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PREFACE 

The Danish production of maize silage for dairy cattle feed has increased exponentially since the 1990’s. 
At the same time, an increase of illness among cows has been observed. This issue has raised a concern
regarding mycotoxins in maize silage. In order to examine the problem a joint project “Mycotoxin carry-
over from maize silage via cattle into dairy products” was initiated in 2005. National experts from the 
Technical University of Denmark, Aarhus University, Danish Agricultural Advisory Service, the Danish 
Cattle Federation and the Danish Plant Directorate have participated. The purpose has been to ascertain 
whether mycotoxins in maize silage may cause illness and ill-thrift in dairy cattle and whether 
mycotoxins in the feed can be transferred to the cattle’s blood and milk. 

This PhD thesis “Mycotoxins in maize silage - detection of toxins and toxicological aspects” is intended 
to fulfil the requirement for the PhD degree at the Technical University of Denmark (DTU). The work 
has been performed in parallel to and in collaboration with two fellow (now finished) PhD students: The 
thesis by Jens L. Sørensen (2009) focused on “Preharvest fungi and their mycotoxins in maize” and Ida 
M. L. D. Storm (2009) covered “Post-harvest fungal spoilage of maize silage”. The Danish Directorate 
for Food, Fisheries and Agri Business (Grant: FFS05-3) is greatly acknowledged for funding the project. 

The thesis at hand gives an overview of the most important mycotoxins in Danish maize silage and 
evaluates the cytotoxic significance of the most common fungi. The experiments were conducted at 
DTU at three different departments; the cytotoxicity experiments were conducted at the Department of 
Toxicology and Risk Assessment, National Food Institute (FOOD), the chemical analyses were mostly 
carried out at the Department of Food Chemistry, FOOD and the microbiological work was done at the 
Center for Microbial Biotechnology, Department of Systems Biology (Biosys). 

I would like to thank my three supervisors Peter H. Rasmussen (FOOD), Mona-Lise Binderup (Cowi 
a/s) and Thomas O. Larsen (Biosys) for their invaluable guidance and our fruitful discussions during my 
study. 

Huge thanks also go to Ida M. L. D. Storm and Jens L. Sørensen for their cooperation and for supplying
me with fungi and silage samples. Vivian Jørgensen (FOOD), Faranak Ghorbani (FOOD) and Hanne 
Jakobsen (Biosys) are greatly appreciated for their invaluable help in the lab. I am also grateful to 
Kristian F. Nielsen (Biosys) for introducing me to high resolution mass spectrometry, and to Jørn 
Smedsgaard (FOOD) for giving inspiring input for method development. Ulf Thrane, Jens C. Frisvad 
and Birgitte Andersen from Biosys are thanked for their advices on the metabolic profiles of Fusarium, 
Penicillium and Alternaria, respectively. All other colleagues at Biosys and FOOD are thanked for 
making DTU such a nice place to work. My gratitude goes to my former study mates Lone Bækgaard 
and Lise R. Holt for reading and commenting the thesis. 

Last but not least I would like to thank my dear husband and family for their endless support and 
enormous patience. 

________________________________ 
Rie Romme Rasmussen 

Soeborg, May 2010 
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ABSTRACT 

Since the 1990’s the Danish production of maize silage for dairy cattle feed has increased exponentially. 
In the same period farmers experienced an increase in health problems in their herds. It raised the 
concern that mycotoxins in silage could be implicated in unexplained cases of diseases and death 
observed at Danish dairy farms. The mycotoxins can be produced either by pre-harvest fungi infecting 
maize while it is growing in the fields or by post-harvest fungi spoiling silage during storage. 

To test for cytotoxic compounds in fungal agar extracts, a resazurin assay with Caco-2 cells was 
employed in this study. The genera Alternaria, Aspergillus, Byssochlamys, Fusarium, Monascus and 
Penicillium, which often are spoiling maize and maize silage, were all able to produce cytotoxic 
metabolites on various semi synthetic growth media. PR-toxin was an important cell toxic metabolite 
from the storage fungi P.  roqueforti whereas andrastin A, roquefortine C and mycophenolic acid, which 
P. roqueforti also produced in maize silage, were not particularly cell toxic. The presence of other 
cytotoxic principles than zearalenone, deoxynivalenol, nivalenol from F. graminearum, citrinin from M. 
ruber and gliotoxin from A. fumigatus in agar extracts were recognised but these metabolites were not 
identified. The cytotoxicity of extracts from maize silage without fungal growth was too high to identify 
maize silages contaminated with mycotoxins. Only heavily B. nivea infected maize silage containing 
mycophenlic acid (∼50 mg/kg), byssochlamic acid and other metabolites was found more cytotoxic than 
uninfected silage. 

For detection of secondary metabolites from the most important toxigenic fungal species a new liquid 
chromatography tandem mass spectrometry (LC-MS/MS) multi-mycotoxin method has been developed. 
The method was successfully validated for determination of 27 analytes and included metabolites from 
the pre-harvest Fusarium and Alternaria species, which are relevant in Danish climatic conditions and 
the post-harvest fungi Penicillium roqueforti, P. paneum, Byssochlamys nivea, Monascus ruber and 
Aspergillus fumigatus. The simple pH buffered sample extraction was inspired by a very fast and simple 
method for analysis of multiple pesticide residues known as QuEChERS. Therefore, with this method it 
will probably be possible to combine mycotoxin and pesticide analyses. 

The LC-MS/MS method was applied to 99 Danish fresh and ensiled maize silages. The samples were 
mostly contaminated with mycotoxins from pre-harvest fungi including alternariol and alternariol 
monomethyl ether from Alternaria and deoxynivalenol, enniatin B, nivalenol and zearalenone from 
Fusarium. However, none of the samples exceeded the recommended levels, which exist for 
deoxynivalenol and zearalenone in the European Union. From post-harvest fungi the secondary 
metabolites andrastin A, citreoisocoumarin, marcfortine A, marcfortine B, mycophenolic acid, 
roquefortine A and C were detected in the 99 samples, but only in low concentrations and at low 
frequency. On the other side, maize silage ‘hot-spots’ with visible fungal growth of post-harvest fungi 
contained substantial  levels of e.g. PR-toxin fromPenicillium roqueforti, marcfortines from P. paneum, 
mycophenolic acid and byssochlamic acid from Byssochlamys nivea, citrinin from Monascus ruber and 
fumigaclavines, fumitremorgin C and gliotoxin from Aspergillus fumigatus. 

Overall, this PhD project has shown that animals feeding on well-fermented maize silage are exposed to
low levels of mycotoxins. Mycotoxins and antibiotics were present in considerable amount in maize 
silage with visible fungal growth. For that reason it can not be excluded that animals feeding on heavily 
spoiled silage in some cases may be negatively affected. The field and storage fungi are also able to 
produce several other cytotoxic compounds besides the mycotoxins, which was included in the 
monitoring. However, the low mycotoxin levels detected in Danish maize silage stacks, do not indicate 
that mycotoxins in maize silage have caused the general health problems observed at Danish dairy cattle 
farms. 
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SAMMENDRAG 

Siden 1990’erne er den danske produktion af majsensilage til fodring af malkekvæg steget eksponentielt. 
I samme periode oplevede landmænd en stigning i helbredsproblemer i deres besætninger.  Det gav 
bekymring om, hvorvidt mykotoksiner i ensilage kunne være involveret i uforklarlige tilfælde af 
sygdomme og dødsfald observeret på danske malkekvægsbesætninger. Mykotoksinerne kan produceres 
af marksvampe, som vokser på majsplanterne i marken eller af lagersvampe, der kan vokse inde i 
ensilagestakken. 

For at undersøge cellegiftigheden af stoffer i svampe agar-ekstrakter blev der i dette studie anvendt et 
resazurin testsystem med Caco-2 celler. Slægterne Alternaria, Aspergillus, Byssochlamys, Fusarium, 
Monascus og Penicillium, der ofte fordærver majs og majsensilage, var alle i stand til at producere 
cellegiftige metabolitter på diverse semisyntetiske substrater. PR-toxin var en væsentlig cellegiftig 
metabolit fra P.  roqueforti, mens andrastin A, roquefortin C og mykofenolsyre, som også blev dannet af 
P. roqueforti i majsensilage, ikke var specielt cellegiftige. Tilstedeværelsen af andre cellegiftige stoffer 
udover zearalenone, deoxynivalenol, nivalenol fra F.  graminearum, citrinin fra M.  ruber og gliotoxin 
fra A. fumigatus i agar-ekstrakter blev erkendt, men metabolitterne blev ikke identificeret. 
Cellegiftigheden af majsensilage ekstrakter uden svampevækst var for høj til at identificere majsensilage 
forurenet med mykotoksiner. Kun majsensilage svært inficeret med B. nivea, der indeholdt 
mykofenolsyre (∼50 mg/kg), byssochlamic syre og andre metabolitter, kunne identificeres som mere 
cellegiftig end uinficeret ensilage. 

Til påvisning af flere sekundære metabolitter fra de vigtigste mykotoksinproducerede svampearter blev 
en ny væske kromatografisk dobbelt massespektroskopisk (LC-MS/MS) metode udviklet. Metoden blev 
tilfredsstillende valideret mht. påvisning af 27 analytter og inkluderede metabolitter fra de 
marksvampearterne Fusarium og Alternaria, der er relevante under danske forhold og lagersvampene 
Penicillium roqueforti, P. paneum, Byssochlamys nivea, Monascus ruber og Aspergillus fumigatus. Den 
simple pH bufferede prøve ekstraktion var inspireret af en meget hurtig og simple metode til analyse af 
flerfoldige pesticidrester kendt som QuEChERS. Derfor vil det sandsynligvis være muligt at kombinere 
mykotoksin- og pesticidanalyser med denne metode. 

LC-MS/MS metoden er blevet anvendt på 99 danske prøver af frisk og ensileret majs. Majsensilagen var 
primært forurenet med mykotoksiner fra marksvampe, herunder alternariol og alternariol monometyl 
æter fra Alternaria samt deoxynivalenol, enniatin B, nivalenol og zearalenone fra Fusarium. Ingen af 
prøverne overskred dog de anbefalede grænseværdier, som eksisterer for deoxynivalenol og zearalenone 
i den Europæiske Union. Fra lagersvampe blev svampemetaboliterne andrastin A, citreoisocoumarin, 
marcfortin A, marcfortin B, mykofenolsyre og roquefortin A og C påvist, men deres koncentration og 
hyppighed var dog lav i de 99 prøver. Derimod indeholdt majsensilage ’hot-spot’ med synlig vækst af 
lagersvampe større niveauer af f.eks. PR-toksin fraPenicillium roqueforti, marcfortiner fra P.  paneum, 
mykofenolsyre og byssochlamic syre fra Byssochlamys nivea, citrinin fra Monascus ruber og 
fumigaclaviner, fumitremorgin C og gliotoxin fra Aspergillus fumigatus.  

Alt i alt har dette PhD projekt vist, at dyr der fodres med godt fermenteret majsensilage udsættes for lave 
niveauer af mykotoksiner. Mykotoksiner og antibiotika var til stede i betydeligt omfang i majsensilage
med synlig svampevækst. Derfor kan det ikke udelukkes at dyr, der fodres med synligt svampeinficeret 
ensilage, i visse tilfælde muligvis kan blive påvirket negativt. Mark- og lagersvampene er også i stand til 
at producere flere andre cellegiftige forbindelser ud over de mykotoksiner, som er blevet inkluderet i
overvågningen. Imidlertid indikerer de lave mykotoksin niveaer påvist i danske ensilagestakke ikke, at
mykotoksiner i majsensilage har forårsaget de generelle sundhedsproblemer, som har været observeret 
på danske gårde med malkekvæg. 
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AIM 

The overall aim of this PhD project has been to evaluate the mycotoxin hazard for cattle feeding on 
maize silage. The experimental work included in vitro cell toxicity testing and chemical analysis. The 
specific aims were: 

• to determine the presence of mycotoxins in Danish maize silage 

• to relate the cytotoxicity of fungal agar extracts to the presence of well-known mycotoxins 

• to relate the cytotoxicity of mouldy maize silage to the presence of secondary fungal metabolites 

• to identify the most cytotoxic metabolite from the fungi Penicillium roqueforti

THESIS STRUCTURE 

The thesis is structured as follows: Chapter 1 describes the background for the study and the present 
knowledge on mycotoxins in silage is reviewed in chapter 2 (I). Chapter 3 presents a new LC-MS/MS 
method for detection of fungal contaminants (II). In vitro cytotoxicity tests of fungal agar extracts and 
maize silage (III) are presented in chapter 4. The occurrence of pre- and post-harvest mycotoxins and 
other secondary metabolites in Danish maize silages stacks (IV) and hot-spots are presented in chapter 
5. Chapter 6 contains a general discussion followed by a conclusion drawn in chapter 7. Finally, a brief 
overview of the knowledge gained in the joint project on maize silage (2005-2010) and perspectives are
described in chapter 8. In appendices, the genotoxic screenings of few fungal agar extracts can be found 
as well as a detailed standard operating procedure (SOP) supplementing the information on the in vitro 
cytotoxicity method developed (III). The SOP is only relevant when analyses are performed. 
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1. BACKGROUND 

1.1 Maize silage 

Farmers all over the world produce maize silage to feed dairy cows (Wilkinson and Toivonen, 2003). 
Maize silage is produced when chopped maize plants are compressed and packed airtight. The 
conversation of fresh maize into maize silage is facilitated by many naturally occurring enzymatic and
microbiological processes. Because of a lactic acid fermentation of maize sugars into organic acids 
sealed silage is stored under anaerobic and acidic conditions. The popularity of maize silage in modern 
farming systems has increased because of the low production costs and high nutritional value 
(Wilkinson and Toivonen, 2003; Zebeli et al., 2009). Maize silage may constitute 50–75% of the daily 
diet (Driehuis et al., 2008b) for a dairy cow consuming ~25 kg/day of dry matter (DM) (Eastridge, 
2006). Maize for green fodder covered 6% (159,000 hectare) of the Danish cultivated area in 2008 and 
in total 6,255 million kg maize silage was produced representing a value of approximately 200 million 
EUR (Statistics Denmark, 2010). The Danish maize silage production is enough to feed ~410,000 dairy 
cows eating silage all year around, if the maize plants are harvested at the recommended 30% DM 
content (Jensen et al., 2005). During the summer, approx. 50% of the Danish dairy cows are turned to 
pasture (Danish Cattle Federation, 2007), whereas maize and grass silage mixed with concentrates are 
the most common feeds during the winter time. However, big herds with loose housing systems tend to 
be kept in stables all year around and these animals typically receive silage continuously (Barrett, 2004). 

In the past 20 years the production of Danish maize silage for dairy cattle feed has increased more than 
700%. In the same period as the maize silage usage has increased, major changes in Danish dairy 
production have taken place. The number of dairy cattle farms has been reduced by 77% and the average 
heard size has increased 3-fold from 1990 to 2008. Farms with more than 100 dairy cows have increased 
from 2% of all farms to 52% (Figure 1.1) during this period (Statistics Denmark, 2010).  

Figure 1.1. Danish production 
(bars) of maize for silage and 
percentage of dairy farms with 
more than 100 cows (line) from 
1990 to 2008 (Statistics Denmark, 
2010). 
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Unfortunately the mortality risk for Danish dairy cows has doubled from 2 % in 1990 to approximately 
4 % in 2001 (Thomsen, 2005). The reason for death among dairy cows is often not known. Thomsen 
(2005) found a lower mortality risk in organic herds compared to conventional herds. The risk was also
low in herds grazing during the summer, whereas an increase in mortality rate was seen when the herd 
size was increased. Increased morbidity and mortality is especially a problem with the so called loser-
cows, which are unable to perform as good as the other cows in the herd, and therefore decrease the milk 
production and the animal welfare and give an extra workload. 

Cases of ill-thrift, disease and death in livestock have been related to the presence of mycotoxins in
silage (Cole et al., 1977b; Seglar, 1997; Boysen et al., 2000; Driehuis and Elferink, 2000; Sumarah et
al., 2005; O’Brien et al., 2006) and the issue is much debated (Oldenburg, 1991; Scudamore and 
Livesey, 1998; Wilkinson, 1999; Driehuis et al., 2008a; Fink-Gremmels, 2008a, 2008b; Miller, 2008). 

1.2 Mycotoxins 

Mycotoxins are toxic secondary metabolites produced by filamentous fungi. The fungi produce a 
number of different compounds when given optimal growth conditions. Strictly speaking, mycotoxins 
are only those secondary fungal metabolites causing diseases in vertebrate animals when introduced by 
natural route (Samson et al., 2002). The secondary fungal metabolites include besides mycotoxins also 
antibiotics and other outward-directed compounds (Frisvad et al., 2008), but specific metabolites are 
produced only by a limited number of fungal species. 

1.2.1 Pre- and postharvest fungi 

On Danish maize and silage the most important toxigenic filamentous fungi include the pre-harvest 
Fusarium and Alternaria species (Sørensen, 2009) and post-harvest spoilage of silage by Penicillium 
roqueforti, Penicillium paneum, Byssochlamys nivea, Monascus ruber and Aspergillus fumigatus 
(Storm, 2009). Attempts to control Fusarium infections are difficult using fungicides pre-harvest and 
stimulation of mycotoxin production is seen in some cases, particularly in sub-optimal fungal growth 
conditions and at low fungicide doses (Jennings et al., 2000; Magan et al., 2002). Planting resistant 
maize hybrids is the most effective way to control Fusarium infection (D’Mello et al., 1999), though 
control of insects damaging kernels can also reduce severity of the fungal infection. Also crop rotation 
and tillage may sometimes reduce the occurrence of infection by reducing fungal levels in the soil 
(Lipps et al., 1998; Mansfield et al., 2005). To prevent postharvest spoilage of silage, the most important 
factor is omission of oxygen, and then whole-season storage of maize silage is normally not a problem 
(Storm, 2009), as a well-managed stack (pH=4, <1-2% O2 and >20% CO2) is a very hostile growth 
environment for microorganisms (Forristal et al., 1999; Weinberg and Ashbell, 1994). Recently, Danish 
results have suggested that the risk of fungal spoilage of well-fermented maize silage can be limited by 
keeping stacks well sealed for more than seven months before opening (Storm, 2009). 

Several mycotoxins and other secondary fungal metabolites have been detected in maize silage (Müller 
and Amend, 1997; Garon et al., 2006; Richard et al., 2007; Driehuis, 2008b; Mansfield et al., 2008; 
Sørensen et al., 2008; II). From the field fungi the flowing mycotoxins have been identified; aflatoxin 
B1, alternariol, alternariol monomethyl ether, beauvericin, deoxynivalenol, 15-acetyl-deoxynivalenol, 
enniatin B and B1, fumonisin B1, nivalenol and zearalenone. The metabolites detected from storage fungi 
include, andrastin A, citreoisocoumarin, citrinin, cyclopiazonic acid, fumigaclavine A, gliotoxin, 
marcfortine A and B, mycophenolic acid, patulin, PR-toxin, roquefortine A and C. However all 
filamentous fungi spoiling maize and silage are capable of producing many other secondary metabolites 
(III), which have not been targeted in maize silage. 
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1.2.2 Toxicological aspects 

Mycotoxins can elicit carcinogenic, mutagenic, neurotoxic, hepatotoxic, nephrotoxic, oestrogenic, 
immunosuppressive, antimicrobial or acute toxic effects and a compound may have a whole range of 
toxic effects. Some of the toxic effects elicited by secondary fungal metabolites detected in silage have 
been listed in Table 1.1. The toxicity of the carcinogenic aflatoxin B1 is thoroughly described, whereas 
other compounds like beauvericin and enniatins have received less attention. PR-toxin, T-2 toxin and 
fumitremorgin A have been associated with acute toxicity, whereas no adverse effects have been 
described for andrastin A. The toxicity of a mycotoxin will vary with the route of administration, sex
and animal species. Absorption, distribution, metabolism and excretion are important for the toxin 
hazard. The general symptoms of mycotoxicosis include loss of appetite, poor weight gain, feed 
refusal, diarrhoea, bleeding, kidney, liver or lung damages and birth defects (Scudamore and Livesey, 
1998). Most of the toxic effects are documented in mice, rats or other mono-gastric animals. The 
conditions for farm animals are different than when single compounds are tested in high 
………………… 

Table 1.1 Some toxic effects of selected secondary fungal metabolites detected in silage. 
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Fumonisin B1 nd*      (X) X   X    SCF, 2000a 

Gliotoxin 50 mouse X   X          Cole and Cox, 1981; III

Marcfortine A nd            X X Zinser et al., 2002 

Mycophenolic acid 550-2,500 mouse   X X          Cole and Cox, 1981 

Nivalenol 38.9 mice (oral)    X          Ryu et al., 1988; SCF, 2000c 

Patulin 5 mouse (ip) X  X (X)    X   X   Majerus and Kapp, 2002; III

PR-toxin 5.8 mouse (ip) X X      X      Chen et al., 1982; Aujard et al., 1979; III

Roquefortine A 340 mouse (ip)              Ohmomo (1975) as cited in Scudamore and Livesey, 
1998 

Roquefortine C 20 mouse (ip)   X  X         Kopp and Rehm, 1979; Ohmomo (1982) as cited in 
Scudamore and Livesey, 1998; Arnold et al., 1978 

T-2 toxin 5-10 rodent (oral) X X  X          Cole and Cox, 1981; SCF, 2001; III

Zearalenone > 4,000-20,000 rodent (oral)         X  X   Cole and Cox, 1981; SCF, 2000b 

(LD50) 50% lethal dose; mg/kg body weight, (ip) intraperitoneal, (iv) intravenous. (nd) has not been 
determined, (*) low acute toxicity. 
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concentration in short term trails. Animals feeding on silage can be exposed to several mycotoxins at the 
same time and the diagnosis of mycotoxicoses can be difficult because other diseases may give similar 
symptoms. A chronic exposure to low levels of mycotoxins can give non-specific symptoms such as 
impaired immune system and increased infections or metabolic and hormonal imbalances (Morgavi and 
Riley, 2007; Fink-Gremmels, 2008b). A simultaneous exposure to multiple toxins may elicit synergism; 
hence give a stronger effect than the sum of effects from the single toxins (Bouslimi et al., 2008). 
However, very few studies have until now addressed the combined effects. For example, the 
immunotoxic T-2 toxin, HT-2 toxin, deoxynivalenol and nivalenol appear to cause similar effects at the
biochemical and cellular level, but so far an in vivo synergism, which would call for additional caution,
has not been observed (SCF, 2002). 

Dairy cows 
Mycotoxin contamination caused by fungi can affect animal health (Korosteleva et al., 2009) and 
productivity (Fink-Gremmels, 2008b), but acute intoxications causing death are rare (Yiannikouris and 
Jouany, 2002). Compared to other animals, ruminants are more robust to many mycotoxins (EFSA, 
2004a, 2004c, 2005) partly due to biotranformations by the rumen microorganisms (He et al., 1992). The 
rumen microbiota are able to inactivate and degrade some of the mycotoxins, whereas other mycotoxins 
can be metabolised to even more potent compounds in the rumen. For example, ochratoxin A is 
extensively degraded to the less toxic ochratoxin α (EFSA, 2004b), fumonisin B1 is unaffected in the 
rumen (EFSA, 2005) whereas zearalenone is metabolised to α-zearalenol having stronger oestrogenic 
effects (EFSA, 2004c). 

