the required
unit sample delay� The poles of H�z� are determined alone by the internal
feedback factor a �

��� ��� Modulator Equivalences

As stated in Sec� ���� two linear dynamical systems are equivalent if they have identical
transfer functions� Consequently� two ��� modulators are equivalent if the correspond�
ing feedback �lters have identical transfer functions� Furthermore� ��� modulators are
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Figure ���� Second order ��� modulator example�
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Figure ���� ��� modulator with feedback �lter scaling�
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Figure ���� Generic ��� modulator�

invariant to scaling of the feedback �lter H�z�� This fact can be realized from Fig� ���
where the �lter output is scaled by the factor 	 before the signum function� This system
produces obviously the same output for any positive value of 	 due the fact that the
signum function is invariant to argument scaling� This justi�es the following theorem�

Theorem ��� Two ��� modulators cf� Fig� ��� are equivalent if and only if the corre�

sponding feedback �lters H��z� and H��z� have the property�

H��z� � 	H��z� � 	 � � ������

The theorem states that the poles and zeros of H�z� de�nes two equivalence classes of
modulators giving the same output for the same input� i�e�� one class for negative and one
class for positive scalings of H�z��

Example ��� Consider the modulator in Fig� ��� discussed in Example ����
Since the modulator is invariant to scalings of H�z�� it is observed from
Eq� ������ that the parameter b� can be �xed to unity without loss of general�
ity� i�e�� the real valued zero of H�z� can be determined alone by the remaining
parameter b�� Scaling of both b� and b� will only a�ect the internal signal levels
within the integrators� The actual scaling can be decided when the circuit is
to be implemented �

So far� the modulators considered have been restricted to a certain class as de�ned
by Fig� ��� which does not comprise every known modulator topology� Fig� ��� shows a
more general generic ��� modulator which is characterized by two transfer functions� i�e��
the feedback �lter H�z� between the quantizer output and input and the input transfer
function G�z� between the input and the quantizer input� The generic modulator of
Fig� ��� can be rearranged into an equivalent system consisting of a usual modulator
cf� Fig� ��� preceded by a linear pre�lter as shown in Fig� ��	� Consequently� generic
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Figure ��	� Generic ��� modulator implemented as a usual modulator with a pre�lter�

modulators cf� Fig� ��� with the same feedback �lter H�z� are equivalent when the input
signal is preprocessed by a proper linear �lter� Since linear �ltering is a very well known
operation� the study of the nonlinear dynamics of ��� modulators can be restricted to
the sub�class cf� Fig� ���� Notice that generic modulators are generally not invariant to
scalings of H�z� since the the pre�lter G�z�H���z� scales inversely with H�z��

Example ��� Consider the second order modulator in Fig� ���� This mod�
ulator topology is a modi�cation of the modulator shown in Fig� ��� and is
commonly know as the multiple feedback modulator �		�� This example will
demonstrate that the multiple feedback modulator is comprised by the generic
model� cf� Fig� ����

Obviously� the modulators of Fig� ��� and Fig� ��� share the same feedback
�lter H�z�� cf� Eq� �������

H�z� �
b�z

�� � �b� � b��z
��

�� �z�� � �� � a�z��
������

The input transfer function� G�z�� from the input node to the quantizer input
node is found�

G�z� � �c� �A�Ez���
h
� �

i�
�

z��

�� �z�� � �� � a�z��
������
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Figure ���� Second�order multiple feedback ��� modulator�

Consequently� the multiple feedback modulator� cf� Fig� ��� is equivalent to
the modulator in Fig� ��� preceded by the pre�lter�

G�z�H���z� �
z��

b�z�� � �b� � b��z��
�

��b�z
��

� � �b��b� � ��z��
����	�

The pre�lter is a �rst order recursive �lter with a one sample delay� No�
tice also that scaling of both b� and b� just scales the gain of the pre�lter
accordingly�

The multiple feedback modulator is often used in a transposed form called
the feedforward �FF� modulator �		� ���� The FF modulator is� like the topol�
ogy in Fig� ���� equivalent to a usual ��� modulator� i�e�� G�z� � H�z� for
these topologies �

The subject of equivalences among di�erent modulator topologies has also been dis�
cussed in ���� ��� ���

��� The Noninvertible Region

Real physical dynamical systems �e�g�� systems ruled by Newton�s laws of motion� are
reversible� i�e�� the axis of time can be reversed� Even when such continuos�time systems
a modeled in discrete�time� the system maps are generally invertible and it is possible to
go back and forth in time� This section will show that the signum function or one�bit
quantizer of a ��� modulator causes the system map to be noninvertible in a certain
region in the state�space�

The nonlinear map F of a ��� modulator with constant input i can be characterized
by two linear maps de�ned on two distinct domains�

F�xn� �

�
F��xn� � xn 	 S�
F��xn� � xn 	 S�
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S� � fx 	 IRN jO�x� � �g
� fx 	 IRN jc�x � �g

S� � fx 	 IRN jO�x� � ��g
� fx 	 IRN jc�x � �g

F��xn� � Axn � b�i� ��

F��xn� � Axn � b�i� �� ������

The piecewise linearity enables the existence of a region U in which the system map is
noninvertible� i�e�� U is the set of elements y which gives two solutions to the equation
F�x� � y� Since both of the linear maps F� and F� are generally invertible� the set U
can be derived�

U � F��S��
�
F��S��

� fy 	 IRN jF��� �y� 	 S�  F��� �y� 	 S�g
� fy 	 IRN jc�A��b�i� �� � c�A��y � c�A��b�i� ��g ������

Both the sets V� � F��� �U� and V� � F��� �U� are mapped on U by F � i�e�� the set
V � V�

S
V� is the preimage of the noninvertible region U � The set V has a remarkably

simple structure�

V� � fx 	 IRN jc�A��b � c�A�� �Ax� b�i� ��� � c�A��b�i� ��g
� fx 	 IRN j� � c�x � �c�A��bg

V� � fx 	 IRN j � �c�A��b � c�x � �g
V � fx 	 IRN j jc�xj � �c�A��bg �����

Recall from Sec� ��� that the quantizer input e is equal to c�x and that the transfer
function of the feedback �lter is given by H�z� � �c��A � Ez���b� Consequently� the
elements in V satisfy the very simple relation�

jej � ��H�z � �� ����
�

Notice that this relation is very general� i�e�� V is independent of the modulator input
signal and V is de�ned only by the observable quantizer input e and by the feedback �lter
H�z�� It can be concluded that if a modulator operates exclusively in the noninvertible
region U � it must operate exclusively in V as well� i�e�� the quantizer input magnitude will
be bounded by ��H�z � ��� Notice furthermore that U is nonempty for H�z � �� � ��
It will be demonstrated later that the noninvertible region plays an important r"ole for the
stability of a modulator�

��	 Local Stability Analysis and Limit Cycle Identi
cation

This section focuses on the structure and stability of the limit cycles of ��� modula�
tors� The fact that a ��� modulator is a linear �lter with nonlinear and binary feedback
simpli�es both the identi�cation and stability analysis of possible limit cycles�

According to Eq� ������� the functional �Jacobian� matrix of a modulator map is simply
given as�

DF�x� � A � c�x �� � ������
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This means that the eigenvalues of the transition matrix A determines the stability of
�xed and periodic points� Recall from Sec� ��� that the eigenvalues of A are equal to the
poles of the modulator feedback �lter H�z�� Consequently� modulators with one or more
poles outside the unit circle have unstable �xed points and limit cycles�

The limit cycles of a ��� modulator with known �periodic or constant� input can be
identi�ed by opening the modulator loop� This is again a consequence of the feedback
path being a linear �lter� Consider the modulator of Fig� ��� where the loop is opened and
the quantizer is replaced by a signal generator which produces a periodic binary signal
y�n� with the two discrete amplitude values � and ��� The output e�n� of the linear
feedback �lter H�z� �which formerly was the quantizer input� will then have a periodic
steady�state solution and if sgn�e�n�� � y�n� for all n� a limit cycle exists with y�n� as
periodic output code� This means that there is a close relationship between the periodic
output code sequence and the limit cycle in state�space�

The periodic steady�state quantizer input signal e�n� can be found as the solution to
a set of linear equations for any period k code sequence y�n� and there will thus exist
a linear mapping between y�n� and e�n� which depends on H�z� and on the modulator
input�

Let H�z� be given as a rational transfer function C�z��D�z� where C�z� � c�z
�� �

c�z
�� � � �cNz�N andD�z� � ��d�z

���d�z�� � � �dNz�N � For a given input signal i�n� and
output signal y�n�� the loop �lter input is given by v�n� � i�n�� y�n�� In the z�domain�
the loop �lter output e�n� is given by�

E�z� �
C�z�

D�z�
V �z� ������

or equivalently�
D�z�E�z� � C�z�V �z� ������

Let v�n� be periodic with period k� The steady�state e�n� is then also periodic with period
k and e�n� can be found from the following linear equation��

				

� � � � � dN � � � d� d�
d� � � � � � dN � � � d�
���

���
���

���
���

���
���

� � � � dN � � � d� d� �

�
����

�
				


e���
e���
���

e�k � ��

�
���� �

�
				


� � � � cN � � � c� c�
c� � � � � cN � � � c�
���

���
���

���
���

���
� cN � � � c� c� �

�
����

�
				


v���
v���
���

v�k � ��

�
���� ������

Or using the symbolic notation�
Dke � Ckv ������

The solution is then given by�
e � D��

k Ckv ����	�

The existence of the periodic sequence y�n� as a limit cycle can then be tested using the
condition y�n� � sgn�e�n�� for all n�

For certain H�z� pole con�gurations the set of equations �Eq� ������� may become
singular� e�g�� if H�z� has a pole a z � � the �lter has in�nite dc�gain and the mean
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value of the �lter input must be zero� In this case the mean value of the steady�state
�lter output is undetermined and may be considered as a free parameter� i�e�� there are
in�nitely many steady�state solutions for e�n�� The code sequence will then exist as a
limit cycle for the mean value of the �lter output belonging to a whole interval where the
condition sgn�e�n�� � y�n� is satis�ed for all n� Generally� the steady�state �lter output
solution is nonunique when one or more H�z� poles are on the unit circle at the locations
exp�jl�k� which correspond to the possible discrete frequencies of the spectra of signals
with period k ��	�� In these cases� there will either be none or in�nitely many solutions�

In order to simplify notation� code sequences will be written as binary numbers� i�e��
sequences of the symbols ��� and ��� corresponding to quantizer output amplitudes � and
��� respectively� A periodic repetition of a code sequence is indicated by overlining� e�g��
the notation ���� means the �in�nite� code sequence ���������������� This means that
the set of �k k�digit binary numbers is equivalent to the set of output sequences with
period k and that each possible periodic point can be identi�ed with a binary number�
However� normally only a fraction of the �k period k sequences will exist as limit cycles�

Code sequence segments can also be described by counting the maximum number of
consecutive ��� and ��� symbols� The notation ����� means a code segment of two ���
symbols followed by two ��� symbols and the notation ��� �� is an alternative notation for
the periodic sequence �����

Example ��� Some periodic code sequences with period � will be tested for
existence as limit cycles for the second�order modulator of Fig� ���� The feed�
back �lter H�z� for this modulator is given as �cf� Eq� ��������

H�z� �
b�z

�� � �b� � b��z
��

�� �z�� � �� � a�z��
������

The matrix D� is�

D� �

�
			


� � � � a ��
�� � � � � a

� � a �� � �
� � � a �� �

�
��� ������

Note that this matrix becomes singular for a � � �the sum of the rows and
columns is zero�� In this case there is a double pole at z � ��

The matrix C� is�

C� �

�
			


� � b� � b� b�
b� � � b� � b�

b� � b� b� � �
� b� � b� b� �

�
��� �����

Let b� � �� b� � ��	 and a � ���� For zero modulator input� the periodic
code sequence �� � ���� gives v � � �� � �� � ��� Using Eq� ����	�� the
steady�state �lter output is e � � ����� ������ ����� ������ ��� The ��
limit cycle exists since sgn�e�n�� � y�n�� This limit cycle is very persistent
for most modulators and causes most modulators to have a tone at half the
sample rate for zero input �see Ch� ��
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The periodic code sequence ���� results in e � � ���
 ���
 ���� ��	� ��%
hence� this limit cycle does not exist for zero input� However� for a suitable
negative constant modulator input� this limit cycle will exist� the dc�gain of
H�z� is 	% hence� for a constant dc�input in the interval �����
�	����	��	� the
���� limit cycle exists �

��� Summary

This chapter has introduced ��� modulators as general discrete�time nonlinear dynamical
systems� It was shown that the nonlinear dynamics of a modulator is only determined by
the normalized feedback �lter transfer function� Di�erent modulator topologies sharing
the same feedback �lter are all equivalent when proper linear input �lters are applied�
Since linear �lters are well known� it is only necessary to focus on the feedback �lter inside
the nonlinear loop around the quantizer�

The piecewise linearity of these systems simpli�es the local stability analysis� the sys�
tem behaves like a linear system in two disjoint domains and the poles of the feedback
�lters determine the local stability of �xed points and limit cycles� It was also demon�
strated that the maps of ��� modulators have a noninvertible region where the map is
two�to�one� Furthermore� it was shown that this region can be characterized generally
from the quantizer input and the feedback �lter transfer function evaluated at z � ��

Finally� it was shown how the limit cycles of a modulator can be found by opening the
loop� Furthermore� the output code sequences of a limit cycle is uniquely characterizing the
corresponding orbit for most systems� Consequently� there is a one�to�one correspondence
between limit cycles and the binary numbers�



Chapter �

The Stability of Chaotic ���

Modulators

��� Introduction

The term �stability� is often mentioned in connection with ��� modulators� Since a large
number of stability de�nitions exist� a more explicit formulation of the stability of ���
modulators must be given� The practical problem is that a modulator operating with a
given input suddenly might �explode�� i�e�� the quantizer input starts oscillating with a
rapidly increasing amplitude� These oscillations may become unbounded for the purely
mathematical modulator described in Ch� �% however� for real modulators� non�linearities
such as arithmetic over'ow and circuit saturation will limit the amplitude�

The onset of uncontrolled oscillations causes the signal encoding properties of the mod�
ulator to virtually disappear and the resulting signal�to�noise ratio decreases dramatically�
Obviously� combinations of input signals and feedback �lter parameters which cause in�
stability should be avoided� The goal of the ��� modulator stability analysis is to answer
the question� is a given modulator stable for a reasonably large set of initial conditions
and with a given class of input signals#

This chapter focuses on the stability of chaotic modulators� The question in this case
is� Does the system have a stable attractor and what is its basin of attraction#

It will appear from the numerous examples in this chapter that it is extremely di!cult
to derive an easily applied� general and not too conservative stability criterion�

Due to the usually high oversampling ratio� the input signals for real modulators will
normally change slowly� In order to simplify the stability analysis� the input signal in the
following is restricted to the class of constant input signals� i�e�� the modulators can be
described as an autonomous dynamical systems�

��� Chaotic ��� Modulators

When one or more poles of H�z� are outside the unit circle� every �xed or periodic points
is unstable% however� this does not necessarily mean that the orbits of the system become
unbounded with time as it is the case for linear systems� Due to the possible existence of
a non�invertible region U �see Sec� ����� the orbit may stay bounded� The reason for this
is that the sets V� and V� are both mapped on top of each other on the non�invertible
region U � This folding mechanism seems to be necessary in order to bound the orbit

��



�� CHAPTER �� THE STABILITY OF CHAOTIC ��� MODULATORS

in steady state� The existence of a folding mechanism in combination with state�space
stretching� i�e�� one or more eigenvalues are outside the unit circle� indicates the presence of
chaos� i�e�� the contracting e�ect of the folding mechanism counterbalances the state�space
divergence� This motivates following assumption�

Assumption ��� A ��� modulator with at least one H�z� pole outside the unit circle

and with a non�empty non�invertible region is assumed to be chaotic� i�e�� a bounded limit

set exists on which the modulator is chaotic� Furthermore� the intersection between the

limit set and the non�invertible region is non�empty� i�e�� the non�invertible set is visited

repeatedly�

��� Boundary Crisis

As stated in Section ���� the question of stability of chaotic modulators is� When is the
chaotic limit set attracting and what is the corresponding basin of attraction# Generally�
it is a very di!cult task to answer this question� since the stability obviously depends on
global properties rather than local stability analysis� To illustrate this� modulators can be
made stable despite the fact that local state�space perturbations grow in all directions� i�e��
all H�z��poles are outside the unit circle� When a chaotic modulator is stable� a basin of
attraction BL with a non�zero measure exist� i�e�� BL is the set of initial conditions which
are attracted asymptotically to the chaotic limit set� It is concluded from simulations that
a chaotic modulator has at most one stable limit set which must chaotic since every limit
cycle is unstable� Consequently� the initial conditions outside BL will generally result in
unbounded orbits% however� initial conditions which are exactly on other unstable limit
points� e�g�� points on limit cycles� will give bounded orbits which are not attracted to
the chaotic limit� Therefore� unstable limit points not belonging to the chaotic attractor
must either be on the boundary of BL� �BL or belong to the exterior of BL� However�
some of the limit points on the boundary of BL can be points of accumulation of BL�
i�e�� any su!ciently small non�zero perturbation gives an orbit which is attracted to the
chaotic limit set� For limit points belonging to the exterior of BL� any su!ciently small
perturbation causes the orbit to become unbounded� Furthermore� �BL must be invariant
to the system map� i�e�� every point on �BL is mapped to another point on �BL�

Obviously� an attracting chaotic limit set L must be contained in its corresponding
basin of attraction� i�e�� L � BL� When the modulator input or �lter parameters is
changed such that the chaotic modulator becomes unstable� the basin of attraction BL

disappears� A way to interpret the onset of instability is to imagine that L �grows� out
of BL or in general that L collides with the boundary of BL� This type of bifurcation is
often called a boundary crisis ����� It is characteristic to this type of bifurcation that BL

suddenly disappears at the onset of instability rather than it gradually shrinks towards zero
measure� Furthermore� the limit set does not �jump� in size just before loosing stability�
This explains why modulators may �blow up� suddenly without any preceding warning�

Notice that after the onset of instability� a chaotic but unstable limit set survives� This
means that there still exist initial conditions which give bounded orbits� namely the limit
points% however� even small perturbations cause the modulator to �blow up�� i�e�� the set of
initial conditions giving bounded orbits has zero measure� Hence� the stability concept of
a chaotic limit set is in good agreement with the practical modulator stability de�nition
as de�ned in Section ���� In Section ��	� the so�called escape rate will be de�ned which
quanti�es the instability of a repelling chaotic limit set�
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Figure ���� First order map F�e� according to Eq� ����� for zero input and a � ��

Example ��� Consider the general �rst order ��� modulator with constant
input given by the map�

e�n� �� � F�e�n�� � ae�n� � i� sgn�e�n�� �����

where i is the constant input and a is a parameter�
The map F is schematically shown in Fig� ��� for a � � and i � ��
The corresponding feedback �lter transfer function is�

H�z� �
z��

�� az��
�����

The feedback �lter has a pole at a� When a is less than unity� the map
corresponds to a �rst order modulator with a leaky integrator ���� �	�� For
a � �� the system is equivalent to the well known circle map �rotation of the
circle� ��� and this system is quasiperiodic for irrational constant input ��	� �
For a � � the modulator is generally chaotic ��	�� i�e�� the pole at a is outside
the unit circle�

Eq� ����� shows that for a � �� the map has to �xed points given by�

e�� �
�� i

a� �

e�� �
�� � i

a� �
�����

The noninvertible set is the interval U ��� �� i� �� i� and the preimage of U
is the interval V � ��H������H����� ���a �

�
a � �
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Figure ���� Bifurcation diagram of the �rst order modulator cf� Eq� ����� with zero input�
The two hyperbolas are the loci of the two unstable �xed points for a � �� cf� Eq� ������

The unstable �xed points separate points which iterate to in�nity from
points which iterate towards the signum function threshold at e � �� Points in
a neighborhood of e � � are either mapped into a neighborhood of e � �� i or
e � �� � i� i�e�� the end�points of U � Consequently� the modulator is assumed
to be stable if U is fully inside the interval between the unstable �xed points
which is ful�lled when�

jij � �

a
� � �����

Hence� the stable input range decreases as a is increased�

When this condition is satis�ed� the basin of attraction must be the interval
between the unstable �xed points� i�e� BL � �e��� e��� � and the chaotic limit set
L must be contained in U � cf� Ass� ����

Fig� ��� shows a bifurcation diagram for the �rst order modulator with
zero input �see also ��	� 	
��� The modulator was simulated with a slowly
increasing a�parameter and the obtained quantizer input e�n� is plotted versus
a� For a � �� the stable �� limit cycle is the only existing limit cycle �at most
one limit cycle can exist at a time for �xed i and a for a � �� cf� ��	��� For
a � �� a chaotic limit set emerges including some more complex limit cycles
like ����� However� the now unstable �� limit cycle is not included in the
chaotic limit set� Notice that the chaotic limit set becomes unstable at a � �
due to a collision with the unstable �xed points which form the boundary of
BL �
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Figure ���� Basin of attraction BL and limit set L for the modulator cf� Eq� ���	� with
h� � �� and h� � ���	�

��� Finding the Basin of Attraction

This section will focus on the onset of instability for chaotic modulators from a more
practical point of view� Especially the often very complex structure of the chaotic limit
set and the basin of attraction will be studied by simulations� The examples are based on
second order modulators in order to enable graphical illustrations�

The basin of attraction� BL of a modulator can in general not be determined analyti�
cally% hence� BL must be estimated numerically� For all practical purposes� BL is the set
of initial conditions which give bounded orbits� The state�space must thus be sampled in
a large number of grid points and the points giving orbits which stay bounded by a certain
bound up to a certain maximum number of iterations� nmax� are marked as members of
BL� A stable chaotic limit set L can be approximated simply as the union of all points on
an orbit starting within BL% however� the initial transient of the orbit before steady state
behavior is reached should be omitted�

Example ��� Fig� ��� and ��� shows BL for two modulators with feedback
�lter

H�z� �
h�z

�� � h�z
��

�� h�z�� � h�z��
���	�

where h� is �� and h� is ���	 and ����	�
This class of modulators has been investigated empirically as well as ana�

lytically in �����
For each point in Fig� ��� and Fig� ���� up to 	�� iterations were performed

and points giving an quantizer input signal je�n�j � �� are plotted in black and
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Figure ���� Basin of attraction BL and limit set L for the modulator cf� Eq� ���	� with
h� � �� and h� � ����	�

the rest are white� The state�vector used is xn � �e�n���� e�n���� i�e�� the plots
show the quantizer input e�n� versus e�n � ��� In addition the stable chaotic
limit sets are plotted using a gray scale% limit points which are frequently
visited are lighter than limits points rarely visited� The �gures indicate that
both modulators are stable� but the space between the boundary of BL and L
reduces as h� is lowered to ����	�

The modulator with h� � ���	 was proven to be stable in �	��� it was shown
that the regions of the state�space square with jej � � which is mapped outside
the square will return to the square again within a �nite number of iterations�
hence� this proves that the quantizer input is bounded� This approach works
obviously only when the used square is fully inside BL and this is not the case
for h� � ����	 �see Fig� �����

When h� is approx� ����� L collides with �BL and the modulator becomes
unstable� This can be observed from Fig� ��	 and Fig� ��� for h� � �� where
BL has been estimated using nmax equal to ��� and 	��� Observe that the
estimated BL sets becomes �thinner� for higher nmax� i�e�� the number of grid
points surviving �i�e�� staying below a bound� nmax iterations decreases with
nmax �

��� The Escape Rate

The observations done in Example ��� inspire to the assumption that a certain fraction of
orbits stemming from random initial conditions will not survive the �k����th iteration for
an unstable system� Consequently� it is assumed that the number of survivors decreases
exponentially with k ���� and thereby the so�called escape rate � is de�ned�
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Figure ��	� Estimate of the basin of attraction BL for the modulator cf� Eq� ���	� with
h� � ��� h� � ��� and maximum iteration number nmax � ����
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Figure ���� Estimate of the basin of attraction BL for the modulator cf� Eq� ���	� with
h� � ��� h� � ��� and maximum iteration number nmax � 	���
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Figure ���� Survival probability P �k� as a function of the iteration number k�

Assumption ��� The probability P �k� that the orbit of an unstable chaotic modulator

with random initial condition stays inside a suitable bounding set W for k iterations is

assumed to be�

P �k� � Prf�n�k � xn 	 Wg � P� e
��k �����

where P� depends on the probability distribution of initial conditions x� and � is the escape

rate� The mean survival time is de�ned as T � ����

In order to give a meaningful escape rate� the unstable repeller must be contained in
the bounding set W used in Eq� ������ When an orbit leaves this set� the orbit should
never return into W again� i�e�� every point outside W should escape to in�nity or another
attractor� In Example ��� the bounding set W was the set of state�vectors with quantizer
input magnitude less than some maximum value� When P� is unity� then the mean survival
time T � ��� is the average number of time steps the system �lives� before it escapes�
Generally P� is the fraction of initial points that do not escape within the �rst time steps�
If the distribution of initial points covers far more than the limit set then P� will be
small and it will take some time steps before the orbits starts to escape� The assumed
exponential decay of P �k� is thus only accurate for large k�

The existence of an escape�rate necessitates that the bounding setW contains a number
of limit cycles or �xed points� i�e�� for suitably chosen initial conditions� it is possible to
stay forever inside W � This condition is normally ful�lled� since a chaotic limit set has
in�nitely many limit cycles�

The exponential decay is similar to the decay of radioactive material�

Example ��� The exponential decay of survivors� can be investigated numer�
ically� The system is simulated with a large number of suitably distributed
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random initial conditions and the iteration number for which the system ex�
ceeds a given bound is estimated� Subsequently� the fraction of survivors are
plotted on log�scale versus the iteration number on lin�scale yielding a straight
line with slope equal to the escape rate� Fig� ��� shows this type of plot for
the second order modulator cf� Eq� ���	� for h� � ��� Two plots are shown�
h� � ����	 giving � � ������ and h� � ��� giving � � ��
������ Both plots
are based on ������ random initial conditions and the orbits are considered as
survivors until the quantizer input magnitude exceeds ��� The asymptotic
slope of the survival plots �i�e�� the escape rate� does naturally not depend on
the choice of bounding set as long as the repeller is fully included herein �

��� The Structure of L and BL

Generally� the shapes of the stable limit set L and the basin of attraction BL are very
complicated and impossible to describe analytically except for a very few cases �like Ex�
ample ����� This makes it almost impossible to �nd a comprehensive analytical stability
criterion for the general class of modulators� In the following a number of examples will
demonstrate the complexity of especially the basin of attraction�

The next example demonstrates that a certain subset of second order modulators have
a very simple BL set which can be described analytically and in addition� the chaotic
limit set can be bounded to a certain region� This fact allows the derivation of a su!cient
stability criterion�

Example ��� Consider the second order multiple feedback modulator dis�
cussed in Example ��� �see Fig� ���� with constant input i� In order to normal�
ize the feedback transfer function H�z�� the parameter b� is set to unity and
the parameter b� is substituted for b� This normalization re'ects the fact that
there is only one degree of freedom for the choice of the zero of H�z�� The
multiple feedback modulator is equivalent to an usual ��� modulator preceded
�ltered by a pre�lter� The pre�lter has in this case the following �rst order
transfer function� cf� Eq� �������

G�z�H���z� �
z��

� � �b� ��z��
�����

Since only constant input is considered� the pre�lter scales the input by factor
��b� Consequently� scaling of the input for the multiple feedback modulator
by a factor b makes the multiple feedback modulator equivalent to a usual
��� modulator for constant input� Using this scaling� the system can be
characterized by the following map�

xn�� � F�xn� �

�
� �
�a �

�
xn � sgn

�h
� �

i
xn

� � �
b

�
�

�
�
bi

�
����

The state vector is given by xn �
h
x��n� x��n�

i�
where x��n� is the quan�

tizer input�
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Figure ��� The geometry of the multiple feedback modulator from Example ��� for a � �
and b �

p�a�

For negative a� the system has two �xed points�

x�� �

�
b���i	
�a
�

�
�x�� �

� �b���i	
�a
�

�
���
�

The system has the eigenvalues or poles of H�z��

z � ��p�a ������

For �� � a � � there are two real valued eigenvalues% one outside and one
inside the unit circle� Consequently� each of the two �xed points are saddle

points and they have a stable and an unstable manifold ����� The manifolds are
just straight lines in the eigenvector directions and the manifolds are invariant
to the system map� The stable manifold of x�� corresponding to the eigenvalue
z � �� p�a is given by�

F�x� x��� � ��� p�a��x� x��� ���
� �
�a �

�
� ��� p�a�E

�
x �

��
� �
�a �

�
� ��� p�a�E

�
x�� �

h p�a �
i
x �

b��� i�p�a � � ������

Similarly� the unstable manifold of x�� corresponding to the eigenvalue ��p�a is given by� h
�p�a �

i
x �

�b��� i�p�a � � ������
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The stable manifold of x�� separates points with x� � � which iterate towards
in�nity from points which iterate towards the quantizer threshold at x� � ��
The geometry is shown in Fig� �� for b �

p�a where the shaded area H�
�

is the points which escape to in�nity along the unstable manifold� Similarly�
the stable manifold of x�� delimits the shaded area H�� of points with x� � �
iterating towards in�nity� Consequently� both �xed points and parts of their
stable manifolds are on the boundary of BL if the system is stable� The shaded
set H�

� is the preimage of H�
� with respect to F�� i�e�� H�

� � F��� �H�
� �%

furthermore� this set must be fully outside BL for the same reasons as for H�
� �

the wedgeH�
� is delimited by the line x� � � and by a line parallel to the stable

manifold of x�� which intersects the line x� � � at the point C � � � x��c ��

in Fig� ��� Furthermore� it can be concluded that the point C must be on �BL

since any neighborhood of C is mapped on both sides of the stable manifold
of x��� The point C can be found from the condition that F��C� must be on
the stable manifold of x��� Using Eq� ������ one arrives at�

h p�a �
i
F�

��
�
x��c

��
� b���i	p�a � � �

p�a�x��c � �� � x��c � b�� � i� � b���i	p�a � � �
x��c �

�
��
p�a

�
b���i	p�a � �� b�� � i�� p�a

� ������

Similarly� the shaded region H�
� in Fig� �� is the preimage of H�

� with
respect to F� and the region is a wedge characterized the point D which like
C is on �BL�

The hatched region P � P�SP� in Fig� �� is delimited by all the four
manifolds� The chaotic limit set Lmust be inside P since points outside the sta�
ble manifolds iterate to in�nity and points just outside the unstable manifolds
but inside the stable manifolds must iterate into P� Consequently� a su!cient
but not necessary stability criterion is that the modulator is stable when the
set P does not collide with the boundary of BL� i�e�� when P is a so�called
trapping region which is mapped into it self� This condition holds when the
both the points C and D on �BL are outside P for b �

p�a� The reason
is that orbits escaping the system from an initial point inside P must sooner
or later enter H�

� or H�
� before the orbit escapes along one of the unstable

manifolds and C and D will be the �rst points in these sets which will be hit
at a collision between L and BL� For positive input and b �

p�a the criterion
is ful�lled as long as the point C does not cross the unstable manifold of x���
Using Eq� ������ and Eq� ������ the stability criterion holds for positive input
i when�

h
�p�a �

i � �
x��c

�
� �b���i	p�a � � �

�
��
p�a

�
b���i	p�a � �� b�� � i�� p�a

�
� �b���i	p�a � � �

i � a�b
b���

p�a	 � for i � � � b �
p�a

������

Due to the symmetry of the system� the su!cient stability criterion can be
extended to�

jij � a� b

b�� �
p�a� � b �

p�a ����	�
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Figure ��
� The geometry of the multiple feedback modulator from Example ��� for a � �
and b �

p�a�

For b �
p�a an interesting situation arises� the unstable manifolds of

the two �xed points become identical and the set P is thus the line segment
between the �xed points and P is identical to BL� Consequently� the chaotic
limit set L of the two dimensional system is embedded in a one dimensional
subspace and the dynamics of the system can thus asymptotically be described
by a one dimensional map� This phenomenon is also re'ected by the feedback
transfer function H�z� from Eq� �������

H�z� �
z��

�
�� ��� b�z��

�
��� �� �

p�a�z������ ���p�a�z��� ������

which shows that a real pole at ��p�a and a real zero at �� b are cancelling
for b �

p�a� i�e�� the system is a �rst order modulator embedded in a second�
order system� The same situation occurs for b � �p�a� but in this case� the
resulting non�chaotic �rst order modulator is unstable due to the embedding
into a diverging state�space�

The geometry of the system is shown for b �
p�a in Fig� ��
% the set P is

two�dimensional again� For this case and for positive input� the point C must
not cross the unstable manifold of x�� in order to meet the su!cient stability
criterion� Using the symmetry� Eq� ������ and an equation for the unstable
manifold of x�� the criterion becomes�

h
�p�a �

i � �
x��c

�
� b���jij	p�a � � �

�
��
p�a

�
b���jij	p�a � �� b�� � jij��p�a

�
� b���jij	p�a � � �

jij � ��b��
����

p�a � b �
p�a

������
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The su!cient stability criteria of Eq� ����	� and Eq� ������ indicate the
maximum stable constant input amplitude as a function of the modulator
parameters a and b� Numerical stability analysis will validate these criteria in
Example ���� and it will appear that the criteria can be somewhat pessimistic
for some parameter values� An improved stability criterion for b �

p�a has
been made in �	��� This criterion is based on a more detailed �and complex�
geometric analysis �

This example allowed an analytical study primarily due to the fact that the eigenvalues
were both real and one was inside the unit circle� This kind of stability analysis is very
di!cult to perform on general high�order modulators� Even the general second�order mod�
ulator with complex poles is virtually impossible to analyze� The traditional double�loop
modulator �i�e�� a second�order modulator with two poles at z � �� has been investigated
intensively and rigorous stability criteria have been made ���� ��� �	��

��	 Reverse Time Simulation

When all eigenvalues are complex and outside the unit circle� the analysis gets extremely
complex� The basins of attraction shown in Fig� ��� and ��� correspond to modulators of
this category and the basins of attraction have indeed a very complex structure� A closer
analysis shows that the basin boundaries contain a large number of limit cycles and seem
to be fractal� This fact indicates that an unstable chaotic limit set or repeller exists on
�BL simultaneously with the stable chaotic limit set L�

Normally it is almost impossible to locate a chaotic repeller numerically% however� in
this particular case a reversal of the time axis can solve the problem� When a system
with all eigenvalues outside the unit circle is iterated in reverse time� all limit cycles
become attracting� As mentioned in Ch� �� the map of a ��� modulator is noninvertible
in a certain region U where two solutions exist� Consequently� reverse time simulation is
generally a traversal of a binary tree where each time step is a node with a corresponding
point in the state�space�

When a node is in U � there will be two branches from the node corresponding to the
two inverse map solutions� Every node in the tree corresponds thus to points in state�space
which ends on the initial node in forward time� Some of the branches in the tree can be
the beginning of a path which never enters U � i�e�� there is only one branch on each of the
succeeding nodes� These paths are attracted to a limit cycle which is fully outside U � For
some modulators� there are no such limit cycles and almost every branch will sooner or
later lead to a node in U with two branches again leading to nodes in U � In these cases
a chaotic repeller exists which is attracting in reverse time� Consequently� when a path
in the tree� which repeatedly enters U � is followed� the state�space points corresponding
to the nodes of the path will get closer and closer to the repeller� Picking the branches
randomly� the entire repeller can be sampled and plotted graphically� Empirically� this
procedure has proven to work irrespectively of the initial point �i�e�� the initial node�� This
seems to indicate that the forward time system can reach any point in the state�space using
initial conditions arbitrarily close to the repeller�

Example ��� Fig� ���� demonstrates an example of reverse time simulation
using random branches of the stable modulator used for Fig� ��� �i�e�� feedback
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Figure ����� Reverse time simulation revealing the chaotic repeller of a stable modulator
cf� Eq� ���	� with h� � �� and h� � ���	� Compare the plot to Fig� ����

�lter cf� Eq� ���	� with h� � �� and h� � ���	�� A total of ������ points are
plotted revealing a very complicated fractal set which �ts the boundary of BL

shown in Fig� ���% however� this time reverse plot shows much more details �

A chaotic repeller is normally not observable since only orbits with initial conditions
exactly on the repeller itself will follow the repeller� Orbits starting close to the repeller
will either escape to in�nity or be attracted to possible stable limit sets� In the former
example the repeller lives on the boundary of the basin of attraction for a stable chaotic
limit set� i�e�� points close to the repeller are either escaping or being attracted to the
stable chaotic limit set� The repulsion from the boundary repeller is forming a kind of
�embankment� around the stable limit set which keeps the stable limit set together� points
on the inner side of the embankment stays inside and points on the outside are escaping�
Whereas �BL is simple in a one�dimensional system �see Example ����� the geometry gets
more and more complex for higher order systems�

The degree on instability of a repeller on �BL can� as for other unstable limit sets� be
quanti�ed� i�e�� an escape rate can be found�

Example ��	 The escape rate of the repeller shown in Fig� ���� can be mea�
sured by simulations when a suitable bounding set W is de�ned� Let W be
the set of state�space points satisfying �� � je�n�j � ��  �� � je�n� ��j � ���
The stable chaotic limit set is almost fully outside this set while the repeller
in fully inside �see also Fig� ����� The survival probability P �k� was measured
versus the iteration number k using simulations with random initial conditions
and the result was plotted in Fig� ����� The graph shows an almost straight
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Figure ����� Reverse time simulation revealing the chaotic repeller of an unstable modu�
lator cf� Eq� ���	� with h� � �� and h� � ����

line with a slope corresponding to an escape rate of ����	 equivalent to a mean
survival time of approx� � time steps� This is indeed a very unstable repeller
�

As demonstrated previously� the modulator cf� Eq� ���	� becomes unstable when h� is
lowered to approx� ���� for h� � ��� At this point� the stable chaotic limit set L collides
with the boundary of the basin of attraction which contains a chaotic repeller� During
this collision� the chaotic repeller absorbs the formerly stable chaotic limit set leaving only
a chaotic repeller� This repeller can again be seen using reverse time simulation for this
type of collision between a stable and unstable chaotic limit set�

Example ��
 Fig� ���� shows a reverse time simulation of the unstable mod�
ulator cf� Eq� ���	� with h� � �� and h� � ���� The plot reveals the chaotic
repeller �

It is only a subset of the ��� modulators which has a chaotic repeller living at the
boundary of the basin of attraction� For some parameter values� a reverse time simulation
using random branches is always attracted to a dominating limit cycle with no points in
the noninvertible region U �such limit cycles will trap the system in reverse time�� In
principle� a reverse time simulation can get arbitrarily close to any limit cycle� if certain
branches are deliberately used� However� when random branches are used� the reverse time
system will asymptotically be trapped by a limit cycle totally outside U or be attracted to
a chaotic repeller consisting of in�nitely many limit cycles with orbits entering U � In fact�
simulations seem to indicate that the asymptotic behavior of the reverse time system using
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Figure ����� Survival probability P �k� vs� iteration number k for the chaotic repeller on
�BL for the modulator cf� Eq� ���	� with h� � �� and h� � ���	� The plot indicates an
escape rate � � ����	�

random branches often is independent of the initial condition� In this case� the reverse
time system is attracted to points which by means of an arbitrarily small perturbation
can hit any place in the entire state�space in forward time� Such points must obviously
belong to �BL�

Typically� a modulator has a dominating limit cycle outside U corresponding to a
periodic output signal having p positive codes followed by p negative codes which is called
a �p� p� limit cycle� Imagine that the modulator also has a �p� �� p� �� limit cycle with
an orbit entering U � The �p� �� p� �� limit cycle cannot attract the reverse time system
unless certain branches a used for each time step% hence� when random branches are used�
it is almost certain that the system is trapped by the �p� p� limit cycle� In some situations�
the modulator parameters can be perturbed such that both the orbits of the dominant
�p� p� limit cycle and the �p� �� p� �� limit cycle enter U at the same time� and at this
point� a chaotic repeller might arise� This can be explained as follows� when the �p� p� cycle
is followed in reverse time� a �p� p� �� code segment might be generated when a �wrong�
branch is used at a point in U � When the system later enters U again� two branches can
be taken� The result is that the reverse time system repeatedly enters U and will produce
a random output code sequence composed of the four segments �p� p�� �p� p���� �p��� p�
and �p� �� p� ��� The reverse time system is no longer attracted to a single limit cycle
but to a chaotic limit set or repeller which consists of in�nitely many �hybrid� limit cycles
composed of the previously mentioned four segments�

Large parts of the stable and chaotic parameter space for the second order modulator
cf� Eq� ���	� show a diversity of beautiful chaotic repellers coexisting with the stable
�forward� chaotic limit set�
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Figure ����� Basin of attraction and limit set for the modulator cf� Eq� ����� with zero
input and b � ���	�

Example ��� Consider the modulator with feedback �lter

H�z� �
z�� � bz��

�� ��
	z�� � ���z��
�����

with complex poles outside the unit circle� For b � ���	 and zero input the
system is stable and has �p� p� limit cycles for p � �� �� �� �� 	� �� Only the ��� ��
limit cycle is totally outside U � This can be observed from the corresponding
periodic quantizer input signal e�n� which is the repeated sequence h�� ��� 	�	
	�� ��� �� ��� ���� �	�	 �	�� ���� ���i� Recall from Eq� ����
� that modulator
states with quantizer input satisfying jej � ��H�z � �� are in the set V which
is mapped into U � Consequently� the ��� �� limit cycle does not enter U since
min�je�n�j� � ��H�z � �� � �b���� � ��� and the reverse time system is thus
asymptotically attracted to this limit cycle� All the other �p� p� limit cycles
enter U � Fig� ���� shows the basin of attraction for the modulator including
the stable �forward� limit set� As expected� the ��� �� limit cycle is on the
boundary of BL which forms a spiral around all the points on the limit cycle�
Fig� ���� is a magni�ed plot around one of the points on the limit cycle and
this plot shows clearly that BL seems to spiral in�nitely many times around
the centers�

A ����� limit cycle arises when b is increased to ��	� This limit cycle enters
U and the system is thus still attracted to the ����� limit cycle in reverse time�
Fig� ���	 shows the basin of attraction and the limit set for b � ��	� Notice
that the spirals around the ����� limit cycle are preserved but the shape of
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Figure ����� Magni�ed plot of the basin of attraction shown in Fig� ���� The center of the
spiral is a point on the ��� �� limit cycle�

BL has become more complicated than for b � ���	� This is probably due the
onset of the ����� limit cycle outside BL which is plotted with circles�

When b is increased to ��	�� both the ��� �� and the ��� �� limit cycles enter
U which indicates the presence of a chaotic repeller on �BL� This is indeed
con�rmed by Fig� ���� which is a plot of a reverse time simulation revealing
a complex fractal set located in the space �between� the ��� �� and ��� �� limit
cycles which are shown with circles and crosses� Orbits close to this repeller
will produce an output code composed of the segments ��� ��� ��� �� ��� �� and
��� ���

Around b � ��	 the ��� �� limit cycle is totally outside U and the chaotic
repeller disappears� Now the reverse time system is attracted to the ��� �� limit
cycle�

The bifurcations of the �p� p� limit cycles can be observed in Fig� ����
which shows the minimum quantizer input magnitudes as a function of b� The
straight dashed line shows the V �interval limit at ��H�z � �� � �b����� The
plot shows clearly the succession of dominant �p� p� limit cycles outside U and
the windows for which there exist a chaotic repeller when no �p� p� limit cycle
is outside U � Many of the conclusions drawn from this example can be seen
from the bifurcation diagram� the small window with a chaotic repeller around
b � ��	� �Fig� ����� surrounded by regions where either the ��� �� or the ��� ��
limit cycle is outside U and on �BL�

The very nice basin of attraction seen for b � ���	 is at a region where the
dominant ��� �� limit cycle is peaking while no other limit cycles are outside
U � At slightly lower b values� both the �	� 	� and ��� �� limit cycles are outside
U and this situation will be analyzed in detail later in Example ��
� Fig� ����
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Figure ���	� Basin of attraction and limit set for the modulator cf� Eq� ����� with zero
input and b � ��	� The ��� �� limit cycle is plotted with circles�
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Figure ����� Reverse time simulation of the modulator cf� Eq� ����� with zero input and
b � ��	�� The ����� and ����� limit cycles are plotted with crosses and circles� respectively�
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Figure ����� Minimum quantizer input magnitudes of a number of �p� p� limit cycles for
the second order modulator of Eq� ����� as a function of b� Magnitudes under the dashed
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Figure ���� Chaotic repeller obtained by reverse time simulation for the modulator cf�
Eq� ����� with zero input and b � ����
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also predicts the existence of a window with a chaotic repeller for b between
approx� ���	 and ��
 which is con�rmed by simulations� Later for b between
approx� ��� and ��� there is another window with a chaotic repeller and for
b � ��� a very interesting repeller can be observed in Fig� ��� using reverse
time simulation� The repeller forms an almost smooth one dimensional curve
with an elliptical shape� This is probably due to the fact that the ��� �� limit
cycle disappears for b � ��� and no �p� p� limit cycles at all exist until a �
� 
�
limit cycle appears at approx� b � ���	�

For zero input and b � �� two �xed points e�� and e�� emerge� They can be
located using the feedback transfer function of Eq� ����� evaluated at z � ��

�sgn�e��H�z � �� � e� �
e� � � b��

���
 � b � � ����
�

These �xed points are outside V and U for�

b��
���
 �

�b
��� �

b � ����	 ������

At b � ����	 there is also a �
� 
� limit cycle outside U thus giving a total of
three limit sets which all can be trapping in reverse time� However� simulations
have shown that only for initial conditions in a small neighborhood� the �xed
points can be reached in reverse time so the �
� 
� limit cycle will dominate
the shape of BL� i�e�� the limit cycle is on �BL� To be exact� the �xed points
will also be on �BL if they do not belong to the forward chaotic limit set L�
but in that case the �xed points are fully surrounded by BL� i�e�� a deleted
neighborhood of each �xed point exists which is contained in BL� In fact
simulations show that the �xed points outside U are not included in L and
it seems to be a general fact that L is strictly composed of limit cycles �and
�xed points� which enter U � Fig� ���
 shows L and BL for b � ��� where a
chaotic repeller coexists with the �xed points at e� � ��������	 � ���� which
seem to �blow holes� in L� Between b � �� and b � � the system has one
dominant ���� ��� limit cycle outside U and for b � � a region with a chaotic
repeller starts� When b exceeds approx� ��� the system becomes unstable and
reverse time simulations using random branches are asymptotically trapped by
the �xed points outside U after a chaotic transient �

When a forward orbit of a modulator shows long code segments which correspond to
orbits on �BL� it can be concluded that the forward limit set is very close to a collision
with �BL� The knowledge of the limit sets on �BL can thus be used to give early warnings
against instability�

��� Unreliable Modulators

The de�nition of the escape rate shows that instability is a matter of degrees% if � is
very small it is very unlikely that instability occurs for even long simulations� Since
the computational resources limit the maximum practical length of simulations� there
might exist unstable systems with very small escape rate which cannot with certainty be
classi�ed correctly as unstable by means of simulations� This is especially problematic for
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Figure ���
� Basin of attraction and limit set for the modulator cf� Eq� ����� with zero
input and b � ���� Notice the behavior of the limit set around the repelling �xed points
at e� � ��������	 � ���� �

systems which have an escape rate which changes slowly with parameter perturbations� if
the systems show a weak instability on the longest time scale simulations allow� it is not
certain that a perturbation normally improving stability� e�g�� reduction of the input signal
amplitude� will ensure stability� Such systems are loosely de�ned as being unreliable� On
the other hand� for a reliable modulator the escape rate increases fast when instability
occurs and stability can easily be assured by a slight perturbation in parameter space� If
the perturbation is in the wrong direction� the escape rate will increase signi�cantly and
a perturbation in the opposite direction can be used�

Example ��� Recall the second order modulator used in Example �� with
feedback transfer function given in Eq� ������ The bifurcation diagram in

Fig� ���� shows that a region exists for b � ��� where several �p� p� limit cycles
coexist outside U and several of these can be globally attracting in reverse
time� In this region BL is very complex and starts having �holes� due to the
fact that points on �BL emerges at places which formerly were inside BL�

The basin of attraction is shown in Fig� ���� for zero input and b � ���� and
the corresponding chaotic limit set is shown of Fig� ����� This is very clearly
an example of an unreliable modulator� the chaotic limit set is scattered about
and fully surrounded by holes in BL� A slight parameter perturbation may
cause a collision between L and one of the holes in BL resulting in a unstable
system� probably with a low escape rate�

The basin of attraction forms again spirals around a limit cycle% this time
the �	� 	� limit cycle which as expected is outside U � At the same time the
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Figure ����� Basin of attraction for the modulator cf� Eq� ����� with zero input and
b � �����
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Figure ����� Limit set for the modulator cf� Eq� ����� with zero input and b � �����
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Figure ����� Magni�ed plot of the basin of attraction for the modulator cf� Eq� �����
with zero input and b � ����� The center of the plot is a point on the ��� �� limit cycle�
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Figure ����� Magni�ed plot of the basin of attraction for the modulator cf� Eq� �����
with zero input and b � ����� The center of the plot is a point on the ��� �� limit cycle�
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limit cycles ��� ��� ��� �� and ��� �� exist and all of them are outside U as
well� However� the �	� 	� limit cycle has the highest minimum quantizer input
magnitude� A closer inspection of the magni�ed plots in Fig� ���� and Fig� ����
reveals that BL also forms internal spirals around the ��� �� and ��� �� limit
cycles and these internal spirals can explain the holes in BL� The ��� �� limit
cycle is totally outside BL indicating that this limit cycle can only be reached
in reverse time from outside BL� The strange BL set can thus be explained by
the coexistence of several limit cycles on �BL outside U which all are globally
attracting in a reverse time simulation using random branches �

The previous example showed clearly that stability analysis of second�order modulators
is generally very complicated� The next example validates a stability criterion derived in
Example ��� for a certain class of second�order modulators�

Example ���� The stability of a certain class of second�order modulators
with a real pole outside and inside the unit circle was investigated in Exam�
ple ���� It was possible to derive a su!cient stability criterion �Eq� ����	�
and Eq� ������� In order to validate the analysis� the parameter space �b� i�
was investigated by simulations for a � ����	� i�e�� b and i was sampled in
a uniform 	�� � 	�� grid for � � b � ��	 and � � i � �� For each point�
the modulator was simulated ��� times with random initial conditions� The
simulations was stopped when the stable manifolds were crossed �i�e�� when
the system escaped� or when a maximum of ���� iterations was elapsed� For
each parameter set� the average iteration number was determined and the re�
sult is shown in Fig� ���� using a gray scale� The criteria of Eq� ����	� and
Eq� ������ are shown as black curves� Eq� ����	� is very accurate and the onset
of stability for

p
b � �a is very sudden� For

p
b � �a� the Eq� ������ criterion

is very conservative and the onset of instability is not so well de�ned� This is
clearly a more unreliable region� For b approaching unity� the plot is rippling
for increasing input i� i�e�� there are unstable �ridges� with stable �valleys� in
between� When a valley is followed� the mean survival time is only increasing
slowly �

��� Nonchaotic Modulators

When the modulator is nonchaotic� allmost all limit cycles are attracting� i�e�� asymptoti�
cally stable ��	�� This means that after a transient the modulator will asymptotically end
on a limit cycle� regardless of the initial condition� Consequently� the basins of attraction
corresponding to all the limit cycles will induce a partitioning on the entire state�space�
The basin boundaries can be very complex and this gives rise to very long chaotic tran�
sients before the orbit is attracted to a limit cycle�

For high�order modulators �N � ��� some of the limit cycles may have extreme magni�
tudes and give poor signal�to�noise ratios� Consequently� when a modulator is attracted to
such a limit cycle� the modulator is practically unstable� Normally� it is easy to distinguish
limit cycles corresponding to stable and unstable modulator operation since limit cycles
with unstable operation have extreme maximum amplitudes� The state�space can thus
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Figure ����� A gray�scale plot of the mean survival time of the modulator of Example ���
with a � ����	� The white region has a mean survival time of a minimum of ����
time�steps� Darker regions have lower survival time�

naturally be partitioned into two disjoint sets BS and BU � i�e�� sets of points which are
attracted to �stable� and �unstable� limit cycles� respectively� This fact emphasizes that
the practical modulator stability concept must not be confused with the asymptotical
stability of limit sets� cf� De�nition ���� In fact� it is very di!cult to give an adequate
and comprehensive stability de�nition for nonchaotic modulators� This question will be
discussed later in chapter 	�

��� Summary

This chapter analyzed basins of attraction of chaotic modulators� The onset of instability
was characterized as a boundary crisis� i�e�� the chaotic limit set collides with the boundary
of the basin of attraction� After the collision� the chaotic attractor becomes an unstable
repeller� The degree of instability was quanti�ed through the de�nition of the escape�rate
which is the slope of the survival probability versus iteration number in lin�log plot� There
is always a positive probability that the system survives for arbitrarily long time% the closer
the initial condition is on the repeller� the longer the system survives�

Some �rst and second�order systems were investigated in detail� The di�erent examples
showed the complexity of the basin of attraction for chaotic second�order systems� In some
cases� a chaotic repeller is found on the boundary of the basin of attraction� The parameter
regions for which a boundary repeller existed could be predicted using limit cycle analysis�

The complexity of even second�order modulators shows how di!cult it is to derive a
comprehensive� general and not to conservative stability criterion� Only in a few special
cases of second�order modulators� it has been possible to derive analytical stability criteria�
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It was shown that the onset of instability can occur very di�erently� for some systems�
the escape rate only increases slowly for varying parameters� Such systems were called
unreliable because the existence of parameter regions with very low but positive escape
rate makes instability very di!cult to detect using simulations�
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Chapter �

Stability Analysis using Symbolic

Dynamics

��� Introduction

This chapter introduces a method for stability analysis based on studies of the unstable
limit cycles of a chaotic system� The basis for this analysis is the use of symbolic dynam�

ics� Symbolic dynamics has previously been used for analysis of the general �rst�order
modulator �	�
 and the use of symbolic dynamics for stability analysis was proposed by
the author of �	�
�

Recall from Sec� ��� that a chaotic limit set or attractor can be perceived as the union
of inde�nitely many unstable limit cycles i�e� the collection of limit cycles is the skeleton
of the attractor or repeller� The question is obviously� how can all these unstable limit
sets form a stable limit set� The use of symbolic dynamics can provide an answer to this
question and in addition the escape rate can be expressed analytically for some systems�

��� Symbolic Dynamics

In this chapter the precise state�space description of ��� modulators will be replaced by
the study of possible �i�e� admissible� binary output code sequences� This kind of analysis
is often referred to as symbolic dynamics �		 	�
� The basics of this approach has in
fact been outlined in Sec� ���� an initial condition in the state�space is mapped into an
in�nite sequence of binary symbols i�e� the output code sequence� Instead of analyzing
a modulator in the N �dimensional state�space the dynamics of the system is revealed by
the admissible binary output sequences� Using iterations of the system map F  an initial
condition x� is mapped into a sequence S�x�� � fs�� s�� s����g � � of binary symbols� The
mapping S��� has the property that�

S�F�x��� � ��S�x��� ���	�

where ���� is the shift map on the set of in�nite binary sequences ��

��fs�� s�� s����g� � fs�� s����g �����

This means that the shift map ���� is homeomorphic �i�e� topologically transitive� to the
system map F � The limit cycles of F thus correspond to periodic binary sequences of �����

�	
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The sequence mapping S��� does not generally map the state�space onto the entire set
� of binary sequences i�e� a modulator can normally only produce a subset of binary
sequences� Furthermore the mapping is not always one�to�one i�e� for some modulators
several initial conditions might produce the same binary sequence �this is the case for the
usual double�loop modulator with two poles at z � 	�� However in most cases when the
binary output sequence is known for an in�nite number of time steps it is possible to
uniquely reconstruct the actual state�space orbit producing the given code sequence� This
useful fact was employed in Section ��� to identify the possible limit cycles corresponding
to in�nite periodic code sequences�

��� Analytical Determination of the Escape Rate

Consider a dynamical system described by a map F and a state space S� When a bounding
set W is introduced the set �n of initial points surviving n time�steps is de�ned�

�n � fx � SjF l�x� � W for � � l � ng �����

The set �n of surviving initial points can naturally be partitioned into �disjoint� subsets
according to the �rst n� 	 symbols s���n of the binary sequences generated when starting
inside �n�

�n �

�n��
s��

�s����n �����

where �s����n designates the set of initial conditions x� giving an �n� 	��bit code sequence
s���n where s � S�x��� Hence the set union of Eq� ����� is formed over maximally ��n���

subsets� The structure of these subsets can be investigated recursively� First the bounding
set W is split into two halves according to the code produced�

W� � W
�

S�

W� � W
�

S� �����

where S� and S� cf� Eq� ���	�� are the regions of state�space giving positive and negative
output codes respectively�

The �s����n subsets can then be found from the recursion�

�s�n��n � Wsn

�s�n�l��n � F��
sn�l

��s�n�l����n�
�
Wsl �����

where the notation sl means the l�th symbol of the binary sequence s� sl used as index
distinguishes between W� and W� and between F� and F�� For each step of the recursion
the code sequence corresponding to s is followed one symbol backwards� The resulting
subsets �s�l��n will shrink in volume as l increases for two reasons� the inverse maps F��

�

and F��
� might be contracting in some directions and everything outside either the W� or

W� sets is cut away for each iteration� For some code sequences this may result in empty
subsets i�e� the code sequence s���n is not admissible�

If the system has eigenvalues inside the unit circle the inverse maps are expanding in
some directions but the repeated bounding by W� or W� limits the possible expansion�
Consequently it is the eigenvalues �p outside the unit circle and the repeated intersection
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with the W� and W� sets which determine the volume shrinking� Recall that a modulator
with eigenvalues �i�e� feedback �lter poles� outside the unit circle is chaotic�

The recursion cf� Eq� ����� is not practical for stability analysis� Instead of using an
explicit expression of the volume of �n it is assumed that the exponential volume shrinking
due to the eigenvalues will dominate asymptotically �	�
 and consequently that for each
iteration the average volumes of the subsets are reduced by a factor

� �
Y

j�pj��

j�pj �����

where �p are the eigenvalues of the modulator�
From the de�nition of the escape rate Eq� ����� it is expected that the volume �n of

the survivors �n is exponentially decreasing with n� Using the partitioning cf� Eq� �����
one arrives at�

�n �

�n�X
s��

�s����n � ��e
��n �����

where �s����n is the state�space volume of the subset �s����n�
This expression can be simpli�ed by approximating the volumes �s����n by 	��n�

�n � 	

n
�n

� ��e
��n �����

where 
n is the number of non�empty subsets �s����n 	 is an unknown scaling factor and
� is the escape rate�

Eq� ����� shows that as n increases the growth of the number of non�empty subsets
�s����n must counterbalance the growth of �n for a stable system� If �n grows faster
than 
n the volume of survivors will decrease asymptotically i�e� the system is unstable�
According to the de�nition of the escape rate the decrease in the volume of survivors is
expected to be exponential� Consequently Eq� ����� can provide an analytical expression
for the escape rate ��

Example ��� Consider the �rst order modulator discussed in Example ��	
with zero input�

en�� � F�en� � aen � sgn�en� � a � 	 ���	��

It was previously established that this modulator is unstable for zero input
when a � �� Especially for a � � it is observed that both the unit intervals

�	� and 
�	�� are mapped on the interval 
�		�� This means that both values
of the succeeding output code of the system can be generated irrespectively
of the current code i�e� there are four intervals of initial points giving the
four code sequences ���� ��	� �	�� and �		�� Similarly eight intervals exist
giving every of the eight binary sequences of length three� As a result any code
sequence can be generated by choosing a proper initial point in the interval

�		� and consequently any limit cycle exists� This property is preserved when
a � �� This fact is su�cient to prove that the modulator is chaotic according
to the mathematical de�nition of chaos ��� 	�
� The reason is that the shift
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map ���� of Eq� ����� is chaotic on � i�e� the entire set of binary symbol
sequences�

Since the F map is expanding by a factor � � a it is expected that the
average length of the subset �s����n�� giving a bounded orbit and a particular
code sequence s���n is proportional to 	�an and by summing over the �n possible
code sequences with length n one gets�

�n �

�n�X
s

�i � 	
�n

an
� 	e�n ln�a��� ���		�

where 	 is an unknown scaling factor�
The equation shows that the escape rate is � � ln�a���� For a near � the

approximation � � a��� 	 can be used �

Example ��	 allowed an analytical expression for the escape rate due the fact that
every possible limit cycle exists� This is indeed not a general property of ��� modulators�
normally only a fraction of the possible periodic code sequences exist as limit cycles� The
problem is thus to estimate the number �n of non�empty subsets �s����n as a function of
the iteration number n�

A modulator is unstable if 
n grows slower than �n or equivalently� the growth of 
n
must outweigh the growth of �n for a stable system� The question about the stability of
a modulator is now turned into a matter of counting admissible sequences and as it will
appear this is almost the same as counting limit cycles�

Some of the �s����n subsets have binary sequences which exist as limit cycles of length
n and the corresponding point on the limit cycle will be contained in the subset� Other
subsets have binary sequences which are parts of limit cycles with length larger than n

and some of the subsets have binary sequences which do not exist as limit cycles� The
subsets are centered around points which after a number of iterations hit the chaotic limit
set on a point of a limit cycle entering the noninvertible region i�e� the centers are points
that eventually become periodic� Finally some subsets are empty i�e� these subsets have
sequences which are not admissible and therefore do not exist as limit cycles�

It is expected that the growth of the number 
n of admissible binary sequences s���n is
proportional to the growth of the number ln of period n points due to the close relationship
between the �s����n subsets and the limit cycles of the system�

The limit cycles of an unstable chaotic system is the skeleton of the chaotic limit set
i�e� the limit cycles up to a certain length n is a kind of approximation to the usually very
complex limit set �	�
� As n increases the approximation gets better and more detailed�

Example ��� The limit cycles of the �rst order modulator from Example ��	
reveals the unstable chaotic limit set L for a � �� Fig� ��	 shows the limit
cycles up to length 	� plotted for a � ��� where e�k� is plotted as a function
of e�k � 	�� Hence every plotted point is on the graph for the F map which
schematically is shown in Fig� ��	� The limit set L is fractal and is a so�called
Cantor set� Recall from Example ��	 that points outside the interval between
the �xed points at e� � ��

a�� � ����� iterates towards in�nity� As an initial
approximation the surviving points must be in this interval� however in the
middle of this interval there is another interval of points which are mapped
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Figure ��	� Limit cycles of period up to 	� for the modulator cf� Eq� ���	�� with a � ����

outside the �xed points� The next approximation to the set of surviving points
is to delete the middle interval leaving two intervals which survive one iteration�
Continuing this procedure the intervals are split into two intervals while a
middle interval is deleted� Every time the same fractions of the intervals are
deleted� The �nal result is a Cantor set which can be approximated by the
set of periodic points up to a suitable length� See also �	�
 for a limit cycle
analysis of the chaotic �rst order modulator �

��� Counting Limit Cycles

The number ln is the number of the �n periodic sequences of length n which exist as
limit cycles� At �rst hand it seems necessary to test every �n for existence� Recall from
Sec� ��� that the modulator loop is cut open and the periodic steady�state quantizer input
is determined for each periodic binary sequence� The corresponding limit cycle exists
if the quantization of the quantizer input matches the binary sequence� This makes it
obviously unnecessary to test cyclic shifts of a given binary sequence since the result is
the same� Furthermore if a binary sequence has a prime period which is lower than n
the corresponding limit cycle retraces itself several times and has fewer than n distinct
points� The limit cycle investigations can thus be restricted to a number of so�called prime

cycles� A prime cycle of period n is a binary periodic sequence with prime period n in
addition cyclic shifts of a prime cycle are equivalent� If a period n prime cycle exist as
limit cycle it will consist of n distinct points� Both the �xed points 	 and � are prime
cycles of length one� The only prime cycle of length two is 	� � �	 since the cycles 		 and
�� are repetitions of the two prime cycles of length one� Let pk be the number of prime
cycles with length k� The total number of binary sequences with period n is �n which



�� CHAPTER �� STABILITY ANALYSIS USING SYMBOLIC DYNAMICS

k 	 � � � � � � � � 	� 		 	� 	� 	� 	� 	�

pk � 	 � � � � 	� �� �� �� 	�� ��� ��� 		�	 �	�� ����

Table ��	� The number pk of prime cycles of length k for k � 	��	�

k 	 � � � � � � � � 	� 		 	� 	� 	� 	� 	�

pk � 	 � 	 � � � � � � � 	� �� �� �� �	

Table ���� The number pk of existing prime cycles of length k for k � 	��	� for the
modulator cf� Eq� ����� with zero input and h� � ��� h� � �	���

must equal the sum of kpk for every divisor k in n�

�n �
X
k�n

kpk ���	��

From this equation pk can be found recursively� Only the prime cycles with period k � n
has to be examined and this reduces the computational burden signi�cantly� Table ��	
shows pk for k � 	��	�� If all periodic points with period e�g� 	� have to be found only
p�� � p� � p� � p� � 	�� prime cycles have to be tested� The brute force method requires
��� � p� � �p� � �p� � 	�p�� � 	��� limit cycles to be tested�

Example ��� Recall the chaotic second order modulator cf� Eq� ����� with
h� � ��� and h� � �	��� It is easily shown that the product of the pole moduli
is equal to jh�j� Consequently � � jh�j for jh�j � 	�

The prime cycles up to length 	� was tested for existence for the system
with zero input� Table ��� shows the number of prime cycles found�

The number ln of period n points is given as�

ln �
X
k�n

kpk ���	��

where pk are the existing prime cycles of length k�
Fig� ��� shows ln plotted versus n on semilog� scale for the second order

modulator example� The dotted line shows the function �n where � � jh�j �
	��� It is seen that ln approximately follows this exponential growth�

Fig� ��� shows every periodic point found with period n up to 	�� Compare
the plot to Fig� ��� and Fig� ��	�� The structure of the stable limit set L as well
as the unstable repeller on the boundary of the basin of attraction BL can
easily be recognized� The set of periodic points can be partitioned into points
on L and BL� The number of periodic points on BL is obviously growing
much slower than �n since these limit cycles form an unstable repeller �see
also Example ��� for the escape rate�� This means that the number of periodic
points in L will dominate asymptotically when the total number of periodic
points is estimated �
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Figure ���� Number of periodic points ln with period up to 	� versus the period length n

for the modulator cf� Eq� ����� with with h� � ��� h� � �	�� and zero input� The dashed
line corresponds to the function �n � jh�jn�
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Figure ���� Limit cycles with period up to 	� for the modulator cf� Eq� ����� with h� � ���
h� � �	�� and zero input�
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Figure ���� Reverse time simulation of the system cf� Eq� ���	�� with zero input�

Example ��� The �rst order system from Example ��	 was an example of
a system which has every of the maximal �n period n points� A necessary
condition for this property is that the expansion factor � � a must be greater
than two� This example shall demonstrate that there also exists second order
modulators with every limit cycle existing� Recall the system from Example ���
with a H�z� given by�

H�z� �
h�z

�� � h�z
��

	� h�z�� � h�z��
���	��

where h� � ��� was used� When h� is decreased below approx� ���� every limit
cycle exists� This can be veri�ed e�ciently by testing prime cycles alone up to
a suitable length� For h� � ���� the system has every prime cycle at least up
to n � 	� i�e� every of the prime cycles corresponding to Table ��	�

Recall that the previously described reverse time simulation technique �see
Sec� ���� can be used to approximate the limit set of an unstable chaotic
system� This technique is usually much faster than �nding and plotting every
prime cycle� If the limit set found by reverse time simulation is fully inside
the noninvertible region U  each reverse time step has two possible branches
re�ecting the fact that every code sequence is possible or equivalently that
every limit cycle exists� Recall also that if the quantizer input ful�lls je�k�j �
��H�z � �� � � for every k then the orbit will be inside U � Consequently
the reverse time simulation technique can also be used to show that every limit
cycle exists� Fig� ��� shows a reverse time simulation for h� � ����� Observe
that e�k� has a magnitude less than � indicating that every limit cycle exists�
The plotted set has a very regular and self�similar Cantor structure�
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When every limit cycle exists the escape rate can be determined analyti�
cally cf� Eq� ������

� � ln����� � ln�jh�j��� ���	��

�

��� Considerations for Nonhyperbolic Modulators

So far only modulators with one or more poles outside the unit circle have been considered�
It was shown that the volume of the �s����n subsets are expected to shrink exponentially
with n� In this section nonhyperbolic modulators will be investigated� These modulators
have all feedback �lter poles on the unit circle�

The traditional second�order modulator has a double pole at z � 	 corresponding
to zero frequency� The corresponding feedback �lter is usually constructed as a cascade
of two discrete�time integrators� In order to investigate the stability of modulator limit
cycles a simple linear dynamical system is considered�

xk�� � Axk � whereA �

�
	 	
� 	

�
���	��

The system has a multitude of �xed points on a line in the eigenvector direction through
x � � i�e� � x� � 
� � A� x� � 
�� It is easily seen that the powers of A are gives as�

A
n �

�
	 n

� 	

�
���	��

Let W � fx � IR�jkxk� � 	g be a bounding set i�e� both coordinates must have a
magnitude less than unity� The set �n cf� Eq� ����� of points giving bounded orbits for n
iterations are then given by�

�n � f� x� x� 
� � IR� j jx�j � 	 	 jx� � nx�j � 	g ���	��

This set is shown schematically in Fig� ��� for n � 	� It is observed that the area of �n is
proportional to 	�n i�e� �n is shrinking for increasing n� It can be concluded that every
�xed point x� is unstable since no open neighborhood of points asymptotically attracted
to the �xed point exists�

Second�order ��� modulators sharing the transition matrix A of Eq� ���	�� have also
the same stability properties as the simpli�ed system cf� Eq� ���	��� Each periodic bi�
nary sequence will either not exist as a limit cycle or exist as a multitude of limit cycles
in state�space with periodic points on whole line segments in the eigenvector direction�
Around each  periodic line segment� corresponding to the sequence s the subset �s����n
will approximately look like �n in Fig� ���� Consequently every limit cycle is unstable
and furthermore there is sensitivity to initial conditions� perturbations which are not in
the eigenvector direction will grow linearly with time and eventually change the output
code generated� It is also expected that the volume of �s����n �i�e� the area in ��dim�� is
proportional to 	�n� In order to be stable the modulator must thus have a number ln of
period n points which at least is growing proportional to n�

Generally it is expected that Nth order modulators with N coincident poles at z � 	
has a number of periodic points that increases as nN���
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Figure ���� The hatched area is the set of survivors �n for the nonhyperbolic system cf�
Eq� ���	��

This special class of modulators has thus two of the three conditions for being chaotic�
sensitivity to initial conditions and a large and dense set of periodic points� However
the state�space divergence is linear and not exponential as for modulators with one or
more poles outside the unit circle� Furthermore simulations show that typical orbits with
constant �zero� input will not  �ll out� a whole limit set but will follow one or a few limit
cycles� Only if the system is perturbed by some small amplitude input noise the orbits will
reveal a limit set that looks like the union of the periodic points ���
� To be more speci�c
the second�order modulator is not topologically transitive� Consequently the second order
modulator with double poles at z � 	 cannot be characterized as being chaotic�

Modulators with distinct poles on the unit circle have limit cycles which are not re�
pelling and nor attracting� A linear dynamical second�order system similar to Eq� ���	��
with distinct unit circle poles �i�e� eigenvalues� have orbits which are lying on closed el�
lipses� Hence the �n�sets have asymptotically constant volume� It is therefore expected
that the number of periodic points is asymptotically constant for modulators with distinct
unit circle poles�

��� Summary

The stability of ��� modulators was investigated using an analysis of the binary output
code� the set of surviving initial conditions was partitioned according to the code sequence
produced� The volume of each of the partitions was investigated using the eigenvalues of
the system� For chaotic modulators the conclusion was that the number of periodic points
for a stable system must grow as fast as �n where n is the period length and � is the
expansion factor i�e� the product of pole moduli greater than unity� If the number of
periodic points grows slower the system is unstable� This fact enabled the escape�rate �
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to be derived analytically for some systems�
The traditional double�loop modulator with a double pole at z � 	 was shown to

have a linear volume expansion and it was argued that this modulator is not chaotic� For
systems with distinct poles on the unit circle the system map is asymptotically volume
preserving and such systems are expected to have an asymptotically constant number of
periodic points�

The presented framework for stability analysis thus explains why chaotic systems can
produce more complex output code patterns due to the larger number of limit cycles�
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Chapter �

The Stability of Non�chaotic

Modulators

��� Introduction

As described in Sec� ��	 the the stability properties for non�chaotic modulators is somewhat
di!erent than for chaotic modulators� Recall that the limit cycles are attracting when
every eigenvalue is inside the unit circle� Consequently the system cannot be unbounded
but will asymptotically end on a limit cycle which depends on the initial conditions�
For modulators with orders higher than two and poles close to but inside the unit circle
there is an amplitude gap separating two categories of limit cycles�  stable� limit cycles
with small amplitude and  unstable� limit cycles with high amplitude oscillating at a low
frequency� The latter have very poor encoding properties i�e� the output code is a bad
approximation to the input signal� Furthermore these  unstable� limit cycles are usually
of the type �r� s� i�e� r positive symbols followed by s negative symbols� The entire
state�space can be split into the two disjoint sets BS and BU corresponding to points
which are attracted asymptotically to  stable� and  unstable� limit cycles respectively�
The designations granular cycles and overload cycles will be used henceforward in order
to avoid confusion with the usual limit cycle stability concept�

The amplitude of the overload cycles has been predicted using a describing function
approximation in ���
� As a rule of thumb the amplitudes of the overload cycles become
in�nite as the the poles approaches the unit circle� It has been suggested in ���
 that the
stability problem should be remedied by reducing the pole moduli in order to reduce the
amplitude of the overload cycles to an acceptable level� However this approach reduces
the signal�to�noise ratio ���
�

��� Third Order Examples

Throughout the rest of this chapter a certain class of third order modulators will be
investigated by simulations� The feedback �lter poles of this class are �xed and have all
moduli equal to ������ The zeros constitute a complex pair with moduli given by the
parameter m and zero frequency at the parameter v�

H�z� �
z���	�mejv	z����	�me�jv	z���

�	� �����z����	� �����e���	�jz����	� �����e����	�jz���
���	�

��
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Figure ��	� Transient leading to an overload cycle for the modulator cf� Eq� ���	� with
m � ��� v � ���� and constant input ���� Quantizer input e�k� is plotted versus k

Modulators with this type of feedback �lter will be studied with constant input� The two
categories of limit cycles can easily be distinguished since the overload cycles for these
modulators have usually quantizer input magnitudes exceeding 	�� while the magnitudes
for granular cycles rarely exceeds ��

One common feature of high�order non�chaotic modulators seems to be the existence
of very long transients before the system decides which limit cycle to be attracted to�
Especially the transients ending on overload cycles are very interesting� the system may
operate normally with tight bounds on the quantizer input for many hundreds of time
steps until it suddenly blows up an ends on an overload cycle� This kind of behavior is
very similar to the behavior of unstable chaotic modulators�

Example ��� An example of a long transient is shown in Fig� ��	 and Fig� ���
� The parameters are m � ��� and v � ���� cf� Eq� ���	�� A constant input
of ��� was used� The initial conditions for this example were selected from a
large number of simulations with random initial conditions �

The existence of long transients which suddenly blows up could lead to the assumption
that the system has an exponential decay of survivors similar to unstable chaotic modu�
lators� The next example will show that this is not true and that non�chaotic modulators
in fact are very complex to describe with regards to stability�
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Figure ���� The onset of an overload cycle for the modulator cf� Eq� ���	� with m � ���
v � ���� and constant input ���� The plot is the same as in Fig� ��	 but with di!erent
axes�
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Figure ���� Survival plot for the modulator cf� Eq� ���	� with m � ��� v � ���� and
constant input ����
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Figure ���� Example of a granular limit cycle�

Example ��� The modulator of Eq� ���	� with m � ��� v � ���� and input
��� was simulated with a large number of random initial conditions� The frac�
tion of orbits P �k� staying below a suitable bound is plotted versus the iteration
number k in Fig� ��� with linear scales� Asymptotically a large fraction �ap�
prox� ��"� of the initial conditions are attracted to granular limit cycles with
low amplitudes� An example of such limit cycle with period approximately
equal to ��� is shown in Fig� ����

The existence of long transients causes the P �k� curve of Fig� ��� to ap�
proach its asymptotic value very slowly� Transients leading to overload cycles
as long as ��� iterations can be found�

This example is quite strange� most of the initial conditions leads to  stable�
limit cycles while the rest causes the system to blow up after transients of
varying length�

The system is very sensitive to the input� for constant input ��� every
initial state is asymptotically attracted to overload cycles� The survival plot of
Fig� ��� shows the existence of very long transients� The P �k� curve seems to
approach zero almost linearly with the iteration number k� This fact indicates
that the transients are uniformly distributed in length up to a certain maximum
length which is approx� 	��� for this example� Furthermore the  stable� basin
of attraction BS has shrinked to zero volume indicating that only overload
cycles exist for constant input ��� �

��� modulators with feedback �lter poles close to z � 	 have a very high dc�gain� This
means that the mean value of the modulator input must be very close to the mean value
of the output code� Consequently a given limit cycle will only exist for a small interval of
constant inputs� For the extreme case where the feedback �lter has one or more poles at
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Figure ���� Survival plot for the modulator cf� Eq� ���	� with m � ��� v � ���� and
constant input ����

z � 	 the dc�gain is in�nite and a periodic binary sequence can only exist as a limit cycle
for a constant input equal to the mean value of the binary sequence�

A high dc�gain can thus explain the sudden change in stability for some critical values
of constant modulator input� some constant input values yield only few or no granular
 stable� limit cycles� The overload cycles are generally more robust due to their much
higher quantizer input amplitudes� a dc�shift of the quantizer input is less likely to change
the output code for overload cycles�

Example ��� The third order modulator used in the two preceding examples
�i�e� cf� Eq� ���	� with m � ��� and v � ����� was simulated with �	� con�
stant input values equally spaced between � and ���� For each input value
	��� simulations was performed with random initial conditions� a maximum
simulation length of ���� was used� Fig� ��� shows the length of the longest
unstable transient found for each input value and Fig� ��� shows the fraction of
initial conditions leading to granular cycles i�e� the fraction of survivors� The
plots show that the long unstable transients only exist for small intervals of
input� For most other input values the longest unstable transient has a length
of approx� �� time steps and this background level is observable up to high
input values� The �rst window with long transients is found for constant input
near ������� Later for inputs around ��		 a whole cluster of windows with
long transients is found� A �ner resolution of constant inputs would probably
reveal more details and even longer transients�

There is a clear correlation between longer transients and smaller fractions
of survivors� However long unstable transients means generally not that the
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Figure ���� Maximum length of unstable transients versus constant input for the third
order modulator cf� Eq� ���	� with m � ��� and v � �����

fraction of survivors become zero� This is only the case for some discrete input
values �

The modulator from the previous example has indeed a very complex behavior that
only reveals itself when when the constant input space is sampled with high resolution�
The presence of very long unstable transients indicates that the structure of the two basins
of attraction BS and BU are very complex and that these two sets might be  mixed� down
to small scales i�e� points from BU can be very close to the granular  stable� limit cycles�
This phenomenon is easily shown by simulation with constant input combined with a white
noise signal� the system blows up even for small noise amplitudes when the constant input
gives long transients for unperturbed input� small amplitude� An alternative explanation
to this observation is that there might always be an input value for which no granular
cycles exist in the immediate vicinity of input values showing long transients� The use of
input noise will then eventually  �nd� this critical input value which otherwise is hard to
�nd when the entire input range is sampled by simulations�

The modulator from the previous example is therefore very unreliable due the many
windows with long transients existing even for small constant inputs� Simulations with
sinusoidal input con�rms that instability arises even for small input amplitudes for this
modulator�

The concept of unreliable modulators seems therefore also to make sense for non�chaotic
modulators� The next example will show that a far more reliable system is obtained by
perturbing the parameters from the previous example slightly�
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Figure ���� The fraction of survivors �i�e� initial conditions leading to granular cycles� for
the modulator cf� Eq� ���	� with m � ��� v � �����
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Figure ���� Maximum length of unstable transients versus constant input for the third
order modulator cf� Eq� ���	� with m � ���� and v � �����
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Example ��� The feedback �lter zero moduli m as de�ned in Eq� ���	� can be
increased from ��� to ���� while the normalized zero frequency v is still equal
to ����� This perturbation enhances the stability of the third order modulator
signi�cantly� Fig� ��� shows the maximum transient length versus constant
input with the same simulation parameters as for the previous plots �i�e� �	�
dc�inputs with 	��� simulations up to length ������ The plot shows the same
background level of maximum transients of approx� �� iterations� The input
range up to ��� is almost free from windows with long transients� the maximum
transient is shorter than ��� time steps� This modulator is far more reliable
and useful for practical purposes �

��� Comparison with Chaotic Modulators

The previous section clearly demonstrated that the absence of chaos does not mean that
the dynamics of a ��� modulator becomes simpler to understand� The chaotic modulator
shows in fact much more regularity� it is either unstable or stable� Furthermore the escape
rate � quanti�es the degree of instability for an unstable system and this parameter tells
how often instability will occur in practice� The nonchaotic modulators in the previous
section showed that parameter values exist for which the majority of initial conditions are
attracted to granular low amplitude cycles while the rest are attracted to overload cycles
after very long transients� For these parameter values even small perturbations of the
input was enough to destabilize the system� Consequently nonchaotic modulators cannot
be classi�ed simply as either stable or unstable for given parameters�

Nonchaotic modulators with many constant input windows yielding long transients are
unreliable for practical purposes� it is very likely that a varying input signal eventually will
activate an overload cycle� Simulations have proven that high�order chaotic modulators
also may su!er from a similar kind of unreliability� the range of constant input values
may have many narrow windows where the modulator is slightly unstable i�e� the escape
rate is small but positive�

Example ��� The feedback �lter poles of Eq� ���	� was mirrored outside the
unit circle i�e� the reciprocal pole locations were used in order to get a chaotic
modulator� The maximum transient length versus constant input was found
and shown in Fig� ��� using exactly the same procedure as used for Example ���
and Example ��� i�e� �	� dc�inputs with 	��� simulations up to length �����
The parameter values m � ��� and v � ��		 were used�

The plot shows that there again is a characteristic background level of
transients with maximum length near ��� The �rst spike with long transients
is found for constant input near ���� and later near ��	� Several additional
spikes are found in the input range up to ��� where the background level
disappears and the curve approaches the maximum value of �����

This kind of maximum transient plot requires some interpretation in the
unstable chaotic case� It is expected that the transient length has an exponen�
tial probability distribution with parameter � when the initial conditions are
picked randomly� The plot shows thus the maximum value of a random variable
out of 	��� experiments with the same exponential distribution� The expected
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Figure ���� Maximum length of unstable transients versus constant input for the third
order modulator cf� Eq� ���	�� The poles are mirrored outside the unit circle in order to
get a chaotic system and the parameters m � ��� and v � ��		 were used�

maximum value will be small both for very small and very large escape rates�
The expected maximum value will thus have a maximum for medium escape
rates� This fact explains why the plot in Fig� ��� is declining for inputs above
��� and this is not because the modulator becomes more stable �

��� Summary

Nonchaotic ��� modulators will always be asymptotically attracted to limit cycles� High�
order modulators have both high amplitude overload cycles as well as low amplitude
granular cycles� The state�space can thus naturally be partitioned into two basins of
attraction corresponding to the two categories of limit cycles�

It was shown that nonchaotic modulators cannot be characterized simply as stable or
unstable and that very long unstable transients may exist for certain parameter values�
In addition both chaotic and nonchaotic high�order modulators with a high dc feedback
gain can be strongly unreliable� critical input values may exist for which the modulator
is practically unstable� This kind of behavior reveals it self when the state�space and the
constant input space is searched carefully for long unstable transients�
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Chapter �

Quasilinear Modeling

��� Introduction

This chapter is devoted to the use of linearized models of ��� modulators� This is in fact
the classical way to analyze such non�linear systems� The advantage of linearized analysis
is that the modulator performance �e�g� the in�band noise power� can be predicted fairly
accurately� The dynamical system description does not naturally provide such information�
Traditionally the linearized model has not been very useful for understanding instability
properties� However this chapter presents some extensions and new interpretations of the
commonly used linearized models which leads to a practically useful stability criterion�

The linearized analysis also o!ers a very simple and yet e�cient method for the design
of feedback �lters� This chapter reviews this method and uses the resulting �lters as
examples to demonstrate the accuracy of the linearized models�

��� Loop Analysis with Linearized Quantizer Model

The generic modulator of Fig� ��� contains a highly nonlinear circuit element i�e� the
one�bit quantizer or signum function� Fig� ��	 shows a generic ��� modulator where the
quantizer is replaced by a linear model i�e� the one�bit quantizer is modeled as a gain by
the factor K followed by the addition of a quantization noise source q�k�� The feedback
�lter H�z� must have at least one sample delay in order to give a realizable system� The

�
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Figure ��	� Generic ��� modulator with linearized quantizer model
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linearized quantizer modeling turns the highly nonlinear modulator into a linear system
with one output y�k� and two inputs i�e� the input signal x�k� and the quantization noise
q�k� which accounts for the nonlinear e!ect of the one�bit quantizer� Note that this model
is fully correct for any value of K # no approximations or assumptions have been made
so far� The problem is now that the quantization noise q�k� is unknown and depends on
both the choice of K the input signal and the initial conditions i�e it re�ects the possibly
chaotic non�linear dynamics of the system�

It is now possible to identify two transfer functions from the two inputs to the output
namely the signal transfer function STFK�z� and the noise transfer function NTFK�z� as
de�ned by the z�domain equation�

Y �z� � STFK�z�X�z� � NTFK�z�Q�z� ���	�

where Y �z� X�z� and Q�z� are the z�transforms of y�k� x�k� and q�k� respectively�
The K�indices indicate that the linearized transfer functions generally depends on K
interpreted as a parameter�

It can be derived from from Fig� ��	 that STFK�z� and NTFK�z� are given by�

STFK�z� �
K �G�z�

	 � K �H�z�
�����

NTFK�z� �
	

	 � K �H�z�
�����

These two transfer functions show that the input signal and the quantization noise are
shaped di!erently� Normally the feedback �lter H�z� is a low�pass �lter with large gain at
low frequencies� Eq� ����� shows that NTFK�z� consequently becomes a high�pass �lter
i�e� the quantization noise is suppressed for low frequencies due to the high low�frequency
loop gain� Eq� ����� and Eq� ����� show that STFK�z� can generally be chosen indepen�
dently of NTFK�z� by selecting G�z� appropriately� Recall from Sec� ��� that G�z� � H�z�
for the traditional modulator� Consequently STFK�z� � 	 for low frequencies in this case�

In many papers describing linearized modulator analysis the quantizer gain is �xed to
unity �� �
� A consequence of this simpli�cation is that the NTF changes as the feedback
�lter is scaled whereas the real modulator is invariant to such scaling cf� Sec� ���� The
use of a quantizer model with a variable quantizer gain enables a feedback �lter scaling
to be compensated by a reciprocal scaling of the quantizer gain such that the overall
invariance of the NTF is maintained� This fact is one of the most important motivations
for using a quantizer model with variable gain� The use of such models was introduced in
�	 � �� �� ��


The noise transfer function has a fundamental property� the leading term ntf��� of
the associated impulse response is unity as a consequence of the one sample delay of the
feedback �lter� This implies that the average logarithm of the magnitude characteristic
must be zero or positive according to the following theorem ���
�

Theorem ��� 	Gerzon 
 Craven Noise Shaping Theorem� A transfer function NTF�z�
scaled such that ntf��� � 	 satis�es the relationship�

Z �

�
log jNTF�ei	f �jdf 
 � �����

Equality is attained if and only if NTF�z� is minimum phase�
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The theorem states that for a minimum phase NTF magnitude characteristic plotted
with linear frequency axis and logarithmic magnitude axis the areas above and below the
� dB line are equal�

The noise shaping theorem is very useful� for a desired NTF the theorem estab�
lishes the necessary scaling of an optimal minimum phase �lter which approximates the
prescribed NTF� For example a wide transition band from stop�band to pass�band is  ex�
pensive� in terms of noise shaping i�e� the gain in the pass�band must be increased in
order to compensate for a wider transition region� This fact also explains why lower over�
sampling ratios requires a more narrow transition band higher which only can be achieved
by a higher �lter order�

From linear system theory it is known that the poles of a stable system must be inside
the unit circle� Eq� ����� and Eq� ����� show that the poles of 	��	 � K �H�z�� determine
the stability naturally provided that G�z� is stable itself� Thus the stability depends on
the choice of K and H�z�� For a given H�z� there will generally be a certain K�interval
�Kmin� Kmax
 for which the linearized system is stable ��� ��
� The stable K�interval can
easily be found using so�called Nyquist plots i�e� the curve of �H�ej	f � plotted in the
complex plane� The critical points with zero imaginary part correspond to frequencies
where the closed loop system has in�nite gain� The associated K�value is the reciprocal
of the real value of the critical point� Two such K�values will then form the end points
Kmin and Kmax of the stable K�interval�

The stability �in the linear sense� of the linearized system is rather  �ctitious� since
there is generally no link to the stability of the real non�linear system �see part I for a
discussion of stability�� For instance a given unstable modulator can generally be modeled
as a stable linearized system for a suitable K�value� Conversely it is also possible to have
an unstable linearized model of a stable modulator # it is just a matter of choosing K�
The reason for this de�ciency of the linearized model is that the quantization noise q�k�
is not an independent input # in fact it is generated by the system itself�

��� Quasilinear Modeling

In order to proceed with the system analysis it is necessary to make some simpli�cations
and assumptions� First of all the input signal x�k� is restricted to constant signals� The
motivation for this simpli�cation is that the modulator input is usually heavily oversam�
pled� Secondly the quantization noise q�k� is modeled as a stochastic noise source� Finally
the mean value my � Efy�k�g of the modulator output is used as a descriptive param�
eter i�e� the modulator is supposed to operate with a constant input mx which gives a
prescribed mean output my� For the traditional modulator with G�z� � H�z� and where
H�z� has very high DC�gain the modulator loop ensures that my � mx�

In order to model q�k� as a zero mean noise source it is necessary that the gain factorK
only applies for AC�components i�e� K is generally not the ratio between the mean values
of the quantizer output and input� The linearized model of Fig� ��	 will thus be treated
as an AC�model i�e� it only applies for the AC�components of the signals� However the
knowledge of the mean modulator output my a!ects the AC�model� the output signal
y�k� can only take the values �	 or �	 i�e� the total output power is �xed to unity� This
means that the DC� and AC�components must ful�ll the relation�

V fy�k�g � E
n
y��k�

o
� E� fy�k�g � 	�m�

y �����
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The variance of the output signal is due do the quantization noise �ltered by NTFK�z�
and the mean output value is due to the constant input signal x�k�� Eq� ����� shows that
as the DC�input signal power increases the total output noise power must be reduced
equivalently� This relationship gives the �rst hint of why stability is reduced for increasing
DC�input�

Now the quantization noise q�k� will be assumed to be white stochastic noise with zero
mean and variance ��q � Since the transfer function between q�k� and y�k� is known �i�e�
NTFK�z�� it is possible to express the output variance as�

V fy�k�g � ��q

Z �

�
jNTFK�ej	f �j�df � ��q �A�K� �����

where ��q is the variance of q�k� and A�K� is the total noise power ampli�cation factor
using a linearized gain K ��

Using Parseval�s relationship A�K� can also be found from the time domain equation�

A�K� �
�X
k
�

jntfK�k�j� �
� kntfKk�� �����

where ntfK�n� is the impulse response corresponding to NTFK�z��

The noise ampli�cation factor A�K� is thus the squared two�norm of NTFK�z�� Recall
from Sec� ��� that the feedback �lter H�z� must have a delay of at least one sample �i�e�
the impulse response satis�es h�k� � � for k � 	�� This implies ntfK��� � 	 consequently
the following inequality holds�

A�K� 
 	 �����

Combining Eq� ����� and Eq� ����� one obtains a very important relationship implied
by the white quantization noise assumption�

A�K� �
	�m�

y

��q
�����

The white noise assumption implies thus that the A�K��curve of the feedback �lter puts
a constraint on the quantization noise power ��q and the quantizer gain K� There is
consequently only one degree of freedom left e�g� the choice of K� Once K is determined
��q can be found using Eq� ������

It will appear that the A�K��curves of a feedback �lter are very important for under�
standing the stability of a modulator� Therefore di!erent types of feedback �lters will
be investigated� Empirical studies indicate that three qualitatively di!erent categories of
A�K��curves exist� Table ��	 describes the three categories of A�K��curves with corre�
sponding examples of loop �lters� The Amin�value is the global minimum of the curve�
Fig� ��� shows the actual A�K��curves of corresponding to the examples of Table ��	� The
type III curves are convex with a global minimum somewhere in the middle of the stable
K�interval and A�K� becomes in�nite at the endpoints of the stable K�interval� The type
III curve is found for every chaotic and every high�order �N � �� modulator� The type I
curve has the global minimum Amin � A�K � �� � 	 and the curve is increasing� Both
non�chaotic �rst� and second order modulators exhibit the type I curve� A special case is
the type II curve which is only found for second order modulators with a double pole at

�the noise ampli�cation factor for K �xed to unity was introduced as a design parameter in ���
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Di�erent A�K�curve types

Type Description Loop �lters Example

I A�K� is increasing and
Amin � A��� � 	

non�chaotic �rst� and

second�order with distinct

poles

H�z� � z������z��

��z���z��

II A�K� is increasing and
Amin � A��� � 	

second�order with double

poles at z � �

H�z� � z������z��

���z���z��

III
S

�convex A�K� � ��
for both K � Kmin and
K � Kmax

chaotic and every high�
order �N � ��

H�z� � z������z��

���z������z��

Table ��	� A�K��curves

z � 	 �e�g� the traditional double�loop modulator�� The type II curve resembles the type
I curve except for the fact that Amin � 	�

It will be explained in Sec� ��� how the qualitative di!erence between the three types
of curve re�ects the stability properties of the associated modulators�

��� Estimating the Quantizer Parameters

The one�bit quantizer output y�k� can naturally be split into three components namely a
DC�component the ampli�ed input AC�component and the quantization noise as follows�

y�k� � my � K�e�k��me� � q�k� ���	��

where me is the mean value of the quantizer input e�k��
So far the quantizer gain K can be chosen arbitrarily� All other parameters in Eq� ���	��

are given when K is �xed� The question is now� what is a good choice of K � The
criterion to be chosen henceforth is that Eq� ���	�� should split y�k� into three orthogonal
components i�e� the quantization noise should be uncorrelated with the quantizer input�
The covariance between the quantizer input and output yields�

Covfe�k�� y�k�g � E f�e�k��me��y�k��my�g ���		�

� K � E
n

�e�k��me�
�
o

� E f�e�k��me�q�k�g

In order to ful�ll the orthogonality the last term i�e� the covariance between e�k� and
q�k� must be zero� Consequently the quantizer gain can be derived�

K �
Cov fe�k�� y�k�g

��e
���	��

where ��e � Vfe�k�g is the quantizer input variance�
The quantizer parameter K thus depends on the statistics of the quantizer input signal�

This constraint justi�es the designation quasilinear modeling� The modeling framework
was introduced in ��
 and was inspired from techniques known from control theory� Un�
fortunately the excellent work in ��
 has not received much attention� In some papers the
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Figure ���� A�K��curves for the type I II and III loop �lter examples in Table ��	�

ratio between the mean values of the quantizer output and input is used as the quantizer
gain �	 ��
� Another approach has been to use the mean value of �

je�k�j ���
�

A direct consequence of the orthogonality criterion is that the quantization noise power
��q is minimized ��
 i�e� as much as possible of the output variance is  explained� by the
linear model� Furthermore the orthogonality simpli�es variance calculations� the output
variance cf� Eq� ����� and Eq� ���	�� is given as�

Vfy�k�g � 	�m�
y � K���e � ��q ���	��

The quantization noise power can be found by combining Eq� ���	�� and Eq� ���	�� while
the orthogonality is used�

��q � 	�m�
y �K���e

� 	�m�
y �

Cov�fe�k�� y�k�g
��e

���	��

Is fairly easy to calculate K and ��q for a known probability density function �pdf� of
the quantizer input e�k� �� ��
� As stated in Sec� ��� a ��� modulator is invariant to a
positive scaling of e�k� due to the identity sgn��e�k�� � sgn�e�k�� for positive �� Such a
scaling of e�k� will naturally scale up Covfe�k�� y�k�g by � and ��e by �� and Eq� ���	��
shows that K scales inversely with �� Consequently the total gain K� is invariant under
such scaling� Furthermore Eq� ���	�� shows that ��q is also invariant under a scaling of
the quantizer input� This is a very important property of one�bit quantizers�

The quantization noise power ��q has been found for di!erent types of quantizer input
distributions with my � Efsgn�e�k��g � Prfe�k� � �g � Prfe�k� � �g as parameter
i�e� the quantizer input is DC�shifted such that the mean output is my � The result for
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Gaussian pdf is ��
�

��q � 	�m�
y �

�

�
exp

�
��
�
�erf���my�

���
���	��

where erf��� is the error function�

Uniform pdf yields ���
�

��q � 	�m�
y �

�

�

�
	�m�

y

��
���	��

Triangular pdf yields ���
�

��q � 	�m�
y �

�

�

�
��	�my�� ��	�my����

��
���	��

Fig� ��� shows ��q versus my for these three types of probability distributions� The
graph shows that the quantization noise power actually decreases to zero as my approaches
unity� The intuitive explanations is that �	 and �	 are the only DC�values which the
one�bit quantizer can approximate arbitrarily good� Traditionally the quantization noise
power of a uniform multibit quantizer in the non�overload region is assumed to be ��q �
���	� where � is the quantizer step height� Consequently the traditional assumption
implies that ��q � �

� for the one�bit quantizer with � � �� The triangular pdf is the only
distribution which ful�lls this �only for zero my�� In ��� ��
 the quantizer gain was found
from an equation similar to Eq� ����� where ��q was assumed to be �

� as given by the usual
rule of thumb for multibit quantizer� In other words the noise ampli�cation factor A was
assumed to be � for zero input�
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Figure ���� Noise ampli�cation factor A versus my for these three types of probability
distributions cf� Eq� ���	�� ���	�� and ���	���

Compared to triangular pdf the Gaussian pdf gives higher ��q and uniform pdf gives
lower ��q for low my values� As my approaches unity the Gaussian pdf has the lowest ��q �

A very interesting property of one�bit quantizers is that the noise ampli�cation factor A
as de�ned by Eq� ����� only depends on my when the quantizer input pdf type is known�
The noise ampli�cation factor for the quantizer is the ratio between the total output
�AC� noise power and the quantization noise power� Fig� ��� shows A�my� obtained from
Eq� ����� ���	�� ���	�� and ���	��� Note that the noise ampli�cation factor curves are all
decreasing functions of my�

��� Equilibrium and Stability

It was concluded in Sec� ��� that the feedback �lter and the white noise assumption gives a
relationship between the noise ampli�cation factor A and the linearized quantizer gain K�
The previous section showed that the orthogonality criterion links the noise ampli�cation
factor to the shape of the quantizer input pdf� The obvious question is now� for a real
simulation what will be the steady�state or equilibrium values of K and A where these
parameters are determined using time�averages inserted in Eq� ���	����

If the white noise assumption holds the equilibrium point �KeqAeq� will naturally be
on the A�K��curve� The knowledge of the location on the A�K��curve necessitates the
knowledge of the actual quantizer input pdf�

If it is assumed that the quantizer input is e�g� Gaussian then the equilibrium can
be found by solving the equation�

Aeq�Keq� �
	�m�

y

��q
� A�my� ���	��
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where ��q is given by Eq� ���	�� and Aeq�Keq� is the equilibrium noise ampli�cation factor
given by Eq� ������

The procedure is as follows� for a given my the associated noise ampli�cation factor
A�my� is found using Eq� ���	��� Subsequently for a given feedback �lter the K�value�s�
giving the same A�value as the quantizer is found using the A�K��curve of the feedback
�lter cf� Eq� ������

The next topic to be addressed is the stability of the equilibrium� Recall that the loop
parameters such as Keq and Aeq are based on long term statistical averages� It is therefore
interesting to investigate how the statistical equilibrium reacts to small perturbations
re�ecting randomness of the underlying stochastic signals� If Keq e�g� is increased slightly
the result will be a higher Aeq�value in the case where the A�K��curve is increasing around
the equilibrium K� A higher Aeq�value means more circulating noise and hence more
quantizer input noise and this will tend to decrease Keq again� Such a mechanism forces
the system back to equilibrium� Conversely if the A�K��curve is decreasing around the
equilibrium even small perturbations destabilize the system�

The positive slope of the A�K��curve around the equilibrium has another implication�
as my increases A�my� decreases �see Fig� ���� which gives a lower equilibrium K� The
resulting reduced loop gain is detrimental to the noise suppression of the loop and the
in�band noise power will consequently increase� This phenomenon is also observed from
actual simulations ���
�

The three types of A�K��curves according to Table ��	 give rise to di!erent stability
considerations�

 Type I� There will always be a solution to Eq� ���	�� since A�K� covers the interval

	��� and the equilibrium is always stable since A�K� is increasing everywhere�
Hence the equilibrium is globally attracting�

 Type II� There is generally no solution for my close to unity since Amin � 	� Due
to the fact that the A�K��curve increases the equilibrium is stable and globally
attracting if it exists�

 Type III� There are generally two or no equilibrium points due to the convexity� for
A�my� � Amin there is a stable and an unstable equilibrium and the stable Keq�value
is higher than the unstable� As A�my� approaches Amin due to an increased my 
the to solutions come closer and �nally annihilate� At this point the system con�
ceptually escapes through the decreasing branch of the A�K��curve and the system
is trapped in a state with a low quantizer gain synonymous with a high quantizer
input magnitude� Note that the onset of instability occurs around the Amin�point
which is in the middle of the stable K�interval i�e� the stability of the linearized
system does not describe the stability of the modulator�

It is seen that the quasilinear model predicts the unconditional stability of type I sys�
tems i�e� non�chaotic �rst� and second�order modulators� Unconditional stability means
that equilibrium is reached irrespectively of the initial conditions i�e� the equilibrium is
globally attracting� This conclusion is in agreement with observations for actual type I
systems� these systems stay bounded and have no large amplitude overload limit cycles�

Type II systems have no equilibrium for high my values according to the quasilinear
model because Amin � 	 �e�g� the typical double�loop modulator with double pole at
z � 	 has Amin � 	�� cf� Fig� ����� However if the input amplitude is reduced the system
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Figure ���� Noise ampli�cation factor A versus K for the �rst order feedback �lter H�z� �
z����	� �z���� The Amin�point is shown with a dot�

reaches always equilibrium thanks to the increasing A�K��curve� Real type II systems
have in fact the property that max�je�k�j� � � as my � 	 ���
 i�e� type II systems
become gradually unstable as the input amplitude approaches unity�

Type III systems have a characteristic abrupt onset of instability� the system  blows
up� as the Amin�point is reached i�e� the quantizer input suddenly jumps to a high or even
unbounded magnitude� The loss of stability is irreversible that means a decreased input
magnitude does not reestablish stability unless the system is also reset i�e� the state�
variables are set to zero� These conclusions for type III systems made from the quasilinear
model are qualitatively in good agreement with the fact that chaotic modulators loose the
stability due to a boundary crisis �cf� Ch� �� and that high�order non�chaotic systems have
large scale overload limit cycles that can be activated by small perturbations �cf Ch� ���

Example ��� Recall the chaotic �rst�order modulator discussed in Exam�
ple ��	� The feedback �lter for this modulator class is given by�

H�z� �
z��

	� az��
���	��

It was established in Example ��	 that the modulator becomes unstable for
zero input for a � �� In this example zero input and a � � will be used�

The closed loop linearized �rst�order system can only get unstable when
the pole crosses the unit circle at z � 	 or z � �	� Insertion of these two
real values into H�z� shows that the stable K�interval is from Kmin � 	 to
Kmax��� Fig� ��� shows a characteristic type III A�K��curve with Amin �
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Figure ���� Estimated quantizer input pdf for the �rst order modulator with H�z� �
z����	 � �z���� Obtained using ��� uniformly spaced bins from �	 to 	 and 	 mill�
samples�

A�	��� � �� The system should consequently be unstable when the quantizer
input is assumed to be Gaussian since this type of pdf has Amax � ���� for
my � � cf� Fig� ���� A simulation of the system was performed and the
quantizer input pdf was estimated and plotted in Fig� ��� which shows that
the pdf seems to be uniform from �	 to 	� The uniform quantizer input pdf
has Amax � � for my � � according to Eq� ���	�� and Eq� ���	��� Furthermore
using Eq� ���	�� a uniform pdf from �	 to 	 gives a linearized quantizer gain of
	�� ���
� It can therefore be concluded that the quasilinear model also predicts
that the system is only marginally stable with zero input i�e� it operates on
the Amin�point� A slight parameter perturbation causes the system to blow
up� The quasilinear explanation is the escape along the unstable �left�hand�
branch of the A�K��curve and the explanation from system dynamics theory
is the collision between the limit set and the associated basin of attraction �

��� The Gaussian Stability Criterion

The assumption of a particular type of quantizer input pdf and the Amin�value for a type
III system de�nes a maximum stable amplitude �MSA� which is the highest my which
gives a stable equilibrium point� Empirical results have shown that the MSA derived on
the assumption of Gaussian pdf is very accurate� In this case MSA can be found using�

AGauss�MSA� � Amin ������
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where the noise ampli�cation factor on the left hand side is found using Eq� ���	�� and
Eq� ���	���

It is di�cult to justify this stability criterion since the quantizer inputs of real modula�
tors are often very far from being Gaussian �as shown in Example ��	 where the Gaussian
criterion is rather pessimistic�� However investigations presented in Sec� ��� indicate that
the Gaussian criterion becomes fairly accurate for high�order modulators�

��� Loop Filter Design Using NFT	prototypes

It is common practice to design feedback �lters of ��� modulators from a desired noise
transfer function i�e� an NTF�prototype �	 	� �� ��
� This can be done using  reverse
engineering� on Eq� ������ Using a rational z�domain prototype NTF�z� � A�z��B�z� one
arrives at�

H�z� �
	

K

B�z� �A�z�

A�z�
����	�

The �rst problem is that the quantizer gain is generally unknown or can be considered as
a free parameter� However the equation shows that K only scales H�z� and K can thus
arbitrarily be set to unity since the modulator is invariant to feedback �lter scaling�

The next problem is that the feedback �lter must not be delay free in order to ensure
implementability �see Sec� ����� Eq� ����	� shows that this property is obtained when the
NTF�prototype is scaled such that A�z� and B�z� have the same highest order z�term
or equivalently scaled such that the NTF�prototype impulse response has the property
ntf��� � 	� The term the necessary scaling will be used for such scaling of an NTF�
prototype�

The NTF�prototype is usually designed as a high�pass �lter with the base�band as
stop�band in order to obtain a high base�band noise suppression� A fundamental property
of high�pass �lters is that as the NTF�prototype achieves better base�band rejection the
necessary scaling increases the pass�band gain� This e!ect is a direct consequence of Th� ��	
and this has an important implication� the minimum noise ampli�cation factor Amin

increases due to the higher pass�band gain� The latter e!ect decreases the maximum stable
amplitude �MSA� according to the Gaussian criterion presented in Sec� ���� Consequently
there is a fundamental trade�o! between noise suppression and stable amplitude range�

Example ��� A class of good NTF�prototypes is the Chebychev II �i�e� in�
verse Chebychev� high�pass �lters� The �lters have unit circle zeros distributed
in the stop�band for equiripple magnitude characteristic� Such �lters are eas�
ily obtained using standard �lter design packages e�g� the MATLAB signal
processing toolbox command�

�A�B��cheby��N�Rs�fb��high��	

produces an Nth order unity pass�band gain Chebychev II prototype with
minimum stop�band rejection Rs �in dB� in the stop�band up to fb relative
to half the sample rate� The necessary scaling implies that the numerator
polynomial A must be scaled such that the �rst element A�
� is unity� This
scaling reduces the stop�band rejection and increases the pass�band gain� The
feedback �lter is then obtained using Eq� ����	� with K set to unity�
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Filter Rs Amin Gauss� MSA Sim� MSA

A ���� dB 	��� ���� ����

B 	���� dB ���� ���� ����

C 		� dB ���� ���� ��	�

Table ���� Parameters for three feedback �lter examples

Fig� ��� shows the scaling factor �i�e� 	$A�
�� and Amin versus Rs for �fth
order Chebychev II �lters with fb� 	���� Notice the dB�dB scale and that
the noise ampli�cation factor is a ratio between power levels i�e� the plot
shows 	� log���Amin�� The maximum noise ampli�cation factor for Gaussian
quantizer input is 	��	� ���� � ���� corresponding to approx� ��� dB� Hence
�lters with Rs greater than 			 dB are expected to be unstable even for zero
input� Notice also that the scaling grows faster than Amin�

The maximum stable input amplitude was investigated by simulations for
this class of �fth order Chebychev II modulators� A ramp type input increas�
ing linearly from zero to unity during one million time steps was used for
	�� feedback �lters with Rs ranging from �� dB to 		� dB� Fig� ��� shows the
simulated maximum stable amplitude �MSA� versus Rs� The smooth curve
is the Gaussian Amin�criterion of Eq� ������ and this theoretical curve follows
the simulation results quite well� It has been claimed �wrongly� that the MSA
is inversely proportional to the modulator order ��� �
� However the plot in
Fig� ��� is typical for a wide range of modulator orders� In general any desired
MSA can be achieved by using a suitably low Amin�

The Gaussian criterion is somewhat pessimistic when the stable amplitude
range is low� The simulated curve cuts o! abruptly to zero input instability for
Rs greater than approx� 		� dB �the Gaussian criterion predicts this point to at
			 dB�� For very low Rs there is a high stable range but the slope in this end
is very low e�g� a 	� dB reduction in Rs gives only a marginal relative increase
in stable range� The SNR will thus increase with Rs for low Rs because the
in�band noise rejection improves and the stable range is only reduced slightly�
Eventually the stable input range curve becomes to steep i�e� the increased
in�band noise rejection is counterbalanced by the decreased stable input range�
At this point the SNR has a maximum� A higher Rs allows too little signal
power� The SNR maximum is typically found for modulators with maximum
stable amplitude around ����� however this value depends on the modulator
order and other design criteria �

This example showed that the Gaussian stability criterion is fairly accurate for a certain
class of high�order modulators� Example ��	 showed that the Amin�point could describe
the marginal stability of a certain �rst order modulator� However the Gaussian criterion
was grossly pessimistic� This can be explained by the fact that the real quantizer input
had a uniform pdf� An interesting question is how accurate is the quasilinear model in
general for high�order modulators� This question is addressed by Example ����
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Figure ���� Scaling and Amin versus Rs �in dB� for �fth order Chebychev II �lters with
fb� 	����
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Figure ���� Simulated maximum stable input amplitude versus Rs for �fth order Chebychev
II �lters with fb� 	���� The smooth curve is the Gaussian Amin�criterion of Eq� �������
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Example ��� Three �fth�order Chebychev II feedback �lters with parameters
shown in Table ��� �see also Example ���� will be investigated by simulations�
The simulations are performed in segments of 	�� time steps at a time with
�xed dc�inputs from zero to unity in increments of ���	� For each segment
the quantizer parameters �K ��q� are found using time averages in Eq� ���	��
and Eq� ���	��� The maximum stable amplitude �MSA� is shown in Table ���
including the MSA based on the Gaussian criterion� The slower rise in input
value gives a somewhat lower simulated MSA than for Fig� ���� Fig� ��� shows
the noise ampli�cation factor A plotted versus the quantizer gain K� The
thick lines are the simulated results �i�e� using time averages within each 	��

sample segment� and the dashed lines are the theoretical A�K��curves based
on the �lter coe�cients� It is clear that the simulated results are in good
agreement with the theoretical� The three modulators operate as expected on
the increasing �stable� branches of the A�K��curves� However the Amin�points
are far from being reached� the instability begins for higher A� and K�values�
Notice also that the Amin�points are found for K slightly below unity for this
class of NTF�prototypes i�e� the actual noise transfer functions do not match
the NTF�prototypes due to the equilibrium Keq being higher than unity�

Thus it is obvious that the real quantizer input cannot have a Gaussian
pdf� This is con�rmed by Fig� ��	� which shows the noise ampli�cation factor
A plotted versus the dc�input �almost equal to the output mean value my due
to the very high dc loop gain�� It is seen that the simulations give higher
A�values corresponding to less quantization noise than for Gaussian quantizer
input pdf� For low dc�input the simulated A�values are lower than the A�curve
for uniform pdf� However for higher dc�inputs the simulations outperform
even the curve for uniform pdf� The curves for �lter B and C follow almost
the same path corresponding to an almost constant quantization noise power
��q � ������

Fig� ��		 shows the simulated quantizer gain K versus the dc�input� The
curve for �lter A starts with a very high K�value and the curves for �lter B
and C start with lower K�values� This is because all modulators start with
almost the same A�value �see Fig� ����� All curves show that K declines with
increasing dc�input �

The previous example showed that a feedback �lter designed from an NTF�prototype
using K � 	 in Eq� ����	� will operate with a somewhat higher K in practice� The resulting
noise transfer function will consequently di!er from the NTF�prototype� This fact is one of
the major drawbacks of feedback �lter design using NTF�prototypes� Due to the invariance
to feedback �lter scaling there is an entire equivalence class of NTF�prototypes giving the
same output spectrum corresponding to the same normalized feedback �lter�

Example ��� A modulator with �lter B �cf� Table ���� was simulated for 	�
million time steps with a dc�input of 	$���� The quantizer parameters were
estimated from the appropriate time�averages� Quantization noise was found
using Eq� ���	���

q�k� � y�k��my �K�e�k��me� ������
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Fig� ��	� shows power spectrum estimates for both the modulator output y�k�
and the quantization noise q�k�� The spectra are obtained using averaged �k
Kaiser�Bessel windowed FFT power spectra �Welch� method�� It is observed
that the spectrum of the quantization noise has a fairly �at spectrum i�e� the
white noise assumption is justi�ed� Furthermore the spectrum of the output
does not follow the magnitude characteristic of the NTF�prototype �the pass�
band is not �at as for the Chebychev II prototype�� The quasilinear models
predicts this fact by estimating a quantizer gain K higher than unity �see
Fig� ��		��

The di!erence between the two spectra represents the noise transfer func�
tion� Consequently since the NTF is minimum phase the areas of the two
regions between the two curves must be equal according to the noise shaping
theorem �Theorem ��	��

Both spectra shows a strong tone near half the sample rate� This tone is
very characteristic to all ��� modulators� The exact frequency of this tone is
�	�my�fs��� A very weak intermodulation tone at the frequency my � fs can
be seen on the quantization noise spectrum� The suppression of these tones is
the subject of chapter � �

The examples in this section have clearly demonstrated the fairly high accuracy of
the quasilinear model� The NTF�prototype method combined with the Gaussian criterion
allows e�cient modulators to be designed with a prescribed maximum stable amplitude
range� The remaining problem is that the actual equilibrium point is hard to predict and
that the resulting noise transfer function is not identical to the prototype� However most
modulators seem to follow approximately the same A�my��curve �see Fig� ��	�� and this
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Figure ��	�� Power spectra of the modulator output y�k� and the quantization noise q�k�
for a 	� million time step simulation of �lter B cf� Table ��� with a dc�input of 	$����
Note the frequency scale normalized in respect to half the sample rate�

enables fairly accurate equilibrium predictions to be made� The topic of the next section
will be how to achieve even better equilibrium predictions�

��
 Predicting the Quantizer Input pdf

As stated previously the determination of the equilibrium point �i�e� the quantizer gain
and noise ampli�cation factor� requires the knowledge of the probability density function
�pdf� of the quantizer input� This topic has been addressed in ���
 for Gaussian modulator
input� The purpose of this section is to introduce an algorithm which can predict the
quantizer input pdf and thereby the important quantizer parameters such as the quantizer
gain K and the quantization noise power ��q � With these parameters in hand it is easy to
calculate other performance measures such as the in�band noise power�

A new assumption will is introduced� the quantization noise q�k� is assumed to be an
independent and identically distributed �i�i�d�� sequence� It was shown in the previous
Section that the quantization noise typically is only close to being white� The independence
assumption is therefore far from being ful�lled� however the independence assumption
makes calculations of probability distributions possible�

The �rst problem is to establish the connection between the pdf of the quantizer input
and the quantization noise� When the quantizer parameters and the mean values are
known �i�e� K me and my� the time�domain relationship is given by the function �cf�
Eq� ��������

q�e� � sgn�e��my �K�e�me� ������

This function is showed schematically in Fig� ��	�� Note that q�e� is non�invertible in the
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interval ��	 � d� 	� d
 where the displacement d is de�ned as d � my � Kme� For � in
this interval the equation q��� � � has two solutions �� and ���

For a given quantizer input probability density function pdfe��� the quantization noise
probability density function pdfq��� is given by�

pdfq��� �
X

q�
�
�

pdfe���

jq	���j �
	

K

X
q�
�
�

pdfe��� ������

where the summations are over the maximum two solutions of the equation q��� � � and
q	��� is the derivative of q����

The next step is to determine the pdf of the quantizer input by including the e!ects of
the feedback �lter� Recall that a generic modulator with a linearized quantizer model is
characterized by two transfer functions namely the signal transfer function STF�z� and the
noise transfer function NTF�z�� It is now convenient to consider a new transfer function�
the error transfer function ETF�z� between the noise source q�k� and the quantizer input
e�k�� It is seen from Fig� ��	 that the relationship between ETF�z� and NTF�z� is given
by�

NTFK�z� � 	 � K � ETFK�z� ������

This implies that�

ETFK�z� � �NTFK�z�� 	��K �
�H�z�

	 � K �H�z�
������

The quantizer input e�k� is the quantization noise q�k� �ltered by ETF�z�� Hence in
the time�domain e�k� is given by the convolution�

e�k� �
X
n

q�k � n�etfK�n� ������
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where ntfK�n� is the impulse response of ETFK�z��
Since q�k� is considered to be an i�i�d� sequence the pdf of e�k� is the convolution of

the pdf�s of q�k� scaled with each element of the impulse response etfK�n� as shown by�

pdfe � pdfq
etfK��� � pdfq
etfK��� � pdfq
etfK��� � ��� ������

Note that etfK�k��� for k � 	�
It is now possible to specify an algorithm which hopefully produces an invariant pdf

of the quantizer input such that both Eq� ������ and Eq� ������ are true� the quantizer
input pdf should be invariant to the quasilinear model i�e� the pdf should  generate itself�
using the quasilinear model�

The algorithm is as follows�

	� Select an initial pdfe and select me as a �xed parameter�

�� Compute the quantizer gain K �
Covfe�yg

��e
�

�� Compute pdfq using Eq� �������

�� Compute etfK�k� for k � kmax where kmax is a suitable upper bound�

�� Compute pdfe using the nmax �rst terms of the convolution of Eq� �������

�� Let pdfe � �pdfe � �	� ��pdfe where � � � � 	 is a suitable step�size�

�� If not converged goto ��

�� Stop and compute my �

The algorithm is stopped when a suitable steady�state solution is achieved� The conver�
gence properties of the algorithm can be adjusted by choosing the step�size �� The prob�
ability density functions must be sampled in order to facilitate computations on a digital
computer� The convolutions can e!ectively be accomplished using the FFT�algorithm�
The algorithm operates with me as a parameter i�e� the quantizer input is always shifted
such that it has mean value me� When steady state is reached the resulting mean output
value my can be computed�

Example ��� A modulator with feedback �lter B from Table ��� was used
to investigate the accuracy of the pdf algorithm� The algorithm used pdf�s
sampled �	� times over the interval ������� ����
 and FFT�s for the convolu�
tions� A linear interpolation was used for computation of the scaled pdf�s of
the quantization noise and the �rst �� terms of etfK�n� was used�

Fig� ��	� shows the predicted quantizer input pdf for me � � together with a
simulated pdf estimate for the modulator with zero input� The two graphs are
in relatively good agreement� Furthermore the quantizer parameters match
closely� the quantizer gain K is 	���� for the prediction and 	��	� for the
simulation� The noise ampli�cation factor A is ���� for the prediction and ���	
for the simulation�

The me parameter was increased to ��� and the algorithm run again� The
resulting pdf is shown in Fig� ��	�� The mean output value for this pdf is
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Figure ��	�� Predicted �smooth curve� and simulated quantizer input pdf for a modulator
with �lter B cf� Table ��� and zero input�

my������� and this constant value was used as input for a simulation� The
resulting quantizer input pdf is also shown in Fig� ��	�� Both pdf�s have a
asymmetry which is characteristic when the constant input is non�zero� The
asymmetry enhances the quantizer gain over symmetric pfd�s� The predicted
K is 	���� and the simulated is 	����� The simulations indicate an A�value of
���� and the prediction shows ��	�� The two pdf�s do not match perfectly but
they generally agree on the cut�o! for high and low e�values �

The prediction method relies on the quantization noise i�i�d� assumption which is far
from being ful�lled in practise� Even for white quantization noise the quantizer input
is generally non�white and the quantization noise will inherit some of the inter�sample
dependence�

Nevertheless the example showed that the equilibrium parameter predictions �i�e�
K and A� are very precise for a certain high�order modulator� In some cases the pdf
predictions obtained from the presented algorithm can be grossly wrong and in other
cases the algorithm gets unstable�

Example ��� The �rst order modulator from Example ��	 with feedback �lter
H�z� � z����	 � �z��� operates with zero input at an equilibrium K�value
of 	�� and a uniform quantizer input pdf over the interval ��	� 	
� The ETF
impulse response etfK�k� is plotted for K � 	�� in Fig� ��	�� It is seen that
etfK�	� � 	 and that the succeeding values decay exponentially� The one�norm
is found to be�

ketf���k� �
X
k

jetf����k�j � � ������
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Figure ��	�� Predicted �smooth curve� and simulated quantizer input pdf for a modulator
with feedback �lter B cf� Table ��� with me � ��� corresponding to my � �������

The i�i�d� quantization noise assumption indicates that the maximum quan�
tizer input should have a magnitude of � since the maximum quantization noise
magnitude is at least unity� This is obviously not true since e�k� is uniformly
distributed over the interval ��	� 	
� In fact the pdf algorithm gets unsta�
ble when this �rst order feedback �lter is used� the quantizer input variance
grows resulting in a lower K which gives a higher one�norm of etfK�n� and this
increases the quantizer input variance further �

The pdf algorithm is not a very e�cient tool for equilibrium and performance pre�
diction of ��� modulators due to the time consuming numerical convolutions� The most
straight forward way is in fact to simulate the system and extract the quantizer parame�
ters directly� Using these parameters the in�band noise power can be estimated quickly�
The best performance evaluation is of course to actually measure the in�band noise power�
However this requires time consuming numerical FFT or �ltering operations and rather
long simulations� Useful quantizer parameter estimates are typically obtained from rather
short simulations� The main importance of the pdf algorithm is that it provides useful
theoretical insight in the interactions between the feedback �lter and the quantizer input
pdf�

��� Summary

The use of linearized models for ��� modulators was addressed in this chapter� The
nonlinear e!ects of the one�bit quantizer were described by an additive quantization noise
signal� The linearized model has one degree of freedom namely the choice of the linearized
quantizer gain� When the quantization noise is assumed to be white and stochastic noise
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Figure ��	�� The impulse response etfK�n� for the feedback �lter H�z� � z����	� �z���
and K � 	���

the feedback �lter and the unity output power constraint de�nes a noise ampli�cation
curve which relates the quantizer gain to the quantization noise power�

The quantizer gain was determined using an orthogonality criterion i�e� the quanti�
zation noise should be uncorrelated with the quantizer input� This also ensures that the
quantization noise has minimum power�

The quantization noise power of di!erent quantizer input probability density func�
tions were investigated and this de�nes a noise ampli�cation factor versus the quantizer
dc�output� Using the noise ampli�cation curve of the feedback �lter the equilibrium quan�
tizer gain and noise power can be predicted for any particular quantizer input pdf� The
global minimum of the noise ampli�cation curve of the feedback �lter introduces a class
of stability criteria� In particular the Gaussian criterion was found to be fairly accurate�
Furthermore three di!erent types of noise ampli�cation curves have been identi�ed and
these three curves explain the qualitative di!erence in stability properties of the tradi�
tional �rst� second� and high�order modulators� In addition chaotic �rst� and second�
order modulators behave like high�order modulators i�e� the stability is lost abruptly and
irreversibly� This interpretation of the loss of stability is not linked to the stability of the
linearized system �i�e� the poles being inside the unit circle�� In fact for a high�order
modulator the stability is lost at a point where the linearized system is absolutely stable�

The presented modeling framework was veri�ed on a class of modulators designed using
standard Chebychev II �lters as prototypes for the noise transfer function�

Finally an algorithm was presented which can predict the probability density function
of the quantizer input� This algorithm assumes the quantization noise to be an independent
and identically distributed �i�i�d�� sequence�
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Chapter �

Optimizing Feedback Filters

��� Introduction

This chapter is devoted to the very complex subject of optimization of feedback �lters�
Sec� ��� reviewed a very simple but quite e�cient design method namely the use of NTF�
prototypes obtained from standard �lter design packages� Especially the use of Chebychev
II prototypes seemed very promising� Once the width of the base�band has been decided
the only free parameter is the base�band attenuation Rs� When Rs is increased the in�
band noise power is lowered at the expense of a deteriorated stability� The stability can
be expressed in terms of the maximum stable amplitude �MSA� and it can be predicted
with some uncertainty using the Gaussian criterion of Eq� �������

When an Nth order modulator is to be designed there are many degrees of freedom�
The choice of N poles and N � 	 zeros� The feedback �lter poles becomes the zeros
of the closed loop noise transfer function NTF�z�� The best choice of feedback �lter
poles is to distribute them close to the unit circle in the base�band� The actual pole
locations within the narrow base�band have very little a!ect on the stability properties�
Consequently the pole locations can be optimized separately� This has been done in ���

where analytical expressions for optimum �least in�band power� locations are listed up to
N � � accompanied by numerical results for N � �� �� �� The performance gain compared
to N coincident poles at z � 	 is as high as �� dB for N � ��

The remaining degrees of freedom are the choice of N � 	 feedback �lter zeros� Recall
that realizability considerations requires that the feedback �lter has at least one sample
delay and this gives only N � 	 zeros� In addition modulators are invariant to feedback
�lter scaling so the actual number of free parameters is N � 	� The zeros both a!ect the
noise suppression performance and the stability� The design task can thus be described
as an N � 	 dimensional search for the  best� trade�o! between stability and SNR� The
simple NTF�prototype method using Chebychev II �lters is just a one dimensional curve
in the N � 	 dimensional parameter space and the contours for constant minimum noise
ampli�cation Amin are generally N � � dimensional �hyper� surfaces�

An exhaustive search of the entire parameter space including extensive simulations
for each visited parameter combination becomes rather utopian as the modulator order
increases� This necessitates that the optimization must rely on performance and stability
measures which are easily computable� The purpose of such optimization is to design
modulators suited for practical use i�e� the modulators should operate reliably with band�
limited inputs within a certain amplitude range and the SNR should be optimal in respect
to the give stability$reliability constraints� Recall from Sec� ��� that reliability basically

��
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means that the transition from stable to unstable operation is  sharp� i�e� there is no
extended amplitude range where the modulator is only weakly unstable with a very low
escape rate� A low escape rate means that the mean survival time is long but �nite i�e� the
modulator is seemingly stable for most short simulations� It is obvious that a modulator
intended for a general purpose data converter cannot be tested for all possible input signals
by simulations� However if the modulator is absolutely stable for every constant input
in the actual input amplitude range there is a good chance that the modulator also can
handle time varying signals with a suitable band�limitation� Even an exhaustive simulation
test with constant inputs requires a lot of computational power�

The optimization methods presented become actually more and more necessary as the
dimension increases further because the NTF�prototype method results in more and more
unreliable modulators�

��� The Choice of Parameter Space

The coordinates for the �N � 	��dimensional parameter space of an Nth order modulator
with �xed feedback �lter poles can be chosen in many ways� The actual z�domain polyno�
mial coe�cients are a bad choice due to the extreme sensitivity to the zero locations� A
better approach is to describe the zero locations directly� This can be accomplished by a
suitable transform� E�g� for a fourth order modulator the three zero locations z� z� and
z� can be found using the transform�

z� � t� �
p
t� � z� � t� �

p
t� � z� � t� ���	�

where t� t� and t� are real parameters�

The third zero z� is always real and equal to t�� The zero pair z� and z� are complex
conjugates for negative t��values and real valued for positive t�� There is a one�to�one
correspondence between the three real valued parameters and the three zero locations of
which two might be complex� Furthermore there is a  smooth� transition from complex
to real zero locations�

The parameter to zero location transform of Eq� ���	� can easily be extended to any
dimension�

��� BIBO stability

The Gaussian stability criterion presented in Sec� ��� was related to the noise power
ampli�cation factor A�K� which is the squared two�norm of the noise transfer function
of the linearized system� This stability criterion was derived by assuming the signals in
the modulator to be stochastic signals� Hence the Gaussian criterion is based on mean
�squared� signal values� As stated previously such criterion is only approximate� it is not
su�cient and nor necessary� The purpose of this Section is to discuss a bounded input

bounded output � BIBO criterion which is based on a worst case assumption�

For conceptual reasons it is convenient to transform the usual ��� modulator to a
new equivalent circuit which is shown in Fig� ��	� The circuit consists of an input pre�lter
F �z� modifying the input to the signal %x�k� which is fed to a so�called Noise�Shaper
��� �	 �� ��
� The quantization noise q�k� is found by subtracting the quantizer output
from the quantizer input e�k� and the quantization noise is fed back through a �lter F �z�
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means that the transition from stable to unstable operation is �sharp�� i�e�� there is no
extended amplitude range where the modulator is only weakly unstable with a very low
escape rate� A low escape rate means that the mean survival time is long but �nite� i�e�� the
modulator is seemingly stable for most short simulations� It is obvious that a modulator
intended for a general purpose data converter cannot be tested for all possible input signals
by simulations� However� if the modulator is absolutely stable for every constant input
in the actual input amplitude range� there is a good chance that the modulator also can
handle time varying signals with a suitable band�limitation� Even an exhaustive simulation
test with constant inputs requires a lot of computational power�

The optimization methods presented become actually more and more necessary as the
dimension increases further because the NTF�prototype method results in more and more
unreliable modulators�

��� The Choice of Parameter Space

The coordinates for the 	N � �
�dimensional parameter space of an Nth order modulator
with �xed feedback �lter poles can be chosen in many ways� The actual z�domain polyno�
mial coe�cients are a bad choice due to the extreme sensitivity to the zero locations� A
better approach is to describe the zero locations directly� This can be accomplished by a
suitable transform� E�g�� for a fourth order modulator� the three zero locations z�� z� and
z� can be found using the transform�

z�  t� �
p
t� � z�  t� �

p
t� � z�  t� 	���


where t�� t� and t� are real parameters�

The third zero z� is always real and equal to t�� The zero pair z� and z� are complex
conjugates for negative t��values and real valued for positive t�� There is a one�to�one
correspondence between the three real valued parameters and the three zero locations of
which two might be complex� Furthermore� there is a �smooth� transition from complex
to real zero locations�

The parameter to zero location transform of Eq� 	���
 can easily be extended to any
dimension�

��� BIBO stability

The Gaussian stability criterion presented in Sec� ��� was related to the noise power
ampli�cation factor A	K
 which is the squared two�norm of the noise transfer function
of the linearized system� This stability criterion was derived by assuming the signals in
the modulator to be stochastic signals� Hence� the Gaussian criterion is based on mean
	squared
 signal values� As stated previously� such criterion is only approximate� it is not
su�cient and nor necessary� The purpose of this Section is to discuss a bounded input
bounded output � BIBO criterion which is based on a worst case assumption�

For conceptual reasons it is convenient to transform the usual ��� modulator to a
new equivalent circuit which is shown in Fig� ���� The circuit consists of an input pre�lter
F 	z
 modifying the input to the signal �x	k
 which is fed to a so�called Noise�Shaper
���� ��� ��� ���� The quantization noise q	k
 is found by subtracting the quantizer output
from the quantizer input e	k
 and the quantization noise is fed back through a �lter F 	z
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Figure ���� A Noise Shaper with a linear pre�lter� The system is equivalent to a usual
��� modulator�

and added to �x	k
 in order to form e	k
� A circuit analysis reveals that the entire system
is equivalent to a usual ��� modulator having a feedback �lter�

H	z
 
F 	z


�� F 	z

	���


Having H	z
 as starting point� the F 	z
 �lter can be found as�

F 	z
 
H	z


� �H	z

	���


Since H	z
 usually has a very high low frequency gain� it is seen that F 	z  �
 � ��
This means that F 	z
� as pre�lter regarded� is quite harmless at low frequencies�

The �rst step for the BIBO criterion is to assume that the maximum magnitude of
the quantization noise is below unity� i�e�� max	jq	k
j
  kq	k
k� � �� This assumption
is only justi�ed as long as the quantizer input magnitude e	k
 is below �� Using a worst
case limit of the quantizer input magnitude the BIBO criterion becomes�

kf	k
k� � kq	k
k� � k�x	k
k� � � 	���


where kf	k
k� is the one�norm of the impulse response of the F 	z
 �lter� i�e�� the sum of
the magnitude of the impulse response�

kf	k
k� 
X
k

jf	k
j 	���


When Eq� 	���
 is ful�lled� the maximum quantization noise magnitude is unity�

k�x	k
k� � �� kf	k
k� 	���


This gives an upper bound on the stable input amplitude range� i�e�� the one�norm of F 	z

must be as low as possible� The criterion of Eq� 	���
 is su�cient but rather conservative
in most cases ���� ���� This one�norm based stability criterion was proposed in ��� and
further improved in �����

The BIBO criterion can be improved 	i�e�� made less conservative
 by using the mod�
ulator invariance to positive scalings of the feedback �lter H	z
 ����� Hence� H	z
 can be
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scaled by a ny positive number K in Eq� 	���
 in order to get di�erent F 	z
 �lters resulting
in exactly the same modulator with exactly the same stability properties�

FK	z
 
K �H	z


� �K �H	z

	���


Comparing to Eq� 	���
 it is seen that�

FK	z
 
� �K �H	z


� �K �H	z

� �

� �K �H	z

 �� NTFK	z
 	���


Notice that the �lter FK	z
 is equal to the signal transfer function STFK	z
� cf� Eq� 	���

for quantizer gain K and G	z
  H	z
� however in this context K is just an arbitrary
scaling factor�

The one�norm of NTFK	z
 is de�ned as S	K
�

S	K

�
 kntfKk� 

X
k

jnftK	k
j 	���


Since ntfK	�
  �� it is noted that�

kfK	k
k�  S	K
� � 	����


This relationship leads to an improved BIBO criterion�

k�x	k
k� � �� Smin 	����


where Smin is the global minimum of S	K
�
The improved BIBO criterion is quite analogous to the Gaussian criterion� the BIBO

criterion is based on the minimum one�norm of the NTF and the Gaussian criterion is
based on the minimum two�norm of the NTF� A guaranteed zero�input stable modulator
has Smin � � and corollary� Amin � ��� Since the leading ntfK term is unity� it is
concluded that Amin � 	� � ��
� The Gaussian criterion suggests that Amin � ���� for a
zero input stable modulator� The di�erence between the norms is that the two�norm gives
more weight to the big elements of the impulse response due to the squaring� The one�
norm gives equal weights to all elements� This di�erence is re�ected in the two criteria�
the Gaussian two�norm based criterion works �ne in many cases but it gives no guarantee
what soever� The one�norm based BIBO criterion is ironclad but often too conservative
because it is based on the worst case extremal quantization noise sequence� It is often
very unlikely that this worst case sequence will occur in practise� The BIBO criterion can
be further improved by including exact knowledge of the dependence between adjacent
quantizer input samples� However� this approach is di�cult and not very general� Such
methods try to identify a trapping region in the state�space� i�e�� a orbits starting inside
the trapping region never leave it� Specialized stability tests based on these principles
have been developed for second order modulators ���� ���� see also Example ����

Example ��� This example demonstrates the BIBO criterion for some simple
�rst� and second�order modulators� the chaotic �rst order modulator with
H�	z
  z���	�� �z��
 and the usual second order modulator with H�	z
 
	z������z��
�	���z���z��
� The S	K
�curves for these two �lters are shown
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on Fig� ���� The �rst order modulator H�	z
 is marginally stable since S	�
 
Smin  �� In this special case the Gaussian criterion is more conservative that
the BIBO criterion�

The BIBO criterion cannot guarantee the stability of the popular second�
order modulator H�	z
 since Smin � �� Both H�	z
 and H�	z
 have noise
transfer functions that become FIR �lters for a suitable K�value� i�e�� K  � in
this case� There is a general class of feedback �lters having this property� Every
second�order modulator with this FIR�property conforms to Eq� 	���
� Every
�rst order modulator has the FIR property� and furthermore� the Smin�value
is taken when the noise transfer function is FIR� The second�order modulator
H�	z
 has S	�
  � � Smin in the FIR�case� i�e�� the scaling giving FIR NTF
is not the optimal scaling�

The zero of H�	z
 can be modi�ed slightly such that the second�order mod�
ulator is guaranteed stable for low input amplitudes� e�g�� the S	K
 curve of
H�	z
  	z������z��
�	���z���z��
 is also plotted on Fig� ���� This modu�
lator has Smin � ���� giving a guaranteed stable maximum input amplitude of
����� This stability enhancement takes place at the expense of a deteriorated
in�band noise suppression due to a deteriorated low�frequency loop�gain �

��� Reliability

A practical constraint in feedback �lter optimization is that the modulator is suitably
reliable� i�e�� the onset of instability occurs abruptly when the input amplitude is in�
creased� The reliability ensures that the MSA values found by simulations using slowly
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Figure ���� Contours of equal Smin and Amin for t�  ���� The parameters t�� t� and
t� determine the feedback �lter zeros� cf� Eq� 	���
� The pole locations are given by
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� The Smin contours are shown for increments of ��� from ��� to ���� The Amin�
contours are for ���� ��� and ���� Three points 	A�B and C
 are marked on the Amin  ���
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increasing ramp input will hold in practise when the modulator operates at full speed
	e�g�� �MHz sample rate
 with input signals from �the real world�� A reliable modulator
gives a simulated MSA which is fairly independent of the dc sweep rate� Conversely� an
unreliable modulator can exhibit an acceptable MSA for high sweep rates corresponding
to short simulations � but longer simulations may reveal instability for much lower input
amplitudes�

The question is now� how can feedback �lters of reliable and unreliable modulators
be distinguished from each other Numerous simulations have indicated that the two�
norm based Gaussian criterion predicts the onset of severe instability fairly well� i�e�� the
Gaussian criterion is consistent for high sweep rates� However� di�erent �lters with the
same Amin�value may behave di�erently with respect to reliability�

The existence of extended input ranges with low escape rates is one of the characteris�
tics of unreliable modulators� A low escape rate means that the system only escapes when
the orbit enters certain rarely visited regions in the state�space� i�e�� it is a worst case
situation which occurs rarely� This situation might arise when the minimum one norm
Smin is composed of many small contributions� i�e�� when the NTF impulse response has
slowly decaying 	high�Q
 oscillations� The worst case quantizer input can be very large
but it is� on the other hand� very seldom that values close to the extremal occur� A more
reliable modulator is expected to exhibit a suitably low Smin�value dominated by the �rst
few terms of the NTF impulse response�
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Figure ���� Plot of maximum transient length versus constant input for the modulator A�
cf� Fig� ���� For simulation parameters see Example ����
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Figure ���� Plot of maximum transient length versus constant input for the modulator B�
cf� Fig� ���� For simulation parameters see Example ����
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Figure ���� Plot of maximum transient length versus constant input for the modulator C�
cf� Fig� ���� For simulation parameters see Example ���

Example ��� This example demonstrates the behavior of three fourth order
modulators with Amin  ���� The feedback �lter poles are suited for �� times
oversampling� i�e�� base�band fb  �� kHz and sample rate fs  ����� kHz� The
four optimized unit circle feedback �lter poles are located at the frequencies
�����

fi �
��
��

s
�
� �

r�
�
�

�� � �
�� � fb

��
	 	����


These pole frequencies should minimize the unweighted total base�band noise
power�

The 	t�� t�� t�
 parameter space was investigated with the optimized poles
for fb  ���� � ����� relative to half the sample rate� Fig� ��� shows two�
dimensional contours for equal Smin with t� �xed to ���� The graph includes
the contour for Amin  ���� ��� and ���� There is a lot of similarity between the
types of contours� the gradients are in almost the same directions� i�e�� both the
Amin and Smin measures will in most cases agree on whether a given parameter
change enhances the stability or not� However� the two stability measures are
still quite di�erent in nature� This will be examined by following one of the
Amin�contours� Three points A� B and C on the ��� contour are marked� Point
B has minimum Smin  ���� for t�  ��� and point A and C have somewhat
higher values� namely ���� and ���� respectively� The modulators of the three
points are not guaranteed stable for zero input according to the BIBO criterion
but they should all have an MSA of approx� ���� according to the Gaussian
criterion of Eq� 	����
�

The stability of the modulators was investigated in two ways� simulations
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with slowly increasing input ramp and an exhaustive search for long transients�
The latter method was introduced in Sec� ���� The modulator to be tested
is simulated for a large number of random initial conditions and randomly
selected constant inputs for a maximum number of time�steps� If the quantizer
input magnitude exceeds an upper bound of ��� the current number of time
steps simulated is regarded as a transient length� The maximum transient
length is found within each of a number of constant input bins� A plot of
the maximum transient length versus the constant input magnitude gives a
kind of �ngerprint of the stability and reliability of the modulator� Such plots
are shown on Fig� ���� ��� and ��� for the three modulators corresponding to
point A� B and C� Each of the plots are obtained from � mill� simulations with
random constant input distributed uniformly over the interval ��� ����� The
initial conditions were randomly selected using a uniform distributions in the
quantizer input delay�space 	i�e�� the coordinates e�  �e	��
� ���e	��
�
 such
that ke�k�  ���� The simulations were stopped either when the quantizer
input exceeded a magnitude of �� or after a maximum of ���� time�steps� The
maximum transient length was found within ���� constant input bins�

The three maximum transient plots convey a lot of information� modulator
B is very nice and is expected to operate reliably for input magnitudes up to
approx� ���� where there is a transition region between ���� and ���� For
magnitudes above ��� the modulator is de�nitely unstable� The maximum
transient �background level� is low and very constant for magnitudes less than
����� For this rather reliable modulator the Gaussian criterion is somewhat
pessimistic�

The plots for modulator A and C have a quite di�erent behavior� the
graphs have a lot of spikes of di�erent sizes for most of the entire input range�
Furthermore� the background levels for both graphs are signi�cantly higher
than for modulator B� It is obviously di�cult to judge the MSA for these very
unreliable modulators� Simulations with ramp type input rising from zero to
unity during ��� samples 	corresponding to approx� �� seconds real�time
 have
revealed that modulator B becomes unstable at input magnitudes as low as
���� and ���� for modulator C� Modulator B can handle input magnitudes up
to ���� even for these very long ramp simulations� Such slowly rising ramp
input is realistic for signals from� e�g�� temperature and pressure transducers�
The question is of course how these three modulators will behave generally
in a real application� There is only one way to give an exhaustive answer�
implement the circuits and test the devices for extremely long time� However�
it seems likely that the more reliable modulator B is absolutely stable when
operating with suitably band�limited signals having a maximum magnitude
below ����

Another observation from the maximum transient simulations was that the
fraction of initial conditions surviving the maximum ���� time steps vary from
modulator to modulator� Fig� ��� shows the surviving fraction within each
of the ���� input bins for modulator B and C� It is seen that the surviving
fraction for low input magnitude is almost � times higher for modulator B than
for modulator C and this indicates that the volume of the basin of attraction
for the unreliable modulator C is lower� i�e�� it is more di�cult to �nd stable
initial conditions�
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Figure ���� Fraction of initial conditions surviving ���� time steps for the modulators B
and C� cf� Fig� ���� For simulation parameters see Example ���

The surviving fraction for modulator B is fairly constant up magnitudes
near ���� For higher magnitudes the fraction decreases fast to near zero for
magnitudes around ���� This re�ects a sharply increasing escape rate in this
transition region� �

The previous example demonstrated the behavior of reliable and unreliable modula�
tors� The very high Smin�value for modulator C can clearly be taken as an indication of
unreliability� In fact� the most reliable modulator had the lowest Smin�value� More detailed
information is probably conveyed by the entire NTF impulse response which corresponds
to the Smin�value� In fact� the NTF impulse response fully describes the modulator and
the question of stability is therefore �just� a matter of proper interpretation�

Example ��� The ntfmin	k
 impulse responses that gives the Smin�values for
the modulators A� B and C of Fig� ��� are plotted on Fig� ���� By de�nition
ntfmin	�
  � due to the one sample feedback delay� Furthermore� ntfmin	�
 
�Kc� where c� is the �rst H	z
 numerator term which is normalized to unity
in this example� Consequently� for the shown plots� ntfmin	�
  �KSmin where
KSmin is the K�value that yields Smin� The KSmin�values are all near ��� for
the three modulators� Hence� the �rst two dominating terms make up a sum
of approx� ��� and this shows that it is the �tails� of the NTF impulse responses
which are responsible for the instability and possible unreliability� First order
modulators have FIR NTF� i�e�� they have no �tails� and the onset of instability
is consequently very abrupt�
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Figure ���� Plot of the ntfK	k
 impulse responses which achieves the Smin�values for
modulator A	�
� B	o
 and C	�
� cf�Fig� ���� The plot shows only the tails for k � ��

For both modulator A and B� the third term 	i�e�� ntfmin	�

 is zero and
non�zero for modulator C� This is probably a consequence of the one�norm
minimization�

The very high Smin�value for modulator C is due to a slowly decaying
oscillation which probably causes the unreliability� It is more di�cult to explain
the cause of unreliability for modulator A� However� a comparison between
the NTF impulse responses of modulator A and B reveals that the �tail� of
modulator B decays to zero without oscillation while the �tail� of modulator
A is more oscillating before it dies out� The worst case occurs when the past
quantization noise values have signs which �t the signs of the NTF impulse
response� This can cause the quantization noise to increase and blow up the
modulator� Modulator B is probably more reliable and stable because of the
almost unipolar tail� i�e�� it is very unlikely� in normal stable operation� that
a modulator produces long sequences of unipolar output codes� Conversely�
oscillating code patterns are more likely to occur and this can produce a worst
case situation for modulators with oscillating tails �

The simple one�norm Smin can explain some but not all of the di�erences in reliability�
The observations done in the previous example suggests that the NTF impulse responses
should be weighted suitably in order to provide a measure which indicates the degree of
reliability� A possibility is to examine the NTF impulse response in the spectral domain� A
necessary condition for BIBO stability is that the maximum magnitude of the �lter FK	z

is below �� i�e�� when the one�norm of fK	k
 is below � as required for BIBO stability� the
magnitude response of FK	z
 is likewise bounded by ��
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Figure ���� Magnitude responses of the Fmin	z
 �lters with minimum one�norm for mod�
ulator A� B and C� cf� Fig� ����

Example ��� On Fig� ��� the magnitude responses of the Fmin	z
 �lters with
minimum one�norm for the A�B and C modulators 	se Fig� ��� are plotted� It
is seen that modulator B is the only modulator with a magnitude maximum
below �� The oscillating behavior of modulator C is seen as a strong peak with
a magnitude higher than �� The oscillating behavior is also seen on Fig� ����
which shows the simulated output spectrum of modulator C� This spectrum
has clearly a similar strong peak� The maximum magnitude for modulator B
is well below � and this probably explains the better reliability� �

The previous example showed that the maximum magnitude of FK	z
 is a good mea�
sure of reliability� This motivates the de�nition�

Fmax  max
n


Fmin	e

j�f 




o  kFmin	z
k� 	����


The Fmax measure is thus the in�nity norm of the Fmin	z
 �lter having minimum
one�norm�

Example ��� Fig� ���� shows contours of constant Fmax for t�  ���� The
remaining parameters conform to Example ��� and Fig� ��� �

The three measures Amin� Smin� and Fmax are based on the two� one and in�nity
norms� respectively� The combination of these three �gures gives a quite good picture of
the stability of a modulator� The unreliable modulators are typically characterized by the
Fmax and Smin values being too high compared to the Amin value�
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Figure ����� Power spectrum estimate for the simulated output of modulator C� cf� Fig� ����
A constant input of �!�� was used� Notice the linear axes and the peak near �f�fs � �����
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��� Performance Prediction

Optimization of loop �lters will normally comprise a minimization of the in�band quan�
tization noise power� A brute force method is to simulate the system and estimate the
in�band noise power using a �lter or an FFT spectral analysis� However� this approach
can be too time consuming for use in connection with an automated optimization� Fur�
thermore� for a �nite length simulation� the obtained in�band noise power as a function of
the �lterparameters is not very �smooth� due to the stochastic nature of the modulator�
This e�ect can literally �derail� an optimization routine which is based on numerically
estimated gradients�

The use of linearized modeling can provide a computational shortcut to performance
prediction� The linearized loop model discussed in Ch� � shows how the quantization
noise is shaped and suppressed in the base�band� The apparent problem is that either the
quantizer gain K or the feedback �lter scaling can be chosen arbitrarily in such models�
It has been suggested to use a �xed quantizer gain of � for a feedback �lter scaling where
the leading term of the feedback �lter impulse response is unity �����

The next problem is to predict the variance and spectrum of the quantization noise in
order to compute the base�band noise power� The quasilinear modeling framework o�ers a
fairly simple and yet very precise way to predict the noise spectrum of the modulator� once
the equilibrium point 	e�g�� the quantizer gainK
 is known� the quantization noise power as
well as the noise transfer function is known and the in�band noise power can subsequently
be found by integration� It was demonstrated in Sec� ��� that the equilibrium point can
be predicted very well using an algorithm which predicts the quantizer input probability
distribution function� However� this algorithm is far to complex and slow for use in a loop
�lter optimization procedure�

A simpler approach is to use the fact that most modulators approximately follows the
same A	my
�curve� for zero input� most modulators operate with equilibrium Aeq � ����
	see Fig� ����
� This rule of thumb applies to most �good� and �well behaved� modulators�
The rule is typically less accurate for modulators having a very high stable amplitude
range�

For a Keq satisfying A	Keq
  Aeq the base�band quantization noise power ��b for zero
input is given by�

��b 
�

Aeq

Z fb

�






 �

� �Keq �H	ej�f 








�

df 	����


where fb is the upper base�band limit frequency relative to half the sample rate�
This gives an estimate of the in�band noise power for small amplitude input� The

in�band noise power will increase somewhat for higher amplitudes�

Example ��	 Fig� ���� shows contours of equal ��b � cf� Eq� 	����
 with Aeq 
����� in the 	t�� t�
 parameter plane with t�  ���� The feedback �lter poles are
given by Eq� 	����
 with fb  ���� ������� The points A� B and C� cf� Fig� ����
are marked� The three modulators were simulated with a constant input of
�!�� and the output spectra was estimated using averaged and windowed �k
FFT�s� The small dc�bias ensures that possible tones are outside the base�
band� The base�band noise power was estimated by summing up the power of
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Figure ����� Contours of predicted ��b for t�  ���� The Amin  ��� contour is also plotted
and the points A�B and C� cf� Fig� ���� are marked�

the �rst fb � ���� FFT�bins� The simulated and predicted values of ��b appears
from the table�

Modulator Predicted ��b Simulated ��b
A ����� dB ������ dB

B ������ dB ������ dB

B ������ dB ������ dB

The predicted ��b is clearly to high in all cases� Especially for modulator A�
the prediction is � dB to pessimistic� However� for modulators with reasonably
high performance� the prediction is consistently only a few dB wrong�

It is seen that point A gives the highest in�band noise power and this is due
to the feedback �lter zeros being all real valued� The highest zero modulus is
����� and this almost cancels the e�ect of the dc�pole at z  �� Furthermore�
this modulator is also proven to be very unreliable� Point B and C with
negative t� have a complex zero pair giving a higher low frequency loop gain
and thereby a better in�band noise rejection� The di�erence between B and C
is only a few dB� When the known unreliability and lower MSA of point C is
taken into consideration� the modulator of point B must clearly be preferred�

Following the A  ��� contour on Fig� ����� is can be seen that a ��b
minimum is found near the point 	�����������
� It appears from Fig� ��� and
Fig� ���� that this point also gives acceptable stability and reliability properties
�

Another useful approach for prediction of the equilibrium point� is that the K�value
which minimizes the one�norm S	K
 is often quite close to the equilibrium K found by
simulations�
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Another interesting observation is that the two�norm of the error transfer function
ETFK	z
 	see Eq� 	����

 has minimum close to the equilibrium K� Recall that the ETF
given by Eq� 	����
 is the transfer function from the quantization noise source to the
quantizer input� i�e�� the modulator attempts to operate with minimum quantizer input
variance� From the de�nition of the noise ampli�cation factor A of Eq� 	���
 it can be
derived that�

kETFKk�� 
A	K
� �

K�
	����


The K�value which minimizes Eq� 	����
 can thus be used as Keq� In some cases this
approach gives very good performance predictions�

Example ��� The �fth order Chebychev II derived �lter A from Table ��� has
a very low zero input A�value� The minimum two�norm of the ETFK is reached
for K  ���� and this K gives A ����� A simulation with zero input yields
K  ���� and A ����� However� Fig� ���� shows that for increasing input
amplitude� the noise ampli�cation factor is increasing towards a maximum
above ��� for my � ���� �

��� Optimization Strategies

A loop �lter optimization procedure should minimize the in�band noise power under suit�
able constraints� The constraints should �rst of all ensure that the modulator is stable and
reliable in a prescribed amplitude range� A widely used constraint has been to impose an
upper bound for the unity quantizer gain noise ampli�cation factor A	K  �
 ���� Other
approaches have been to impose an upper bound on the maximum amplitude gain of the
noise transfer function as used for NTF�prototypes in �����

A better approach is to specify an upper bound for Amin determined by the Gaussian
criterion and the desired MSA� This constraint takes the feedback �lter scaling invariance
into consideration� An optimization with this constraint alone will in the general case lead
to an unreliable modulator with an MSA lower than prescribed by the Gaussian criterion�
Consequently� suitable upper bounds for Smin and Fmax must normally be speci�ed in
order to get a good result� In many cases� only some of the constraints are active at the
same time� i�e�� restricting the optimization� The rest of this section will demonstrate how
a suitable mixture of one�� two� and in�nity�norm based constraints leads to consistent
results�

An optimization procedure employing the mentioned constraints was implemented in
MATLAB using the Optimization Toolbox CONSTR routine ���� based on Sequential
Quadratic Programming �� The approach is fairly robust and has been applied success�
fully to modulators with orders ranging from � to �� A similar approach called CLANS
	Closed Loop Analysis of Noise�Shaping coders
 using CONSTR has been reported in ����
where a suitably weighted in�band noise power measure is minimized under a one�norm
constraint� This approach was successfully used for optimized design of multibit noise�
shapers� However� CLANS is not intended for one�bit modulators and the approach does
not take the scaling invariance into consideration�

�
The MATLAB tools are available from the author
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Figure ����� Maximum transient plot of an optimized modulator with the constraints
Amin � ���� Fmax � ��� and Smin � ����

Example ��
 A fourth order modulator was optimized for fb  ���� � ������
The feedback �lter poles was found from Eq� 	����
 and the zeros were obtained
from a constrained minimization of the predicted ��b using the constraints
Amin � ���� Fmax � ��� and Smin � ���� The base�band noise power was
estimated using the assumption� Aeq  �����

The resulting parameters are 	t�� t�� t�
  	�������������� ������
� In this
case� all of the three constraints were active 	i�e�� the upper bounds were
reached
� The found parameters satisfy consequently three equations with
three variables and the parameters are hence given by the constraints only�

The predicted ��b was������ dB and the simulated was������ dB� Fig� ����
shows a maximum transient length plot for this modulator 	same simulation
parameters as for Example ���
� The plot indicates that the optimized mod�
ulator has a reliable MSA of approx� ���� and that the onset of instability
occurs abruptly� A simulation with a ramp increasing with a rate as low
as ����!sample con�rms this MSA� The modulator achieves consequently a
dynamic range of approx� ��� dB� or almost �� bits of resolution� This per�
formance is comparable to a recently reported �fth order modulator ����� The
simulated output spectrum of the optimized modulator for a constant input of
�!�� is seen on Fig� ���� �

In the previous example� all three constraints were active� When similar optimizations
are carried out on third order modulators with the same constraints� it is typically the
Fmax limitation that is the dominating constraint� while the Smin constraint is inactive�
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Figure ����� Estimated output power spectrum for the optimized modulator with the
constraints Amin � ���� Fmax � ��� and Smin � ����

Conversely� for higher order optimizations 	N � �
� the Smin constraint is dominating
while the Fmax constraint is typically inactive�

Example ��� An optimization was carried out for a third order modulator
with the same fb and constraints as in Example ���� The optimal feedback
�lter pole frequencies for third order are given by �����

fi �
�
�� �

r
�

�
� fb
�

	����


The optimization gave the parameters t�  ������ and t�  �������� Only the
Fmax � ��� constraint was active� the optimization yielded Smin  ���� and
Amin  ����� The predicted ��b was ����� dB and the simulated was ����� dB�
A simulation with a ramp increasing with a rate of ����!sample yielded an
MSA of �����

An optimized �fth order modulator was designed with the same constraints�
The optimal pole frequencies are �����

fi  �� �
s

�
� �

r�
�
�

�� � �
�� � fb 	����


The optimization gave the parameters�

	t�� � � � t	
  ��������������� ��������������
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Both the Smin � ��� and Amin � ��� constraints were active while Fmax

was ������ The predicted ��b was ���� dB and the simulated was ������ dB� A
simulation with a ramp increasing with a rate of ����!sample yielded an MSA
of ����� This corresponds an SNR of ��� dB for maximum amplitude sinu�
soidal input� A modulator for a commercial �� times oversampling �fth�order
A!D�converter was reported to yield a maximum simulated SNR of ��� dB for
sinusoidal input with an amplitude of ��� ����� The modulator has pole fre�
quencies at ��kHz and ��kHz� However� the base�band used for the reported
SNR �gure was DC���kHz with a sampling rate of �� � �� kHz and the SNR
�gure was actually measured with sinusoidal input� Even when these di�er�
ences are compensated� the optimized modulator compares favorably to the
reported commercial design�

For the sake of comparison� a �fth order modulator was designed using the
NTF�prototype method described in Sec� ���� The feedback �lter zeros were
found using a Chebychev II prototype with Rs ������ dB� The poles were
given by Eq� 	����
� This modulator has Amin  ���� Smin  ��� and Fmax 
���� The predicted ��b was ������ dB and the simulated was ������� dB� A
simulation with a ramp increasing with a rate of ����!sample yielded an MSA
of ����� This modulator ful�lls the constraints used for the optimization but
the noise suppression is approx� � dB lower than for the optimized modulator
�

��� Considerations for Higher Order Designs

All of the four designs presented in Example ��� and Example ��� ful�ll the same set of
constraints and these four designs work reliably within nearly the same amplitude range in
agreement with the Gaussian criterion� This shows that the used constraints are consistent
for orders at least up to �ve�

It is generally true that a better performance is obtained by raising the order of the
modulator for a given oversampling ratio 	or base�band
� The noise shaping theorem of
Th� ��� gives a very simple explanation� For stability reasons� the high�frequency NTF
gain must be limited 	e�g�� by bounding Amin or Smin
 and the only way to improve the
base�band rejection without violating the noise shaping theorem is to reduce the transition
band from base�band to pass�band� An e�cient way to reduce the transition band is to
increase the �lter order� As the transition band is reduced� both the decimation �lter in
A!D converters and the analog post��lters in D!A converters must be more steep and�
hence� more complex�

Even with a �brick�wall� NTF�characteristic� the noise shaping theorem and the need for
suitable bounds on the NTF high�frequency gain limit the attainable performance� This is
quite comforting� since it would be strange if it was possible to design a modulator yielding
more bits or resolution than the oversampling factor 	see Ch� �
� The rest of this section
demonstrates the performance limit for modulators intended for �� times oversampling�

Example ��� showed that the NTF�prototype method using Chebychev II �lters gives
good and reliable �fth order modulators� However� the optimization procedure obtained
a � dB better result with almost the same stability� Unfortunately� it turns out that the
Chebychev II prototype method gives more and more unreliable modulators for increasing
order�
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Example ���� A modulator order of eight is necessary for a CD�quality con�
verter operating at only �� times oversampling� An eight order Chebychev II
prototype with fb ���� � ����� and Rs ����� dB achieves a Amin value of
���� Unfortunately� the Smin value is as high as ���� and this indicates that the
modulator is rather unreliable� The Fmax value is as low as ����� A ramp with
a sweep rate of ���
!sample gave a MSA of ��� while a rate of ����!sample
yielded ����� The measured base�band noise power ��b for a constant input of
�!�� was measured to ������ dB� �

The previous example showed that loop �lter optimization becomes mandatory for
very high order modulators� The NTF�prototype method represents a one�dimensional
curve in a very high dimensional parameter space� It is obvious that improvements can
be obtained by exploring the entire parameter space�

Until now� the signal transfer function 	STF
 has received no attention� The STF
as given by Eq� 	���
 will for the usual sigma�delta modulator normally be �at in the
base�band due to the high base�band gain of the feedback �lter� This is not the case for
the popular multiple feedback topology 	see Example ���
� This topology is equivalent
to a generic modulator 	see Fig� ���
 with H	z
  C	z
�D	z
 and G	z
  ��D	z
 �����
This means that a multiple feedback modulator needs a pre�lter with a transfer function
approximately equal to C	z
 in order to equalize the base�band STF� For low order designs
with a high oversampling ratio� such equalization is not necessary because C	z
 is typically
�at in the base�band� For higher order systems with lower oversampling ratios� the base�
bandwidth is comparable to the transition bandwidth of the noise transfer function and
there will generally be untolerable base�band ripple�

The necessary equalization can be accomplished digitally for both A!D and D!A con�
verters� In an A!D�converter� the equalization is performed digitally on the one�bit stream�
Consequently� if the STF is peaking signi�cantly in some frequency bands� the MSA as
seen from the modulator input will be reduced accordingly� In the cases where equal�
ization is not possible� the feedback �lter optimization must include a constraint on the
maximum allowable STF base�band ripple� Such a constraint can decrease the attainable
signal�to�noise ratio considerably� The use of an STF�constraint was also used in �����

When C	z
 is signi�cantly non��at in the base�band� the base�band behavior of the
NTF will also be a�ected� Hence� the optimization of the zeros given by C	z
 and the poles
given by D	z
 can theoretically no longer be carried out separately due to this interaction�
On the other hand� the increased dimensionality of the uni�ed optimization problem can
be too impractical�

Example ���� The �th order modulator for �� times oversampling of Exam�
ple ���� was optimized with the usual constraints� Amin � ���� Smin � ���
and Fmax � ���� The feedback �lter poles were chosen according to ����� The
STF in a multiple feedback con�guration is peaking ���� dB at the base�band
edge� The base�band noise power was measured to ������ dB� i�e�� better than
for the NTF�prototype design in Example ����� The optimized modulator is
very reliable and the MSA was estimated to ���� using a ramp with a rate of
����!sample�
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Figure ����� Estimated power spectra for the two optimized �th order modulators in Exam�
ple ����� The dotted line represents the modulator optimized without an STF magnitude
constraint�

The modulator was reoptimized using a ����� dB constraint on the multi�
ple feedback STF magnitude within the base�band� The resulting modulator
yielded a ��b of ������ dB� i�e�� the new STF constraint reduces the noise re�
jection� Using a ramp with a rate of ����!sample� the MSA was estimated to
�����

Fig� ���� shows the estimated power spectra of the two modulators with a
constant input of �!��� Note that the STF peaking can be observed on the
base�band spectrum for the modulator optimized without an STF constraint�
This modulator shows also a noise spectrum increasing faster above the base�
band than for the modulator with the STF constraint� In a D!A converter� it
is extremely di�cult to suppress such out�of�band noise using analog �lters of
reasonable complexity� �

The previous example showed that the Amin and Smin constraints are fairly consistent
even for eighth order modulators� However� the quadratic programming used by the
CONSTR routine is very sensitive for high�dimensional systems� i�e�� the optimization
routine might be unstable for some initial guesses� It is strongly recommended to impose
tight bounds on the parameters in order to con�ne the optimization process�

��� Optimization of Unusual Topologies

An extension of the multiple feedback modulator topology has been suggested in ����� This
topology includes an extra FIR �lter in the feedback section� cf� Fig� ����� The hardware
penalty for such an FIR �lter is quite low� since the �lter operates with a one�bit signal
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Figure ����� A proposed extension of the usual multiple feedback modulator 	the �gure
is a modi�ed version of a topology suggested in ����
� The topology allows an equivalent
feedback �lter with more zeros than poles�

as input� In a digital implementation� such FIR �lter can be implemented using table
look�up� In the analog domain� the structure on Fig� ���� can directly be used� The
bi�j�coe�cients form a 	N�N
�matrix which determine the �N � � zeros of the feedback
�lter� This gives a redundancy which allows the use of simpler bi�j coe�cients� A fourth
order modulator designed with power�of�two coe�cients was presented in �����

The new topology allows an equivalent feedback �lter with a numerator with a higher
degree than the denominator� i�e�� the number of design parameters increases� Such feed�
back �lters can be split into a cascade of an FIR �lter followed by a conventional IIR Nth
order �lter where N is the number of feedback �lter poles� Feedback �lters of this type
can not be designed by the NTF�prototype method using conventional high�pass �lters�
Consequently� a direct design method like the proposed optimization framework must be
used�

A number of experiments were carried out on a fourth order modulator� i�e�� a mod�
ulator with four poles in the feedback �lter� The modulator was optimized using �� �
and � feedback �lter zeros� A number of � feedback zeros corresponds to an extra second
order FIR �lter� Only marginal improvements were obtained using these extra zeros� the
base�band noise suppression was improved approx� � dB while the stability was preserved�

��	 Summary

A framework for feedback �lter optimization has been presented in this chapter� The
method is based on a constrained optimization of a prediction of the base�band noise
suppression� The base�band noise power prediction was based on the quasilinear modeling
derived in Chapter �� The constraints ensure that the modulator has a prescribed stable
and reliable amplitude range� The modulator stability was analyzed in the BIBO sense
using an equivalent noise�shaper topology� The scaling invariance of the feedback �lter
was utilized to improve the BIBO criterion� It was demonstrated that the BIBO�criterion
can be based the minimum one�norm of the noise transfer function while the Gaussian
criterion from Sec� ���is based on the minimum two�norm� A third stability measure was
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de�ned using the in�nity norm of the signal transfer function�
Optimizations constrained by proper bounds on the three stability measures yielded

good results� The constraints were consistent for a wide range of modulator orders� i�e��
the same set of constraints yielded fairly consistent stability properties irrespectively of
the modulator order�

Other constraints can easily be included� For instance� in some cases it is convenient
to restrict the ripple of the base�band signal transfer function� Another possibility is to
include the characteristic of a succeeding decimation �lter into the optimization�
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Chapter �

Designing Tone Free Modulators

��
 The Tone Problem

It is a well known problem that ��� modulators produce in�band as well as out�of�band
tones in the presence of low amplitude constant input� In particular� there is often a very
predominant tone near half the sample rate at the frequency f  	�� dc
fs�� when the
modulator is fed with constant input dc ��� ��� ��� ���� This tone can be observed on all
the spectra shown previously for modulators with constant input� The tone is actually
frequency modulated by the input signal� sinusoidal input generates characteristic side�
band tones 	see the paper in Appendix C
�

The persistence of this often very strong tone near half the sample rate is not easily
explained� The classical �rst order modulator has the �� limit cycle as the only steady�
state solution for zero input ����� This limit cycle gives indeed a strong tone at fs��� As
a small dc�bias mx is added to the input� the modulator will from time to time generate a
code segment consisting of two identical codes� This happens because the error between
modulator input and output accumulates in the integrator inside the loop� Consequently�
the mean value of the modulator output must be equal to the dc�bias� i�e�� my  mx�
The frequency of code repetitions must then be mx � fs and this also explains the tone
at 	� �mx
fs��� Higher order modulators seem to inherit this tone mechanism� though
the output code becomes more complex� An Nth�order multiple feedback modulator can
be perceived as a �rst order modulator embedded in a feedback loop containing N � �
integrators� The extra integrators do only modify the low�frequency spectrum� i�e�� more
noise is removed from the base�band� The e�ect at higher frequencies is very little due to
the low�pass �ltering action of the extra integrators� and hence� the high�frequency tone
caused by the innermost integrator is persisting ����

The high�frequency tone is often accompanied by in�band tones at multiples of f 
dcfs� This can be interpreted as a kind of intermodulation between the high�frequency
tone and its image above half the sample rate� The high frequency tone is often very strong
and can be quite close to full scale� This causes the random�like part of the quantization
noise to be modulated� i�e�� the total instantaneous output power is always unity and this
must be shared by the random component and the tone� The result is that also the base�
band noise power is modulated by the frequency f  dcfs� i�e�� the random part of the
quantization noise becomes non�stationary� The noise modulation itself cannot be seen on
usual power spectrum estimates because time averaging is required� However it has been
pointed out that periodic noise modulation can be perceived as a tone by the human ear
����

���
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Figure ���� Estimated power spectrum of the decimated� high�pass �ltered and squared
modulator output based on ������� decimated samples simulated with a constant input
of ��	�� � ���
�

Example 
�� The fourth order modulator of Example ��� was simulated with
a constant input of ��	�� � ���
 and the modulator output was decimated
�� times using a very selective �lter� The resulting base�band noise signal
contained a rather strong tone at the frequency f  fs�	�� � ���
 accompanied
by harmonics� The decimated base�band signal was high�pass �ltered in order
to remove the dc�component� the tone and its harmonics� The �lter used
was an �th order Chebychev II �lter with Rs �� dB and stop�band edge
at ��� � fs��� The �ltered signal was subsequently squared and the power
spectrum was estimated using the usual Welch method based on windowed
�k FFT�s� The resulting spectrum is plotted in Fig� ���� and this spectrum
shows a signi�cant peak at bin number �� which corresponds to the frequency
f  fs�	������
� This peak is not caused by the tone itself due to the high�pass
�ltering� A possible interpretation is that the variance of the base�band signal
is modulated periodically� i�e�� the quantization noise is clearly non�stationary
�

The simulations in Example ��� seem to con�rm the periodic noise modulation is caused
by the very strong high�frequency tone� There seems also to be a strong link between this
tone and the base�band tones� Unfortunately� the out�of�band tones have not attracted
very much attention in the literature so far�

Another observation from the time domain is that the out�of�band modulator output
noise can be very �impulsive� of nature� i�e�� the signal power is concentrated in short
bursts with high peak values �����
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Figure ���� Decimated and high�pass �ltered output signals of the fourth order modulator
of Example ��� fed with a constant input of ��	�� � ���
� The upper graph is decimated
�� times and the lower is decimated �� times�

Example 
�� Fig� ��� shows two signal sequences for the fourth order mod�
ulator from Example ��� fed with a constant input of ��	�� � ���
� The upper
graph shows the �� times decimated and subsequently high�pass �ltered mod�
ulator output� The plotted sequence corresponds to approx� two periods of
the noise modulation which is only barely visible� The lower graph shows a
similar sequence obtained by only �� times decimation and subsequent high�
pass �ltering� Note the di�erence in magnitude scale due to the out�of�band
noise� The length of the sequence matches the upper graph� The energy of the
�� times decimated sequence is� contrary to the �� times decimated sequence�
clearly concentrated in short bursts� This kind of non�stationary behavior is
not revealed by usual spectral analysis �

The presence of tones and noise modulation are both unwanted e�ects of a modulation
scheme� Even if the in�band tones are suppressed� the high frequency tone will still cause
noise modulation� Furthermore� the presence of analog circuit non�linearities can still
produce in�band tones and harmonic distortion due to intermodulation e�ects ���� Conse�
quently� the out�of�band tones must be taken into consideration when data converters are
designed and evaluated�

��� Methods for Tone Suppression

The tone problem as far as in�band tones are concerned has received a lot of attention
and several methods have been proposed for suppression of the tones ���� ��� ��� ���� It
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Figure ���� ��� modulator with scaled feedback �lter H	z
 and dither source d	k
�

is generally believed that higher order modulators are less tonal ����� This is only true
when the in�band tone components are taken into consideration� the ratio between the
power of then in�band tones and the in�band noise power gets typically lower for higher
order modulation� However� the strength of the high�frequency tone changes only very
little� i�e�� the amplitude is generally in the range from ��� dBFs to �� dBFs �� In many
cases� the tone is stronger than the maximum amplitude of the sinusoidal modulator input�
Consequently� high order modulators will still su�er from noise modulation and in�band
tones caused by intermodulation due to circuit non�linearities�

A common approach is to add dither noise to the modulator loop ���� ��� ��� ���� e�g��
accomplished by adding noise to the modulator input� However� this requires that the
noise is heavily high�pass �ltered in order not to sacri�ce the signal�to�noise ratio� A more
convenient approach is to add the dither to the quantizer input as shown in Fig� ���� This
will automatically shape the spectral contribution of the dither according to the noise
transfer function� The two approaches are theoretically equivalent when a suitable dither
pre��ltering is applied in one of the cases�

The addition of a dither noise source has the e�ect that possible tones are �dissolved��
i�e�� the signal power of the tones is partly transformed into random noise� At some dither
level� the tones will be �burried� in the random noise �oor of a power spectrum estimate�

The e�ect of a dither source is �discrete�� i�e�� the output code y	k
 will now and then
change sign due to the dither signal� Theoretically� there is a large class of neutral dither
signals which will not change the output code� e�g�� as long as d	k
 has the same sign
as e	k
� the operation of the modulator will be unchanged even for very large amplitude
dither�

The presence of a dither source prior to the quantizer input will generally reduce the
correlation between e	k
 and y	k
 and� hence� the quantizer gainK given by the quasilinear
model will be reduced� This reduces the noise ampli�cation factor A according to the
A	K
 curve of the feedback �lter� i�e�� the quantization noise power ��q of the quantizer
is increased� Consequently� the reduced loop gain and the increased ��q will increase the
base�band noise power ��b � As the quantizer gain K is reduced� the equilibrium will move
towards the Amin�point� i�e�� the stability is deteriorated� hence� the stable amplitude range
is reduced� The same conclusion can be drawn from the BIBO considerations in Sec� ����

�
dB relative to a full�scale sinusoid
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Figure ���� Equivalent noise�shaper topology of a ��� modulator with scaled feedback
�lter and dither source 	see Fig� ���� The �lter FK	z
 is given by Eq� 	���
�

the magnitude of the quantization noise q	k
 can be as large as � � kd	k
k� where d	k

is the dither sequence 	see the equivalent noise�shaper in Fig� ���
� This maximum value
occurs� e�g�� when e	k
  kd	k
k� and d	k
  �kd	k
k�� A BIBO stability criterion can
now be derived�

kf	k
k�	� � kd	k
k�
 � �� k�x	k
k� 	���


where kf	k
k is the one�norm of the impulse response f	k
 associated with F 	z
�
A similar result was derived in �����
The feedback �lter scaling invariance applies only when the dither signal is scaled

accordingly� Hence� a speci�cation of the dither span without a speci�cation of the scaling
of the feedback �lter is imprecise� Utilizing a feedback �lter and dither scaling by a factor
K� the BIBO criterion becomes�

	S	K
� �
	� �Kkd	k
k�
 � �� k�x	k
k� 	���


where S	K
  kfK	k
k� � � is the one�norm of the impulse response of the noise transfer
function as a function of the quantizer gain K� cf� Eq� 	���
�

The best 	i�e�� the most optimistic
 criterion is obtained for theK�value that minimizes
the left hand side of Eq� 	���
� Eq� 	���
 shows that as the dither magnitude kd	k
k� is
increased� the stable amplitude range is reduced�

Consequently� both the quailinear analysis and the BIBO criterion show that modu�
lator feedback �lters designed for use with a dither noise source must be designed very
conservatively in order to preserve a prescribed stable amplitude range�

As an alternative to dither� it has been suggested that the use of chaotic modulators can
suppress the tones ���� ��� ��� ���� The output of a chaotic system is generally non�periodic
and the spectrum must be continuous� However� this property does not exclude that tones
might exist combined with non�periodic noise like components� As stated in Chapter ��
chaotic modulators are obtained when one or more of the poles of the feedback �lter
are located outside the unit circle� This means that the noise transfer function is mixed
phase� i�e�� a minimum phase transfer function with the same amplitude characteristic
can be obtained by re�ecting the zeros inside the unit circle to their reciprocal locations�
The zero re�ected minimum phase noise transfer function has a lower two�norm or noise
ampli�cation factor A than the mixed phase characteristic due to the ntf	�
  � scaling
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requirement� The reason is that any mixed phase �lter can be composed of a minimum
phase part and an all�pass part ����� Due to the necessary scaling� the amplitude gain of
the all�pass term is greater than unity� The zero re�ected minimum phase �lter is obtained
when the all�pass term is removed� Consequently� for a given base�band noise suppression�
a chaotic modulator will always have a larger Amin�value than for a non�chaotic modulator�
According to the Gaussian criterion� this means that the stable amplitude range is reduced�
A similar argument holds for the BIBO�criterion since the one�norm of the mixed phase
noise transfer function is higher than for the minimum phase� Consequently� both the use
of dither and chaos will deteriorate the loop stability�

The paper in Appendix A compares dithering and the use of chaos with respect to the
suppression of the high�frequency tones� The comparisons are made for sixth order mod�
ulators intended for �� times oversampled CD�standard digital audio reproduction� The
conclusion is that both dithering and chaos can attenuate the high�frequency tones more
than �� dB� The price paid is a signi�cant 	�����dB
 reduction of the attainable signal�
to�noise ratio� It was shown that a feasible way to design tone free chaotic modulators
is to extend a conventional NTF�prototype with a �rst�order all�pass term having a 	real
valued
 zero � outside the unit circle� The resulting feedback �lter will then have a pole
at �� The best result is obtained when � is negative� i�e�� closer to the tone frequencies
near z  �� which corresponds to half the sample rate� It was concluded that a tonefree
and dithered sixth order modulator has a performance similar to a tonefree and chaotic
seventh order modulator with a sixth order NTF magnitude characteristic� This shows
that the use of chaos and dithering have very similar e�ects on the tones and the stability�

A totally di�erent approach for tone suppression is used in ����� a �ne�scale �trim bit�
with� e�g�� ��bit lower signi�cance is added to the coarse one�bit quantizer output and
the result is a rather unusual ��level quantizer with a large number of thresholds where
the output code changes� It is demonstrated that such coarse!�ne quantizer gives better
low level resolution without in�band tones� However� the e�ect on the strong out�of�band
tones is not clear�

��� Measures of Information Loss

Both the use of dithering and chaos introduce an element of uncertainty into the modula�
tion� For a dithered modulator� the next output code will to some extend be uncertain� If
the state of a chaotic system is known with some precision at time�step k� then the state
of the system at time�step k � � is known with a reduced precision due to the sensitivity
to initial conditions� This property represents a loss of information for each time�step�

The product of the feedback �lter pole moduli was introduced as the system map
expansion factor "� cf� Eq� 	���
� The rate of information loss can be expressed in bits
per time�step as the base two logarithm of "� As " approaches two� the loss of informa�
tion becomes close to one bit per time�step� It was previously shown that a �rst order
modulator becomes unstable when " is greater than two 	see Example ���
� Higher order
systems become typically unstable for lower " values� Consequently� an information loss
rate of one�bit per time�step is the upper limit for a one�bit modulator� The noise shaping
theorem 	Theorem ���
 is in fact inspired by information capacity considerations� When
the equality of Eq� 	���
 holds� the information capacity of �the noise shaped transmis�
sion channel� is preserved ����� This is only the case for minimum phase noise transfer
functions� i�e�� for non�chaotic modulators� Consequently� the the use of chaos reduces the
information capacity�
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Based on listening experience� it has been claimed in ���� that multiple feedback �lter
poles at z  � gives less correlated quantization noise than for complex unit circle poles�
A likely explanation is that the number of periodic points increases as n�N��� where n is
the period length and N is the multiplicity of the z  � poles 	i�e�� the order
� whereas the
number of periodic points is asymptotically constant for the case of complex unit circle
poles�

It is also possible to quantify the loss of information for a dithered modulator� Let
X  sgn	e	k

 and Y  sgn	e	k
 � d	k

 be stochastic variables� The conditional entropy
H	Y jX
 	in bits
 expresses the uncertainty about the current modulator output code Y
given the output code X without dither� The undithered system yields H	Y jX
  �� since
there is no uncertainty about Y once X is known� As more and more dither is added�
H	Y jX
 increases� The upper limit is of course one�bit in the extreme case where Y is
statistically independent of X and the two outcomes of Y are equally likely�

It is now possible to compare the amounts of dither and chaos� The dithered sixth
order example from the paper in Appendix A operates for zero input with an uncertainty
H	Y jX
 of approx� ���� bit!time�step� The all�pass derived sixth order modulator has a
�chaotic� pole at �  ����� corresponding to an information loss rate of ���� bits!time�
step� Consequently� the chaotic modulator can suppress the high�frequency tone at a
lower rate of information loss than for the dithered example� If the all�pass zero is �ipped
to �  ����� the high�frequency tone is only reduced slightly while the pole modulo is
preserved�

��� Limit Cycle Analysis of Dithered Modulators

The limit cycle analysis framework presented for chaotic modulators 	Ch� �
 can be ex�
tended to include dithered modulators� The analysis uses the usual modulator topology
of Fig� ���� To test if a given periodic code sequence exists as a limit cycle� the loop is cut
open at the input of the quantizer and the periodic steady�state loop �lter output e	k
 is
found when the period code sequence y	k
 is fed back� If the quantizer will reproduce the
output code sequence from e	k
� then the code sequence exists as a limit cycle� However�
it should be emphasized that a modulator dithered by an independent� stochastic dither
signal is not a deterministic autonomous system� Consequently� the concept of limit cy�
cles does not exist for such dithered modulators� Only when the dither signal is a known
periodic sequence� the limit cycle concept is meaningful�

The addition of a periodic dither signal d	k
 to e	k
 changes the composition of possible
limit cycles� i�e�� the dither can change the quantizer output code at suitable instants and
other periodic sequences can be reproduced� This kind of limit cycle analysis provides
information about the possible code sequences of a dithered modulator� A stochastic
dither generator may theoretically produce a large class of periodic signals� Hence� the
objective of the limit cycle analysis is to �nd every theoretically possible limit cycle for a
given dither generator� In practise� the limit cycles are not observable for real simulations
with random dither� since each of the limit cycles requires a particular class of periodic
dither signal added in order to be sustained� This is exactly the same situation as for
chaotic modulators� there is a large number of unstable limit cycles and� hence� it is very
unlikely that a particular cycle is sustained for a longer period of time due the sensitivity
to initial conditions� However� the knowledge of the composition of possible limit cycles
describes the possible code sequences� i�e�� the modulator will always be arbitrarily close
to a limit cycle�
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Figure ���� An Minimum dither magnitude 	MDM
 histogram for the set of period ��
prime cycles of the modulator with feedback �lter cf� Eq� 	���
 with zero input� A total
of ���� prime cycles of length �� exist cf� Table ����

It was stated in Sec� ��� that the number of periodic points of a chaotic modulator
must grow exponentially with the period length in order to maintain stability� To be more
speci�c� the number of periodic points must grow like "n where n is the period length and
" is the expansion factor 	i�e�� the product of pole moduli greater than unity
�

The limit cycle analysis can thus describe the similarity between the e�ects of dithering
and the use of chaos� In both cases� the number of limit cycles increases and this tends to
randomize the output code sequence�

It must be emphasized that the limit cycle analysis of a dithered modulator does not
provide information about the stability� i�e�� a modulator will always be less stable when
random and independent dither is applied�

A practical way to analyze limit cycles for a dithered modulator is to �nd the steady
state e	k
 signals for each of the prime cycles up to a given length� Subsequently� the
minimum dither magnitude 	MDM
 necessary to reproduce the corresponding prime cycle
is computed for each e	k
 sequence�

MDMi  �min	ei	k
 � yi	k

 	���


where yi	k
 and ei	k
 are the code sequence and steady�state loop �lter output corre�
sponding to prime cycle i�

A negative MDMi means that the prime cycle i exists without any dither� i�e�� y	k
 
sgn	e	k

� If the dither signal d	k
 is a bounded random i�i�d� sequence then every prime
cycle i satisfying MDMi � kd	k
k� will theoretically exist� i�e�� there is a 	small
 possibility
that the random dither signal will support the limit cycle for some time given the right
initial conditions�
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Example 
�� This example investigates the second�order modulator feedback
�lter�

H	z
 
z�� � ���z��

�� ����z�� � z��
	���


The feedback �lter has complex unit circle poles� i�e�� the number of periodic
points is expected to be asymptotically constant without dither applied� The
following analysis is accomplished for zero input�

Fig� ��� shows a histogram of the MDM�values of the set of period �� prime
cycles� There are no negative MDM�values� i�e�� no period �� prime cycles exist
without dither� As the dither span is increased� the number of existing prime
cycles increases� For a maximum dither magnitude of ����� every prime cycle
of length �� exists 	a total of ����� cf� Table ���
�

Fig� ��� shows the number of periodic points versus the period length for
di�erent maximum dither magnitudes� The plot shows only values for even
period length since there are generally fewer limit cycles with uneven length
	these cycles have a non�zero mean value
� For no dither� the number of
period points levels out to a fairly constant number� For higher dither levels�
the curves follows the same initial steep slope and at some point� the slope
levels out� Unfortunately� the developed routines in MATLAB were not able
to handle prime cycles of length greater than ��� However� from the plots on
Fig� ��� it seems likely that the curves will continue to grow exponentially with
exponents depending on the dither level� i�e�� the same asymptotic behavior as
for chaotic modulators �

The limit cycle analysis for a dithered modulators con�rms the similarity between
dithering an the use of chaos� In both cases� the number of periodic points increases
	exponentially
 with the period length�

A dithered non�chaotic modulator with poles inside the unit circle will typically display
a dither threshold e�ect� i�e�� for low dither levels� the output will be strictly periodic and
at a certain dither level the output becomes more random� This phenomenon is easily
explained� modulators with poles inside the unit circle have attracting limit cycles and
if the dither level is insu�cient to eventually change an output code� the limit cycle will
trap the modulator� The limit cycle which can tolerate the highest dither levels will then
dominate and asymptotically attract the system� This limit cycle has the lowest 	i�e� most
negative
 MDM�value� Typically� the classical �� limit cycle requires the most dither to
knock out� This gives also a credible explanation on the persistence of the high�frequency
tone�

Example 
�� A modulator with a feedback �lter given by Eq� 	���
 was mod�
i�ed such that the unit circle poles were scaled by a factor of ����� the
steady state feedback �lter output for the �� limit cycle is e	k
  	�������
����������
� i�e�� it requires a dither signal with a peak magnitude of at least
������ to dissolve this attracting limit cycle� Simulations with uniformly dis�
tributed dither con�rms this threshold e�ect �

For a non�chaotic modulator� it is meaningless to apply less dither than prescribed by
the dither threshold�



��� CHAPTER �� DESIGNING TONE FREE MODULATORS

2 4 6 8 10 12 14 16 18
10

0

10
1

10
2

10
3

10
4

Period

N
um

be
r 

of
 p

er
io

di
c 

po
in

ts

0.0

0.125

0.25

0.5

1.0

2.0

Figure ���� Number of periodic points versus period length for the modulator cf� Eq� 	���

with zero input� The parameter on each plot is the peak dither magnitude kd	k
k��

��� Summary

This chapter reviewed di�erent approaches for suppression of the strong tones which can
be observed in the output spectra of modulators fed with small amplitude constant input�
The paper in appendix A presented some practical design examples which demonstrated
that both dithering and the use of chaos can suppress such tones� The price paid in both
cases is a signi�cantly reduced attainable signal�to�noise ratio due to a detrimental e�ect
on the modulator stability�

The use of chaos and dithering was compared from a theoretical point of view� Both
methods induce a degree of uncertainty into the modulation which can be measured as
a rate of information loss� Another way of comparing was to investigate the number of
periodic points versus the period length� Both dithering and chaos increases the number
of possible limit cycles and this randomizes the output sequence�

The question of whether to use dithering or chaos is quite complex� In digital systems�
pseudo random number generators can easily be made with a controllable probability
distribution� On the other hand� it also takes only relatively little extra hardware to
increase the order of the modulator by one as required by the �rst order all�pass extension�

In analog modulators� the design of dither noise generators with prescribed probability
density functions can be di�cult� noise generators based on thermal noise has Gaussian
probability density and the variance is strongly temperature dependent� Furthermore� the
use of thermal noise requires usually high ampli�cation and this may lead to unintentional
feedback and deteriorated power supply rejection� A better approach is to use a digital
noise generator and a suitable D!A�converter� However� this approach is rather hardware
consuming� Consequently� for A!D�converters� the use of chaos can be a very attractive�



Chapter �

��� Modulation using Vector

Quantization

	�
 Introduction

In this chapter� a novel class of modulators is introduced� In the traditional ��� mod�
ulator� the output code is determined as the sign of the feedback �lter output� i�e�� the
decision of which output code to generate is based on a one�dimensional projection 	many�
to�one mapping
 of the general N �dimensional state�space of the feedback �lter� From a
theoretical point of view� such a one�dimensional projection does only convey very little
information about the �lter state� A more general way to make the output code decision
is to use the whole state�space� i�e�� the scalar one�bit quantizer is replaced by a one�bit
vector quantizer 	VQ
 ���� which maps the entire state�space into the binary output al�
phabet� The class of modulators using vector quantization is naturally a superset of the
traditional class of modulators with scalar quantization�

Each of the modulators using vector quantization can be transformed into an equivalent
traditional modulator with a scalar quantizer operating on a scalar �lter output e	k

combined with a vector quantizer which can change the decision of the scalar quantizer�
The negated transfer function from the modulator output to the scalar signal e	k
 is still
de�ned as the feedback �lter H	z
� Such transformation can naturally be accomplished
in many ways� Fig� ��� shows the topology of the the proposed modulator with combined
scalar and vector quantization�

Conceptually� the topology of Fig� ��� can also be perceived as a traditional modulator

x	k
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�state vector xk
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Figure ���� ��� modulator with vector quantization

���
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Figure ���� ��� modulator with vector quantization implemented as a deterministic dither
signal

with a �dither signal� added which is a deterministic projection of the �lter state� Such
topology is shown on Fig� ���� The dither signal produced by the generally nonlinear
mapping d	xk
 causes the output code of the scalar quantizer to change at some instants�
If the dither signal is generated as a linear projection of the �lter state� the system is
equivalent to a traditional modulator with a modi�ed H	z
 transfer function� To be more
speci�c� a linear state�space projection can only change the zeros of H	z
 since the poles
are always the eigenvalues of the transition matrix of the �lter� Hence� the only interesting
situation is when the deterministic dither signal is a nonlinear projection of the �lter state�
Since the usual scalar �lter output e	k
 and the arti�cial dither signal is added before the
sum is quantized by the scalar one�bit quantizer� the proposed new class of modulators
could also be characterized as a modulator having a nonlinear feedback �lter output�
The nonlinear mapping could be implemented using a suitable neural network� It has
previously been suggested to use a nonlinear feedback �lter ����� however� the proposed
topology is not equivalent to a modulator with a vector quantizer

The question is obviously� is it possible to improve the performance of a modulator by
the introduction of a vector quantizer It seems very likely that it is possible to improve
the stability� The reason is that a vector quantizer can allow more limit cycles to exist and
this can be done in a selective way� i�e�� the VQ can be designed to generate more limit
cycles belonging to the bounded limit set� Recall from Ch� � and Ch� � that a chaotic
limit set is made up of a large number of limit cycles and that the stability of the limit sets
depends on the �density� of limit cycles� The VQ might thus keep the modulator operating
in a bounded region while the usual noise shaping e�ect is preserved� i�e�� the base�band
noise rejection is primarily controlled by the �lter poles which remain the same� Such
e�ects can increase the overall modulator performance�

The possibility of designing the composition of limit cycles might also be used to change
and hopefully reduce the amplitude of the possible tones 	see Ch� � for a discussion on
tones
� An unwanted limit cycle can be removed by a slight modi�cation of the VQ� Since
the modulator state is always arbitrarily close a limit cycle� the spectral properties of the
modulator output is also in�uenced when changing the set of limit cycles� The possibility
of using VQ for tone suppression is an open �eld for future research�
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	�� Speci�cation of the VQ

It is impossible to investigate the entire class of modulators using vector quantization�
Furthermore� there is currently no way to accurately model these systems and this makes
systematic optimization very di�cult� However� a systematic method for the design of the
vector quantizer is proposed in ���� reprinted in Appendix B� The method starts from a
usual modulator with loop �lter H	z
 given in a state�space description� Subsequently� a
so�called legal set is speci�ed� The purpose of the vector quantizer cf� Fig� ��� is to ensure
that the modulator never leaves the legal set� This is accomplished by identi�cation of a
number of regions Fn in the state space where the VQ should change the code generated
by the scalar quantizer� These regions have the property that states in Fn leaves the
legal set after precisely n time steps� if the usual quantizer is used� In addition� if a
time�step is taken with an inverted output code followed by n� � time steps with normal
quantization� the modulator stays within the legal set� A direct implication of these
properties is that the Fn regions are mutually disjoint� A VQ which changes the output
when the modulator state is in one of the Fn regions for n below some limit� can help to
con�ne the modulator operation 	i�e�� the limit set
 to be inside the speci�ed legal set�
If the unmodi�ed modulator was unstable� then the VQ can in some cases stabilize the
system�

The proposed method requires some tweaking� i�e�� the choice of the legal set is very
crucial� A simple way to de�ne the legal set is to specify an upper and a lower bound for
the scalar �lter output e	k
� This choice of legal set simpli�es also the structure of the Fn
sets� i�e�� these sets are polytopes 	sets delimited by hyper�planes in the state�space ����
�
This enables the vector quantizer to be implemented using a number of scalar quantizers
operating on auxiliary scalar �lter outputs�

	�� The Back�Step Algorithm

For a given legal set� the method presented in Appendix B de�nes a vector quantizer and
a numerical test is presented which can tell if the modulator output should be inverted�
However� this test has a high numerical complexity� In some cases� it is more e�cient to
use the so�called back�step algorithm� the modulator is simulated in forward time until
the system leaves the legal set� At such instants� the algorithm steps back one step at the
time and tries to �ip the output code� Each time a code is �ipped� the system is simulated
in forward time until the time instant where the �rst legal set violation was encountered�
The output codes are �ipped successively back in time until the system stays within the
legal set� A convenient way to arrange the numerical data is to store the signal sequences
in circular bu�ers�

�� Simulate in forward time until the legal set is exceeded and let nc be the time�step
where this situation occurred�

�� backstep  �

�� backstep  backstep � �� if backstep � nmax then goto ��

�� Flip the output code at time time nc�backstep and simulate to time nc� If the
system leaves the legal set then goto ��

�� Goto �
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The back�step algorithm is faster when the vector quantizer only intervenes rarely� i�e��
the algorithm stops only when leaving the legal set�

Example ��� An eighth�order modulator was designed using a Chebychev II
prototype with the parameters Rs ��� dB and fb ���� ������� The resulting
feedback �lter has a Amin of ����� and Smin  ����� i�e�� the modulator is
expected to be fairly unstable and unreliable 	see Ch� �
�

The back�step algorithm was used on the eight�order feedback �lter and a
simulation was performed with a constant input of �!���� An upper magnitude
limit of e	k
 was set to ������ This resulted in a high frequency of output
code changes� The output spectrum is seen on Fig� ���� The high vector
quantization activity gives a signi�cant suppression of the high frequency tone�
the amplitude is as low as ����� dB� The base�band noise power is ������ dB�
This shows that a reduction of the tones not necessarily sacri�ces the in�band
noise rejection�

The back�step algorithm was enable to stabilize the modulator for constant
inputs up to ���� i�e�� the vector quantization scheme can indeed extend the
stable amplitude range considerably� In order to be stable� the e	k
 bounds
were changed to ���� and ����� The algorithm had to go more steps back in
time in order to limit the magnitude of e	k
� The spectrum showed again that
the amplitude of high frequency tone was below ��� dB �

	�� summary

A novel class of modulators employing one�bit vector quantization was introduced� This
enables the output codes to be generated on the basis of the entire state�space information
instead of on just a linear projection� Conceptually� such a modulator is equivalent to a
modulator with a usual scalar quantizer which from time to time is overruled by a vector
quantizer� Alternatively� this e�ect can also be achieved by a usual modulator with an
added dither signal which is a deterministic 	and nonlinear
 function of the �lter state�
The operation of the feedback �lter is unchanged� i�e�� the �lter has still the di�erence
between the modulator input and output as input�

The introduction of a vector quantizer can change the stability and limit cycle com�
position of a modulator� A design method which aims at enhancing the stability was
presented� A simulation example showed that the stability of an eighth�order modulator
was enhanced signi�cantly while the high frequency tone was reduced�
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Figure ���� Simulated power spectrum estimate 	������� samples
 for an eighth�order
modulator obtained from a Chebychev II prototype with the parameters Rs ��� dB and
fb ���� � ������ The modulator was simulated using the back�step algorithm with a
je	k
j � ����� bound and a constant input of �!����
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Conclusions

The present work has mainly focused on the stability of ��� modulators� The stability
issue is the most delicate problem when design of high�order modulators is addressed� The
analysis from the nonlinear dynamics point of view� as presented in part I� explained the
onset of instability in a chaotic modulator as a boundary crisis emerging when the limit
set 	attractor
 of the system collides with the boundary of its basin of attraction� The
degree of instability can be quanti�ed using the escape rate�

Even for second�order systems� the basins of attraction revealed extreme diversity and
complexity� This fact tells that a simple and general stability criterion is very di�cult
to �nd� Stability can be proven by showing the existence of a bounded trapping region
which naturally must be inside the basin of attraction� In the simple �rst�order case�
such trapping region is an interval� However� as the dimension increases� more and more
complex geometric analysis has to be applied� If a given stability criterion proves the
existence of a simple class 	e�g�� hyper cubes
 of trapping regions� then the criterion will
be very conservative� especially for high�order systems� This is in fact the case for the
BIBO criterion based on the NTF one�norm� as presented in Sec� ���� Less conservative
stability criteria are of higher complexity 	i�e�� proving more complicated sets as trapping
regions
 � in the limit of complexity� it is just as easy to just simulate the system to �nd
the answer�

The Gaussian stability criterion as presented in Ch� � takes advantage of the regular�
ity hidden in the complexity of high�order systems� The Gaussian criterion is based on
considerations for the power of the signals within the modulator loop� i�e�� the criterion is
based on two�norms� Unfortunately� this criterion is only approximate� but on the other
hand� it is generally fairly precise for reasonably �well behaved� systems�

Empirical stability studies showed that some modulators have very unreliable behavior
giving a very slow transition to the unstable regime� Unreliable modulators may also
have discrete constant input values which causes instability� The overwhelming problem
concerned with unreliable modulators is the existence of regions or discrete values of
constant input where the escape rate can be extremely small� This means that simulations
cannot be trusted since these modulators are seemingly stable for most inputs�

Ch� � combined the approximate Gaussian stability criterion with the rigorous one�
norm based BIBO criterion and an in�nity�norm based stability measure� The result was a
set of constraints which consistently lead to very reliable modulators in connection with an
optimization routine� The resulting modulators had a very sharp transition to instability
and this means that the maximum stable amplitude limit found by simulations can be
trusted� i�e�� the modulators are expected to be very stable if the input is magnitude

���
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limited slightly below the found amplitude limit� The results were used to implement a
highly stable eighth�order ��� DAC�

The topic of stability was also investigated from a more abstract mathematical point
of view� i�e�� the symbolic dynamics analysis presented in Ch� �� The conclusion is that for
stable system� the growth in the number of periodic points must outbalance the volume
expansion of the system map of the modulator� The results are not suited for practical
design� and only in a few extreme cases� it was possible to derive an analytical expression
for the escape rate� However� the context of symbolic dynamics gives an enlightening new
view on the stability issue�

The symbolic dynamics was also used to show the similarities between dithering and
the use of chaos� In both cases� the number of periodic points increases with the period
length�

In Ch� � a new class of modulators using vector quantization was presented� It was
shown that a suitably designed vector quantizer can improve stability considerably� The
symbolic dynamics can explain this� The vector quantizer might change the composition
of limit cycles� and this might increase the growth of periodic points�

The existence of spurious tones in the presence of small dc input bias is another prob�
lem concerned with ��� modulators� The tone problem was treated empirically� i�e�� no
theoretical analysis was presented� The use of chaos and dithering was compared and
the result was that both options are nearly equally e�cient� but there is a severe SNR
penalty� In Ch� � it was shown that heavy use of vector quantization might both improve
the stability and reduce the amplitude of the tones without any SNR penalty� This fact
should obviously be subject to future research�

It is still an open question why spurious tones might persist even high amounts of
dither or chaos� Again� more theoretical analysis is needed�
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Appendix for Chapter �

This appendix is connected to chapter � and is a preliminary preprint of the paper� L�
Risbo� #On the design of tone free ��� modulators$� to appear in IEEE Transactions on
Circuit and Systems � II� The references are included in the bibliography section on page
����
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On the Design of Tone Free ��� Modulators
Lars Risbo

Abstract

Traditional one�bit sigma�delta modulators used for A�D and D�A conversion produce very
predominant tones near half the sample rate which might intermodulate in the analog con�
verter section and cause in�band tones� This paper demonstrates how the use of chaos can
substitute dither as a means for extinguishing these tones� Especially� modulator feedback
�lters derived from noise transfer functions having an all�pass term seem very promising�

A�
 Introduction

Sigma�delta modulators are extensively used in the design of oversampling audio A!D and
D!A data converters ��� ����

One of the drawbacks of conventional sigma�delta modulators is the possible existence
of tones in the output spectrum ���� ��� ��� ���� A very common property is that when
the modulator is fed with a dc�input� 	� the modulator spectrum contains a very strong
out�of�band tone at the frequency 	� � 	
fs��� where fs is the sample rate ���� ��� ����
Simulations have indicated that the tone close to fs�� causes the in�band noise power to
vary periodically with the frequency 	fs 	unpublished
� Such periodic noise modulation
is not observable on usual power spectra estimates but can be seen in the time domain
and might be perceived as a tone by the human ear ����� The frequency modulation
of the tone near fs�� seems to be very general� i�e�� sinusoidal input with frequency f
produces characteristic side�band tones at the frequencies fs��� kf for integer k ����� In
addition� the high frequency tone and the side�bands can produce in�band intermodulation
components produced by analog circuit nonlinearities ��� ����

The conclusion from the observations mentioned above seems to be that precautions
against the out�of�band tones must be taken if sigma�delta converters free from audible
tonality are to be designed�

Enhanced suppression of both in�band noise and in�band tones can generally be achieved
by increasing the order of the modulator� since this normally allows a higher attainable
in�band loop gain� However� this has very little or no e�ect on the amplitude of the
tones near fs�� since the out�of�band loop gain must remain nearly the same in order
to preserve loop stability� Even eighth order modulators seem to su�er from these high
frequency tones �����

A di�erent approach to tone suppression is the introduction of a degree of �uncertainty�
into the modulation� This is accomplished either by adding dither noise into the modulator
loop ���� ��� or by the use of a chaotic modulator ���� ��� ���� The purpose of this letter is
to compare these two strategies with respect to the suppression of the tones near fs��� The
advantage of a chaotic modulator is that no dither noise source is needed� thus eliminating
the non�trivial task of designing a temperature independent noise source with a prescribed
probability density function in analog implementations�
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A�� Feedback Filter Design from NTF�prototypes

Figure A�� shows a typical sigma�delta modulator composed of a feedback �lter 	i�e� loop
�lter
 H	z
 and a one�bit quantizer 	i�e�� signum function
�

When the one�bit quantizer is crudely modeled as a unity gain with an additive noise
source� the noise transfer function� NTF	z
� from the noise source to the modulator output
is given by�

NTF	z
 
�

� �H	z

	A��


The NTF describes how the quantization noise is spectrally shaped and suppressed in the
base�band�

Sigma�delta modulators are typically designed by speci�cation of a desired high�pass
noise transfer function� i�e�� an NTF�prototype ��� ��� ��� ���� From an NTF�prototype
given as a rational transfer function NTF	z
  A	z
�B	z
 the feedback �lter H	z
 can be
derived using 	A��
�

H	z
 
�

NTF	z

� � 

B	z
� A	z


A	z

	A��


Since delay free loops around a quantizer are not implementable� H	z
 must have at
least a one sample delay� i�e�� the associated impulse response must have the property
h	k
  �� k � � ��� ���� Equation 	A��
 shows that this is achieved when the NTF�
prototype is scaled such that A	z
 and B	z
 have the same highest order z�term� This
necessary scaling causes a unity pass�band gain NTF�prototype to have a higher pass�band
gain and a lower stop�band attenuation after scaling�

A good in�band noise suppression can be obtained by designing the NTF�prototype as
a Chebychev II high�pass �lter with unit circle zeros distributed in the base�band ��� 	see
also ���� for optimum unit circle zero locations
� Such scaled prototype �lters can easily
be designed using the MATLAB Signal Processing Toolbox commands ���� ����

�A�B��cheby��N�Rs�fb��high�	

A�A�A��	

where N is the �lter order� Rs is the desired base�band attenuation in dB 	prior to scaling

and fb is the upper base�band edge normalized with respect to fs���

Increasing Rs will obviously improve the suppression of in�band noise and thereby the
SNR� however� the necessary scaling causes the high frequency gain of the NTF�prototype
to increase and� unfortunately� too much high�frequency noise destabilizes the modula�
tor loop� i�e�� the stable amplitude range of the modulator is reduced ��� ��� ���� This
phenomenon is caused by an overload of the simple one�bit quantizer� i�e�� the quantizer
output power is always unity and must be shared between the in�band signal and the
circulating noise�

The feedback �lter design is thus a trade�o� between in�band noise suppression per�
formance and loop stability� See ���� ��� for a discussion of design trade�o�s and stability
criteria for high�order modulators�

A�� Chaotic Sigma�Delta Modulators

An Nth order sigma�delta modulator is a non�linear discrete�time dynamical system� which
can be analyzed by observing trajectories in a corresponding N�dimensional state�space�
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Generally� the state�space has a large number of periodic trajectories 	i�e�� limit cycles

with di�erent periods �����

It can be shown that if all poles of the feedback �lter H	z
 are inside the unit circle�
the limit cycles have attracting regions in the state�space which cause the modulator to
lock asymptotically into strictly periodic modes �����

If one or more of the H	z
 poles are outside the unit circle� the limit cycles will be
unstable� i�e�� even small perturbations in the state space will be ampli�ed exponentially
in time ����� The sensitivity to initial conditions and a high density of limit cycles are
important characteristics of chaos� Chaotic systems are unpredictable on long time scales
and generate non�periodic outputs� Despite these properties� chaos does generally not
guarantee that the quantization noise of sigma�delta modulators is free from tones� ���� ����

The moduli of the poles outside the unit circle is a measure of the �amount of chaos� in
the modulator� i�e�� how fast nearby points in state�space diverge per time step� The base
two logarithms of the pole moduli are in fact equal to the so�called Lyapunov exponents
used in chaos theory ���� and these exponents express the loss of state�space information
in bits per time step�

A�� NTF�prototypes with All�pass Terms

In order to obtain chaos� H	z
 must have at least one pole outside the unit circle� This is
achieved when an NTF�prototype with zeros outside the unit circle is used� cf� 	A��
�

An initial approach was to use a standard sigma�delta modulator and scale up the
H	z
 unit circle poles with a certain factor� however this procedure reduces the in�band
noise suppression signi�cantly due to the resulting lower loop gain ���� ����

Another way to obtain chaos is to use a minimum phase NTF�prototype and re�ect
one or more zeros to their reciprocal locations outside the unit circle� as demonstrated
for FIR �lters in ����� The necessary scaling of the zero�re�ected prototype scales up
the magnitude characteristic by the product of the moduli of the re�ected zeros� and
this reduces the loop stability considerably� The stability was secured by adding more
quantizer levels in ����� The bene�t of zero�re�ection is that the in�band noise suppression
is only reduced proportional to the necessary scaling�

An alternative to zero�re�ection is to introduce an all�pass term into a standard IIR
NTF�prototype with all zeros on the unit circle� A �rst order all�pass term must naturally
have a 	real valued
 zero outside the unit circle and a pole inside the unit circle which is the
reciprocal of the zero ����� The advantages of an all�pass extended NTF�prototype are that
the zeros are preserved on the unit circle for optimum in�band noise suppression and that
the degree of chaos can be adjusted independently of the NTF magnitude characteristic
by adjusting the all�pass zero location� A normalized all�pass term with a zero at z 
�� j�j � � has the form�

NTFap	z
 
�� �z��

�� �

j�j�z
��

	A��


This all�pass term may be multiplied on any normalized NTF�prototype thus giving a
new normalized NTF�prototype with a �lter order increased by one� Since the magnitude
response of 	A��
 is equal to j�j� the loop stability deteriorates as j�j is increased� Conse�
quently� �more chaos� and thereby better tone suppression can be obtained at the expense
of a lower stable amplitude range�
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A�� Design and Simulation Examples

In this section� three methods for suppressing the tones near fs�� are compared � i�e��
NTF�prototype zero scaling� one�bit quantizer dithering� and �nally� the use of an all�pass
extended NTF�prototype�

For the sake of comparisons� the simulation examples will all be for sixth order mod�
ulators based on Chebychev II prototypes designed with MATLAB� All modulators are
intended for �� times oversampling� i�e�� fb���� � �������� 	suitable for e�g�� �� kHz base�
band and �� � ���� kHz sample rate
� An additional design criteria was to ensure a stable
input range up to ���� relative to full scale� The simulations use a DC�input of �!���
corresponding to possible high frequency tones that might intermodulate and generate
base�band tones at f  ����� � fs��� The spectra shown in this section are obtained by
averaging Kaiser�Bessel windowed �k FFT power spectra for sequences of two mill� one�bit
samples� The heavy averaging allows tones to be distinguished from random noise� In this
context� the designation �tone free� is used when possible tones are comparable to or below
the noise �oor provided by the given spectral resolution� An enhanced spectral resolution
	e�g�� larger FFT size
 can naturally reveal more tones because the noise �oor is lowered�
For each spectrum the in�band noise power is computed by summing up the power of the
appropriate FFT�bins�

The �rst modulator tested had a prototype designed with the parameters N  � and
Rs  ��� dB� This modulator is stable for input amplitudes up to approx� ���� relative
to full scale� Figure A�� shows the simulated output power spectrum� The in�band noise
power is approx� ���� dB 	relative to full scale
 corresponding to more than �� bits of
resolution� However� the tone seen near fs�� is no more than ��� dB below full scale �
the tone is in fact stronger than any possible modulator input%

Experiments with scaling of the NTF�prototype zeros were then carried out� This
resulted in a design based on a prototype with N  � and Rs  �� dB� A zero scaling by
a factor of ���� was necessary to suppress the high frequency tones below the noise �oor�
The resulting tone free spectrum is shown on Figure A��� The in�band noise power is as
high as ��� dB and this is a consequence of the NTF�zeros being removed from the unit
circle� Furthermore� the experiments showed that this modulator is too unstable for any
practical purposes�

The next approach was to add a dither noise source to the quantizer input� Obviously�
this introduces more noise into the loop which consequently becomes more unstable� The
NTF�prototype must therefore be designed with a somewhat lower Rs such that the same
stable input range is preserved when dither is applied� The combination of N  �� Rs 
�� dB and a spectral white dither source with a uniform amplitude density from ���� to ���
resulted in a tone free design with a stable input range up to approx� ����� The spectrum is
showed on Figure A�� and the in�band noise power is approx� ���� dB� A peak at ����� dB
is seen at 	�� �����
fs��� When a lower dither span is applied� both a higher SNR and
stable input range is obtained� however� the high frequency tone becomes stronger�

Finally� a sixth order modulator was obtained from a �fth order NTF�prototype ex�
tended by a �rst order all�pass term cf� 	A��
� Experiments have shown that negative
values of � are far more e�cient than positive values in respect to suppression of high
frequency tones � probably because an NTF�zero near z  �� corresponds to f  fs���
The combination of N  �� Rs  �� dB and �  ����� resulted in a tone free modulator
with a stable input range up to approx� ����� The spectrum is showed on Figure A�� and
the in�band noise power is approx� ���� dB� A peak at ����� dB is seen at 	�������
fs���
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Figure A��� Sigma�Delta modulator with feedback �lter H	z


The modulator has obviously a �fth order noise shaping amplitude characteristic and this
is limiting the SNR� If the total order is increased to �� it is possible to obtain a tone free
design with a better SNR and the same stable amplitude range� the parameters N  ��
Rs  �� dB and �  ���� yields an in�band noise power of approx� ���� dB� i�e� almost
the same performance as for the dithered sixth order example�

A�� Conclusions

It has been demonstrated that the use of chaos e�ectively can substitute dither as a means
for suppression of the predominant tones near half the sample rate in one�bit sigma�delta
modulators� In particular� the use of a general all�pass term seems to be very advantageous�
Investigations have shown that a �rst order all�pass term with a real valued negative zero
outside the unit circle is a feasible choice� The price paid for the tone suppression is that
both dithering and the use of chaos reduce the loop stability signi�cantly� In order to
restore stability� the in�band loop gain must be reduced resulting in a lower attainable
SNR for a given modulator order� However� this can to some extend be remedied by
increasing the modulator order�

The presented examples indicate that the dithered modulator obtains a � dB better
SNR than a chaotic modulator for the same total order and stable amplitude range�
However� this is to some extend counterbalanced by the high�frequency tone being approx�
�� dB weaker for the chaotic modulator example than for the dithered� Future research
should therefore attempt to uncover the exact relations between tone strength� dither span
and the all�pass zero modulus�
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Figure A��� Power spectrum from a simulation of a sixth order modulator with Rs 
��� dB�
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Figure A��� Power spectrum from a simulation of a sixth order modulator with Rs  �� dB
and an NTF�zero scaling of �����
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Figure A��� Power spectrum from a simulation of a sixth order modulator with Rs  �� dB
using dither uniformly distributed over the interval �����������
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Figure A��� Power spectrum from a simulation of a �fth order modulator with Rs  �� dB
extended to sixth order using an all�pass term with �  ������
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Appendix C

Implementation of an Audio DAC

This appendix is a reprint of the reference ����� L� Risbo� #FPGA based �� times oversam�
pling �th order sigma�delta audio DAC$ presented at the ��th Audio Engineering Society
Convention� Amsterdam� The Netherlands� ���� February �� � March ��� Preprint �����

The paper presents a ��� D!A�converter which was developed during the Ph�D� study�
The references are included in the bibliography section on page ����
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Abstract

A novel Sigma�Delta based audio DAC system is presented� The converter operates at
only 
� times oversampling ����MHz and uses an �th order Sigma�Delta modulator im�
plemented in a single FPGA circuit� Two di�erent DAC circuits have been implemented�
One using switched capacitor charge pulses and one using non�return�to�zero pulses� A
VCXO based PLL ensures sampling clock recovery free from deterministic jitter compo�
nents�

C�
 Introduction

In recent years� Sigma�Delta based oversampling A!D and D!A converters have become
very popular for demanding audio applications ���� �� ��� ���� Especially� converters using
two level signal encoding� i�e�� one�bit single loop Sigma�Delta converters� have attractive
properties� The almost perfect level linearity and the lack of di�erential non�linearity�
Furthermore� these devices do not require high precision trimming of current sources as
for the conventional multibit types�

A Sigma�Delta modulator 	SDM
 consists of a one�bit quantizer 	i�e�� a comparator

and a suitable loop �lter & or feedback �lter� The one�bit output signal of the quantizer is
forced to reproduce the input signal due to the feedback loop� The resulting output signal
will consequently consist of the modulator input signal and a quantization noise component
which is spectrally shaped by the feedback loop� The use of heavy oversampling enables
the quantization noise to be removed from the audio band� and therefore concentrated at
high frequencies� When the resulting one�bit signal is low�pass �ltered� the input signal is
reproduced with a high signal�to�noise ratio 	SNR
�

A Sigma�Delta D!A�converter uses a digitally implemented Sigma�Delta modulator to
resample the high resolution input signal 	i�e�� ��&�� bit
 and produce a one�bit signal
at a sample rate typically ��&���� times higher than for the input� The one�bit signal is
subsequently fed to a one�bit DAC� i�e�� a switch� and the resulting two�level current or
voltage is low�pass �ltered in the analog domain�

Early Sigma�Delta based DACs used a low order feedback �lter and a high oversampling
ratio 	e�g�� second order modulator with ��� times oversampling ����
� A consequence is
that the design of the analog converter section becomes very demanding due to the very
high sample rate 	� ��MHz
� Furthermore� the quantization noise of second order SDMs
is generally not very random and is somewhat correlated with the input signal� However�
this can be remedied by proper dithering�

The current trend is to use high order feedback �lters� Recently� a �� times oversam�
pling �th order DAC has been reported ����� High order feedback �lters allow a more
frequency selective noise�shaping and consequently a lower oversampling ratio is needed�
In addition� the resulting quantization noise becomes less correlated with the audio sig�
nal due to the higher complexity in the one�bit encoding process� These converters have
properties which are comparable to those of analog ampli�ers� The noise is almost in�
dependent of the input and is therefore not perceived as distortion of the input signal�
Since a Sigma�Delta modulator of course is a deterministic system� the quantization noise
is not random� however� high�order feedback makes the relationship between input signal
and the noise inscrutable to the ear� Conventional multibit converters introduce� unlike
the one�bit types� an error which is directly dependant on the signal amplitude or digital
input code�



C�
� CONVERTER OVERVIEW ���

The objective of this paper is to present a new converter based on an �th order modula�
tor operating at only �� times oversampling� i�e� approx� ���Mhz for a usual CD�standard
input� The entire converter� including standard SP!DIF digital audio interface and ana�
log post �ltering� is exclusively made of standard o��the�shelf components� The digital
modulator section is implemented in a general purpose Field Programmable Gate Array
	FPGA
 circuit�

C�� Converter Overview

The converter consists of six blocks shown on Figure C���

	 Digital interface receiver

	 Interpolation �lter

	 �th order SDM

	 One�bit DAC

	 Analog post �lter

	 Clock jitter attenuator 	VCXO PLL


The digital interface receiver 	Crystal CS����
 demodulates the standard SP!DIF or
AES!EBU digital audio format and regenerates a clock and a serial ���bit data signal�
Subsequently� this signal is fed to an interpolation chip 	NPC SM����
 which oversamples
the signal eight times� The resulting ���bit output signal is fed to the �th order Sigma�
Delta modulator� which oversamples the signal four times additionally and performs the
one�bit encoding� The analog section of the converter consists of a one�bit DAC operating
on the �� times oversampled modulator output and a post �lter which removes the out�of�
band quantization noise� The last block is a voltage controlled crystal oscillator 	VCXO

based Phase Locked Loop 	PLL
 for clock jitter attenuation� The PLL suppresses timing
jitter on the clock recovered by the digital interface receiver which otherwise would cause a
degradation of the DAC performance� In the following sections� the Sigma�Delta modula�
tor and the analog section will be described in greater detail along with some background
theory and design considerations�

C�� Sigma Delta Modulator

C���� Design and Analysis

The modulator topology used for the DAC is shown on Figure C�� for even modulator
order�N � This topology is known as themultiple feedback type ��� ��� ���� The input signal
is fed trough a cascade of delaying discrete time integrators to the one�bit quantizer which
output is distributed back to each of the integrators in the chain using the weight factors
bi� Additional local feedback is applied around two adjacent integrators as indicated by
the ai�coe�cients� This topology has a very regular structure which is a cascade of simple
second order sections� Furthermore� this topology has very low sensitivity to coe�cient
errors �����
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The local feedback introduced in the integrator chain implies that each of the ai�
coe�cients introduces the following complex open loop pole pairs�

di  �� j
p
ai 	C��


Note that these poles are generally outside the unit circle implying that the integrator
chain is totally unstable without the feedback� Furthermore� poles outside the unit circle
will destabilize possible limit cycles making the modulator chaotic and non�periodic �����

By linearized analysis� the modulator can be characterised by a Signal Transfer Func�
tion� STF	z
� and a Noise Transfer Function� NTF	z
 ��� ���� The STF	z
 shows how
the input signal is a�ected and NTF	z
 shows the noise�shaping characteristic for the
quantization noise�

One advantage of the multiple feedback modulator is that STF	z
 becomes a low�pass
�lter ����� This relaxes the requirements of the preceeding interpolation �lter� Especially
for a high modulator order 	e�g�� �th order
 the last stages of the interpolation �lter can
be replaced by a simple zero order hold circuit �����

When a modulator is designed� the ai coe�cients are speci�ed at �rst such that the
open loop poles are distributed within the audio�band which ensures good noise suppres�
sion for NTF	z
� Subsequently� the bi�coe�cients are chosen for an acceptable trade o�
between SNR and loop stability� Furthermore� the choice of bi must also ensure that the
resulting STF 	z 
 is reasonably �at in the audio�band�

The implemented modulator uses coe�cients obtained using tools described in ���� ����
The �th�order modulator was optimized for �� times oversampling� a �at STF	z
 and
stable operation up to output amplitudes of ��� relative to full scale� The ai�coe�cients
used were rounded to power of two values allowing binary shift operations to be used
instead of general multiplications�

The maximum stable amplitude range 	MSAR
 is a very important design parameter�
Generally� any MSAR can be obtained by chosing the bi�coe�cients properly ����� How�
ever� optimum SNR is obtained when MSAR is around ��� � ���� relative to full scale
����� If MSAR is lower� the SNR will deteriorate due to the lower maximum signal power�
For a higher MSAR� the in�band noise power increases faster than the signal power� and
consequently� the SNR decreases� Modulators with a high MSAR also exhibit higher in�
trinsic harmonic distortion and more variation of the in�band noise power when varying
the signal power ����� When other analog noise sources are taken into consideration� the
optimum MSAR may be shifted towards higher values�

Figure C�� shows power spectra estimates of the modulator output obtained by simu�
lations using the actual ���bit integrators used in the implemented modulator� Figure C��
shows the in�band RMS noise as function of the output DC�amplitude� This graph is ob�
tained from simulations of the modulator with an extremely slowly increasing ramp input�
Notice the absence of spikes and irregularities on this curve� This type of plot is rather
revealing for the modulators ability to decorrelate the noise from the input� Furthermore�
MSAR can be found using these ramp input simulations� In this case MSAR was ������
The SNR for sinusoidal input with amplitude ��� is estimated to �� dB using Figure C���

C���� Modulator Implementation

Figure C�� shows that for the multiple feedback type modulator topology� only one�bit
values� i�e�� �� or � are multiplied on the bi�coe�cients and� consequently� only an ADD
or a SUB operation is needed depending on the quantizer output� Furthermore� when
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the ai�coe�cients are designed as power of two values� binary shift operations can replace
general multiplications� The absense of general multiply operations makes the multiple
feedback modulator very well suited for implementation in programmable logic�

The �th order modulator was implemented in a single ���� gate equivalent Xilinx
XC���� FPGA circuit using hardware e�cient bit�serial arithmetic� The implementation
consists of four almost identical second order modulator sections� a shared control circuit
and a signal input conditioner� A fully synchronous design was used operating on a ���fin
input clock� This gives �� clock cycles for processing of each output sample when using
�� times oversampling�

An other FPGA implementation of a Sigma�Delta modulator has been reported in
����� In ���� a fourth order multiple feedback modulator was implemented in a single ����
gate equivalent Xilinx XC���� FPGA using bit�parallel arithmetic� However� the local
feedback introduced by the ai�coe�cients was not implemented�

The arithmetic operations are performed serially operating on ��bits for each clock cycle
allowing an integrator resolution of ����  ��bits� Each integrator consists of a ���bit deep
and ��bit wide shift register and a number of ��bit adders� This provides a state�space of
totally � � ��  ����bits which ensures extremely long and complex modulator idle pattern
sequences� Binary scaling shifts are used between the integrators in order to fully utilize the
dynamic range of the integrators� The binary 	right
 shift operations are implemented by
taking intermediate outputs from the integrator shift registers� Sign extension of the right
shifted data stream is implemented using a multiplexer which retransmits the integrator
sign bit when the most signi�cant bit is reached�

Figure C�� shows a simpli�ed diagram of one of the four second order sections� Each
section performs �ve ADD!SUB�operations and three shift operations i�e�� one for each
of the integrators and a shift for the ai�coe�cient multiplication� This corresponds to a
total computational capacity of approx� �� mill� ���bit operations per second for the entire
modulator�

The control circuit generates a number of shared controls signals which are used to
control the modulator� A modulo �� counter genererates a ��bit address sequence which is
fed to a number of look�up ROM tables producing di�erent control signals� For instance�
the bi�coe�cients are supplied bit�serially to the integrators from eight ROM�tables� Since
the used FPGA holds programming information in a SRAM memory� new modulator
coe�cients can be programmed in miliseconds� In fact� during the design and test phase
of the project� the FPGA was programmed by downloading information from a PC� A PC�
program was developed which translates loop �lters designed in a high�level environment
	MATLAB
 into boolean equations for the FPGA� This enables many loop �lters to be
tested under realistic conditions without redesigning silicon�

The used FPGA is organized as a �� by �� array of Con�gurable Logic Blocks 	CLBs

which each contains two D�type latches and two four input arbitrary logic function gen�
erators� Additionally� the chip contains a large number of input!output blocks 	IOBs

which each contains an input and an output latch connected to a pin� The ADD!SUB
blocks in Figure C�� use each two CLBs and the MUX and ROM functions use each one
CLB� A total of �� CLBs are used for each second order section� In addition� � �� ���  ��
latches are needed for each second order section� These latches are partly taken from the
remaining CLBs and partly from the IOBs of unused pins�

The input conditioner accepts the � times oversampled ���bit serial input signal from
the interpolation �lter and loads a parallel input register� In order to upsample to ��
times oversampling� the content of the input register is retransmitted serially � times to
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the modulator for each input sample�

No hardware precausions against modulator instability were taken in the implemen�
tation except that proper coe�cient scaling ensures that the output amplitude is limited
to ��� relative to full scale for maximum digital input� However� special precausions have
been taken in the design of the loop �lter ���� such that the modulator operates reliably
up to the ��� amplitude limit� The modulator has successfully been tested extensively
with both full scale sinusoidal input and music programme input�

C�� Analog Section

The objective of the analog design was to achieve superior sound quality� Two di�erent
one�bit DACs and two di�erent analog post �lters have been designed using standard
discrete components�

C���� One�bit DAC overview

The one�bit DAC converts the binary bit�stream from the modulator into an analog wave�
form which can be interpreted as a convolution between the digital one�bit signal p	k
 and
an analog pulse� g	t
�

d	t
 
X
k

p	k
g	t� k � T 
 	C��


where T is the sampling time interval and p	k
 � f��� �g�
In the frequency domain� the convolution with g	t
 will act as a �ltering of the digital

one�bit signal� Fundamentally� two one�bit DAC types can be discriminated� i�e�� the
pulse type and the hold type� Pulse type DACs generate concentrated current pulses by
charging or discharging capacitors between reference voltage levels ���� ���� The hold type
DACs hold a reference voltage or current level in a certain period of time� Usually the
hold time is derived from the system clock� The hold type DAC can further be divided
into return�to�zero 	RTZ
 types ���� and non�return�to�zero 	NRZ
 type� The latter holds
the reference level for precisely one sampling time interval� and RTZ types return to zero
output before the next input sample� Consequently� all three types can be destinguished
by their corresponding g	t
 pulses�

C���� Spectral DAC Properties

The three types of DACs have a number of di�erent properties� The most apparent di�er�
ences are the spectral properties induced by the g	t
 waveforms� For the pulse type DAC�
g	t
 approaches a delta function which has a very wide�band spectrum� Consequently� the
periodic spectrum of the digital DAC�input found at multiples of the sampling frequency
is preserved up to high frequencies in the analog DAC�output� This means that the suc�
ceeding analog post �lter must be able to handle wide�band signal and noise components
without generating intermodulation components folded back into the audible range �����

The hold type DACs have generally more intrinsic low�pass �ltering due to longer g	t

pulses� The amplitude response for the Fouriertransform of a unity amplitude square pulse
of duration 
 is given by�

jG	f
j  

sin �f


�f

	C��




C��� ANALOG SECTION ���

In particular� for 
  T � G	f
 has zeros for multiples of the sampling frequency fs  ��T �
This means that NRZ DACs have a �rst order suppression of the image spectra at multiples
of the sampling frequency� For �� times oversampling� the image spectrum at fs will be
attenuated at least �� dB� The author believes that this image spectrum attenuation is
very bene�cial for the sound quality because much high�frequency distortion is avoided in
the the succeeding analog signal processing� In fact� the usual multibit type converters
use NRZ conversion� hence� they have the same attenuation of image spectra� It is very
likely that the improvement in sound quality obtained when oversampling multibit DACs
were introduced is attributable to the improved image spectra attenuation which is a
consequence of oversampling�

For a RTZ DAC� 
 will be less than T and the zeros of G	f
 will generally not be at
multiples of fs� Furthermore� the output signal amplitude scales directly with the hold
time 
 � and consequently� the analog SNR will deteriorate when other analog noise sources
are present�

C���� Clock Jitter Sensitivity

When clock timing jitter is taken into consideration� the pulse type and hold type DACs
will show di�erent properties ����� Clock jitter is the designation for timing errors of
the sampling instants which cause errors in the reproduced analog waveforms� It will be
assumed that the sampling instants are displaced in time by the jitter sequence t	k
� i�e��
the sampling instants are� s	k
  k � T � t	k
� For the NRZ DAC� the hold time will
be modulated by the jitter sequence� since the output signal only changes state at the
sampling instants� It can be shown ���� that the error induced by the jitter sequence can
be modeled as the following digital error sequence�

eNRZ	k
  	p	k
� p	k � �


t	k


T
	C��


This equation shows that the error is proportional to the modulator output frequency
due to the di�erencing operation� Notice that the equation also applies for usual multibit
converters� The problem when dealing with one�bit DACs is the extreme content of high�
frequency quantization noise in the p	k
�signal which has more noise power than signal
power� When the jitter sequence is a wide�band and uncorrelated noise� the error signal of
	C��
 will be almost white� The variance of the error sequence is then approximately the
product of the jitter variance and the variance of p	k
� p	k� �
� Simulations have shown
that the variance of the di�erence signal p	k
 � p	k � �
 is approx� ��� for the used �th
order modulator with zero input� The in�band SNR for R�times oversampled sinusoidal
output with amplitude A and RMS jitter tRMS is consequently�

SNRNRZ  �� log
R A���

���
�
tRMS
T

�� dB 	C��


In order to obtain a SNR of e�g�� ��� dB with �� times oversampling 	fs  ���MHz

and sinusoidal output with amplitude ���� the RMS wide�band jitter must be less than �
picoseconds %

The pulse type DACs have a di�erent sensitivity to clock jitter due to the fact that
the pulse waveform is typically the result of a capacitor charge or discharge which is
independent of the sampling time instants�
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In ���� it has been shown that the equivalent digital jitter error signal for pulse type
DACs could be interpreted as the product signal p	k
t	k
 �ltered by a di�erentiator with
transfer function H	f
  j��f � This means that the jitter error is noise�shaped and
suppressed signi�cantly for low frequencies� Consequently� pulse type DACs can tolerate
much more wide�band clock jitter�

The in�band jitter noise power can be calculated by integrating the shaped noise power
density in the audio band� When assuming that the error generating sequence p	k
t	k
 is
white with variance t�RMS� one arrives at the following SNR �gure�

SNRpulse  �� log
� R� A���

��
�
tRMS
T

�� dB 	C��


In order to obtain a SNR of e�g�� ��� dB with �� times oversampling 	fs  ���MHz

and sinusoidal output with amplitude ���� the RMS wide�band jitter must be less than
��� picoseconds� This shows that the pulse type DACs are considerably less sensitive to
wide�band clock jitter� However� it should be emphasized that the shown calculations only
have taken the interaction between the quantization noise and the jitter into account� It
has been pointed out in ���� that pulse type DACs can be more sensitive to deterministic
jitter than NRZ DACs for low frequency signal output�

C���� Sensitivity to Unequal Rise and Fall Times

A major drawback of NRZ one�bit DACs is their high sensitivity to unequal rise and fall
times of the output signal� The problem is that the g	t
 pulses will depend slightly on the
previous output code in case of unsymmetrical transition times� This phenomenon gives
rise to noise and distortion of the analog output�

The resulting error could be interpreted as a kind of �auto jitter�� i�e� the resulting
transition time or sampling instant depends on the DAC input code� If the rise time is e�g��
longer than the fall time� the equivalent transition time will be delayed for a positive input
code� This corresponds to a jitter sequence of t	k
  �T 	p	k
��
�� and this results in an
error sequence of �	p	k
� p	k� �

	p	k
� �
�� cf� 	C��
� This signal is equal to �� when
p	k
 changes from low�to�high and zero otherwise� The error signal contains obviously
second harmonic distortion due to the squaring of the signal p	k
� Furthermore� the error
signal contains wide band noise due to intermodulation distortion of the high�frequency
noise in p	k
� The error signal spectrum can be asessed by simulations� It is estimated
by simulations that the rise and fall time di�erence must be less than �� picoseconds for
��� dB SNR with the actual modulator� The error can typically be reduced considerably
by a di�erential design giving symmetric transitions�

Pulse type and RTZ type DACs do not have this intrinsic error mechanism as far as
the DACs are able to settle completely between the output pulses� however� incomplete
and unsymmetric settling might cause a similar error�

C���� Deterministic Components Near fs��

Almost all Sigma�Delta modulators produce variuos tones near fs��� If the modulator is
fed with a constant giving a mean output value of mp� a spectral peak will be present in
the output spectrum at the frequencies 	��mp
fs�� 	see Figure C��
 ���� ���� The peaks
might intermodulate in the analog circuitry and cause audio�band tones at mpfs�
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This mechanism is a kind of frequency modulation� Consequently� if the modulator
input is sinusoidal with frequency f � the modulator output should contain peaks or side�
bands at fs��� nf for integer n� This conjecture is con�rmed by Figure C�� which shows
an output spectrum for the used modulator with sinusoidal input with frequency �����fs��
and amplitude ��� relative to full scale� Again� nonlinearities or clock jitter could turn
these peaks into harmonic distortion in the audible range� Obviously� interfering signals
with frequency fs�� should be avoided as stated in �����

In ���� it is revealed how Sigma�Delta modulators generally can be designed such that
thay do not produce spectral peaks near fs���

C���	 Pulse DAC Implementation

A pulse type DAC was implemented using discrete transistors and CMOS switches� Fig�
ure C�� shows a simpli�ed schematic of the pulse DAC� The DAC operates with only one
capacitor which is either charged to a positive or a negative reference level depending on
the digital one�bit input code� In between each sample� the capacitor is discharged to
ground� The capacitor charge!discharge and reset operations are controlled by two non
overlapping clock phases� The current pulses used for the capacitor charge or discharge are
taken directly from the DAC output using bipolar transistors coupled as current conveyers�
These transistors are furthermore isolated from the DAC output by two cascode transis�
tors� This ensures that the DAC output signal cannot modulate the reference levels used
for the switched capacitor� The entire DAC is thus implemented in current mode topology�
and furthermore� the design is totally based on feedforward coupling� This ensures a high
bandwidth and a good high frequency linearity�

C���
 Current Switch NRZ DAC Implementation

A NRZ current mode DAC was implemented using discrete bipolar transistors� A simpi�ed
schematic is found in Figure C��� The heart of the DAC is a current switch based on a
diode bridge� The incoming TTL�signal from the CMOS latch can either draw current
from an upper or a lower reference current cource depending on the logical state� The
current source which is not feeding the latch�output must feed the input transistors Q� and
Q� which transmit the current to the output node through folded cascodes 	Q� and Q�
�
This arrangement ensures that the DAC output voltage does not modulate the reference
currents� Again� the circuit is free from feedback and operates primarily in current mode�

The threshold level for the current switch can be adjusted by varying the base voltages
of the input transistors Q� and Q�� This feature makes it possible to adjust the delays
of the low to high and high to low transitions relative to the clock signal� Consequently�
this trimming option can null out the noise and distortion due to unequal rise and fall
times� The adjustment can be done manually simply by means of ear�phones� However�
the adjustment seems to be slightly temperature dependent�

C���� Analog Post Filter

The analog post �lter �decodes� the one�bit signal� i�e�� removes the out of band quanti�
zation noise components which could cause distortion in the succeeding analog circuitry�
The post �lter should be able to handle noise and deterministic components far into the
MHz range without generating intermodulation components� These requirements call ei�
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ther for a passive design or the use of very high bandwidth and non slew�rate limiting
active devices�

The use of �th order noise�shaping makes it very di�cult to suppress the quantization
noise which rises very abruptly just over the audible range� This is the major drawback
of low oversampling and high�order DACs� The �lter characteristic used is a �th�order
Butterworth �lter with a cut�o� frequency at �� kHz� Additionally� a transmission zero at
approx� �� kHz has been introduced in order to improve the noise suppression� Figure C��
shows the amplitude response� The �lter has approx� ��� dB amplitude loss at �� kHz�
The phase response can be corrected in the digital domain due to the minimum phase
characteristic�

The �lter results in a wide�band SNR of only �� dB due to residual noise between ��
and �� kHz which is di�cult to suppress� This residual out�of�band noise is considered as
harmless to the succeeding ampli�ers and speakers� though a better suppression would be
desirable�

The post �lter has been implemented both as a passive LCR design and as an active
design 	Figure C���
� The passive design uses inductors with large air�gapped ferrit cores
and high voltage polypropylene �lm capacitors for best linearity� The active design con�
sists of a third order all�pole Sallen�Key �lter followed by a Sallen�Key twin�T �lter giving
the remaining two complex poles and zeros� The active elements are based on AD��� cur�
rent feedback op�amps with ���MHz bandwidth� ����V��S slew�rate and ���mA output
current capability� The impedance level for both the active and passive �lter is ��� '�
Notice� the input capacitors for both �lters which limit the DAC slew�rate�

C���� Jitter Attenuator

A narrow band Phase Locked Loop 	PLL
 has been implemented which suppresses timing
jitter on the recovered clock� It has been shown ���� ��� that the clock recovered from
a SP!DIF interface can contain large amounts of deterministic jitter components due to
both poor integrated circuit decoupling and insu�cient interface bandwidth� It is strongly
suspected that these jitter components can deteriorate the sound quality of a DAC�

The PLL is based on a Voltage Controlled Crystal Oscilator 	VCXO
 operating at
���fin� The used phase detector 	AD����
 and PLL loop �lter gives a closed loop cut�o�
frequency at ��Hz� Jitter is asymptotically attenuated by �� dB!Octave above approx�
���Hz� The puri�ed clock is fed directly to the one�bit DAC latches�

C�� Measurement Results

An Audio Precision System One measurement system was used to meausure the converter
performance� The test system supplies a digital test signal 	sinewave
 to the SP!DIF
input of the converter and the resulting analog output is analysed� Figure C��� shows
the output spectra for a � dB full scale � kHz dithered ���bit input for the pulse DAC
with the active post �lter and the NRZ DAC with the passive post �lter� Notice the
low harmonic distortion of the NRZ DAC with passive �ltering� With ��� dB input� the
signal to noise ratio below �� kHz was measured to ���� dB and ���� dB� for the pulse and
NRZ DAC� respectively� This corresponds to dynamic ranges of ���� dB and ���� dB� The
�gures include quantization noise present in the dithered digital input�

Figure C��� shows the level linearity of the pulse DAC and active �lter�
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Figure C��� D!A converter overview showing three digital and three analog building blocks�

C�� Conclusions

The implementation of an entire �th order and �� times oversampling one�bit Sigma�Delta
audio DAC system has been addressed� The advantage of high�order encoding is better
quantization noise decorrelation� and the advantage of a low oversampling ratio is a better
linearity in the analog section� The disadvantage of this approach is the demand for a
high�order analog post �lter in order to suppress the sharply rising quantization noise�
However� digital phase correction can be implemented�

Furthermore� it has been demonstrated that the digital modulator can be implemented
in a single general purpose FPGA circuit using bit�serial arithmetic�

The sound quality of this DAC system has been judged subjectively as being superior
to a number of tested commercial designs including both multibit and one�bit types�
Especially� the sound from the NRZ DAC with the passive �lter is very transparant� The
author belives that this is attributable to both the choice of modulator and the careful
and simple feedforward analog design � including the use of jitter attenuation and passive
�lters�
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 is the output� The blocks marked
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Figure C��� Power density spectra estimated using averaged �k FFTs with Kaiser�Bessel
window on bit�exact ��b simulations of the modulator output 	� dB corresponds to a
full�scale sinewave
� Upper graph� Full spectrum of modulator with DC�input ��� 	�
mill� samples
� Lower graph� �� times decimated modulator output with DC�input �����
	������� decimated samples
�
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Figure C��� In�band modulator output RMS noise versus DC�output measured by bit�
exact ��b simulations and decimation� Each of the approx� ��� data points is based on
decimation of ��� mill� modulator samples� The spikes at the end of the plot are the onset
of instability�
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Figure C��� FPGA implementation of a second order multiple feedback modulator section�
Four of these sections are cascaded to produce an �th order modulator� The �SignOut�
signal of the last section is the output� p	k
� which is fed back to the ADD!SUB control
line�
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Figure C��� Modulator power spectrum for sinusoidal input with frequency �����fs�� and
amplitude ���� Notice the side�bands at �f�fs  ������ ����� ����� etc�

ϕ1

p(k)ϕ2

p(k)ϕ2

i

i

V+

V-

Q1

Q2

Q3

Q4

out

C

-Vref

+Vref

+Vb

-Vb

i b

b

Figure C��� The implemented pulse type one�bit DAC� The circuit is controlled by the
modulator output p	k
 and two non�overlapping clocks� � and ��
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Figure C��� Amplitude response for the analog post �lters�



��� APPENDIX C� IMPLEMENTATION OF AN AUDIO DAC

2 4
in

out
R1 C1

R2 R3

C2

C3

C4 C5

C6 C7

R4 R5

R6

i

V

C1 C2 C3

C4

L1 L2

R

in
i

outV

Active:

Passive:
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Pulse DAC & active filter
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NRZ DAC & passive filter

Figure C���� Output spectra of the entire converter with �dB �kHz sinewave input quan�
tized to �� bit using triangular dither� The spectra are measured using a notch �lter
and �� times averaged ��k FFTs at sample rate ���� kHz� Upper graph� NRZ DAC and
passive post �lter� Lower graph� Pulse DAC and active �lter�



C��� CONCLUSIONS ���

-120 -110 -100 -90 -80 -70 -60
-10

-8

-6

-4

-2

0

2

4

6

8

10

Input level - dB

O
ut

pu
t l

ev
el

 d
ev

ia
tio

n 
- 

dB

Figure C���� Level linearity of the pulse type DAC and active �lter with ���bit triangular
dithered sine input at ��� Hz�
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Dansk Resum�e

��� modulation anvendes i udstrakt grad i A!D og D!A oms-ttere til kr-vende audio
form.al� Denne modulationsform indkoder et tidsdiskret signal med h(j opl(sing om til et
to�niveau 	dvs� et�bit
 signal med en samplingfrekvens v-sentligt h(jere end kr-vet af sam�
pling s-tningen 	oversampling
� Herved opn.as en h(j amplitudeopl(sning p.a bekostning
af lavere opl(sning i tid� Denne virkning er bedre kendt som #noise�shaping$� dvs� fejlen
ved et�bit signalet er fjernet fra et lavfrekvent b.and og koncentreret ved h(je frekvenser�

En ��� modulator best.ar af en et�bit kvantisator indeholdt i en modkoblingssl(jfe
med et line-rt �lter� Modulatoren er dermed et uline-rt dynamisk system� For nogle
typer �ltre bliver modulatoren tillige kaotisk� En alvorlig ulempe ved ��� modulatoren
er muligheden for ustabilitet� Dette er specielt et praktisk problem for modulatorer med
h(j �lterorden�

Stabilitetsproblemet er hovedemnet for denne afhandling� Problemet behandles i f(rste
omgang fra et system�dynamisk synspunkt� En af konlusionerne er� at stabiliteten af
kaotiske modulatorer forsvinder ved en s.akaldt boundary crisis� der opst.ar� n.ar attraktoren
kolliderer med sit attraktionsbasin� Graden af ustabilitet kan beskrives ved den s.akaldte
escape�rate�

Stabilitet kan ogs.a analyseres vha� symbolsk dynamik� Konlusionen er� at stabiliteten
er t-t knyttet til antallet af mulige gr-nsecykler�

Nogle modulatorer bliver karakteriseret som v-rende up.alidelige� Dette vil sige� at
ustabiliteten ikke indtr-�er ved et velde�neret punkt� S.adanne modulatorer kan v-re
tilsyneladende stabile ved kortere simuleringer� Ustabiliteten viser sig kun ved enten
meget lange simuleringer eller ved realtidsimplementeringer�

Afhandlingen pr-senterer v-rkt(jer til optimering af b.ade signal!st(j forhold og p.a�
lidelighed� Metoden kombinerer eksakt analyse med approksimativ lineariseret analyse�
Metoden har v-ret anvendt til design af en �� gange oversamplende �� ordens ��� D!A�
oms-tter til audio brug� Denne oms-tter er implemeteret vha� Field Programmable Gate
Array kredse�

Afhandlingen behandler ogs.a metoder til undertrykkelse af de meget kraftige toner
omkring den halve sampling frekvens� Brugen af kaos og dither�st(j viser sig at v-re
nogenlunde lige e�ektive og -kvivalente p.a �ere m.ader� Med hensyn til brug af kaotiske
modulatorer� demonstreres en metode� hvor st(joverf(ringsfunktionen forl-nges med et
alpasled�

Til slut pr-senteres en ny klasse af modulatorer� der anvender et�bit vektor kvan�
tisering� Det vises� at introduktionen af en vektorkvantisator kan forbedre stabiliteten
betydeligt� Samtidig kan styrken af tonerne ved den halve samplingfrekvens reduceres�

���
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