Cows metabolise deoxynivalenol extensively to generally less toxic metabolites mainly by de-
epoxidation and glucuronidation (Figure 1.2 and 1.3) (JECFA 2001). The transformation of 
deoxynivalenol to the de-epoxy metabolite is facilitated by microorganisms present e.g. in the rumen 
(He et al., 1992), whereas the glucuronides are important conjugates formed in the liver and then 
excreted from the body (Prelusky et al., 1984; Rajakarier et al., 2006; Wu et al., 2007).  

For the majority of mycotoxins, the interactions between rumen microorganisms and the fungal 
secondary metabolites are unknown. Antimicrobial fungal metabolites such as patulin (Tapia et al., 
2002), mycophenolic acid (Bentley, 2000), citrinin (Wang, 2004) and roquefortine C (Kopp and Rehm, 
1979) may negatively effect the rumen microorganisms (Tapia et al., 2002). An impaired rumen 
function causes severe metabolic disorders that can reduce the feed utilization (Chiquette, 2009) and 
may increase the mycotoxin uptake (Fink-Gremmels, 2008a). The consumption of fungal metabolites 
with antibiotic properties may substantially increase the animals’ susceptibility to infectious diseases. 
Especially high-yielding dairy cows may be more susceptible to diseases caused by mycotoxins due to 
higher level of stress (Jouany and Diaz, 2005). Because of animal welfare, maize based feed for cattle is 
recommended to have maximum levels of the followingFusarium toxins; zearalenone (2,000 µg/kg), 
deoxynivalenol (8,000 µg/kg) ochratoxin A (250 µg/kg) and fumonisins as the sum of B1 and B2 (60,000 
µg/kg) (European Commission, 2006). Maize silage can also contain high levels of e.g. post-harvest 
fungal metabolites (III) whose presence has not been regulated, though they can affect animals. 

Young calves, which have been dosed with crude agar extracts of A. fumigatus with fumigaclavines, 
tremorgens and other metabolites, experienced severe diarrhoea, irritability, loss of appetite, serious 
enteritis and interstitial changes in the lungs (Cole et al,. 1977b). The acute toxicity of roquefortine 
seems to be low in ruminants since no clinical signs of intoxication could be recognized in sheep feed
roquefortine equivalent to concentrations up to 25 mg/kg silage over a period of 16 to 18 days (Tüller et 
al., 1998). However, Häggblom (1990) has related diseases in a dairy herd with 25 mg/kg roquefortine C
present in feed infected with P. roqueforti. These toxicological data are contradictory and may illustrate 
how difficult it is to link farm observations to the action of a single toxin. PR-toxin and patulin were not 
detected in the feed from the farm but other factors may have contributed. Driehuis et al., (2008a) has 
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evaluated the presence of 20 mycotoxins in maize silage and feed concentrates and these were found to 
be too low to elicit individual actions in dairy cows. 
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Figure 1.2. De-epoxidation reaction illustrating the microbial transformation of deoxynivalenol 
(DON) into the de-epoxylated form DOM-1 (after JECFA 2001). 
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Figure 1.3. Glucuronidation of one of the OH-groups in deoxynivalenol (R-OH) forming a β-D-
glucuronide after reaction with the reactant uridine diphosphate (UDP)-glucuronic acid (after 
Rajakarier et al., 2006, Wu et al., 2007; Richard, 2010). 

Humans 
Currently aflatoxins, ochratoxin A, patulin, fumonisins, zearalenone, T-2 and HT-2 toxins and 
deoxynivalenol causes most significant health concern for humans (Egmond et al., 2007). To protect the 
consumer national regulation of specific mycotoxins in various commodities has been established in 
around 100 countries (FAO, 2004). 

The transfer of mycotoxins in maize silage via cows to dairy and meat products is a concern for humans
(Miller 2008, Fink-Gremmels 2008a). For human safety, the genotoxic carcinogen aflatoxin B1 is 
regulated to maximum 5 µg/kg in complete feeding stuffs for dairy animals (European Commission, 
2003) as its metabolite is transferred to milk (IARC 1993). Carry over rates of deoxynivalenol, 
zearalenone, ochratoxin A and fumonisins from feed to milk are known to be much lower than aflatoxin, 
and for these four toxins, the European Food Safety Authority (EFSA, 2004a, 2004b, 2004c; EFSA, 
2005) has evaluated that the human exposure through milk to be insignificant compared to other sources
such as grain. In contrast, the carry-over rates into milk of the alternariols from Alternaria and PR-toxin 
(Miller, 2008) from P. roqueforti are not known, although PR-toxin and alternariols have mutagenic 
properties in vitro (Levin et al., 1982; Pfeiffer et al., 2007), which indicates a possible carcinogenic 
effect in humans (SCF 2000a). Carry-over of carcinogenic residues would be of outmost concern for 
humans. 
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1.2.3 In vitro assays 

In vitro testing systems are strong screening tools for identification of biological and toxicological 
activities and as to identify samples for which chemical analyses are relevant (Gutleb et al., 2002), and 
they provide a fast and cheap tool for screening of toxic compounds compared to animal studies. 
Toxicity of compounds can then be studied in different bioassay such as cell cultures of yeast, mammals 
or bacteria. The in vitro assays can bring important information about e.g. the biochemical mechanism, 
general toxicity and possible carcinogenic effects (Oda et al., 1985; McCann et al. 1975; Ames et al 
1973; Cetin and Bullerman, 2005). 

A crucial point is the cell type applied to in vitro assays. The effect elicited by a particular mycotoxin 
may arise from its ability to bind to cellular receptors and/or penetrate cell membranes (Cetin and 
Bullerman 2005). Compared to animal studies, in vitro assays may give very different results due to lack 
of an integrated organism response. In vitro test can e.g. not detect toxicity acting on the central nervous 
system (Gad 2000). Furthermore, several chemicals are activated in vivo to more toxic metabolites. To 
simulate in vivo conditions extracts with metabolic activity, e.g. liver extract, can be added to the in vitro
assay. S9 is a 9000 g postmitochondrial supernatant fraction of liver homogenate, which provides both 
microsomal and cytosolic enzymes (Gad 2000). Knowledge on the distribution of a toxin within the 
animal tissue, the mechanism of toxicity and the need for metabolic activation is important for choosing 
cell type and setup of the test system. Preferably a range of different endpoints and cell types should be 
used when performing toxic screenings and an evaluation of the correlation between in vitro assays and 
in vivo studies is needed to verify the relevance of the in vitro assays for animal and human health risks.. 

Cytotoxicity 
Cytotoxicity assays, can to some extent, be used as a screening test for acute toxicity in animals and
humans (Binderup et al., 2002). The cytotoxicity of some mycotoxins has been shown to correlate with 
in vivo toxicity: Aflatoxin B1 for example acted preferentially on hepatocytes, T-2 toxin, a well known 
in vivo immunsuppressor showed lymphotrophic effects, whereas citrinin, a mycotoxin with known 
renal toxicity had no effects on hepatocytes and lymphocytes (Robbana-Barnat et al., 1989 cited in 
Gutleb et al., 2002).  

In vitro cytotoxicity can be determined by different endpoints e.g. cell viability (membrane leakage, dye 
exclusion or uptake), cell proliferation (DNA synthesis), cell functions (mitochondria metabolism) or 
cell and culture morphology. The sensitivity of an assay will, among others, depend on endpoint and cell 
type. The human intestinal epithelial cell line, Caco-2, is widely used and well validated (Videmann et 
al., 2008). Mitochondria metabolism of dye by viable Caco-2 cells in vitro can determine the general 
cytotoxicity with similar sensitivity as other cell lines (Cetin and Bullerman, 2005). Caco-2 cells can 
metabolise some toxins such as zearalenone and alternariols (Videmann et al., 2008, Burkhardt et al., 
2009), but may not detect indirect toxicity activated in the liver. 

Genotoxicity 
Testing the mutagenic activity in bacterial systems is accepted as an initial step in the evaluation of the 
carcinogenic potential of chemicals (McMahon et al 1979). The Ames-test developed in the early 1970s 
(McCann et al., 1975; Ames et al., 1973) is used world-wide and widely accepted identifying 
substances, which produce genetic damage that leads to gene mutations (Mortelmans and Zeiger 2000). 
The umu-test developed in the early 1980s (Oda et al., 1985) is another well-validated method (ISO 
2000), which determines genotoxic activity by activation of the SOS-repair system induced by DNA 
damage. 
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Abstract 
Purpose of review: This paper reviews the present knowledge on mycotoxins in silage, focusing on grass and maize silage. This in-

cludes the occurrence of filamentous fungi pre- and postharvest, possible and confirmed mycotoxins in silage, toxicological concerns 

and means to prevent the problem.  

Findings: Preharvest contamination of grass and maize by Fusarium, Aspergillus and Alternaria can lead to contamination of silage. 

Well known mycotoxins deoxynivalenol (DON), zearalenone (ZEA), fumonisins and aflatoxins have been detected in silages but con-

centrations seldom exceed regulatory limits. It also appears that DON, ZEA and fumonisins are degraded in silage, but exact mecha-

nisms are unknown. Postharvest spoilage is dominated by Penicillium roqueforti, Aspergillus fumigatus and Zygomycetes. Both P.
roqueforti and Asp. fumigatus produce a wide range of secondary metabolites, some of them confirmed mycotoxins, others with antim-

icrobial or immunosuppressive effects. Some fungal metabolites have been detected in silage but many have not been looked for. Evi-

dence for acute toxicosis caused by contaminated silage is rare. Mycotoxins in silage are more often associated with less specific symp-

toms like ill-thrift or decreasing yield. This may be caused by long-term exposure to the complex mixture of secondary metabolites that 

silage can contain. Mycotoxins with antimicrobial effects may also affect ruminant digestion. To prevent postharvest spoilage of silage 

the most important factor is omission of oxygen. Additives can improve certain silage properties but they are not conclusively an ad-

vantage and cannot replace good silage management.  

Directions for future research: The effects of long-term exposure and of complex mixtures of bioactive fungal compounds are sub-

jects of interest. Especially high-yielding livestock may be subject to sub-acute symptoms under these conditions. There is also a need 

for analytical methods with specificity and accuracy to determine many of the less known mycotoxins and secondary metabolites in

silage as well as possible unknown compounds.  
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Introduction 
Ensiling is used worldwide as a simple and effective way to 
preserve forage for livestock, using a natural lactic acid fer-
mentation of the feedstuffs which is acidified and can subse-
quently be stored for long periods without degrading. In 
modern agriculture, large amounts of silage are consumed 
each day all year round with dairy cows eating up to  
40 kg/day. In Western Europe the total area of land harvested 
for silage has remained stable at around 15 million hectares 
since 1990 and worldwide the silage production has tended to 
increase from 1989–2000 [1]. The use of especially maize 
silage has increased over the last few decades with the avail-
ability of short season maize varieties suitable for temperate 
climates [1, 2]. In Denmark the production has increased by 
500% from 1990 to 2007 [3] and maize silage is very widely 
used for cattle in both dairy and meat production.  

The most common silage crops are grass and maize, but 
many other products like whole-crop barley, alfalfa, clover, 
sugar-beet tops, and residues from sugar production can be 
preserved as silage [4**]. A thorough review of silage mak-
ing from crops to nutritive value is covered by McDonald et
al. [4**]. In all cases the product is harvested, cut in suitable 
sizes and packed tightly in either silos, stacks or bales, and 
sealed to avoid oxygen infiltration. Residual enzymatic activ-
ity of the plant and microbial respiration of the carbohydrates 
released by chopping quickly depletes the small amount of 
O2 in the stack and raises the concentration of CO2. One hour 
after ensilage, O2 levels in the range from 1 to 2% and CO2

from 20 to 90% were recorded in baled silage [5]. This se-
lects for the proliferation of natural lactic acid bacteria, 
whose numbers increase from below 102–105 CFU/g on 
plants in the field to 109–1010 CFU/g in silage that is only a 
few days old [4**, 6]. They ferment sugars to primarily lactic 
acid and acetic acid, lowering pH to ~4 or less. Clamp and 
baled grass silages have been reported to have an average pH 
of 4.0 and 4.8, respectively [5]. The combination of low O2

concentration, high CO2 concentration and a low pH makes 
silage a very hostile environment for spoilage organisms in-
cluding bacteria, yeasts and filamentous fungi.  

Nevertheless, growth of filamentous fungi is frequently ob-
served in silage. This constitutes a loss of nutritive value for 
the farmer and, much worse, a risk for contamination with 
mycotoxins. Toxins in the feed may constitute a health risk 
for animals and there is also the risk for carry-over to humans 
via milk and meat [7*]. In the last 30 years, cases of ill-thrift, 
disease and death in livestock have been related to the pres-
ence of mycotoxins in silage [8*–12] and the issue is much 
debated [2, 7*, 13–18**]. Infestation and subsequent my-
cotoxin production may take place both pre- and postharvest 
and silage can thus be contaminated with both well known 
Fusarium toxins like deoxynivalenol (DON) and zearalenone 
(ZEA), as well as less known secondary metabolites from 
species of Penicillium and other fungi.  

This article reviews the present knowledge on mycotoxins in 

silage including pre- and postharvest contaminants, toxico-

logical issues and means for preventing the problem. The 

focus is on grass and maize silage for cattle as these are con-

sidered the economically most important use of silage crops.  

Toxigenic field fungi
The three most important toxigenic genera occurring prehar-

vest in cereals and maize are Aspergillus, Fusarium and Al-

ternaria (Table 1). Alternaria and Fusarium are often catego-

rised as field fungi whereas some species of Aspergillus can 

occur both pre- and postharvest. The occurrence of these 

fungi is influenced by several factors, including agricultural 

practices (crop rotation, crop variety, fertilisation and cultiva-

tion methods) and climatic conditions (temperature and mois-

ture).  

Small-spored Alternaria are common pathogens of small 

grains and maize with Alt. alternata, Alt. arborescens, Alt. 
infectoria and Alt. tenuissima as the predominant species 

[19]. Alt. alternata may not be as common as the literature 

indicates, as it is often mis-identified. Of these species Alt. 
infectoria is the only one with a known sexual stage (Lewia).

The infections often occur in the late growth season as black 

spots on the host plants. 

The two predominant toxigenic field Aspergillus species are 

Asp. flavus and Asp. parasiticus. These two species are 

mainly found in warm arid, semi-arid and tropical regions 

and cause huge problems in the Midwestern corn belt in the 

USA [20]. They can infect growing maize and produce my-

cotoxins preharvest but may apparently also survive the en-

siling process, as findings of Asp. flavus in silages have been 

reported [21–23*].  

Species of the anamorphic genus Fusarium are destructive 

pathogens responsible for several diseases including red/pink 

ear rot of maize and head blights of wheat. In areas with tem-

perate climate, F. avenaceum, F. culmorum and F. graminea-
rum (teleomorph: Gibberella zeae) are the predominant spe-

cies, whereas the members of the Liseola section F. prolif-

eratum, F. subglutinans and F. verticillioides (teleomorph: 

Gib. moniliformis) dominate in warmer parts of the world 

[24]. 

Several additional producers of bioactive secondary metabo-

lites are often associated with cereal and maize including 

species of Epicoccum, Cladosporium, Diplodia and Phoma.

The natural occurrence of mycotoxins produced by these 

genera in food and feeds has not been studied yet and an esti-

mation of their importance is therefore not possible. Diplodia

toxins have however been suggested as the primary cause in 

an Argentinean case where 10 heifers died from eating 

mouldy maize infected with Diplodia maydis [25]. Attention 

should therefore be given in the future to mycotoxins pro-

duced by other genera than Aspergillus and Fusarium.

Several species of the sexual genus Epichloë (anamorph: 

Neotyphodium) are endophytes of some varieties of pooid 
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Species Secondary metabolites Detected in silage 

Fusarium culmorum, F. cerealis and  

F. graminearum

Culmorin 

Deoxynivalenol 

3- or 15-Acetyl deoxynivalenol 

Nivalenol

Fusarenone-X 

Fusarins

Zearalenones 

2-Acetylquinazolinone 

Aurofusarin, Rubrofusarin, Butenolide, Chrysogine 

+

+

+

 + 

F. proliferatum, F. subglutinans and  

F. verticillioides

Beauvericin 

Fumonisins 

Fusaproliferin (F. pro. and F. sub.)

Fusapyrone (F. pro), Fusaric acid 

Moniliformin (F. pro. and F. sub.)

Naphthoquinone pigments 

+

+

F. poae and F. sporotrichioides Aurofusarin 

Beauvericin 

Chrysogine (F. sporotrichioides)

Culmorin 

Scirpentriol 

Monoacetoxyscirpentriol

Diacetoxyscirpentriol 

Enniatins 

Fusarenone-X (F. poae)

T-2 toxin 

HT-2 toxin 

Neosolaniol

Nivalenol (F. poae)

+

+

+

+

+

+

F. avenaceum and F. tricinctum 2-Amino-14,16-dimethyloctadecan-3-ol (F. ave.) 

Acuminatopyrone (F. ave.), Antibiotic Y, Aurofusarin 

Beauvericin 

Butenolide

Chlamydosporols 

Chrysogine 

Enniatins 

Fusarins, Gibepyrone A, Moniliformin, Visoltricin (F. tric)

+

+

F. equiseti Nivalenol 

Scirpentriol, monoacetoxyscirpentriol 

Diacetoxyscirpentriol, Equisetin, Fusarenone-X  

Fusarochromanone, Chrysogine 

+

+

Alternaria alternata, Alt. arborescens

and Alt. tenuissima

AAL-toxins (Alt. arborescens)

Alternariols, Altertoxins, Tentoxin, Tenuazonic acid 

+a

Alternaria infectoria Infectopyrones, Novae-zelandins 

Aspergillus flavus and Asp. parasiticus Aflatoxin B1 and B2

Aflatoxin G1 and G2 (A. parasiticus)

Aspergillic acid 

Cyclopiazonic Acid 

Kojic acid 

Sterigmatocystins 

Versicolorin and precursors, 3-Nitropropionic acid 

Aflavinine, Aflatrem 

+

+

+

Table 1. The most common species of Fusarium, Alternaria and Aspergillus in preharvest silage crops, some known secondary metabolites and secon-

dary metabolites confirmed in silage.

aNeeds reconfirmation  
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grasses [26]. Epichloë species can infect plants through 

wounds or stigmata and by seed-transmission whereas the 

asexual Neotyphodium species are only seed-transmitted. The 

endophytes colonise host plants systematically without caus-

ing disease symptoms. Several bioactive alkaloids can be 

produced by the endophytes during the infections, which are 

beneficial to the host plant as they can be active against feed-

ing insects or herbivores. Other fitness improvements that 

may be attributed to the symbiosis between host plants and 

endophytes include growth stimulation and enhanced drought 

tolerance [27]. Some neurotoxic alkaloids have been impli-

cated in livestock toxicosis, including ergot alkaloids [28] 

and lolitrems [29*]. For reviews on this subject see [16, 

18**] The recognised toxicosis events occurred when live-

stock had been feeding on Epichloë or Neotyphodium in-

fected grass, but so far nothing is known about their occur-

rence and stability in grass silage.  

Postharvest contamination 

The ensiling process eliminates most fungi from the field 

[30*, 31]. There are however other species of filamentous 

fungi that are able to tolerate both organic acids, carbon diox-

ide and the low availability of oxygen (Table 2). 

The most commonly found filamentous fungi in silage are 

Penicillium roqueforti and the closely related P. paneum [22, 

32*, 33–35]. P. roqueforti has its pH optimum between pH 4 

and 5 [36], tolerates high levels of CO2 [37] as well as the 

different organic acids commonly found in silage [22, 38]. 

The optimum temperature is 25oC but P. roqueforti may 

grow at 5oC [38]. Thus it is able to grow in silage all year 

round, even in temperate climates. P. roqueforti also 

sporulates heavily and spores are almost always present even 

in healthy looking maize silage [Storm IMLD, unpublished]. 

Growth of P. roqueforti and P. paneum is often seen in silage 

either in layers, on the surface or as lumps as big as 40 cm in 

diameter in the middle of stacks (Figure 1). The colour is 

green often in grey or blue shades and P. roqueforti and P. 

paneum cannot be differentiated visually on the silage.  

Other very common fungi are various species of Mucor and 

Rhizopus (class Zygomycetes), which have been isolated 

from all types of silage [21–23*, 31, 32*–34, 40*]. They 

grow rapidly especially in partly aerated outer layers of si-

lage. The rapid growth of these species may obscure the 

growth of other less vigorous species during cultivation and 

identification in the laboratory.  

Aspergillus fumigatus has also been isolated from silages all 

over the world, both in warm [21, 41] and temperate [22, 

23*, 33, 34, 40*] climates. It has a high temperature optimum 

and tolerates temperatures up to 55oC [42] and can therefore 

often be observed near degraded outer layers of silage stacks 

where the microbial heat from degradation has selected for 

heat-tolerant species.  

Other species often encountered are Monascus ruber [23*, 

33, 40*, 43] and Byssochlamys nivea [22, 23*, 44]. M. ruber

often produces red pigments and can be seen as lumps both 

near surfaces and in central parts of silage stacks. B. nivea
and the anamorphic form Paecilomyces niveus produce white 

colonies in silage. B. nivea can survive acidic and anaerobic 

conditions and the ascospores are heat-resistant, as illustrated 

by the fact that it is an important contaminant of canned fruit 

and fruit juices [42].  

Fusarium spp. have been isolated from silage in several cases 

[21, 23*, 40*]. Fusaria are generally not capable of surviving 

the ensiling process. Only F. oxysporum is known to survive 

under acidic and anoxic conditions [42]. Mansfield and 

Kuldau [30*] registered several species of Fusarium in fresh 

maize but none after ensiling. The survival of spores or 

recolonisation after opening may explain findings of Fusaria 

in silage. 

Classic mycological determination of mycobiota by dilution 

and plating may unfortunately not reflect the actual growth of 

filamentous fungi in field and silage. This is a classic myco-

logical dilemma already mentioned in a review of silage my-

cology by Pelhate [31]. The use of suitable media and incu-

bation in modified atmosphere may give a more representa-

tive picture of the actual mycobiota in silage, but standard-

ised procedures need to be developed. Even so heavily sporu-

lating species like P. roqueforti may be overestimated. Silage 

cannot be considered a homogenous medium either. Within a 

stack or bale there are many ecological niches. For instance 

P. roqueforti is often observed as layers at a depth of  

20–80 cm [Storm IMLD, unpublished, 33] where the O2 con-

centration is too low for most spoilage organisms. In the 

outer layers P. roqueforti has been out competed by yeasts, 

bacteria and other filamentous fungi. Molecular biological 

techniques can in theory reveal the presence of all fungi in 

Figure 1. Ball of maize silage infected with Penicillium roqueforti, which 

was observed in the middle of a well managed silage stack. 
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Species Secondary metabolites Detected in silagea Reference

Penicillium roquefortib Agroclavine + [8] 

Eremofortin C 

Mycophenolic acid +, 1.3, 35, 117 [2, 8, 34, Nielsen KF, unpublished] 

PR-toxin + [Nielsen KF, unpublished] 

PR-amide and PR-imine 

P. roqueforti Roquefortine A, D, 16-OH-roquefortine + [8] 

and P. paneumb Roquefortine C +, 5.7, 36, 50 [8, 35, 82, Nielsen KF, unpublished] 

Andrastin A, B and C + [8, Nielsen KF, unpublished] 

 Citreoisocoumarin + [8] 

Orsellinic acid 

 Festuclavine + [8] 

P. paneumb Marcfortine A + [8] 

Marcfortine B and C 

Patulin 1.2, 40 [44, 82] 

 Gentisic acid

Aspergillus fumigatusc Gliotoxin 0.878 [23*] 

bis-dethio-bis(methylthio)-gliotoxin + [Nielsen KF, unpublished] 

Fumigatins 

Trypacidins 

Sphingofungins 

Pseurotins

Helvolic Acid 

Fumagillins 

Fumigaclavines 

Fumitremorgines 

Diketopioperazines 

 Fumiquinazolines 

Byssochlamys nivea/ Patulin 1.2, 40 [44, 82] 

Paecilomyces niveus Byssochlamic acid 

 Mycophenolic acid +, 1.3, 35, 117 [8, 34, 82, Nielsen KF, unpublished] 

Monascus ruber Citrinin 0.037, 0.064, 0.25 [23*, 40*, 43] 

 Monacolins 65 [43] 

Pigments, eg, ankaflavin 

 Monascopyridines 

Zygomycetes May cause zygomycosis especially in  

immunocompromised animals 

[76] 

Geotrichum candidum May reduce palatability of silage [31]

Table 2. The most common fungal postharvest contaminants of silage, some known secondary metabolites and secondary metabolites confirmed in 

silage. 

a+: Metabolite detected in silage samples. Numbers state maximum concentrations in mg/kg where quantitative determination has been performed. 
bBased on [8, 103*]  
c226 Extrolites registered by Frisvad et al. [75*]  
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silage. Mansfield and Kuldau [30*] compared a DNA-

sequence based technique with plating on malt-yeast sucrose 

agar (MYSA) and Nash medium (NASH) and found a much 

greater abundance of species with the molecular technique. 

Again dormant spores can give misleading results and the 

quantity of DNA cannot be correlated with the amount of 

mycotoxins.  

Mycotoxins and other secondary metabolites 

The above mentioned fungi are known to produce a wide 

range of mycotoxins and other secondary metabolites. But 

the production of these is very substrate dependent and not 

all may be present in silage. The complex microbial ecosys-

tem of silage can also account for degradation and binding of 

such compounds.  

Preharvest 

Of the Fusarium derived mycotoxins, the trichothecenes are 

sesquiterpenes and are produced by various species of Fusa-

rium. The compounds are divided into type A and B tricho-

thecenes. Type A trichothecenes (mainly diacetoxyscirpenol 

[DAS], T-2 toxin and deacetylated analogues of these) are 

mainly produced by F. poae, F. sporotrichioides and F.
langsethiae and are considered more toxic than type B tricho-

thecenes (mainly DON and nivalenol [NIV], fusarenone-X, 

3- and 15-acetyl-DON as well as acetylated and deacetylated 

analogues of these), which are primarily produced by F. cere-

alis, F. culmorum and F. graminearum [45]. Trichothecenes 

have a variety of toxic effects like vomiting (DON), reduced 

feed uptake and immuno-suppression as the most pronounced 

[46]. DON is usually the predominant trichothecene in crops 

and is therefore also the best studied. ZEA and - and -

zearalenol ( - and -ZOL) are estrogenic compounds mainly 

produced by the trichothecene type B producing Fusarium
species [45]. In a survey of mycotoxins in various Dutch si-

lage types, DON and ZEA were almost completely absent in 

grass silage, while they were highly abundant in maize silage 

[47*], despite the absence of the producing organisms post-

harvest [30*]. 

 Fumonisins are sphinganine analogues with carcinogenic 

properties [48] and are primarily produced by F. proliferatum

and F. verticillioides [45]. These species are mainly present 

in tropical and subtropical areas and fumonisin contamina-

tions of preharvest crops are therefore higher in these areas. 

There are several groups of fumonisins with several mem-

bers, but fumonisin B1 (FB1) is the predominant and best 

studied analogue.  

DON and FB1 were shown to be less stable than ZEA in a lab 

scale experiment with ensiled maize [49*]. The maximum 

toxin degradation observed for DON, FB1 and ZEA was 

100%, 92% and 53%, respectively [49*]. The experiments 

also showed that storage time and dry matter content are 

more important than temperature. In a study of fresh and en-

siled maize, DON levels were reduced by 57% in 3–6 month 

old silage stacks [50]. These observations suggest a substan-

tial degradation of DON during ensiling, which is a fate that 

the other trichothecenes are likely to share. Some removal of 

field produced mycotoxins can be attributed to lactic acid 

bacteria. In vitro studies suggest that binding of DON, ZEA 

and FB1 is the major mode of action for lactic acid bacteria 

[51].  

Plants are able to reduce the toxicity of mycotoxins formed in 

the fields for example by conjugation of mycotoxins to polar 

substances such as sugars, amino acids or sulphate. Natural 

occurring glucoside conjugates of ZEA [52] and de-

oxynivenol [53] have been detected. The conjugated forms 

will not be detected by standard methods designed for the 

precursor mycotoxins as they may be harder to extract and 

have altered chromatography. This means that the actual 

amount of mycotoxins may be underestimated due to masked 

conjugated mycotoxins.  

Species of Fusarium can produce several other types of my-

cotoxins in cereals and maize preharvest, including monili-

formin, fusaproliferin, beauvericin and enniatins, but very 

little is known about their stability in silage. The predominant 

enniatin analogue, enniatin B, was detected at levels up 

to 218 ng/g in 3-month-old maize silage stacks, while the 

related beauvericin occurred less frequently and at levels up 

to 63 ng/g. Enniatin levels in 3, 7 and 11 month old silage 

were not different from each other but were all lower than in 

freshly harvested maize [54]. This suggests that some of the 

enniatins were degraded within the first 3 months. In another 

study of preharvest maize, moniliformin was only produced 

in insignificant low ppb levels [55].  

The four most frequently occurring Alternaria species in ce-

reals and maize are Alt. arborescens, Alt. alternata, Alt. 
tenuissima and Alt. infectoria, which are able to produce a 

wide range of compounds with disputed toxicity. Alt. arbor-

escens, Alt. alternata and Alt. tenuissima can produce alter-

nariols, altertoxins, altenuene and tenuazonic acid [56], but 

there are only few reports on the natural occurrence of these 

compounds in small grain cereals preharvest, summarised in 

[57]. Alt. infectoria can produce infectopyrones and novae-

zelandins [58], but their natural occurrence has not been stud-

ied. One paper [59] also reports finding the Alternaria my-

cotoxins AAL-toxin A and B in silage. Liquid chromatogra-

phy–mass spectrometry (LC-MS) with only one SIM ion (not 

very specific in such dirty matrix) was used to substantiate 

this very interesting finding, and since only one isolate 

(tomato pathogen Alt. arborescens, syn. Alt. alternata f. sp. 

lycopersici) in the world until now has been found to produce 

AAL toxins, the findings of AAL toxins in silages seems 

unlikely and needs proper validation.  

With Aspergillus flavus and Asp. parasiticus present in crops 

and silage, aflatoxins may be produced. These are the most 

important group of mycotoxin produced by this organism, 

and mainly includes the B1, B2, G1 and G2 analogues, which 

are all produced by Asp. parasiticus, whereas Asp. flavus can 

13
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only produce B1 and B2 [60]. Aflatoxins are the most carcino-

genic of known secondary metabolites and their occurrence 

in silage can be of great concern to human health as they can 

be transformed by cattle to hydroxylated derivates (aflatoxins 

M1 and M2), which can be found in meat and milk products. 

Other mycotoxins from A. flavus are cyclopiazonic acid and 

3-nitropropionic acids. Aflatoxin B1 has been detected in 

silage in some surveys while others have looked for it with 

negative results (Table 3)  

Postharvest 

P. roqueforti and P. paneum are the most widespread species of 

filamentous fungi in silages and they have on several occasions 

been associated with ill-thrift and disease in cattle herds [8, 10, 

11]. As seen in Table 2 they produce a wide range of secondary 

metabolites in vitro and many of them have also been detected in 

silage. 

The roquefortines are very ubiquitous and have therefore been 

suspected to be involved in toxicoses [61]. Data on neurotoxicity 

[62] and antibiotic properties [63] are published but no acute 

toxicity and a low transfer to organs and tissue were observed in 

feeding experiments with sheep [64]. PR-toxin (only produced 

by P. roqueforti) on the other hand has acute toxic effects in rats 

and mice [62, 65] but its fate in ruminants is unknown. Another 

known toxin, patulin, is produced by P. paneum as well as B.

nivea. Patulin damages the kidneys and the gastro-intestinal tract 

functions in rats [66] and may reduce male fertility [67]. It has 

antibiotic properties [68] and is immunosuppressive at high 

doses [69, 70]. It does however form adducts with S-containing 

amino acids [71, 72] and may therefore not be bio-available in 

ruminants. Another commonly encountered metabolite is myco-

phenolic acid, which is produced by both P. roqueforti and B.
nivea. It is antibiotic and immunosuppressant [73, 74]. The an-

drastins and marcfortines have not been tested in higher animals. 

The clavines are similar to alkaloids produced by Neotyphodium
endophytes in Fescue grass preharvest and may thus result in 

similar symptoms, however ergovaline is considered the most 

important toxin involved in Fescue toxicosis. In a recent survey 

by Driehuis et al. [47*] roquefortine C was reported only in 1 of 

120 grass silages and none of 140 maize silages. Mycophenolic 

acid was not found in any samples. Sampling of the silages was 

however conducted only 1–2 months after harvest and the stacks 

were still completely sealed so growth of postharvest contami-

nants was unlikely. 

The widespread presence of Asp. fumigatus in silage naturally 

calls for concern. It is a known producer of more than 200 sec-

ondary metabolites [75*], including the potent gliotoxin, and 

may cause invasive infections in animals (Aspergillosis) [76]. 

Many of the metabolites are known to have antimicrobial, anti-

fungal or antiprotozoan effects [75*] and may thus affect the 

microbiota of the rumen. Others, like gliotoxin, are immunosup-

pressive [77]. Silage samples contaminated with Asp. fumigatus

have been analysed for gliotoxin only, which is produced in 

highest amount on substrates with a low C/N ratio. Gliotoxin 

may therefore not be a very good marker for presence of Asp. 

fumigatus toxins in silage. In Monascus ruber infected silage, 

citrinin has been detected. Citrinin is nephrotoxic [78], while the 

monacolins produced by the same species have no toxic effects 

and are used as cholesterol-lowering drugs. 

Some Zygomycetes can, via endophytic bacteria, produce sev-

eral bioactive secondary metabolites [79, 80], but the distribu-

tion of toxigenic isolates is not well examined. The fast growth 

of Zygomycetes may spoil large amount of silage very rapidly. 

Furthermore some species are known to cause invasive infec-

tions, Zygomycosis [76], especially in immuno-compromised 

individuals.  

Toxicology  

Mycotoxins in silage can affect animal health and productiv-

ity [18**]. Exposure of humans via transfer of mycotoxins to 

food (eg, milk) is also of concern [2, 18**]. The mycotoxins 

contaminating silage can induce carcinogenic, estrogenic or 

immunosuppressive effects. Feed refusal, birth defects, kid-

ney, liver or lung damages, etc have also been observed in 

clinical trials [17], but acute intoxications causing death are 

rare [81]. Animals feeding on silage may be exposed to a 

mixture of mycotoxins [23*, 40*, 47*, 82] and chronic expo-

sure to low levels of mycotoxins may result in non-specific 

symptoms such as impaired immune system and increased 

infections or metabolic and hormonal imbalances [18**, 83]. 

The intoxication of animals under field conditions does not 

always match the concentration of specific toxins [18**]. A 

cocktail of toxins can give a stronger effect than the single 

toxins alone [78]. Furthermore, not all toxins in silage are 

described in literature since new secondary fungal metabo-

lites are still discovered [84, 85]. 

A review of animal disease outbreaks due to Fusarium toxin 

contaminated feed has been given by Morgavi and Riley 

[83]. Clear signs of exposure to a specific toxin are rare un-

der field conditions; for DON feed refusal has been reported 

in cattle, pigs and chickens. Fumonisins can induce brain 

lesions in horses - equine leucoencephalomalacia (ELEM) 

and lung damage in pigs - porcine pulmonary oedema syn-

drome (PPE) [83]. Mouldy maize silage infected with P.

roqueforti produced loss of appetite, disturbance of rumen 

activity and gut inflammation in dairy cows [86]. Kristensen 

et al. [87] however did not see any significant effects on milk 

yield or rumen pH in a feeding experiment where cows were 

fed alternating rations, including a ration with DON-

contaminated maize silage and one with Penicillium contami-

nated maize silage. There were a few changes in the ruminal 

fermentation pattern that were significant.  

Ruminants are often less susceptible to intoxication than 

other animal species. For instance they show lower respon-

siveness to DON, ZEA and fumonisins than pigs do [88–90]. 

The rumen microbiota can inactivate and degrade some my-

cotoxins, but not all types. For example, ochratoxin A is ex-

tensively degraded to the less toxic ochratoxin  [91], 

whereas ZEA is metabolised to the even more potent  -ZOL 
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Mycotoxin Country Concentration (µg/kg)a Reference

Mean Range

Deoxynivalenol Argentina 30–870 [104]

France 160 [23*]

France 204 [23*]

Germany 2,919 ?–3,944 [105]

The Netherlands 651 nd–3,142 [47*]

USA 600 nd–3,700 [50]

15-Acetyldeoxynivalenol Germany 59 ?–127 [105]

The Netherlands 45 nd–1,013 [47*]

Nivalenol Germany 1,612 ?–2,809 [105]

HT-2 toxin Germany 18 ?–26 [105]

Scirpentriol Germany 25 nd–124 [105]

Monoacetylscirpentriol Germany 20 nd–49 [105]

Zearalenone Argentina nd–350 [104]

France <20 [23*]

Germany 432 ?–1,790 [105]

The Netherlands 92 nd–943 [47*]

-Zearalenol Germany 3 nd–15 [105]

-Zearalenol Germany 23 nd–116 [105]

Fumonisin B1 Argentina 340–2,490 [104]

The Netherlands 463 nd–26,200 [47*]

USA 2,020 nd–10,100 [59]

USA 590 nd–1,824 [106]

Fumonisin B2 The Netherlands 130 nd–7,800 [47*]

USA 980 nd–20,300 [59]

USA 66 nd–276 [106]

Fumonisin B3 USA 29 nd –161 [106]

Enniatin B Denmark 73 nd–218 [54]

Enniatin B1 Denmark 10 nd–48 [54]

Beauvericin Denmark 8 nd–63 [54]

Aflatoxin B1 Argentina nd–176 [104]

Italy nd–<4 [107]

Mexico 500–5,000 [108]

Brazil nd [109]

USA nd [110]

Table 3. Confirmed examples of maize silage contaminated with Fusarium, Aspergillus and Alternaria toxins. 

and: not detected. 
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[89]. FB1 largely passes the forestomach in ruminants [90]. 

Animals with impaired rumen fermentation are expected to 

metabolise toxins less effectively. Patulin is an example of a 

mycotoxin with antibacterial properties that can disturb the 

rumen fermentation [92]. Keese et al. [93] have also detected 

alterations in the ruminal fermentation pattern when cows 

were fed a ration containing 5.3 mg/kg DM of DON. High-

yielding dairy cows may be more susceptible to diseases 

caused by mycotoxins, maybe due to a higher level of stress 

[94]. 

Milk can be contaminated with the carcinogenic metabolite 

aflatoxin M1 [95], when lactating animals are exposed to the 

mycotoxin aflatoxin B1 in feedstuffs. Up to 6% of the admin-

istered dose of aflatoxin is excreted in the milk [96]. Carry 

over rates of DON, ZEA, ochratoxin A, and fumonisins from 

feed to milk are much lower than aflatoxin. Hence humans 

are not significantly exposed to these four toxins through 

milk [88–91]. The carry-over rates from feed to milk of P.
paneum and P. roqueforti toxins, eg, PR-toxin, roquefortines 

or festuclavine are not known [2]. 

Many countries have regulatory limits for mycotoxins in 

feed. Maximum acceptable levels of DON (0.9–12 mg/kg 

feed), ZEA (0.1–3 mg/kg), ochratoxin A (0.05– 0.25 mg/kg) 

and fumonisins (5–60 mg/kg) in feed material have been set 

by the European Union. These values are toxin, feed-type, 

and animal dependent, and address animal welfare, as the 

exposure of humans through animal products is low [97]. 

Maximum levels of aflatoxin B1 (0.005–0.02 mg/kg) in feed 

is regulated based on human safety as it is a genotoxic car-

cinogen [98]. The lowest value in feed applies to dairy cattle 

due to carry-over in milk. As seen in Table 3 mycotoxin lev-

els in silage rarely exceed the existing regulatory limits. 

Preventive agricultural practices

In order to minimise the risk of fungal spoilage and my-

cotoxin contamination of silage, farmers can implement dif-

ferent strategic and practical approaches.  

Preharvest infection of crops cannot be eliminated. Incidents 

and concentrations of preharvest toxins are very dependent 

on weather conditions, and models to predict the spread of 

plant pathogens have been developed [99]. In a survey by 

Mansfield et al. [50] agronomic practices had no effect on 

incidence of DON, but the concentrations were significantly 

higher in no till-systems than in mixed till and mouldboard 

till systems.  

To avoid spoilage of silage in silos and bales there are several 

practical approaches to consider. Proper chopping, thorough 

compaction and sealing are very important factors for limit-

ing the oxygen supply, which is of utmost importance. 

O’Brien et al. [32*] found that visible damage to the poly-

thene film of baled grass silage was the only bale production 

and storage characteristic that significantly predisposed bales 

to increased fungal spoilage. Furthermore, a positive correla-

tion was observed between polythene film damage and dry-

matter content [100] most likely because dry and stiff stems 

are more likely to puncture the film. For silage in stacks and 

silos, the compaction is very important both for the quick 

achievement of anaerobic conditions and for minimisation of 

O2 infiltration from the cutting front. Therefore particle size 

must not be too big as this hinders compaction. Special 

equipment for cutting silage rather than grabbing it from the 

stack may also minimise O2 infiltration. Proportionating si-

lage stacks to the rate of use may also help, as low rate of use 

has been associated with spoiled silage [33]. Optimal dry-

matter content of the crop is also important for the initiation 

and course of the silage fermentation. Significant negative 

correlation between dry matter content and concentration of 

lactic, acetic, propionic and butyric acid was observed [32*]. 

In order to affect the fermentation process, silage additives 

can be added during silage making. These may be acids in-

tended to restrict growth of undesirable organisms from the 

start, fermentable sugars (eg, molasses) to stimulate produc-

tion of organic acids or biological inoculants to increase the 

concentration of desired microorganisms in silage. Biological 

additives are the most popular type worldwide but may be 

used in combination with the other types [1]. Biological in-

oculants are however not always successful and there are 

both advantages and disadvantages to them [101].  

Conclusion
Silage can contain a wide range of mycotoxins and other sec-

ondary metabolites originating from preharvest infection of 

crops or from postharvest infection in silos, stacks and bales. 

This has been associated with ill-thrift and disease in cattle, 

but the evidence for acute intoxication caused by contami-

nated silage is rare. Many of the filamentous fungi associated 

with silage are however producers of antimicrobial and im-

munosuppressive compounds. It is possible that complex 

mixtures of these may result in sub-acute symptoms, ie, im-

paired rumen function or increased susceptibility to infec-

tions. This subject calls for further investigation. 

The mycobiota of silage has been examined in several cases 

around the world, and the results are fairly consistent with P.

roqueforti and Asp. fumigatus as some of the most abundant 

species. An often encountered group of filamentous fungi is 

the Zygomycetes but the possible effects of these have not 

been examined. The interplay between filamentous fungi, 

bacteria and yeasts is also an issue of interest, which may be 

able to explain the occurrence of filamentous fungi in the 

middle of otherwise well-preserved and managed silages.  

Many of the secondary metabolites produced by known con-

taminants of silage have not been analysed for in silage. It is 

thus possible that there are so far undetected metabolites 

playing a role in intoxications with silage. The list of possible 

contaminants is very long and silage is an extremely difficult 

matrix since it is full of organic acids, sugars, chlorophyll 

and numerous other small molecules, of which many cannot 
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be easily removed by, eg, reversed phase solid phase extrac-

tion. Very few methods in silage have been published so 

there is a need for high specificity methods like LC-MS/MS 

with at least two transitions or daughter ion scans. 
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3. MULTI-MYCOTOXIN ANALYSIS OF MAIZE SILAGE BY LC-MS/MS 

Paper II 
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Abstract This paper describes a method for determination

of 27 mycotoxins and other secondary metabolites in maize

silage. The method focuses on analytes which are known to

be produced by common maize and maize-silage con-

taminants. A simple pH-buffered sample extraction was

developed on the basis of a very fast and simple method for

analysis of multiple pesticide residues in food known as

QuEChERS. The buffering effectively ensured a stable pH

in samples of both well-ensiled maize (pH<4) and of hot

spots with fungal infection (pH>7). No further clean-up was

performed before analysis using liquid chromatography–

tandem mass spectrometry. The method was successfully

validated for determination of eight analytes qualitatively and

19 quantitatively. Matrix-matched calibration standards were

used giving recoveries ranging from 37% to 201% with the

majority between 60% and 115%. Repeatability (5–27%RSDr)

and intra-laboratory reproducibility (7–35% RSDIR) was

determined. The limit of detection (LOD) for the quantita-

tively validated analytes ranged from 1 to 739 µg kg−1.

Validation results for citrinin, fumonisin B1 and fumonisin B2

were unsatisfying. The method was applied to 20 selected

silage samples and alternariol monomethyl ether, andrastin A,

alternariol, citreoisocoumarin, deoxynivalenol, enniatin B,

fumigaclavine A, gliotoxin, marcfortine A and B, mycophe-

nolic acid, nivalenol, roquefortine A and C and zearalenone

were detected.

Keywords Mycotoxins . Maize . Silage . LC-MS/MS .

Validation . QuEChERS

Introduction

Maize silage is contaminated with a wide variety of pre-

and post-harvest fungi, which may lead to undesired

production of mycotoxins and other secondary metabolites

[1]. The intake of mycotoxins may affect animal health and

productivity [2]. Transfer of various mycotoxins from feed

to milk and meat is also of concern [3, 4]. In modern dairy

farming systems, dairy cows are consuming up to 40 kg/day,

with maize silage constituting 50–75% of the diet [5].

Pre-harvest fungal contaminants of maize plants under

Danish conditions include mainly Fusarium and Alternaria

species [6] whereas post-harvest contaminants of maize

silage include Penicillium roqueforti, Penicillium paneum,

Byssochlamys nivea and Aspergillus fumigatus [7]. These

species are in culture capable of producing a range of

chemically very diverse compounds (Fig. 1), ranging from:

(1) small polar but neutral compounds like patulin; (2)

acidic compounds like mycophenolic acid and hydroxyl-

benzoic acids; (3) basic compounds like roquefortines and

marcfortines; and (4) large apolar compounds like peni-

trems and enniatins [1].

Due to the chemical differences of the fungal metabo-

lites, multi-mycotoxin methods with no sample clean-up are

needed. Such methods have been reviewed by Zöllner and

Mayer-Helm [8] and Krska et al. [9]. These multi-methods

mainly include regulated toxins in food and feed, e.g.

aflatoxins B1, B2, G1, G2, M1, ochratoxin A, patulin,
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deoxynivalenol, zearalenone, fumonisins B1 and B2, T-2 and

HT-2 toxin [10]. Most of the multi-methods use LC-MS/MS

on triple quadrupole systems, although LC-TOF-MS and LC-

Orbitrap based methods are also looking promising [11].

Altogether, few multi-mycotoxin methods have been

fully validated in silage [12, 13]. Ideally, a method for the

screening of maize silage samples should include the whole

secondary metabolic potential of the pre- and post-harvest

contaminants with an emphasis on the mycotoxins. Driehuis et

al. [12] measured 20 analytes of which five are post-harvest

compounds (ochratoxin A,mycophenolic acid, penicillic acid,

roquefortine C, sterigmatocystin), but none of these are

associated with A. fumigatus or P. paneum.

Garon et al. [13] detected seven mycotoxins of which

only citrinin and gliotoxin originate from common post-

harvest contaminants of silage. The studies by Mansfield et

al. [14] and O’Brien et al. [15] both use LC-TOF-MS, and

focus on the metabolites from the penicillia, but none were

validated adequately. Mansfield et al. did not include any

qualifier ions nor used the high-resolution capability of the

instrument, and the study of O’Brien et al. wasmainly focusing

on novel compounds like marcfortine A and andrastin A.

Fig. 1 Structural differences

and various functional groups of

the compounds tested and their

names and abbreviations
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Maize silage is a complex matrix as the whole maize

plant is fermented. It contains, e.g., chlorophylls and

carotenoids from the leafy parts of the plant, starch, glucans

from the cob and organic acids from the ensiling, and is

thus much more complex than products based on the maize

kernels. Since pH may vary from 3.6 in well-ensiled maize

to 7–9 in fungal hotspots [16], pH must be controlled by

buffers when extracting and analysing silage samples. pH

changes the polarity of compounds with ionisable groups

[17], thus affecting the extraction efficiency.

Trace analysis of pesticide residues in fruit, vegetables

and cereals is in many ways comparable to mycotoxin

analysis. An increasingly popular multi-method for pesti-

cide detection in various matrixes is the Quick, Easy,

Cheap, Effective, Rugged and Safe method, known as

QuEChERS [18–20]. Briefly, the method uses acetonitrile

for extraction of the analytes followed by the addition of

high concentrations of MgSO4 and NaCl. The salts induce

a phase separation between ACN and water, keeping

extremely polar contaminants in the water. Buffering can

be applied to overcome pH effects of the matrix on the

extraction efficiency of chargeable compounds [21].

The aim of the present study is to adapt, apply and

evaluate the QuEChERS method to the extraction of

multiple mycotoxins in maize silage samples. To our

knowledge, it is the first publication describing the use of

QuEChERS in mycotoxin analysis. A LC-MS/MS method

was developed and validated for the detection of mycotox-

ins in the silage extracts. The method targets chemically

very different metabolites from pre-harvest (Fusarium

culmorum, Fusarium graminearum, Fusarium avenaceum

and Alternaria tenuissima) and post-harvest (A. fumigatus,

Monascus ruber, P. roqueforti, P. paneum, B. nivea) fungal

contaminants of silage. The structures, names and abbrevi-

ation of the tested compounds are shown in Fig. 1. The

method has been applied to 20 field samples of naturally

contaminated maize silage.

Experimental

Chemicals and reagents

Acetonitrile (ACN) and methanol (MeOH) were HPLC-grade

(Rathburn, Walkerburn, Scotland, UK). NaOH, CH3COOH,

HCOOH, NH4OH, HCOONH4, CH3COONa, MgSO4 and

CH3COONH4 were all of analytical reagent grade. Water was

ultra-purified using a Millipore system (Molsheim, France).

Standards were purchased from commercial suppliers;

FUT C, ENN B from Alexis Biochemicals (Farmingdale,

NY, USA), AOH, AME, CIT, NIV, DON, GLI, MPA, CPA,

OTA, PAT, ROQ C, T-2, TEA, ZEA, MEV, PEN A and

STE all from Sigma-Aldrich (St. Louis, MO, USA). FB1

and FB2 were acquired from Romer Labs (Tulln, Austria).

Quantitative standards of AND A and FUTA and B as well

as qualitative standards of CICO, FUC A and B, MAC A

and B, and PR were available for LC-MS/MS optimisation

from earlier studies [22].

For the spiking experiments, a pooled fungal extract was

prepared. Agar cultures of A. tenuissima, P. roqueforti, P.

paneum and A. fumigatus were extracted according to

Smedsgaard [23] with a few modifications. ALS was only

available from fungal extract of A. tenuissima, but was

confirmed by LC-TOF-MS and UV characteristics [24].

All mycotoxin stock solutions (25–5,485 µg·mL−1) were

prepared in ACN and kept at −18 °C unless otherwise

recommended by the manufacturer.

Sample preparation

Silage samples were frozen with liquid N2 and homoge-

nised in a domestic blender. Extraction was performed by a

modified version of a method for multiple pesticide residues in

food known as QuEChERS [21]: In a 50-mL polypropylene

tube, 10.0 g sample (fresh weight) was extracted with a

buffered mixture of 10 ml 1% acetic acid in ACN, 5 ml water

and 1.67 g sodium acetate tri-hydrate by shaking for 1–2 min.

Then, 4.0 g anhydrous MgSO4 was added and the tube was

shaken (1 min) to obtain phase separation. After a 10-min

centrifugation (4,500×g), the upper ACN phase was collected.

Before LC-MS/MS analysis, the samples were filtered

through a 0.45 μm PFTE filter in Mini-UniPrep HPLC vial

(Whatman International, Maidstone, Kent, UK).

Robustness of buffering

The effectiveness of the buffering incorporated in the

method was tested with 12 portions of a silage sample

naturally contaminated with P. roqueforti/P. paneum which

were also spiked with pure standards at medium level

according to the validation plan. The pH of six portions of

silage was adjusted to pH>10 by adding 5 ml of 0.55 M

NaOH in the first extraction step instead of 5 ml of water.

Triplicate samples at both the natural silage pH of 4.2 and

pH>10 were subjected to either a traditional extraction with

a 4:1 (v/v) unbuffered mixture of ACN and water or the

present method. Extracts were analysed by LC-MS/MS and

pH in the surplus extracts was measured after dilution 1:4

(v/v) with water. The effect of pH on analyte response with

each extraction method was evaluated with the PROC GLM

procedure in SAS 9.1 (SAS Institute Inc., Cary, NC).

LC-MS/MS method

LC separation of 1 μL injected sample was performed on an

Agilent 1100 series HPLC system (Agilent Technologies,
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Palo Alto, CA, USA) with a Gemini C6-Phenyl, (3 μm, 2.0×

100 mm) column equipped with a Gemini Security guard

cartridge (Phenomenex, Torrance, CA, USA). Samples were

analysed in two separate runs, one in positive electrospray

ionisation (ESI) mode and one in negative ESI mode. Water-

based HPLC eluents were prepared daily. The mobile phases

were (A) ammonium formiate 0.4 mM, 0.2% formic acid in

water (pH 2.5) and (B) 100% ACN for data recorded in

ESI+. In ESI−, they were (A) 0.02% formic acid in water and

(B) 100% ACN. The gradient conditions were identical.

During data collection, a flow rate of 0.3 ml/min of was used:

from 0 to 4 min 10% B was kept constant, then going to 100%

B from 4 to 22 min. The LC-system and column was cleaned

after each sample, by injecting three different blanks: (1) 20μL

5% formic acid in ACN with 100% B at 0.5 ml/min for 8 min;

(2) then 20 μLmethanol and gradually changing to 10%B and

0.3 ml/min in 5 min; (3) and finally, 20 μL water maintained at

10% B and 0.3 ml/min for 7 min. This gave a total runtime of

44 min per sample. To protect the MS interface, a valve

integrated with theMS instrument was used to direct the eluent

into the MS instrument only from 1 to 22 min of the gradient.

The auto sampler and column temperature was 25 °C.

A Quattro Ultima triple quadrupole MS without the

high-collision hexapole (Waters, Manchester, UK) with

Masslynx v. 4.1 software was used for data collection and

processing. The MS was tuned to symmetrical peak shapes

with a peak width of 0.5 mass unit at half peak height. The

capillary voltage was 3.0 kV. The source and desolvation

temperatures were 120 °C and 400 °C, respectively. The

cone gas flow was 80 l h−1 and the desolvation gas flow

was 530 l h−1. Argon was used as collision gas at ∼2.5×

10−3mbar and the electron multiplier voltage applied was

650 V. Fragment ion spectra were recorded from 15–50 V

in both polarities and promising selective fragment ions

tested and optimised along with the cone voltage in the

multiple-reaction monitoring (MRM) mode. Analyte specific

detection parameters are listed in Table 1. Inter channel delay

was 0.02 s and the dwell times were optimised for the

individual transitions and in the range 100–500 ms.

The response was calculated as the chromatographic

peak area for all compounds, except for PAT where height

were used. A linear calibration curve was obtained by

plotting the response of the analyte against the concentra-

tion (c) weighted 1/c. The spiking levels were toxin-specific

and were intended to be near the expected detection limit.

Validation set-up

A total of three series were performed by two different

technicians on three separate days. Each series included

three blind samples, three replicates of samples spiked

quantitatively at low, medium and high level and three

replicates of samples spiked with a fixed volume of fungal

mixture. The spiking levels for each analyte are described

in Table 2. Three samples from one well-ensiled Danish

maize silage stack with low toxin content were pooled and

used as blank and for spiking. The blank silage had traces

of 5 ppb ENN B, which was determined using standard

addition. The matrix-matched calibration curve of the

quantitative standards included six concentration levels

and a blank matrix extract. The six levels were obtained

by serial dilution with at dilution factor of 128 from the

highest to the lowest level. One matrix-matched fungal

standard equal to the fungal spike level was also included.

Standards were analysed twice; in the beginning and at the

end of each sequence. From the results obtained, the relative

standard deviation under repeatability conditions (RSDr),

intra-laboratory reproducibility conditions (RSDIR), and

recovery (Rec.) was calculated for each compound according

to ISO guidelines [25]. RSDr and RSDIR represent the

variation between repeated extractions and analysis within

days and between days, respectively. We accepted results

from spiking levels when the RSDIR was up to 35%. For

compounds quantitatively available, the limit of detection

(LOD) was determined as three times the standard deviation

at intra-laboratory conditions (SDIR) divided by the recovery,

both based on results from the lowest accepted spike level.

Signal suppression and enhancement (SSE) due to matrix

compounds was evaluated as the slope of a standard curve in

pure ACN divided by the slope of a standard curve in blind

matrix extract (αACN/αmatrix).

Sample analysis

Samples were extracted and analysed according to the

method described above. A matrix-matched calibration curve

was produced and included in each sample series. The blank

silage extract for the calibration curve was produced together

with the sample extracts on the basis of aliquots of the blank

silage used for validation. The standards were distributed

randomly over the entire sequence and used for quantification

in the present series.

Sample data was processed by Quanlynx and subjected

to (a) visual inspection of un-smoothed chromatogrammes

for low concentration samples to determine whether peaks

were above a signal to noise of 3:1 (b) visual inspection of

the automatic integrations, with manual modifications to

consistent peak width if necessary.

Results and discussion

Extraction and clean-up

The application of the adapted QuEChERS method to

mycotoxin extraction was successful. Comparing to the
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extraction methods employed in [12, 26], these methods

employ ACN (or MeOH) with 10–20% (v/v) water, while

the present method has 33% (v/v) mix of water and ACN.

This should allow for better extraction of the more polar

analytes. With the induction of phase separation the

extraction of less polar compounds is facilitated. According

to [18], the ACN phase holds approximately 8% of water.

The high concentration of salt in the water phase forces the

polar analytes into the less polar ACN. In the case of varying

water content in silage samples, the phase separation should

also result in a more stable polarity in the extract. This is of

relevance as fungal hot spots in silage are much wetter than

non-infected silage due to the microbial activity.

The buffering incorporated in the method was very

effective. In spiked silage samples adjusted to pH>10

and subsequently subjected to our buffered modified

QuEChERS extraction, the pH of the ACN phase (diluted

1:4 v/v with water) was 4.3. In the same silage, at its natural

pH of 4.2, the pH of the ACN phase was 3.7. When the

same silage samples were subjected to traditional extraction

Table 1 Parameters for the mass spectrometric detection of analytes including analyte abbreviation (abbr.), retention time (RT), cone voltage,

precursor ions, product ions and collision energy

Analyte Abbr. RT (min) Cone (V) Precursor ion (m/z) Product ions (m/z) Collision (eV)

ESI− Alternariol AOH 15.0 35 257 215, 147 25, 30

Alternariol monomethyl ether AME 16.7 30 271 256, 228 22, 30

Altersetin ALS 20.0 30 398 354, 310 22, 23

Andrastin A AND A 17.8 50 485 425, 453 35, 30

Citreoisocoumarin CICO 12.3 35 277 219, 191 20, 27

Deoxynivalenol DON 2.9 15 341 265, 295 10, 10

Gliotoxin GLI 13.6 15 325 261, 243 10, 15

Mycophenolic acid MPA 15.6 35 319 191, 179 25, 20

Nivalenol NIV 1.8 18 357 281, 311 15, 10

Ochratoxin A OTA 17.8 28 402 211, 167 30, 35

Patulin PAT 2.5 15 153 109, 81 8, 8

Penitrem A PEN A 19.5 50 632 546, 294 30, 50

Roquefortine C ROQ C 11.9 35 388 190, 318 30, 30

Tenuazonic acid TEA 13.4 30 196 112, 139 25, 18

Zearalenone ZEA 17.0 30 317 131, 175 30, 25

ESI+ Citrinin CIT 16.4 22 251 233, 191 20, 25

Cyclopiazonic acid CPA 18.0 40 337 196, 182 30, 25

Enniatin B ENN B 19.9 30 657 314, 527 37, 25

Fumigaclavine A FUC A 7.1 30 299 208, 239 28, 18

Fumigaclavine B FUC B 2.1 30 257 192, 167 30, 27

Fumigaclavine C FUC C 12.2 40 367 238, 307 30, 20

Fumitremorgin A FUT A 19.8 15 602 460, 498 15, 15

Fumitremorgin C FUT C 15.5 30 380 324, 212 20, 35

Fumonisin B1 FB1 12.6 40 723 334, 528 38, 30

Fumonisin B2 FB2 13.4 40 707 336, 318 35, 35

Marcfortine A MAC A 12.0 40 478 419, 450 35, 25

Marcfortine B MAC B 11.7 20 464 436, 419 22, 30

Mevinolin MEV 18.5 40 405 225, 173 20, 23

Mycophenolic acid MPA 15.5 20 321 207, 159 20, 40

Ochratoxin A OTA 17.2 20 404 358, 341 15, 20

PR-toxin PR 15.8 15 321 261, 279 10, 15

Roquefortine A ROQ A 10.0 25 299 239, 197 18, 25

Roquefortine C ROQ C 12.6 25 390 322, 334 22, 30

Sterigmatocystin STE 17.3 40 325 281, 301 35, 28

T-2 toxin T-2 15.9 30 484 215, 305 20, 20

The first product ion listed is the quantifier and the second is the qualifier. The analyte specifications are sorted by electrospray ionisation mode
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with an unbuffered mixture of ACN and water the

corresponding pH values of the extract were 10.4 and 4.4.

The substantial difference in pH had effects on the analysis

with both extraction methods. For AOH, CPA, FUC A,

FUC C, PEN A and ZEA a significant difference in LC-

MS/MS response was observed between the low- and high-

pH samples extracted with the unbuffered mixture of ACN

and water, with P values of 0.001, 0.029, 0.003, 0.047, 0.002

and 0.001, respectively. For these analytes, no significant

difference in response was observed with the buffered

QuEChERS method. The response of the analytes AND A,

CICO, OTA and ROQ C differed significantly between the

two pH values for both extraction methods (P values ranging

from 0.047 to <0.001), while the responses for FUT A and

STE only differed significantly between pH values when

extracted according to the QuEChERS method (P=0.047

and 0.027, respectively).

It is possible that the extraction of field samples can be

improved by performing a longer initial extraction without

any salts. However, Lehotay et al. [21] did not experience

any negative effect of combining the extraction and

partitioning steps into one procedure. Both pesticides and

fungal metabolites may be present inside and outside the

plant depending on application methods and infection

biology, respectively. Therefore, some analytes may be less

accessible to extraction than others. Hence, the very short

extraction time (<2 min) may pose a problem which is not

addressed in validation with spiked samples. Optimisation

Table 2 Results of the validation for 27 analytes spiked in blind maize silage, including the accepted spike levels (concentrations or ‘fungal’ for

qualitatively spiked analytes), average recovery (avg. rec.), no. of spiked samples accepted for the validation (ntotal), repeatability (RSDr),

reproducibility (RSDIR) and limit of detection (LOD)

Analyte Spike levels (µg·kg−1) ntotal Avg. Rec. (%) RSDr (%) RSDIR (%) LOD (µg·kg−1)

ESI− Alternariol 20, 40, 80 27 78 9 14 10

Alternariol monomethyl ether 20, 40, 80 27 79 5 10 6

Altersetin fungal 9 91 14 14 –

Andrastin Aab fungal 9 122 8 12 1

Citreoisocoumarin fungal 9 84 7 7 –

Deoxynivalenolc 1399, 2797 18 83 17 18 739

Gliotoxin 200, 400, 800 27 85 13 13 71

Mycophenolic acid 20, 40, 80 27 90 11 13 7

Nivalenolc 200, 400, 800 27 68 13 15 122

Ochratoxin A 40, 80 18 71 8 9 10

Patulin 700, 1400, 2800 27 100 17 17 371

Penitrem A 20, 40, 80 27 107 6 12 8

Roquefortine Cab fungal, 200, 400, 800 27 205 9 25 158

Tenuazonic acidc fungal, 202, 404 27 37 20 20 121

Zearalenone 20, 40, 80 27 90 12 16 9

ESI+ Cyclopiazonic acidac 20, 40, 80 18 63 22 35 15

Enniatin B 25, 45, 85 27 60 21 24 24

Fumigaclavine A fungal 9 93 12 21 –

Fumigaclavine Cabc fungal 9 176 11 13 –

Fumitremorgin Ac 100, 200 18 93 18 23 76

Marcfortine A fungal 9 63 12 16 –

Marcfortine B fungal 9 61 9 9 –

Mevinolinc 40, 80 18 68 25 27 25

PR-toxin Fungal 9 56 27 32 –

Roquefortine A Fungal 9 103 13 32 –

Sterigmatocystin 20, 40, 80 27 72 9 9 8

T-2 toxinc 125, 250, 500 27 55 17 26 96

LOD was not calculated for the qualitatively spiked analytes
a
Data from day 2 omitted due to high day-to-day variation in recovery

b
Fungal spike (n=3) on day 4 included

c
Ion ratio out of the expected range in many samples

Table 2 Results of the validation for 27 analytes spiked in blind

maize silage, including the accepted spike levels (concentrations

or ‘fungal’ for qualitatively spiked analytes), average recovery

(avg. rec.), no. of spiked samples accepted for the validation

(ntotal), repeatability (RSDr), reproducibility (RSDIR) and limit of

detection (LOD)
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of extraction time should therefore be done with naturally

infected samples. However, several metabolites were

detected when the present method was applied to naturally

contaminated samples (Table 3).

The amount of sodium acetate or sodium chloride in the

QuEChERS method is known to influence the extraction of

both analytes and matrix compounds [18, 21]. Fine-tuning of

this concentration has not been done but might improve the

balance between analytes and interferences in the extract.

The dispersive solid-phase extraction (SPE) with primary–

secondary amine (PSA) employed in the QuEChERS meth-

ods for pesticides [18, 21], was not used for mycotoxins.

PSA binds organic acids, which in our case would be MPA,

OTA and CIT as well as TEA and CPA, which also have

acidic properties. It was therefore chosen not to employ this

clean-up procedure.

In the initial steps of the multi-method development,

SPE was tested for clean-up of silage extract. Both C18,

polymeric (Strata X) and mixed mode columns (Strata X-C,

Oasis MAX) were tested without satisfactory results. In the

application of reverse-phase SPE (C18) only few matrix

components could be removed to fit all compounds. When

also taking advantage of the functional groups on the

molecules several analytes were not retained very well and

the procedure was very time-consuming. Even in combined

extracts from the SPE clean-up, large quantities of matrix

were still present. In some cases, regulation of pH in the

extracts in order to optimise SPE retention also led to phase

separation of the extract, which interferes with the SPE

separation. SPE clean-up did therefore not constitute an

improvement.

LC-MS-MS method

The compounds were MS-tuned (Table 1) in their most

sensitive ESI mode (+/−). However, for MPA, OTA, ROQ

C data have been collected in both modes. The ESI− was

preferred for these compounds due to better recoveries and

lower RSDs and LODs. The better sensitivity of these

analytes in ESI− than in ESI+ was unexpected, especially

since OTA and ROQ C in solvent have been found to be

much greater than tenfold more sensitive in ESI+ than in

ESI− on a Micromass LCT and an almost identical Quattro

Ultima triple quadrupole MS (in this case equipped with a

high-collision hexapole).

From LC-MS/MS runs of single standards, it was

concluded that the compounds in the method did not

interfere with each other in the measuring range. At AME

concentrations much higher than the validated measuring

range, some interference with ZEA was observed. This was

possible due to co-elution and because AME formed a

small amount of the adduct [M+HCOO]− having the same

mass (m/z 317) as the ZEA [M-H]− precursor. The ion ratio

(quantifier/qualifier) of the interfering daughter ions from

AME (2.3) was however different from the ratio of ZEA

(0.8). Unique ion-transitions were preferred for the MS/MS

method. Daughter ions resulting from water or adduct loss

were avoided when possible.

The evaluation of SSE due to matrix compounds showed

a large variation in the matrix effect between analytes.

Results for the quantitatively validated analytes are pre-

sented in Table 4. The signal for MEV is highly enhanced

by the silage extract while AOH and ROQ C signals are

Analyte Unspoiled silage (n=10) Fungal hot spots (n=10)

npos Concentration (µg·kg−1) npos Concentration (µg·kg−1)

meanpos minpos maxpos meanpos minpos maxpos

Quantitative NIV 0 nd nd nd 2 140 138 142

DON 0 nd nd nd 2 990 888 1,092

ROQ C 1 189 189 189 3 11,826 51 33,662

GLI 0 nd nd nd 2 594 282 906

AOH 1 24 24 24 1 236 236 236

MPA 1 52 52 52 6 507 10 1,646

AME 0 nd nd nd 1 51 51 51

ZEA 4 99 10 311 4 71 19 156

AND A 7 159 11 691 6 2,400 8 8,811

ENN B 4 44 25 63 3 93 37 200

Qualitative FUC A 0 1

ROQ A 4 3

MAC B 0 1

MAC A 1 3

CICO 5 5

Table 3 Summary statistics for

the fungal secondary metabo-

lites detected in ten samples of

visibly unspoiled silage and ten

samples of hot spots with visible

fungal growth (nd=not detected)

npos number of positive samples

within the ten samples in each

category, meanpos, minpos,

maxpos average, minimum and

maximum values of the positive

samples
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suppressed. The use of matrix-matched calibration stand-

ards compensated for the matrix effects. For TEA, the

sensitivity in pure ACN standards was insufficient for

evaluation of SSE. MPA and OTA also showed a highly

concentration-dependent matrix effect.

The post-run cleaning procedure with injections of

formic acid in ACN, MeOH and water was necessary to

prevent matrix build-up on the column. Without the

procedure, unstable RTs and rapid decreases in sensitivity

were observed after just eight injections of silage extract.

To continually monitor a potential matrix accumulation on

the chromatographic column, a blank ACN sample was

included after nine matrix samples injected. These steps

gave reliable and stable MS/MS signals throughout a

sequence. To achieve lower RSD in the MS analysis, shorter

sequences (<24 h) and correction by internal standards for the

individual compounds should be applied.

To ensure proper formation of ammonium adducts

(T-2 and ENN B) and to obtain better chromatography of

the pH-dependent compounds (e.g. ROQ A, CPA, CIT)

eluent A used in ESI+ was added ammonia and formic acid.

Eluent A for ESI− had only low formic acid content and

application of ammonium formiate buffer resulted in a

significant signal suppression of the early eluting com-

pounds. This was not accepted as NIV, DON, PAT and GLI

already were expected to have high detection limits. It was

therefore decided to analyse samples in two separate runs,

even though the instrument can switch between the two

modes. Switching between positive and negative ionisation

requires extra time for data collection. This can, in practice,

cause troubles for quantification due to few data points

across the peaks and short dwell times when several

compounds co-elute [26]. By the use of separate retention

time windows for the two ionisation modes, Berthiller et al.

[27] simultaneously determined several mycotoxins in a

single run. However, because of co-elution and sensitivity

drop using common eluent A, this approach was not

applicable to our method and instead we accepted a longer

instrument time (2×44 min) for every sample.

Method performance

For compounds with little matrix interference, the calcula-

tion of LOD on the basis of SDIR at lowest accepted spike

level gave a higher and probably more realistic detection

limit than if based on noise in blind maize silage. The

maximum content in feed of 2,000 µg kg−1 ZEA,

8,000 µg kg−1 DON and 250 µg kg−1 OTA recommended

by the European Commission [28] can easily can be

determined with the current LODs, also when accounting

for the differences in dry matter content in the EC

recommendation and the present method.

Previous examinations of mycotoxins in maize silages

have detected ZEA and DON [12], ENN B [29] and PAT,

MPA, CPA and ROQ C [14]. The average toxin concen-

trations (range in parentheses) in these studies were: ZEA

174 µg kg−1 (25–943), DON 854 µg kg−1 (250–3,142), ENN

B 73 µg kg−1 (24–218), PAT 80 µg kg−1 (10–1,210), MPA

160 µg kg−1 (20–1,300), CPA 120 µg kg−1 (20–1,430) and

ROC C 380 µg kg−1 (10–5,710). LOD of the current method

(corrected for a dry matter content of 35% where appropri-

ate) for ZEA, ENN B and MPA were at level with or below

the reported concentration levels. However, for DON, PAT,

CPA and ROQ C monitoring of silage with our method is

known only to identify part of the samples with the toxins

present, as the current LODs are higher than some the of

reported contents. Still, it is relevant to measure the frequency

of these analytes in more contaminated samples.

Precision and recovery

Compounds with accepted validation results are included

in Table 2. Some average recoveries were outside the

preferred range of 70% to 110% [30] and still accepted in

this multi-method. Optimal extraction and detection of all

analytes are not always achievable when several com-

pounds are targeted [26, 27]. We accepted a RSDIR up to

35%, though <22–23% is normally preferred in the 100 ppb

range [30–32]. A high RSDIR results in a large uncertainty

range, when reporting results. In the application of the

method, the detection of the compounds is just as important

as a very narrow concentration range in reporting the result.

The method was developed for research purposes, not for

official food and feed control.

The European Commission [33] has specific criteria for

analytical methods applied in foodstuffs (not feed) for a few

Analyte SSE (%)

AME 67

AND A 89

AOH 48

CPA 79

DON 62

ENN B 89

FUT A 115

GLI 86

MEV 177

NIV 78

PAT 97

PEN A 1 07

ROQ C 48

STE 115

T-2 82

ZEA 75

Table 4 Approximate analyte

specific signal suppression and

enhancement effects (SSE)

tested for unspoiled maize silage
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toxins. Enniatin B, OTA and zearalenone comply with all

the specific criteria. The recovery of T-2 (55%) is a little

lower than the demanded range (60–130%) and the RSDr of

PAT (17%) is slightly higher than the 15% accepted. The

average recoveries of 6% FB1 and 13% FB2 were far below

the accepted 70–110% range [33]. Methods focusing only

on these water-soluble toxins by using immunoaffinity

columns have approximately 100% recoveries [34]. However,

acceptable recoveries of FB1 and FB2 were also achievable

when acidified solvent was used to extract multiple toxins

from breadcrumb matrix [26]. The validation of CIT was

unsatisfying due to LC-MS/MS instrument day-to-day

variations. Results from day 1 showed that CIT is extracted

with the QuEChERS method, as spiking at 200 µg kg−1gave

65% mean recovery with 23% RSDr (n=3). However, on

days 2 and 3, a decrease in sensitivity for CIT during the

sequence gave unacceptable standard curves and recoveries.

Applying LC-MS Garon et al. [13] were able to validate CIT

in SPE cleaned-up silage extracts using a HPLC gradient

with ACN and acidified water (0.5% acetic acid, pH 3) as

mobile phases. This indicates that removal of more matrix

components or the use of more acidic eluents than in the

present method could be important for proper detection

of CIT.

The recoveries were within the same range for low,

medium, high and fungal spike and for days 1, 2 and 3 for

most compounds. Concentration dependence was only seen

for TEA as the recoveries were 52%, 30% and 28% for

fungal, 200 µg kg−1 and 404 µg kg−1 respectively. The

fungal spike of TEA was much higher than the other two

levels near the LOD. On the second validation day the

analytes AND A, CPA, FUC C and ROQ C showed

unacceptably high day-to-day variations in recovery. These

data were omitted (see footnote to Table 2) and instead an

additional fungal spike was carried out. High reproducibility

was observed for; ROQ A (81%, 138%, 90%), PR (55%,

44%, 69%) and CPA (50%, omitted, 76%) here expressed

as the day-to-day variation in mean recovery. It is recom-

mended always to include spiked control samples to evaluate

the recovery of the analysis series.

Fig. 2 The relative abundances of the MRM chromatogram traces for the quantitative ions of the mycotoxins in blank maize silage and spiked at

the lowest accepted level with quantitative standards

Multi-mycotoxin analysis of maize silage by LC-MS/MS 773
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The LC-MS/MS method detects FUC B and FUT C, but

they were not present in sufficient amount in the fungal

extract to be validated. Their extraction is expected to be

like the compounds with structural similarities (FUC A and

FUT A, respectively). Similarities in validation data are

observed for the isomers ROQ A and FUC A and for the

closely related AOH and AME (–OH/–CH3 group).

Identification criteria

Ideally, identification of a compound should fulfil certain

criteria: a retention time (RT) tolerance of 3%, a signal to

noise ratio of at least three and similar relative abundances

of the diagnostic ions as for spiked samples. At spike levels

close to LOD, some ion ratios varied more than recom-

mended in [30] (see footnote to Table 2).

Quantitative ions from mycotoxins spiked at the lowest

accepted level (Fig. 2) and silage spiked with the fungal

mix (Fig. 3) have been compared to the signal of blank

silage. The blank silage was selected among available

maize silage samples to have a low natural content of

mycotoxins. The smooth chromatograms of the quantitative

ions show a low noise for most compounds. Figures 2 and 3

also visualise the broad peak of TEA and FUM A and

matrix interference on the quantitative ion of PAT. To

overcome a large closely eluting matrix interference for the

quantitative ion of PAT with m/z 109 (Fig. 2), the peak

height was used as response variable instead of peak area.

No matrix interference was observed for the less sensitive

product ion (m/z 81). Using height instead of area enabled

automatic integration and ensured acceptance of ion ratio

(±20% of standards) for PAT in all spiked samples. NIV and

DON were identified by their RTs only. The ion ratios in

the matrix-matched standards could not be verified for the

major part of the spiked NIV and DON samples due to the

qualifier's low sensitivity and interference of matrix.

Field samples

The method was applied to 20 naturally contaminated

samples of maize silage collected at Danish dairy farms

(Table 3). Ten samples were visibly un-mouldy samples

extracted with a silage drill while ten were hot spots with

visible fungal growth collected from the cutting face of

the silages. The mycobiota of the selected samples was

determined previously [7; unpublished data] and the hot

spots selected to represent a range of the most common

post-harvest contaminants of silage: P. roqueforti, P. paneum,

A. fumigatus, B. nivea and M. ruber [1]. Reported are

compounds which were above the LOD in either the

unspoiled silage or in the fungal hot spots and met the

identification criteria. The P. roqueforti/P. paneum metabo-

lites AND A and CICO were very common in both hot spots

and visibly uninfected silages. Likewise, ROQ A was

detected in both types of samples, while MPA and ROQ C

were most common in hot spots with maximum concen-

trations (±95% confidence interval) of 1,646 (±460) µg kg−1

and 37 (±18) mg kg−1, respectively. The high concentrations

of MPA, ROQ C and AND A in some hot spots are

consistent with observation in grass silage by O’Brien et al.

[15]. ROQ C was generally present in samples infected with

P. roqueforti in accordance with Auerbach et al. [35]. AND

A could be a good marker for Penicillum spoilage during

storage because of the low detection limit and its detection in

the majority of the unspoiled silages. The maximum

concentration of MPA was in a hot-spot infected by B.

nivea. This fungus is known to produce MPA [36] and this

result shows that it is also capable of producing it in silage.

The two hot spots with growth of A. fumigatus contained

GLI in concentrations up to 906 (±245) µg kg−1. FUC A,

another known A. fumigatus metabolite, was also detected in

one of these samples. ZEA, NIV, DON and ENN B are

toxins from Fusarium species infecting maize pre-harvest

[6]. They have also been detected with the current method.

Fig. 3 The relative abundances of the MRM chromatogram traces for

the quantitative ions of the mycotoxins in blank maize silage and

silage spiked with a mixture of fungal extracts
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The concentrations were near the limit of detection and

much below the maximum contents in feed recommended

by the European Commission [28].

Conclusion

A new method for detection of 27 fungal secondary

metabolites in maize silage was developed and successfully

validated. Nineteen of the analytes can be detected quantita-

tively and eight qualitatively with recoveries from 37 to

201%, LODs from 1 to 739 μg kg−1 and reproducibilities

from 7 to 35%. The pH-buffered extraction method ensured

the same extraction conditions for fungal hot spots (pH>7)

and normal silage (pH∼4). Applied to 20 Danish maize

silage samples, the following mycotoxins and other fungal

secondary metabolites were detected: AME, AND A, AOH,

CICO, DON, ENN B, FUC A, GLI, MAC A, MAC B, MPA,

NIV, ROQ A, ROQ C and ZEA, representing metabolites

from common fungal pre- and post-harvest contaminants of

maize silage. With this application of the QuEChERS method

to mycotoxin analysis, it may in the future be possible to

combine mycotoxin and pesticide analysis.
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4. IN VITRO CYTOTOXICITY OF FUNGI SPOILING MAIZE 
SILAGE 
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Abstract 
Penicillium roqueforti, P. paneum, Monascus ruber, Alternaria tenuissima, F. graminearum, F. avenaceum,
Byssochlamys nivea and Aspergillus fumigatus have previously been identified as major fungal contaminants of 
Danish maize silage. In the present study their metabolite production and in vitro cytotoxicity have been 
determined for fungal agar and silage extracts. All 8 fungal species significantly affected Caco-2 cell viability in 
the resazurin assay, with large variations for each species and growth medium. The 50% inhibition 
concentrations (IC50) of the major P. roqueforti metabolites roquefortine C (48 µg/mL), andrastin A (>50 
µg/mL), mycophenolic acid (>100 µg/mL) and 1-hydroxyeremophil-7(11),9(10)-dien-8-one(>280 µg/mL) were 
high. Fractionating of agar extracts identified PR-toxin as an important cytotoxic P. roqueforti metabolite, also 
detectable in maize silage. The strongly cytotoxic B. nivea and P. paneum agar extracts contained patulin above 
the IC50 of 0.6 µg/mL, however inoculated onto maize silage B. nivea and P. paneum did not produce patulin 
(>371 µg/kg). Still B. nivea infected maize silage with mycophenolic acid (∼50 mg/kg), byssochlamic acid and 
other metabolites present, was cytotoxic. In contrast hot-spots of P. roqueforti, P. paneum M. ruber and A. 
fumigatus were not more cytotoxic than uninfected silage. 

1. Introduction 
Farmers all over the world produce maize silage to feed dairy cows (Wilkinson and Toivonen, 2003). Maize 
silage may constitute 50–75% of the diet (Driehuis et al., 2008b) for a dairy cow consuming approximately 26 
kg dry matter/day (Eastridge, 2006). Maize plants are converted into maize silage as a result of many naturally 
occurring enzymatic and microbiological processes taking place when chopped plant material is compressed and 
packed airtight. A natural lactic acid fermentation of maize sugars into organic acids enables anaerobic and 
acidic storage of the maize silage. Long-term storage is possible (Storm et al., in press) as a well-managed maize 
silage stack is a very hostile growth environment to most microorganisms (Weinberg and Ashbell, 1994; 
Forristal et al., 1999). Nevertheless specific filamentous fungi are known to spoil maize plants in the field or 
silage during the storage period. The fungi are able to produce many secondary metabolites including 
mycotoxins. Mycotoxin exposure can affect dairy cows health (Korosteleva et al., 2009) and productivity (Fink-
Gremmels, 2008b). The most important toxigenic genera associated with maize and silage are Aspergillus,
Fusarium, Alternaria, Penicillium and Monascus (Pelhate, 1977; Storm et al., 2008). 

The fungal metabolite production depends on fungal species (Frisvad et al., 2008), isolate (O’Brien et al., 2006; 
Andersen et al., 2008; Frisvad et al., 2009), growth medium and environmental factors (Frank, 1998; Furtado et 
al., 2002). The pre-harvest secondary fungal metabolites in maize silage includes; alternariol, alternariol 
monomethyl ether, beauvericin, deoxynivalenol, 15-acetyl-deoxynivalenol, enniatin B and B1, fumonisin B1, 
nivalenol and zearalenone. From post-harvest spoilage of maize silage aflatoxin B1, andrastin A, 
citreoisocoumarin, citrinin, cyclopiazonic acid, fumigaclavine A, gliotoxin, marcfortine A and B, mycophenolic 
acid, patulin, PR-toxin, roquefortine A and C have been detected (Müller and Amend, 1997; Garon et al., 2006; 
Richard et al., 2007; Driehuis et al., 2008b; Mansfield et al., 2008; Sørensen et al., 2008; Rasmussen et al., 
2010). Many of those metabolites are mycotoxins, which can elicit carcinogenic, mutagenic, neurotoxic, 
hepatotoxic, nephrotoxic, oestrogenic, immunosuppressive, antimicrobial (Scudamore and Livesey, 1998) or 
acute toxic effects (Chen et al., 1982). The symptoms identified in animal trails include feed refusal, kidney, 
liver or lung damages, birth defects, abortion and death (Scudamore and Livesey, 1998). A chronic exposure to 
low levels of mycotoxins typically gives non-specific symptoms such as impaired immune system and increased 
infections or metabolic and hormonal imbalances (Morgavi and Riley, 2007; Fink-Gremmels, 2008b). To protect 
animal health some countries have recommendations for deoxynivalenol, ochratoxin A, fumonisins, zearalenone 
content in feed (European Commission, 2006). The transfer of toxins to dairy and meat products is a potential 
risk for humans (Miller 2008; Fink-Gremmels 2008a) and the regulation on aflatoxins B1 in feed (European 
Commission, 2003) owes to transfer of the carcinogenic aflatoxin M1 metabolite to milk (IARC, 1993). 

Compared to other animals ruminants are more robust to many mycotoxins (EFSA, 2004a, 2004c, 2005), partly 
due to biotranformations by the rumen microorganisms (He et al., 1992). The rumen microbiota inactivates and 
degrades some mycotoxins, but not all types whereas others are metabolised to the even more potent compounds 
in the rumen. For example, ochratoxin A is extensively degraded to the less toxic ochratoxin α (EFSA, 2004b), 
fumonisin B1 is unaffected in the rumen (EFSA, 2005) whereas zearalenone is metabolised to α-zearalenol which 
has stronger oestrogenic effect (EFSA, 2004c). Antimicrobial fungal metabolites such as patulin (Tapia et al., 
2002), mycophenolic acid (Bentley, 2000), citrinin (Wang, 2004) and roquefortine C (Kopp and Rehm, 1979) 
can affect rumen microorganisms (Tapia et al., 2002). An impaired rumen function cause severe metabolic 
disorders, which can reduce feed utilization (Chiquette, 2009) and may increase the mycotoxin uptake (Fink-
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Gremmels, 2008a). Cases of ill-thrift, disease and death in livestock have been related to the presence of 
mycotoxins in silage (Cole et al., 1977; Seglar, 1997; Boysen et al., 2000; Driehuis and Elferink, 2000; Sumarah 
et al., 2005; O’Brien et al., 2006) and the issue is much debated (Oldenburg, 1991; Scudamore and Livesey, 
1998; Wilkinson, 1999; Fink-Gremmels, 2008a, 2008b; Miller, 2008). Especially high-yielding dairy cows may 
be susceptible to diseases caused by mycotoxins, due to a high level of stress (Jouany and Diaz, 2005) but acute 
intoxications causing death are rare (Yiannikouris and Jouany, 2002). Actually was the occurrence of 20 
mycotoxins in feedstuffs for dairy cows low compared to the effect concentrations of the individual toxins in a 
maize silage based diet based (Driehuis et al., 2008a). However fungi are capable of producing many bioactives 
(Samson et al., 2002) and simultaneous exposure to several toxins could elicit synergism (Bouslimi et al., 2008). 

In vitro testing systems are a good screening tool for toxicological effects (Gutleb et al., 2002). Cell cultures of 
yeast, mammalian cells or bacteria are typically applied. Compared to animal studies in vitro assays are fast and 
cheap, though they may indeed give different results than animal studies, due to lack of an integrated organism 
response (Gad, 2000). Cytotoxicity assays can to some extent be used as a screening test for acute toxicity in 
animals and humans (Binderup et al., 2002). The human intestinal epithelial cell line (Caco-2) is widely used and 
well validated (Videmann et al., 2008). Metabolic conversion of dye by viable Caco-2 cells in vitro can 
determine the general cytotoxicity with similar sensitivity as other cell lines (Cetin and Bullerman, 2005). 

In the present study an in vitro cytotoxicity assay is used in combination with chemical analysis and bio-directed 
fractionation to identify important toxic mycotoxins in mixtures of unknown composition. For this purpose 
concentration-response curves were made for a range of known mycotoxins. In vitro cytotoxicity tests of fungal 
agar extracts and silage extracts have been carried out along with chemical identification using liquid 
chromatograph with diode array and mass spectrometry detection. The viability of Caco-2 cells was determined 
from their metabolic conversion of resazurin dye (Binderup et al., 2002). Filamentous fungi often isolated from 
Danish maize (F. graminearum, F. avenaceum and A. tenuissima) and maize silage (A. fumigatus, M. ruber, P. 
roqueforti, P. paneum and B. nivea) were included. 

The aims were: (i) to relate the cytotoxicity of well known mycotoxins with their presence in toxic fungal agar 
extracts, (ii) to determine the toxicity and presence of metabolites of inoculated maize silage, (iii) to identify the 
most cytotoxic compound in a crude P. roqueforti agar extract. The present study is a part of a large Danish 
collaborative project aiming to determine if mycotoxins in maize silage cause disease and poor performance in 
dairy cattle (Kristensen et al., 2007; Sørensen, 2009; Storm, 2009). 

2. Materials and methods 

2.1 Chemicals 
Dulbecco’s Modified Eagle Medium nutrient mix (DMEM/F12, #11039-021) with HEPES (15 mM), L-
glutamine (2.5 mM) and pyridoxine HCl was from GIBCO (Invitrogen, Taastrup Denmark) so was the fetal calf 
serum (FCS, 10106169). MEM non-essential amino acids, penicillin-streptomycin mix, L-glutamine, phosphate 
buffered saline, trypsin-EDTA mix, resazurin (R7017) and sucrose (Fluka, 84100) were all from Sigma-Aldrich 
(St. Louis, MO, USA). Magnesium sulfate heptahydrate (MgSO4 ·7H2O; Merck, 5886), zink sulfate heptahydrate 
(ZnSO4·7H2O; Merck, 8883) and copper (II) sulfate pentahydrate CuSO4·5H2O (Merck, 2790) were all from 
Darmstadt, Germany. Czapek dox broth (Difco, 233810) contains saccharose (30 g), sodium nitrate (3.0 g), 
potassium phosphate (1.0 g), magnesium sulphate (0.5 g), potassium chloride (0.5 g) and ferrous sulphate (0.01 
g). Potato dextrose agar (Difco, 0013-17-6) contains potato starch (4.0 g) dextrose (20.0 g) and agar (15.0 g). 
Difco products were from Becton, Dickinson and Company (Broendby, Denmark). Yeast extract (Biokar, 
A1202HA) and agar (SoBiGel) were from Biokar Diagnostics (Beauvais, France) and Bie & Berntsen 
(Roedovre, Denmark) respectively. Solvents were HPLC grade, chemicals were analytical grade, and the water 
was ultra-purified using a Millipore system (Molsheim France). 

2.2 Secondary fungal metabolites 
Crystalline gliotoxin, T-2 toxin, patulin, citrinin, zearalenone, mycophenolic acid (>98% purity) and 
deoxynivalenol (>97 % purity) were purchased from Sigma-Aldrich (St. Louis, MO, USA) for the cytotoxic 
tests. Andrastin A and roquefortine C available from previous studies in our lab, and purities were confirmed 
prior to use. The purities of N6-formyl-roquefortin-C (>99% purity) and 1-hydroxyeremophil-7(11),9(10)-dien-
8-one (>97% purity) isolated from P. roqueforti (IBT 28547) in this study were determined by analytical high-
performance liquid chromatograph with diode array detection (HPLC-DAD) at 200-700 nm. Standard stock 
solutions of 0.2 to 14 mg/mL in methanol (Rathburn HPLC grade) were kept at –18 °C. For identification of 
fungal metabolites more than 600 authentic standards was available at DTU Biosys, (Lyngby, Denmark). 
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2.3 Fungal agar extracts 
Strains of P. roqueforti (IBT 28546, 28547, 28548, 28549), P. paneum (IBT 28542, 28543, 28544, 28545), M. 
ruber (IBT 9655, 9658, 9664, 41178), A. tenuissima, F. graminearum (IBT 41172, 41173, 41174), F. avenaceum 
(IBT 41175, 41176, 41177, 41180), B. nivea (IBT 28550, 28551, 28552, 28553) and A. fumigatus (IBT 15720, 
23720, 23737, 24699) were transferred with a three point inoculation to 9 cm Petri dishes with different media: 
YES (yeast extract sucrose agar), CYA (czapek yeast extract agar) and PDA (potato dextrose agar). Selected 
stains were also inoculated to YE (yeast extract agar) or SA (silage agar) made of 300 g finely blended maize 
silage and 15 g agar per 1 L medium. YE agar had the same composition as YES agar, except that sucrose was 
not added. An identical trace metal solution (ZnSO4·7H2O (1.0 g) and CuSO4·5H2O (0.50 g) in 100 mL water) 
was added to YE, YES, CYA and PDA. YES (pH = 6.4±0.1) was prepared with agar (20 g), yeast extract (20 g), 
sucrose (150 g), MgSO4·7H2O (0.5 g), trace metal solution (1 mL) and water (885 mL). CYA (pH = 6.25±0.25) 
contained agar (15 g), yeast extract (5 g), czapek dox broth (35.0 g), trace metal solution (1 mL) and water (1000 
mL). PDA (pH = 5.6±0.2) contained potato dextrose agar (39.0 g), trace metal solution (1 mL) and water (1000 
mL). The pH was adjusted just prior to autoclaving.  

Metabolites were extracted from 13-14 days old cultures incubated at 25°C in darkness, except for A. tenuissima 
which grew in alternating light. Agar plugs were cut from the colonies of several plates and extracted using a 

micro-scale method by Smedsgaard (1997) with a few modifications. In brief, 54 plugs (6 mm = 1527 mm2

fungal surface) were extracted twice with a 5 mL mixture of ethyl acetate, dichlormethane, methanol (3:2:1), 1% 
formic acid (v:v) in a 16 mL screw-cap vial by ultrasonication for 45 min each time. Both extracts were 
transferred to a clean vial, evaporated to dryness in a rotary vacuum concentrator (Christ, 
Gefriertrocknungsanlagen, Osterode am Harz), re-dissolved in 2 mL methanol, ultrasonicated and finally filtered 
through a 0.45 µm PFTE filter (National Scientific Company rockwood, TN, USA). All fungal strains are from 
the IBT collection at DTU Biosys, (Lyngby, Denmark). 

2.4 Isolation of P. roqueforti metabolites 

P. roqueforti (IBT 28547) was three point inoculated to 100 YES plates ( 85 mm) and an extract from 10 days 
old culture was made. In brief, 10 plates at the time were homogenised in a stomacher (Colworth Stomacher 400 
BA6021, London, UK) with 100 mL mixture of ethyl acetate, dichlormethane, methanol (3:2:1), 1% formic acid 
(v:v) for 1 min. and the suspension was allowed to stand for 1 hour. The supernatant was removed and a second 
extraction took place over night. After paper filtration (Whatman 4, Kent, UK) all extracts were evaporated to 
dryness at 32°C using a rotavapor concentrator (Büchi, Rotavapor R-134 and Büchi V-855/R-215, Flawil, 
Switzerland). The crude extract (4.4 g) was re-dissolved in methanol (17 mL) and stored at -20°C. 

Secondary metabolites of the crude extract were fractionated by a Biotage IsoleraTM One flash purification 
system (Uppsala, Sweden) with a prepacked Snap Cartridge column (39 x 157 mm, C18: 100 g) from Biotage 
(Uppsala, Sweden) using 40 mL/min mobile phase of water/acetonitrile and gradient conditions (30-100% in 30 
min). Changes in the slope of 210 nm were targeted. Further isolation was performed using Luna II C18 columns 
from Phenomenex (Torrance, USA) and water/acetonitrile eluent containing 50 ppm trifluoroacetic acid by 
targeting specific peaks or by time fractioning (45 sec). The conditions for peak and time fractioning were; 15 
mL/min gradient flow 35-65% in 30 min on a 250 x 21.2 mm, 5µm column and 5 mL/min gradient flow 25-65% 
in 20 min on a 250 x 10 mm, 5 µm column, respectively. 

2.5 Fungal maize silage extracts 
Two isolates of respectively P. roqueforti, P. paneum, B. nivea, M. ruber and A. fumigatus were inoculated onto 
Danish silage sampled 11 month after ensiling. Defrosted non-sterilised sub-samples of maize silage (30 g) were 
added 1 mL solution containing approximately 5·106 spores/mL. The closed jars were incubated for 3 weeks, 20 
oC in water saturated air. Triplicate incubations of each isolate were pooled and stored at -20oC until analysis. 
Metabolites were extracted and quantified as described by Rasmussen et al. (2010). In brief, a 10 g sample was 
extracted with 10 mL acetonitrile and 5 mL water buffered with 0.7% acetic acid and 1.7 g sodium acetate 
trihydrate. Shaking with 4.0 g anhydrous magnesium sulfate induced phase separation. After centrifugation the 
upper acetronitrile phase was filtrated (0.45 µm) before LC-MS-MS analysis. For cytoxic screening of samples a 
5.0 mL acetronitrile sample extract was evaporated under a steam of nitrogen and redissolved in 0.8 mL 
methanol. 
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2.6 Chemical analyses 
Secondary fungal metabolites have been determined by several instruments. The HPLC-DAD an Agilent 1100 
(Walbronn, Germany) was operated as described by Andersen et al. (2008). In brief, sample (0.4 - 5 µL) was 
separated on a Luna C18 (2) column (3 µm, 2.0 x 100 mm) equipped with a guard column (both from 
Phenomenex, Torrance, USA) using a water-acetonitrile gradient with 50 ppm trifluoroacetic acid. The LC-
DAD-HR-MS a Waters LCT time-of-flight mass spectrometer connected to an Agilent 1100 HPLC with diode 
array detection (Walbron, Germany) was operated similar to Larsen et al. (2007) and with 40°C column 
temperature using a 0.3 mL/min flow rate. In brief, sample (0.2 - 1 µL) was separated on a Luna C18 (2) (3 µm, 
2.0 x 50 mm) column equipped with a guard column of the same material (both from Phenomenex, Torrance, 
USA) using a water-acetonitrile gradient with 20 mM formic acid. Two LC-MS/MS Quattro Ultima triple 
quadrupole (Waters, Manchester, UK) with Masslynx v. 4.1 software (Waters) were connected to an Agilent 
1100 HPLC (Palo Alto, CA, USA). One instrument was run according to Rasmussen et al. (2010). In brief, 
sample (1 µL) was separated on a Gemini 3u C6-Phenyl (3 µm, 2.0 x 100 mm) column equipped with a guard 
column (both from Phenomenex, Torrance,USA) using a water-acetonitrile gradient. In positive electrospray 
ionization (ESI) eluent water was added 0.4 mM ammonium formiate and 0.2% formic acid and in negative ESI 
only 0.2% formic acid was added. The limit of detections were in the 1-739 µg/kg range for maize silage 
samples analysed by LC-MS/MS (Rasmussen et al., 2010). The other LC-MS/MS was applied to agar extracts 
only and run according to Sørensen et al. (2008) with a few modifications. In brief, sample (1 µL) was separated 
on a Gemini 3u C6-Phenyl (3 µm, 2.0 x 50 mm) using a water-acetonitrile gradient.

The secondary fungal metabolites were identified by comparing retention times, UV spectra (Frisvad and 
Thrane, 1987) and mass spectra (Nielsen and Smedsgaard, 2003; Larsen et al. 2007; Rasmussen et al., 2010) 
with analyses of standards or the Antibase database (Laatsch, 2008). The fungal metabolites without reference 
standards were tentatively identified from background subtracted spectra of LC-HR-MS by plotting [M+H-
H2O]+, [M+H]+, [M+NH4]

+, [M+Na]+ , [M+H+CH3CN]+ and [M+Na+CH3CN]+ ions in ESI positive as well as 
[M-H] - and [M+HCOO]- ions in ESI negative mode (Nielsen and Smedsgaard, 2003). Identification required a 
peak height of minimum 3 times the noise. The co-eluting PR-toxin and mycophenolic acid having same 
composition (C17H20O6) were detected in agar extracts by their different LC-HR-MS in-source fragments with 
m/z 279 and m/z 207, respectively (Nielsen et al., 2006). The distinct UV-max of PR-toxin (254 nm) and 
mycophenolic acid (210 nm) were also used to confirm the presence of PR-toxin. Secondary metabolites in 
fungal agar extracts have been quantified using pure standards in solvents. If no quantitatively standard was 
available the metabolite abundance has been calculated relative (%) to the sample with the highest content 
measured by UV or MS. Small polar compounds that very elute early from a reversed phase chromatography 
system were not observed with the analytical methods employed. 

2.7 Cytotoxicity assay 
The cytotoxicity of secondary fungal metabolites was evaluated using a Caco-2 cell line purchased from Aalborg 
University in Denmark. The Caco-2 cells can metabolise some toxins such as zearalenone, alternariol and 
alternariol monomethyl ether (Videmann et al., 2008, Burkhardt et al., 2009). Cells were grown in the medium 
DMEM/F12 added 10% foetal calf serum, 1% penicillin-streptomycin (100 units/ml and 100 µg /ml, 
respectively), 1% MEM nonessential amino acids and 1% L-glutamin (2 mM) in 75-cm2 culture flasks. They 
were incubated at 37ºC in a humidified atmosphere of 5% CO2, 95% air. Every 2-3 days the growth medium was 
changed and at 90% cell density they were split using trypsin-EDTA⋅4Na (0.05% and 0.02%, respectively). Only 
cell cultures which were tested negative for mycoplasma infection /contamination were used. 

In 96-well plates with clear flat bottoms 1·104 cells/well were seeded and allowed 24 h to fasten before 48 h or 
72 h toxin exposure. The viability of the Caco-2 cells was measured by adding resazurin (3.6 µg/mL). Resazurin 
which is the active component in Alamar Blue dye (O'Brien et al., 2000), was reduced to the fluorescent 
compound resofurin by mitochondria cell enzymes. The viable cells correspond to the fluorescens from the 
reduced form measured by fluorometry on a Victor2 Multilabel Counter (Wallac, Turku, Finland) at wavelengths 
560 nm excitation and 590 nm emission both with the band width 10 nm and at 37ºC. The assay was optimized 
for cells density, dye concentration and dye exposure time to obtain maximum sensitivity in the linear 
concentration-response range. Positive controls (4 µg/ml T-2 toxin), solvent controls (1-2% methanol in 
medium) and blank (medium without cells) were included for all plates. 

The cytotoxic concentration-responses of single fungal metabolites were tested for (µg/mL cell medium range in 
parentheses) andrastin A (1.6-50), citrinin (0.5-100), deoxynivalenol (0.023-100), gliotoxin (0.014-1.0), 
mycophenolic acid (0.046-100), patulin (0.069-50), roquefortine C (1.6-50), T-2 toxin (0.0018-4.0), zearalenone 
(1.6-100), 1-hydroxyeremophil-7(11),9(10)-dien-8-one (0.2-280) and N6-formyl-roquefortin-C (0.008-46). The 
standards were common secondary metabolites from fungi typically infecting maize; F. graminearum
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(zearalenone, deoxynivalenol) and silage; P. roqueforti or P. paneum (andrastin A, roquefortine C, 
mycophenolic acid, 1-hydroxyeremophil-7(11),9(10)-dien-8-one, N6-formyl-roquefortin-C and patulin), M. 
ruber (citrinin) and A. fumigatus (gliotoxin). The cytotoxicity of fungal agar extracts (0.54 plug/mL cell 
medium), maize silage inoculations (2.6-125 µg maize silage/mL cell medium) and P. roqueforti fractions 
dissolved in methanol were tested after 48 h exposure. 

Cytotoxicity was expressed as viability relative to the response of the solvent control. Results with a relative 
standard deviation up to 25% in replicate measurements were accepted. Each concentration was tested in 3 to 4 
replicates measurements. Concentration-response curves were fitted using GraphPad Prism 5.02 (GraphPad 
Software, Inc., La Jolla, USA). The 50% inhibition concentration (IC50) is defined as the concentration giving 
50% viability. In the present study this value was read on the fitted curve as the concentration corresponding to 
the viability midway between the top and bottom of the fitted curve. A background signal from blank samples 
was emitted and 0% viability was never reached. 

3. Results and discussion 
The cytotoxicity of pure standards (Table 1, Figure 1) has been compared to the cytoxic effects of fungal agar 
and silage extracts. To get an indication on whether the variations in cytotoxicity of agar extracts (Figure 2) 
could be explained by the fungal metabolites detected by chemical analysis (Table 2), comparisons between 
toxic and non-toxic extracts have been made (Figure 3). Each fungal species has been addressed separately with 
focus on the importance of growth medium and isolate (IBT) for production of cytotoxic metabolites. The 
cytotoxicity of inoculated maize silages (Figure 4) and their metabolite contents can be found in a separate 
section (Table 3, Figure 5 and 6). 

3.1 Cytotoxic concentration-response of pure standards 
Methanol used to dissolve test compounds had no effect on cell viability when added at 1-2% of growth 
medium. After 48 h or 72 h exposure viability of Caco-2 cells in vitro was determined from the cells ability to 
metabolise resazurin. Cell viability decreased in a concentration depended manner (Figure 1) for all the pure 
standards except for mycophenolic acid and N6-formyl-roquefortin-C. N6-formyl-roquefortin-C was not 
cytotoxic and mycophenolic acid had a bell-shaped concentration-response curve instead of the traditional S-
shaped curves that were observed for patulin, gliotoxin, T-2 toxin and deoxynivalenol. Curves of 1-
hydroxyeremophil-7(11),9(10)-dien-8-one, citrinin and zearalenone progressed like roquefortine C and andrastin 
A in Figure 1, as concentrations beyond their maximum inhibition were not tested. The weakly cytotoxic 
andrastin A, mycophenolic acid and 1-hydroxyeremophil-7(11),9(10)-dien-8-one reduced viability of Caco-2 
cells up to 80%, 60% and 71%, respectively. The IC50 values (Table 1) of cytotoxic compounds ranged from 
0.004 to 83 µg/mL for T-2 toxin and citrinin, respectively. The 72 h exposure tested for a few compounds gave 
lower IC50 values than the 48 h exposure. The Caco-2 resazurin assay were after 48 h exposure able to detect the 
general cytotoxicity with similar sensitivity as other in vitro cytotoxicity assays (Hanelt et al., 1994; Keblys et 
al., 2004; Cetin and Bullerman, 2005; Videmann et al., 2008). 

After 48 h patulin and gliotoxin reduced viability to 16% and 26%, respectively at the highest concentrations 
tested. This low response was close to the background signal from wells without cells added and was in 
accordance Stec et al. (2007) and Niide et al. (2006) who also observed close to 100% cell death induced by 
patulin and gliotoxin in vitro. At the highest deoxynivalenol and T-2 toxin concentrations cells still remained 
58% and 49% viability, respectively (data not shown). Calculated from the doubling time of Caco-2 cells in 
culture flask (41 hours) a viability of approximately 44% indicates that most cells survived but were not able to 
divide when exposed for 48 h. This cytostatic rather than cytotoxic effect of T-2 toxin and deoxynivalenol is in 
line with their ability to inhibit protein synthesis (Liao et al., 1976). Widestrand et al. (1999) have previously 
observed a cytostatic effect in mouse 3T3 fibroblast cells for deoxynivalenol, but not for T-2 toxin. The 
mycotoxins zearalenone and citrinin have high IC50 values in the present assay but in mammals they can exhibit 
estrogenic and neprotoxic effects, respectively (Bouslimi et al., 2008; Flajs and Peraica, 2009). Oestrogen-
responsive cells (MCF-7) are in contrast to Caco-2 cells sensitive to very low zearalenone levels with an IC50 of 
64 pg/ml (Welshons et al., 1990). The cytotoxicity of the P. roqueforti metabolites andrastin A, 1-
hydroxyeremophil-7(11),9(10)-dien-8-one and N6-formyl-roquefortin-C had not been tested previously. The 
roquefortine related metabolite N6-formyl-roquefortin-C (Musuku et al., 1994) had no cytotoxic effect up to 46 
µg/mL and was therefore less active than roquefortine C having an IC50 of 48 µg/mL. The low cytotoxicity of 
andrastin A observed in the present study are in line with high content of andrastin A in blue cheese (~20 mg/kg) 
eaten by humans, which also indicates low acute toxicity (Fernández-Bodega et al., 2009). 

39



3.2 Penicillium roqueforti
The metabolite abundances in two fungal YES extracts were in the same range for 13 P. roqueforti metabolites 
(69-122%) for repeated experiments (isolate, growth, plug extraction, and HPLC analysis) (data not shown). It 
allowed comparisons between the different agars, isolates and fungal species. 

The YES medium supported production of all metabolites identified from P. roqueforti (Table 2). The 
production of many P. roqueforti metabolites was highly substrate dependent. The major metabolites were 
roquefortine C, mycophenolic acid, 1-hydroxyeremophil-7(11),9(10)-dien-8-one, andrastin A and occasionally 
PR-toxin. Other minor metabolites included andrastin B and C andrastin D, roquefortine A, citreoisocoumarin, 
eremofortin C, N6-formyl-roquefortin-C, 1-hydroxyeremophil-7(11),9(10)-dien-8-one and (3S)-3-
acethoxyeremophil-1(2),7(11),9(10)-trien-8-one. The metabolite profile matched Sørensen et al. (2007) and 
Nielsen et al. (2006) who also identified agroclavine, orsellinic acid, festudacine, roquefortine D and 16-OH 
roquefortine from P. roqueforti. On SA the metabolite production was generally low. This could indicate that 
only few metabolites are produced in maize silage, but this is not the case (Table 3). PR-toxin and eremofortin C 
were only present in the strongly cytotoxic extracts reducing viability to less than the 60% mycophenolic acid 
elicited. PR-toxin and eremofortin C were produced by 7 of the 10 isolates from maize silage examined in total 
(all data not shown). Our results were in line with O’Brien et al. (2006) who found that 77% P. roqueforti
isolates from grass silage was able to produce PR-toxin and eremofortin C on agar. However all 21 P. roqueforti
isolates tested by Polonelli et al. (1978) produced PR-toxin under specific growth conditions. 

The cytotoxic concentration-response curves of two P. roqueforti YES extracts (IBT 28547 and 28549) were 
similar to the curves for pure standards (Figure 1). The metabolite contents are reported in Table 2. The IBT 
28549 YES extract had a bell-shaped concentration-response curve similar to mycophenolic acid. The extract 
was tested at 0.0007-0.54 plug/mL cell medium corresponding to 0.06-44 µg/mL mycophenolic acid. Due to 
similar curve shapes and concentration range the toxic effects of IBT 28549 YES was mainly attributed to 
mycophenolic acid. Individually the concentrations of roquefortine C (1 µg/mL) and andrastin A (35 µg/mL) 
were too low to elicit the observed effect. PR-toxin and eremofortin C were identified in the very cytotoxic IBT 
28547 YES and were not present in the moderate toxic IBT 28549 YES extract. 1-hydroxyeremophil-
7(11),9(10)-dien-8-one, N6-formyl-roquefortin-C and andrastin D were slightly more abundant in the very toxic 
extract compared to the moderate toxic extract whereas the other metabolites identified were of higher or similar 
abundances. 1-hydroxyeremophil-7(11),9(10)-dien-8-one, N6-formyl-roquefortin-C and andrastin A (closely 
related to andrastin D) had no or very low cytotoxic effects in the Caco-2 assay. This indicated that the 
cytotoxicity of P. roqueforti were caused by PR-toxin or its precursor eremofortin C. PR-toxin strongly inhibited 
viability of intestinal cells (FHS 74) after 72 h exposure (IC50 = 0.02 µg/mL) in a AlamarBlue assay, which had 
similar IC50 values for T-2 toxin and gliotoxin as us (Purup S., unpublished data). Aujard et al. (1979) have 
demonstrated inhibition of DNA synthesis and liver cell viability at very low PR-toxin concentration. The high 
cytotoxicity of PR-toxin was in agreement with its high acute toxic effect in animals (Chen et al., 1982). 
Eremofortin C did opposite PR-toxin not cause death for mice dosed 10 mg/kg body weight (Moreau and Moule, 
1978). Eremofortin C and PR-toxin differ only by a hydroxyl functional group and an aldehyde functional group 
at the C-12 position, respectively, which showed that this position was important at least for the in vivo toxic 
effect. 

HPLC fractions targeting specific metabolites identified PR-toxin as the major cytotoxic compound against 
Caco-2 cells, while 1-hydroxyeremophil-7(11),9(10)-dien-8-one and N6-formyl-roquefortin-C isolated from P. 
roqueforti had low or no toxic effects, respectively. 1-hydroxyeremophil-7(11),9(10)-dien-8-one and N6-formyl-
roquefortin-C isolated from P. roqueforti in this study were 14 mg (97% by HPLC-DAD) and 2.3 mg (99% by 
HPLC-DAD), respectively. Despite repeated fractioning using several techniques all our PR-toxin fractions had 
minor co-eluents. The fraction with the highest purity (81% by HPLC-DAD) indicated that the IC50 value of PR-
toxin was in the range of 1-13 µg/mL based on the assumption that the impurities did not contribute to the 
weight and toxicity of the sample. The abundances of co-eluents were very low in the crude extract compared to 
PR-toxin. Therefore PR-toxin could be appointed as a major cytotoxic metabolite in P. roqueforti. However, the 
approximate IC50 value was rather high compared with literature and results from our colleagues (Aujard et al., 
1979; Purup S., unpublished data). The fact that all crude extracts and fractions with traces of PR-toxin were 
cytotoxic indicated a very strong effect on Caco-2 cells. The existence of additional cytotoxic metabolites from 
P. roqueforti can not be excluded. 

3.3 Penicillium paneum
The patulin concentration (> 2 µg /mL cell medium) in the two cytoxic P. paneum extracts can alone exhibit the 
strong cytotoxic effects (Figure 2). Patulin production was limited to IBT28543 grown on YES and PDA. All 
isolates consistently produced citreoisocoumarin, VM-55599, marcfortine A, B and C, roquefortine C, andrastin 
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A (Table 2). This is in accordance with Nielsen et al. (2006) who also detected orsellinic acid from P. paneum 
YES cultures, which was not detected in the present study. Individually contents of roquefortine C (up to 0.6 µg 
/mL) and andrastin A (up to 29 µg /mL) were too low to affect the viability of Caco-2 cells, since no cytotoxic 
effect was observed at these concentrations (Figure 1). Andrastin B, C and D, citreoisocoumarin, marcfortine A, 
B and C, N6-formyl-roquefortin-C, VM-55599 had high abundances in both toxic and non-toxic extracts and 
were therefore not expected to contribute to the toxic response. The Penicillium metabolite N6-formyl-
roquefortin-C identified by Musuku et al. (1994) has for the first time shown to be produced by P. paneum and 
P. roqueforti. Most of the metabolites P. paneum and P. roqueforti have in common were produced in the same 
range, however andrastin A and roquefortine C tented to be most abundant in P. roqueforti extracts and 
citreoisocoumarin in P. paneum extracts. 

3.3 Byssochlamys nivea
All agar extracts of B. nivea were cytotoxic (Figure 2) and contained patulin, byssochlamic acid, mycophenolic 
acid and several other major metabolites (Figure 3). Patulin alone could cause the observed cytotoxic effects of 
agar extracts (Figure 2). The patulin concentrations in the cell medium (0.5-6 µg/ml) correspond to a viability of 
around 70 to 20% (Figure 1), which in line with the cytotoxicity observed for the agar extracts. Highest viability 
(71%) had the extract (IBT 28553, PDA) with lowest patulin content. Patulin was produced in the silage derived 
agar medium by IBT 28552 but was not produced when the isolate was inoculated onto maize silage. 
Mycophenolic acid was present in the concentration range able to reduced viability of Caco-2 cells ~60%. The 
cytotoxicity of the natural byssochlamic acid is not known. However, its enantio isomer has moderate cytotoxic 
activity against HEp-2 and HepG2 cells in vitro (Li et al., 2007), which could indicate a possible toxic effect of 
the natural byssochlamic acid. The B. nivea metabolite byssochlamysol was not detected in any of the extracts 
examined in this study and has also been reported to have low cytotoxicity (Mori et al., 2003). 

3.4 Monascus ruber
Different species distinctions for Monascus exist. We applied the taxonomy of Domsch et al. (2007) who 
recognized M. ruber and M. purpureus as one species. The M. ruber isolates synthesized various secondary 
metabolites including pigments, monacolin K and citrinin as also observed by Pattanagul et al. (2008). Monascus
pigments have been extensively used as natural food colorants (Dufosse, 2006) in Asia for more than a 
millennium, though some have cytotoxic (Su et al., 2005; Knecht and Humpf, 2006) antibiotic, 
immunosuppressive or teratogenic effects (Martinkova et al., 1999). Most of the M. ruber isolates produced just 
few metabolites in low concentrations when grown on YES, CYA, PDA and SA (Table 2, Figure 3). Only one 
M. ruber extract (IBT 9664, PDA) with high metabolite production was cytoxic (Figure 2) and the major 
metabolites in this extract were besides citrinin also the pigments monacin, rubropunctatin, ankaflavin and 
monascorubrin. The citrinin production is influenced by the actual growth conditions (Xu et al., 2006). In the 
present study citrinin was produced in similar concentrations by two M. ruber isolates on two different media 
(IBT 9664 on PDA and IBT 9658 on YES) but the concentrations were too low (< 8 µg/mL cell medium) to 
inhibit Caco-2 cells viability below 70%. Citrinin is a hepato- and nephrotoxic compound with antibiotic activity 
(Wong and Koehler, 1981; Blanc et al., 1995; Flajs and Peraica, 2009), which is known to exhibit synergistic 
effect with another nephrotoxic mycotoxin; ochratoxin A (Bernhoft et al., 2004). Citrinin, monacin and the 
cholesterol-lowering agent monacolin K (Tobert, 2003) had high abundances in an extract with low cytotoxicity 
(IBT 9658, YES). Monacolin K was the major metabolite in most extracts with no cytotoxic effect. This 
corresponds well to its moderate cytotoxicity to Caco-2 cells in a MMT assay (IC50 = 30 µg/mL) (Lin et al., 
2006), but monacolin K may affect the metabolic activity of rumen fungi (Schneweis et al., 2001). Traces of the 
strongly cytotoxic rubropunctamine (Knecht and Humpf, 2006) were detected in both the toxic and non toxic 
extracts and is therefore not regarded as important. The abundances of the identified metabolites in toxic and non 
toxic extracts indicate that ankaflavin, rubropunctatin and/or monascorubrin maybe in combination with citrinin 
may cause the cytotoxicity of M. ruber. In assays with the human cancer cell lines Hep G2 and A549 ankaflavin 
was stongly cytoxic, whereas monacin had no effect (Su et al., 2005). Ankaflavin, rubropunctatin and 
monascorubrin had no cytotoxic activity after 3 h exposure to hepatocytes in vitro using different endpoints 
(Martinkova et al., 1999). Therefore, it cannot be excluded that the cytotoxic effect of the cytotoxic M. ruber
extract is due to non-identified metabolite(s), which should be further investigated. 

3.5 Aspergillus fumigatus
Two A. fumigatus extracts were cytotoxic inhibiting cell viability more than 50% (Figure 2). In one extract (IBT 
23737, YES) high contents of several metabolites were detected; fumigaclavine C, pseurotin A or D, 
fumiquinazoline D, fumitremorgin C, typacidin, methylsulochrin, verruculogen, fumigillin, fumitremorgin B and 
helvoic acid. Gliotoxin, a very cytoxicit A. fumigatus metabolite tested in this assay, was not detected (> 0.001 
µg/mL) in this cytotoxic extract. This indicated that at least one other cytotoxic A. fumigatus metabolite was 
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present in the extract. This is comparable with the in vitro toxicity of an A. fumigatus extract on rumen 
fermentation, which could not be explained by the presence of gliotoxin alone (Morgavi et al., 2004). 
Fumitremorgins, verruculogen and fumigaclavines are examples of other mycotoxins from A. fumigatus (Samson 
et al., 2002), which were present in the cytotoxic extracts. The metabolite content was generally low in the other 
cytotoxic extract (IBT 23737, YE), which reduced viability to 44%. However 0.07 µg/mL of the cytotoxic 
gliotoxin was identified in the extracts, which corresponded to 25-30% viability according to the concentration-
response curve (data not shown). Gliotoxin has been detected on YE, CYA (IBT 23737) and PDA (IBT 23720) 
media, though Frisvad et al. (2009) recommended YE for gliotoxin production due to its low C/N ratio. In a 
moderate cytotoxic extract (IBT 23720, PDA) the concentration of gliotoxin (0.03 µg/ml) was slightly below the 
IC50 determined it the present study, and could therefore alone be responsible for the cytotoxicity of the extract 
(62% viability). Until now 226 secondary metabolites have been identified from A. fumigatus (Frisvad et al., 
2009). In the present study many A. fumigatus metabolites were tentatively identified from UV and MS 
characteristics without analysis of standards. Our identifications matched the results from Larsen et al. (2007).

3.6 Fusarium avenaceum
F. avenaceum extracts were moderate toxic reducing viability maximum by 50% (Figure 2). Isolates tended to be 
more toxic on YES than on CYA and PDA. In the most cytotoxic extracts (YES, ITB 41176 and 41777) 2-
amino-14,16-dimethyloctadecan-3-ol, enniatin B and B1 were major metabolites. They have previously been 
identified as the most cytotoxic compounds of F. avenaceum (Uhlig et al., 2005, 2006). The cytotoxic enniatins 
A, A1, B and B1 were consistently produced by all 4 isolates on all three media. In the most cytotoxic extracts the 
enniatins B, B1, A1 were present in the cell medium at 27, 13 and 6 µg/mL corresponding to levels known to be 
cytotoxic in the MRC-5 cells line but not in the Hep G2 using the Alamar Blue assay (Ivanova et al., 2006). The 
extracts with the lowest cytotoxic effect (CYA, ITB 41175 and 41780) have the highest enniatin B contents, 
indicating low toxicity of enniatins. Chrysogine, antibiotic Y, aurofusarin were minor metabolites present in 
some extracts. Employing a sensitive LC-MS-MS method Sørensen et al. (2009) identified consistently 
production of several minor metabolites including moniliformin, chrysogine, antibiotic Y and aurofusarin by 
IBT 41777 and other F. avenaceum isolates. Moniliformin, a small polar compound that elute early from a 
reversed phase chromatography system, was not detectable with the chemical methods applied in this study. 
Moniliformin has a low cytotoxicity against several cell lines including Caco-2 cells, which was not affected up 
to 100 µg/mL in a MMT assay measuring mitrocondial activity colometrically (Morrison et al., 2002; Cetin and 
Bullerman, 2005). Therefore, moniliformin is not expected to contribute to observed cytotoxicity. In culture F. 
avenaceum may also produce several other secondary metabolites; acuminatopyrone, butenolide, 
chlamydosporols, fusarins (Hershenhorn et al., 1992; Uhlig et al., 2006; Sørensen et al., 2009), which have 
received little toxicological attention. In line with Jestoi et al. (2008) F. avenaceum isolates did not produce 
beauvericin, as other have reported (Logrieco et al., 2002; Morrison et al., 2002). Overall the cytotoxicity of 
these extracts could not be attributed to the presence of specific metabolites.

3.7 Fusarium graminearum
YES extracts of F. graminearum were highly cytotoxic (Figure 2). The major metabolites zearalenone, 
rubrofusarin and aurofusarin were much more abundant in YES compared to CYA and PDA. Zearalenone, 
deoxynivalenol and nivalenol are important mycotoxins produced by F. graminearum (Sweeney and Dobson, 
1998). Zearalenone alone could not elicit the observed cytotoxic effects (24-45% viability) of YES agar extracts 
as present in cell medium up to 10 µg/mL, corresponding to a viability of 82-90%. Nivalenol was not detected 
(<0.001 µg/mL cell medium) and only traces of deoxynivalenol (<0.004 µg/mL) far below the IC50 value (0.29 
µg/ml) were detected in both toxic and non-toxic samples. However mixtures of deoxynivalenol and zearalenone 
is known to strongly reduce the viability of Caco-2 cells, almost in an additive manner (Kouadio et al., 2007). In 
the present study the levels of deoxynivalenol was too low to contribute unless synergistic effects occurred. It 
indicated that other toxic metabolites than zearalenone, deoxynivalenol and nivalenol or synergism are involved 
the pronounced cytotoxicity of YES extracts. Langseth et al. (1999) were also not able correlate to the 
cytotoxicity of F. graminearum agar extract and the amount of zearalenone, deoxynivalenol and nivalenol. 
Traces of fusarin C have been detected in the most toxic extracts, however several other secondary metabolites 
were also present (Figure 3). F. graminearum is known to produce e.g. butenolide, fusarenon X, 3-
acetyldeoxynivalenol (Thrane, 1990) but they were not detectable with the methods employed.  

3.8 Alternaria tenuissima
YES extracts of A. tenuissima were much more cytotoxic than PDA and CYA extracts (Figure 2) and generally 
had a high metabolite content (Table 2). The major secondary metabolites were alternariol monomethyl ether, 
alternariol and tenuazonic acid but also altertoxin I, altenuene and altersetin were detected. Minimum 9 µg/mL 
alternariol monomethyl ether, 3 µg/mL alternariol or 83 µg/mL tenuazonic acid were present in the cell medium 
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exposed to the toxic YES extracts. These levels were cytotoxic in another in vitro assay (Aly et al., 2008). 
Altersetin and tenuazonic acid were consistently produced by the four isolates. Isolate IBT 41186 lacked 
alternariol monomethyl ether, alternariol and altenuene production, but the YES extract were still cytotoxic, 
perhaps due to high tenuazonic acid content (83 µg/mL cell medium), the presence of altertoxin I and altersetin 
or other unidentified metabolites. 

3.9 Inoculated maize silage 
The uninfected maize silage inoculated with post-harvest fungi had a low initial mycotoxin content of enniatin B 
(36 µg/kg), fumonisin B1, fumonisin B2, mycophenolic acid (10 µg/kg), zearalenone (15 µg/kg). Maize silage 
inoculated with B. nivea was opposite to P. roqueforti, M. ruber, P. paneum, A. fumigatus more cytotoxic than 
uninfected silage. The IC50 of uninfected and B. nivea inoculated silage were (mean + SD, of two experiments) 
44±1 mg/mL and 14±4 mg/mL, respectively (Figure 4). The major B. nivea metabolites in the cytotoxic silage 
were mycophenolic acid and byssochlamic acid but also other B. nivea metabolites (undescribed I-III) were 
detected (Figure 5, Figure 6). Patulin was not detected and traces below the detection limit (371 µg/kg silage) 
could not alone exhibit a cytotoxic response, as the concentration in the cell medium would be too low (patulin 
<0.005 µg/mL, at 14 mg silage/mL). The high mycophenolic acid content in B. nivea inoculated silage (55 
mg/kg) could explain some of the observed cytotoxicity, however mycophenolic acid has a bell-shaped dose 
response curve, opposed to the dose response curve for inoculated silage, which is S-shaped. At 14 mg silage/ml 
the viability was 50% and the mycophenolic acid concentration 0.8 µg/mL which corresponding to a viability of 
~62% according to the concentration-response curve in Figure 1. Cytotoxicity matrix components maybe in 
combination with the other observed toxins or other fungal metabolites must have caused the S-shaped cytotoxic 
concentration-response of B. nivea inoculated silage. Maize silage is a complex matrix, with low pH (<4) and 
high water content. The extraction buffer used for the silage resulted in a pH of 4 in the extracts (Rasmussen et 
al., 2010). The low pH alone may cause cell toxicity. The toxicity of uninfected silages can vary, due to different 
compositions. Caution should therefore be taken when differences between samples are interpreted. Laboratory 
inoculation of silage with fungi allowed for comparison of the cytotoxicity of the same starting material. The 
matrix toxicity was too high for in vitro testing of uninfected silage samples with the current method. It could be 
calculated that more than 800 µg/kg of the strongly cytotoxic gliotoxin was needed to possible have an effect in 
the assay. The high concentration needed may be the reason why PR-toxin detected in P. roqueforti inoculated 
silage did not cause a significant toxic effect. Applying solid phase extraction (SPE) clean up, lowered the 
toxicity of the silage matrix by ~4 times (data not shown), but may also remove some toxins. 

The production of secondary metabolites was shown to be highly substrate dependant. Not all secondary 
metabolites produced by fungi on agar were observed in silage inoculated with the same isolates (Table 3). Due 
to matrix interferences detection limits in maize silage are much higher than in fungal agar extracts. This has 
probably limited the number of metabolites detected in maize silage especially when LC-DAD-HR-MS was 
applied. The more selective LC-MS/MS method had lower detection limits but targeted only specific metabolites 
(Sørensen et al., 2008; Rasmussen et al., 2010). Secondary metabolites from B. nivea, M. ruber, P. paneum and 
P. roqueforti could be identified in the maize silage inoculations extracts. None of the A. fumigatus metabolites 
produced on agar were detected in the silage extracts. The absence of gliotoxin above the detection limit (71 
µg/kg) was unexpected, as the isolates produced gliotoxin on agar and because earlier gliotoxin has been 
detected in maize silages up to 900 µg/kg (Richard et al., 2007). A. fumigatus hots-spots collected in Danish 
maize silage stacks contained besides gliotoxin also fumigaclavine A, B and C and fumitremorgin C 
(Rasmussen, unpublished; Rasmussen et al., 2010). Surprisingly patulin was not detected in maize silage 
inoculated with isolates of P. paneum and B. nivea that produced patulin on agar. P. paneum and B. nivea are the 
most common species associated with silage, which produce patulin (Storm et al., 2008). A silage stack is often 
inhomogeneous with differences in oxygen supply etc., which may explain why we did not observe patulin in 
laboratory-spoiled samples. Contradictory up to 36 mg/kg andrastin A, 55 mg/kg mycophenolic acid and 40 
mg/kg roquefortine C could be detected in the laboratory inoculated maize silage (Table 3). Mansfield et al. 
(2008) frequently detected patulin (23%), roquefortine C (60%), and mycophenolic acid (42%) in field samples 
of maize and maize silage, with maximum concentrations up to 1.2 mg/kg, 5.7 mg/kg and 1.3 mg/kg dry matter, 
respectively. In a lab study mycophenolic acid, patulin and PR-toxin were produced in maize silage up to 3.6, 
15.1, 2.2 mg/kg, respectively (Müller and Amend, 1997). In our study B. nivea produced much more 
mycophenolic acid than P. roqueforti in maize silage, however on agar it was the other way around. The 
maximum concentrations we detected in maize silage hot-spots were higher for roquefortine C and 
mycophenolic acid than reported in these two studies (Müller and Amend, 1997; Mansfield et al. 2008). 
Andrastin A, marcfortine A and B and citreoisocoumarin in silage hot-spots collected in the field has previously 
been reported (O’Brien et al 2006; Rasmussen et al., 2010). However production of 1-hydroxyeremophil-
7(11),9(10)-dien-8-one, (3S)-3-acethoxyeremophil-1(2),7(11),9(10)-trien-8-one, andrastin B, C and D and 
marcfortine C in silage is reported for the first time. M. ruber (IBT 9664) produced citrinin in silage, which 
could be qualitatively detected with LC-MS-MS. Monascus pigments were not detected but judging from the 
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reddish colour of the hot spots they were present. Matrix interference and insensitive detection method (LC-
DAD-HR-MS) were probably the reason why no other agar metabolites than citrinin were detectable from the 
two M. ruber isolates (IBT 9664 and 9658) inoculated to silage. Schneweis et al. (2001) have detected low 
citrinin levels (up to 64 µg/kg) but considerable amounts of monacolin K (up to 11,000 µg/kg) in maize silage 
hot-spots. 

The secondary fungal metabolites (3S)-3-acethoxyeremophil-1(2),7(11),9(10)-trien-8-one, andrastin A-D and 
marcfortine A-C detected in silage hot-spots had low cytotoxic effects against the Caco-2 cells. This indicates 
that they have little toxic effect in vivo, but in vitro assays do not contain all activating and deactivating enzymes 
present the mammalian in vivo condition, and some indirect acting toxins may be undetected. In vitro assays may 
also give false positive results. Of the compounds reported in silage hot-spots byssochlamic acid, citrinin, 
gliotoxin, patulin, PR-toxin and roquefortine C have been recognised as mycotoxins. Byssochlamic acid is toxic 
to mice (Raistrick and Smith, 1933). Citrinin is a neprotoxin causing kidney damages (Bouslimi et al., 2008) and 
gliotoxin is immunosuppressive (Niide, 2006). Patulin damage the kidney and the gastro-intestinal tract 
functions (Speijers et al., 1988) it may reduce male fertility (Selmanoglu, 2006) has antibiotic properties 
(Madhyastha et al., 1994) and is immunosuppressive at high doses (Llewellyn et al., 1998; Bondy and Pestka 
2000). PR-toxin is acute toxic (Moreau and Moule, 1978) and roquefortine C has antibacterial (Kopp and Rehm, 
1979) and neurotoxic (Wagener et al., 1980) properties. Though not classified as a mycotoxin mycophenolic acid 
may be of concern because of its antibiotic and immunosuppressive features (Bentley, 2000). 

4. Conclusion 
The genera Alternaria, Aspergillus, Byssochlamys, Fusarium, Monascus, Penicillium often spoiling maize and 
maize silage were all able to produce metabolites on agar, which were cytotoxic to Caco-2 cells in the resazurin 
assay measuring cell viability. The IC50 values of seven mycotoxins ranged from 0.004 to 83 µg/mL for T-2 
toxin and citrinin, respectively. PR-toxin was identified as a major cytotoxic metabolite of P. roqueforti. 
roquefortine C was moderate cytotoxic, whereas the P. roqueforti metabolites mycophenolic acid, andrastin A, 
1-hydroxyeremophil-7(11),9(10)-dien-8-one and N6-formyl-roquefortin-C had low to none cytotoxic effects on 
Caco-2 cells. The cytotoxic P. paneum and B. nivea agar extracts contained cytotoxic levels of patulin. The 
presence of other cytoxic principles than zearalenone, deoxynivalenol, nivalenol from F. graminearum, citrinin 
from M. ruber and gliotoxin from A. fumigatus were recognized, but the metabolites were not identified. The in 
vitro assay used in the present study was suitable for screening of agar extracts. Its application to silage samples 
was limited due to high and variable cytotoxicity of the crude maize silage extracts without fungal growth.  

Several secondary fungal metabolites were detected in maize silage hot-spots; including byssochlamic acid, 
mycophenolic acid and several undescribed metabolites from B. nivea, andrastin A-D, citreoiscoumarin, 
marcfortine A-C and roquefortine C from P. paneum, citrinin from M. ruber, and PR-toxin, 1-
hydroxyeremophil-7(11),9(10)-dien-8-one, (3S)-3-acethoxyeremophil-1(2),7(11),9(10)-trien-8-one and several 
others from P. roqueforti. However none of the A. fumigatus metabolites produced on agar were detected in the 
laboratory inoculated silage hots-spots. 
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Fig. 1. Viability of Caco-2 cells after 48 h exposure to fungal metabolites and Penicillium roqueforti extracts at 
different concentrations. The fitted curves represent means + SD of 3 replicates, measured at different days (ο, ◊, 
∆, ̌ ). 
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Fig. 2. Viability of Caco-2 cells after 48 h exposure to extracts of fungal cultures of 

 YES,     CYA,     PDA,     YE,     SA agar. Isolates from the IBT fungal collection (IBT no) was tested at one 
concentration (0.54 plugs/mL). YE and silage agar (SA) extracts were only tested for some isolates. Plotted are 
means + SD of two experiments, each having 4 replicates. 
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Fig. 3. Chromatograms of all fungal agar extracts plotted relatively for a specific trace and time span. Cytotoxic 
extracts resulting in less than 53% cell viability of Caco-2 cells has black bold lines. 
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Fig. 4. Viability of Caco-2 cells after 48 h exposure to A) uninfected and B) Byssochlamys nivea (IBT 28551)
inoculated maize silage at different concentrations. IC-50 values of 44 mg/mL and 14 mg/mL respectively. The 
fitted curves represent means + SD of 3 replicates, measured at two days (ο, ◊). 

Fig. 5. Relative HPLC trace (200-700 nm, 7-20 min) from A) uninfected and B) Byssochlamys nivea (IBT 
28551) inoculated maize silage extracts with retention times of B. nivea fungal metabolites. 

Fig. 6. ESI+ and DAD spectra of the undescribed I metabolite of B. nivea with the molecular ion (M=478.4) and 
retention time index (RI) 1420. 
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Table 1. Cytotoxicity of fungal metabolites. The 50% inhibit concentrations (IC50) means + SD 
of N independent concentration-response experiments. Viability of the Caco-2 cells was 
determined by flourescens owing to addition of resazurin.  

Caco-2 cells 48 h exposure 72 h exposure 

Metabolite 
mean  IC 50

(µg/ml)
SD  

mean  IC 50

(µg/ml)
 SD 

T-2 toxin N=2 0.0037 +/- 0.0008

Gliotoxin N=2 0.035 +/- 0.003 N=2 0.034 +/- 0.001

Deoxynivalenol N=2 0.29 +/- 0.17   

Patulin N=2 0.62 +/- 0.07 N=2 0.52 +/- 0.04

Roquefortine C N=2 48 +/- 2   

Zearalenone N=3 58 +/- 6  

Citrinin N=4 83 +/- 32 N=2 24 +/- 8

N6-formyl-roquefortin-C N=2 > 46*

Andrastin A N=2 > 50*

Mycophenolic acid N=2 > 100*

1-hydroxyeremophil-7(11),9(10)-dien-8-one N=2 > 280*

* Not inhibited by 50% in the tested range. 
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Table 3. Detected secondary fungal metabolites in maize silage inoculated with spores from fungi (ITB 
number). Metabolites were identified (x) by LC-DAD-MS-HR or quantified (mg/kg) by LC-MS-MS*.

    B. nivea P. roqueforti P. paneum M. ruber 

Metabolite Trace IBT  28551* 28552  28547* 28546 28543* 28545 9658  9664*

B. nivea, undiscribed I 501.4 m/z x x

B. nivea, undiscribed II 388.3 m/z x x

B. nivea, undiscribed III 448.3 m/z x x

Byssohclamic acid 252 nm x x

Mycophenolic acid 319>191 m/z 55 25 2 0.2

PR-toxin 321>261 m/z x x

1-hydroxyeremophil-
7(11),9(10)-dien-8-one 

235.2 m/z x x

(3S)-3-acethoxyeremophil-
1(2),7(11),9(10)-trien-8-one 

275.2 m/z x x

Roquefortine A 299>239 m/z x x

Roquefortine C 388>190 m/z 34 31 40 16

Andrastin A 485>425 m/z 13 18 36 18

Andrastin B 487.3 m/z nd x x nd

Andrastin C 471.3 m/z x x x x

Andrastin D 427.3 m/z nd x x nd

Citreoisocoumarin 277>219 m/z x x x x

Marcfortine A 478>419 m/z x x

Marcfortine B 464>436 m/z x x

Marcfortine C 448.2 m/z x x

Patulin 153>109 m/z nd< 0.37 nd< 0.37 nd< 0.37 nd< 0.37

Penitrem A 632>546 m/z nd< 0.008 nd< 0.008

Citrinin 251>233 m/z nd x
nd; not detected, limit of detection for LC-MS/MS analyses are given (<).  
* In vitro cytotoxicity tested.
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5. FUNGAL METABOLITES IN DANISH MAIZE SILAGE 

In this chapter the mycotoxin occurrence and content of Danish maize silage stacks and hots-spots are 
reported. 

5.1 Hot-spots 

Given the right growth conditions fungi are able to produce many different secondary metabolites (III). 
To investigate which compounds post-harvest fungi produce on maize silage, hot-spots samples with 
visible fungal growth were analysed. The hot-spots were either collected from Danish stacks or 
produced under laboratory conditions when post-harvest isolates were inoculated onto Danish maize 
silage and incubated for 3 weeks at 20°C in water saturated air. Samples were extracted by a modified 
Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method, which employs a pH buffered 
acetonitrile and water extraction combined with a phase-separation (II). A high concentration of salts 
induced the phase separation of acetonitrile and water extraction solvents, which also forced the polar 
analytes into the less polar acetonitrile phase. The acetonitrile phase of sample extracts were analysed by 
LC-MS/MS or by liquid chromatograph with diode array detection and a time-of-flight mass 
spectrometer (LC-DAD-HR-MS) as described in chapter 3 (II) and 4 (III), respectively. The LC-
MS/MS method identified specific metabolites and was able to detect lower levels than the LC-DAD-
HR-MS detection method. Secondary fungal metabolites identified by LC-DAD-HR-MS in agar extracts 
were used as reference for detection of the compounds in the dirty maize silage extracts. Only the lab-
inoculated samples were analysed by LC-DAD-HR-MS and the data analyses targeted metabolites 
produced on agar by the specific fungi. In agar extracts were the tentative identifications of secondary 
fungal metabolites without reference standards accomplished by comparing retention times, UV spectra 
and mass spectra with literature (Frisvad and Thrane, 1987; Nielsen and Smedsgaard, 2003; Larsen et al. 
2007) and databases (ACD, 2008). 

Table 5.1 presents the post-harvest metabolites detected in hots-spots collected from silage stacks and in 
laboratory inoculated samples for the different fungi involved. Ida MLD Storm performed the 
identification of fungal species according to Samson et al. (2002). B. nivea, P. roqueforti, P. paneum, A. 
fumigatus and M. ruber produced one to several fungal metabolites in Danish maize silage; however 
only a part of the fungal metabolites produced on agar could be observed in silage inoculated with the
same isolates. There was mostly a high correlation between metabolites detected in laboratory and field 
samples, but the levels detected were different. The hot-spots increased the chance to detect post-harvest 
fungal metabolites and made it possible to link major metabolites to the presence of a specific fungus. 
Of the metabolites detected in Danish hot-spots only roquefortine C, PR-toxin, gliotoxin, fumigaclavine 
A and B and citrinin are currently categorised as mycotoxins sensu stricto (Samson et al., 2002). The 
high concentration of several Penicillium metabolites found in visible mouldy samples were in 
accordance with O’Brien et al. (2006), who in addition to us also detected 16-hydroxyroquefortine C, 
agroclavine, festuclavine, roquefortine B and D in grass silage. The Penicillium metabolites 1-
hydroxyeremophil-7(11),9(10)-dien-8-one and (3S)-3-acethoxyeremophil-1(2),7(11),9(10)-trien-8-one 
identified in agar culture by Sørensen et al., (2007) have not been detected in silage before.

PR-toxin was present in the two lab-inoculated samples but not in the two field samples infected with P. 
roqueforti. Müller and Amend (1997) have previously detected PR-toxin in laboratory inoculated maize 
silage. Whether the absence of PR-toxin in the P. roqueforti hot-spot from the field is caused by 
environmental factors not favouring toxin production, non-toxigenic isolate or degradation is not known. 
In the present study both non-toxigenic isolates and fast degradation of PR-toxin have been observed. 
The degradation was in line with Müller and Amend (1997) who detected the half-life of PR-toxin to 25 
days when dissolved in ethanol and stored at -18°C.
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Table 5.1. Secondary fungal metabolites in hot-spots collected in the field (in-situ) or in maize silage 
inoculated with spores in the laboratory (lab). Metabolites were qualitatively (x) or quantitatively 
(mg/kg) determined by LC-MS-MS or LC-DAD-HR-MS and were reported for single samples infected 
by different fungal isolates. Summarised data collected for paper II and III.

A. fumigatus M. ruber B. nivea P. roqueforti P. paneum P. paneum & 
P. roqueforti

Metabolite lab in-situ lab in-situ lab in-situ lab lab in-situ

Citrinin x
nd

nd
nd

Fumigaclavine A nd
nd

x
x

Fumigaclavine B nd
nd

nd
x

Fumigaclavine C nd
nd

x
x

Fumitremorgin C nd
nd

nd
x

Gliotoxin nd
nd

0.3
0.9

B. nivea metabolites x
x

na
na

Byssohclamic acid x
x

na
na

Mycophenolic acid 25
55

0.3
1.6

0.2
2

0.3
0.4

PR-toxin x
x

nd
nd

1-hydroxyeremophil-
7(11),9(10)-dien-8-one* 

x
x

na
na

(3S)-3-acethoxyeremophil-
1(2),7(11),9(10)-trien-8-one* 

x
x

na
na

Andrastin A 13
18

18
36

5
9

Andrastin B nd
x

x
nd

na
na

Andrastin C x
x

x
x

na
na

Andrastin D nd
x

x
nd

na
na

Citreoisocoumarin x
x

x
x

x
x

Roquefortine A x
x

nd
nd

x
x

Roquefortine C 31
34

16
40

1.8
34

Marcfortine A x
x

x
nd

Marcfortine B x
x

x
nd

Marcfortine C x
x

na
na

nd = not analysed, nd = not detected, x = detected,

Patulin was not detected above the LOD (0.37 mg/kg) in the hot-spots although the maize silage was 
inoculated with B. nivea and P. paneum isolates, which produced patulin on agar. This may be due to the 
instability of patulin (O’Brien et al., 2006), the differences between field and the laboratory conditions 
or the agar favouring patulin formation. Müller and Amend (1997) and detected patulin in laboratory 
inoculated silage and it has also been detected in field samples with an inadequately validated method
(Mansfield et al., 2008). 

Gliotoxin was detected in two field samples but was not produced in silage inoculated with a gliotoxin
producing strain, which indicate important differences between laboratory and field conditions in the 
present study. The gliotoxin concentration detected in our study was in line with Richard et al. (2007) 
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who detected 878 µg/kg in one of two maize silages analysed, contradictory Pereyra et al. (2008) 
detected extremely high gliotoxin levels (5,100 – 6,500 µg/kg) in all 90 maize silages from Argentina.
Detection of citrinin in maize silage inoculated with a citrinin producing M. ruber isolate is in 
accordance with Schneweis et al. (2001) who found between 2.4 and 64.2 µg/kg citrinin in 10 of 135 
mouldy maize silage samples collected in the field. The detection of byssochlamic acid and several 
others undescribed metabolites from B. nivea in maize silage had not been reported before. 
Fumigaclavine A, B and C and fumitremorgin C were detected in maize silage in the current study, but 
besides gliotoxin A. fumigatus metabolites have rarely been identified in mouldy feeds (Scudamore and 
Livesey, 1998). 

The analysis of maize silage hot-spots showed that several post-harvest fungal metabolites may be 
present in high concentrations when fungal growth occurs. 

5.2 Maize silage stacks 

A monitoring study was carried out to determine the mycotoxin content in Danish maize silage. In total
99 samples were collected from 2007 to 2009 from different parts of Denmark without targeting the 
visible mouldy spots. After sample preparation the maize silage were extracted by the modified 
QuEChERS method and the extracts were analysed by LC-MS/MS as described in chapter 3 (II). The 
validated multi-method covers 27 mycotoxins and other secondary metabolites from the most common 
fungal species isolated from silage and maize in Danish climate conditions (Table 5.2) except the post-
harvest fungi Zygomycetes and Geotrichum candidum and the pre-harvest fungi Epicoccum and Phoma 
(Nicolaisen et al., 2009; Sørensen, 2009; Storm, 2009). The method validation gave a realistic picture of 
the method performance. Before analysing samples it is important to assure the sensitivity of the 
instrument. If facing problems, factors such as column condition, cone impurities and collision gas 
pressure should be controlled first. Run in optimal conditions (e.g. short series, clean cone and stable 
room temperature) the instrument could sometimes detect lower levels of toxins than the LOD reported. 
Analytes present below the established (LOD) were reported as ‘trace’ only when the ion-ratio and 
retention time criteria were met. 

The buffered QuEChERS extraction ensured a pH of 4 for both hot-spots and uninfected silages, which 
minimized the pH influence on the extraction of these two types of samples. As the procedure did not 
remove all matrix constituents, it is recommended to protect the MS interface by directing the eluent 
into the MS instrument only when data are recorded. The LC-system and column were cleaned with 
injections of formic acid, methanol and water in between each sample to maintain instrument sensitivity. 
Nevertheless for citrinin the validation data turned out unsatisfying because of varying response within a 
sequence. Fumonisin B1 and B2 had unacceptably low recovery rates (6 and 13%, respectively) probably 
due to poor extraction as they contain 4 carboxylic acid groups, which make them extremely polar at pH
values above approximately 4 (ACD/Labs, 2008). Acceptable recoveries of fumonisin B1 and B2 have 
been achieved for breadcrumb matrix when an un-buffered acidified acetronitrile and water mixture is 
applied (Sulyok et al., 2007). Still the buffered QuEChERS extraction was preferred for multiple-toxin
determination in the current study due to variable pH of the silage samples.



63

Table 5.2 Metabolites included in the LC-MS/MS method and the
maize or silage associated fungi that produce them. Based on I,
Visconti and Bruno (1994), Wang et al. (2004), Samson et al. 
(2002), Frisvad et al. (2006), Nicolaisen et al. (2009).

Analyte Pre-harvest fungi Post-harvest fungi 

Alternariol 
Alternariol monomethyl ether 
Tenuazonic acid 

Alternaria tenuissima 
A. alternata 
A. arborescens 

Altersetin A. tenuissima 
Andrastin A 
Citreoisocoumarin 
Roquefortine A and C 

Penicillium paneum 
P. roqueforti

Citrinin* 
Mevinolin** 

Monascus ruber 

Cyclopiazonic acid 
Sterigmatocystin 

Aspergillus flavus 

Deoxynivalenol 
Zearalenone 

Fusarium culmorum 
F. graminearum 
F. cerealis 

Enniatin B F. avenaceum, 
F. poae 
F. sporotrichioides 
F. tricinctum 

Fumigaclavine A, B and C 
Fumitremorgin A and C 
Gliotoxin 

 Aspergillus fumigatus 

Fumonisin B1 and B2* F. subglutinans 
F. verticillioides 
F. proliferatum

Marcfortine A and B  P.paneum 
Mycophenolic acid  B. nivea 

P. roqueforti 
Nivalenol F. culmorum 

F. graminearum 
F. equiseti 
F. cerealis

Ochratoxin A** A. ochraceus
P. verrucosum

Patulin  B. nivea 
P. paneum

Penitrem A**** P. carneum 
P. crustosum 

PR-toxin  P. roqueforti
T-2 toxin F. poae 

F. sporotrichioides

* was not successfully validated 
* *Mevinolin is also known as lovastatin, Monacolin K, and mevacor. 
**** Recommendation for maximum levels of ochratoxin A in animal 
feed exists, but the fungi is not likely to grown in silage but in stored 
cereals. 
**** Penitrem A have be associated to animal mycotoxicoses 
(Rundberget and Wilkins, 2002), but fungi are not among filamentous 
commonly isolated from maize or silage. 
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5.2.1 Occurrence of pre-and post-harvest mycotoxins and other secondary metabolites 
in maize silage (Paper IV)

Paper IV

Photo: Storm IMLD 
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6. DISCUSSION 

The present studies (paper I, II, III and IV) have contributed to the current knowledge about the 
mycotoxin hazard the cattle faces when they are feeding on maize silage. This chapter contains a 
general discussion. For more detailed discussion see the individual papers. 

6.1 Maize silage sampling and extraction 

The inhomogeneous nature of silage stacks challenges the sampling method. A silage stack may contain 
hundred tons but only a few kilograms can be sampled. Storm (2009) demonstrated that the number of 
filamentous fungi varied significantly between samples from the same stack. Values based on one or a 
few full depths samples from a whole silage stack must be interpreted with great care, as intra-stack 
standard deviations were high. This is especially a problem for the post-harvest contaminants since the 
field fungi metabolites may be more evenly distributed after maize plants have been chopped and 
packed. 

Maize silage is a difficult matrix to analyse because many different constituents can interfere with the 
analysis of mycotoxins. It contains e.g. chlorophyls and carotenoids from the leafy parts of the plant, 
starch and glucans from the cob and organic acids from the ensiling. In this study, the QuEChERS 
method was adapted to extract many different mycotoxins (II). QuEChERS is a popular extraction and 
clean-up procedure applied in multi-methods for pesticide analysis (Anastassiades et al., 2003; Lehotay 
et al., 2005; Lehotay, 2007) and with the current buffered QuEChERS method, it may in the future be 
possible to combine mycotoxin and pesticide analyses. Only 10 grams fresh weight maize silage were 
extracted for chemical analysis in our method (II) and it was therefore important to homogenise the 
sampled silage thoroughly. A suitable method was to add liquid nitrogen and simply blend the fresh 
samples then the frozen pieces were turned into flour. 

6.2 Chemical detection 

Detection of analytes was accomplished by LC-MS/MS or LC-DAD-HR-MS and thereby follows the 
recent trends in mycotoxin analysis (Shephard et al., 2010). The LC-DAD-HR-MS, which recorded full 
scan data, has successfully detected several secondary metabolites in mouldy silage extracts. Detection 
was limited by matrix interferences, which was more pronounced for DAD and single MS detection than 
for the selective MS/MS detection. In the current study comparisons of retention time, spectra of DAD,
ESI+ and ESI- with standards or fungal agar extracts enabled confident identification of analytes also in 
dirty matrixes. Mansfield et al. (2008) applied a LC-HR-MS instrument for determination of patulin, 
mycophenolic acid, cyclopiazonic acid, roquefortine C but did not include any qualifier ions nor used 
the high-resolution capacity of the instrument. Because of the non-selective LC-MS method applied and 
because the recovery was tested high above the LOD, the risk of false positive results is considered high 
in that study. 

The LC-MS/MS multi-method was successfully validated for the determination of 27 mycotoxins and 
other fungal metabolites in silage extracted by the adapted QuEChERS method (II). Analysis of 
certified reference material could improve the validation; unfortunately such references do not exist for 
mycotoxins in maize silage. Matrix matched standards with non-mouldy silage was used for 
quantification. Different maize silage matrices and alterations due to fungal infection could influence 
quantification, which was not taken into account in this study. However, eventual smaller differences in 
matrix effects should be compared to the interval for reporting results since a high reproducibility 
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(RSDIR) leads to a large 95% confidence interval. As an example, the mycophenolic acid concentration 
in a hot-spot was 1646 (±460) µg/kg with the reporting range in brackets. 

Two different HPLC eluents were applied in positive and negative electrospray ionization (ESI) mode of
the LC-MS/MS method. To ensure proper formation of ammonium adducts (T-2 toxin and enniatin B) 
and to obtain better chromatography of the pH dependent compounds (e.g. roquefortine A, 
cyclopiazonic acid and citrinin) the water-based HPLC eluent was added ammonium and extra formic 
acid when recorded in ESI+. The MS instrument is able to switch between modes, which could save 
instrument time. However, using the same eluents for ESI+ and ESI- compromised the sensitivity of 
some analytes. In practice switching may also cause trouble for quantification because of few data-
points across the peak and short dwell time when several compounds are co-eluting (Sulyok et al., 
2007). 

Interference with co-eluting matrix constituents and mycotoxins has been observed for the LC-MS/MS 
method. At a very high concentration, alternariol monomethyl ether formed a small amount of the 
adduct [M+HCOO]-, which interfered with the mother ion [M-H]- of zearalenone. It was possible 
because they had the same mass (m/z 317) and co-eluted. Fortunately the ion-ratio of the interfering 
daughter ions from alternariol monomethyl ether was different from the ratio of zearalenone. 
Occasionally interference with matrix constituents can be very problematic due to the heterogeneous 
properties of silage. Major matrix interference occurred primarily for the early eluting compounds such 
as patulin (Figure 2 in II). When insecure if matrix interference might be mistaken for a mycotoxin, the 
sample can be added a little mycotoxin solution and be re-analysed. Co-elution confirms the presence of 
the mycotoxin and could preferably be tested using different chromatographic conditions.  

6.3 In vitro cytotoxicity detection 

In vitro cytotoxicity assays have been applied widely to mycotoxins and fungal agar extracts (Gutleb et 
al., 2002). The resazurin assay with Caco-2 cells was proofed suitable for screening of agar extracts. The 
common fungal species infecting maize in the field and during the storage of silage produced numerous 
secondary metabolites in agar cultures and were able to elicit a cytotoxic response (III). Bio-guided 
fractioning identified PR-toxin as a major toxic principle of the P. roqueforti. Identification of cytotoxic 
principles from fungi using bioassay-guided fractionation has previously been demonstrated (Uhlig et 
al., 2005). 

It was the purpose of the in vitro studies to get an indication of whether the variations in cytotoxicity 
could be explained solely by the mycotoxins tested as pure standards, or if other toxic principals 
appeared to be present. Uhlig et al. (2006) applied multiple regression analysis to determine cytotoxic 
principles from a fungal species by testing the cytotoxicity in several assays. Several fungal isolates 
were tested to draw the conclusion. In the current study few isolates of several fungal species grown on 
different agars were screened in one assay. Without applying advanced statistics this approach allowed
comparisons between fungal species and to tentatively eliminate toxic effects of specific compounds, 
when metabolite profiles of toxic and non-toxic extracts were compared. 

The application of the Caco-2 assay to silage samples was limited due to high and variable cytotoxicity 
of the crude maize silage extracts without fungal growth. The QuEChERS extraction buffer applied to 
samples resulted in a pH of 4 in the extracts (II). Unbuffered extracts also had a high toxicity maybe due 
to the low pH of uninfected maize silage samples. The low pH alone may cause cell toxicity, but other 
matrix components have probably also contributed to the toxicity. Widestrand et al. (2003) applied an in 
vitro assay for rapid and sensitive screening of Fusarium toxins in cereal samples. They first applied a 
thorough clean-up step using MycoSep columns for purification of specific toxins. In the current study
the chemical detection methods of known toxins were superior to the in vitro assay in regard to time and 
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sensitivity. For the discovery of new bioactives in vitro assays are indispensable. To produce high 
quality data it was necessary to obtain single cell suspension before distributing the cells in the many 
wells. If not the relative standard deviation of the repetitions will be too high for any conclusion. To 
obtain high sensitivity it is necessary to optimise the number of seeded cells and dye concentration and 
exposure as described by Nakayama et al. (1997). Careful evaluation of in vitro methods should be 
carried out during experimental work, data processing and data presentation. The Caco-2 assay was 
sensitive to most mycotoxins tested and the actual standard operating procedure applied can be found in 
appendix B. Ideally several assays should have been applied to the agar extracts since the in vitro 
cytotoxicity assay measured general toxicity and did not target e.g. oestrogenic and mutagenic effects as 
other assays do (Welshons et al., 1990; Appendix A). 

6.4 Mycotoxin occurrences 

The secondary fungal metabolites determined in Danish maize silage are fungal metabolites produced by 
fungi commonly isolated from Danish maize and silage. 

In the monitoring study (IV) of whole-crop maize both ensiled and un-ensiled samples were analysed 
with the recently developed LC-MS/MS method (II). Sixty-one of the 99 samples contained one or more 
of the 27 analytes in detectable concentrations. Most common were the Fusarium toxins zearalenone 
and enniatin B, which were found in 34 and 28% of samples, respectively. Other common fungal 
metabolites were nivalenol (16%) also originating from Fusarium and the Penicillium metabolite 
andrastin A (15%). Alternariols, roquefortines, marcfortines, citreoisocoumarin, mycophenolic acid and
deoxynivalenol were detected occasionally in Danish maize silage stacks and maize for silage making. 

Previous examinations of maize silages stacks have detected zearalenone, deoxynivalenol (Driehuis et 
al., 2008b), beauvericin, enniatins B and B1 (Sørensen et al., 2008), fumonisins (Kim et al., 2008), 
patulin, mycophenolic acid, cyclopiazonic acid, roquefortine C (Mansfield et al., 2008) and gliotoxin 
(Pereyra et al., 2008). The average toxin concentrations (frequency; µg/kg range in parentheses) in these 
studies were 174 µg/kg zearalenone (49%; 25 - 943), 854 µg/kg deoxynivalenol (72%; 250 - 3142), 73 
µg/kg enniatin B (95%; 24 - 218), 10 µg/kg enniatin B1 (40%; 26 - 48), 8 µg/kg beauvericin (25%; 13 - 
63), 707 µg/kg fumonisins (97%; 25-2204), 80 µg/kg patulin (23%; 10 - 1210), 160 µg/kg mycophenolic 
acid (42% 20 - 1300), 120 µg/kg cyclopiazonic acid (37%; 20 - 1430), 380 µg/kg roquefortine C (60%; 
10 - 5710) and 5130 µg/kg gliotoxin (100%; 5100 - 6500). 

The concentrations of the Fusarium toxins zearalenone, deoxynivalenol and enniatin B detected in the 
present monitoring were similar to results from the Danish and Dutch study referred above (Driehuis et
al., 2008b, Sørensen et al., 2008). Concentrations and occurrences of zearalenone and nivalenol were 
higher in a German study (Schollenberger et al., 2006), which may reflect e.g. differences climate or 
yearly variations. Deoxynivalenol was probably only identified in part of the samples, as the LOD was 
higher the content in Danish maize used for silage making (Nielsen et al., 2005; 2006; 2007; 2008). 

Alternaria toxins are produced pre-harvest in maize Monbaliu et al. (2010) whereas the detection of 
alternariol and alternariol monomethyl ether in maize silage new. They were only present rarely and in
low levels. Low occurrence of the post-harvest metabolites mycophenolic acid and roquefortine C were 
in line with Driehuis et al. (2008b) who did not detect these toxins in 60 maize silages sampled from 
sealed stacks. Gliotoxin, patulin and cyclopiazonic acid reported in the foreign studies but were not 
detected in the current monitoring. Gliotoxin was detected in a Danish hot-spot infected with A. 
fumigatus and may therefore occur occasionally. The Fusarium toxins beauvericin, enniatin B1, HT-2 
toxin, fumonisin B1 and fumonisin B2 might also be present in Danish silage as these toxins have been 
reported in the Danish maize used for silage making (Nielsen et al., 2005; 2006; 2007; 2008; Sørensen et 
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al., 2008), however those metabolites were not detected or included with the method applied in the 
monitoring. 

Danish maize silage stacks were most frequently contaminated with mycotoxins from pre-harvest fungi 
whereas ‘hot-spots’ with visible fungal growth often contained high levels of mycotoxins and other 
secondary fungal metabolites from post-harvest fungi. 

6.5 Possible consequences of mycotoxins 

Fungal spoilage of maize in the field and silage during storage is characterised by biomass loss, lower 
feed quality and mycotoxin contamination. During fungal spoilage volatile fungal compounds are 
produced (Karlshøj and Larsen 2005) and since cattle are known to sort the feed according to 
palatability, the mouldy odour may reduce their feed consumption (Undi and Wittenberg, 1996). 
Therefore may fungal spoilage result in decreased feed intake and thereby decrease milk yield (Vries 
and Veerkamp, 2000) because of volatile compounds. 

The risk of mycotoxins in maize silage depends both on the hazard and exposure. With the current 
monitoring of Danish maize silage and other monitoring studies (Auerbach et al., 1998; Kim et al., 2004; 
Driehuis et al., 2008b; Sørensen et al., 2008; Schollenberger et al., 2006) it is clear that dairy cows 
feeding on maize silage are continuously exposed to low levels of Fusarium toxins but occasionally also 
to other secondary fungal metabolites. Only some of the secondary metabolites detected in Danish silage 
have been recognised as mycotoxins able to elicit direct harm to vertebrate animals. The detected levels 
of the estrogenic zearalenone (SCF, 2000b) and the immunosuppressive deoxynivalenol (SCF, 1999) 
were below the maximum values recommended by the European Commission (2006) for Fusarium
toxins in maize based feed. For the other mycotoxins detected, no European recommendations have been 
made. 

Weaver et al. (1986) fed dairy cows up to 500 mg zearalenone per day during 2 consecutive oestrous 
cycles and concluded that zearalenone does not seem to be an important factor in dairy cow health. The
zearalenone detected in Danish silages is therefore not expected to affect dairy cows. Deoxynivalenol 
typically has high frequency in maize silage and is a part of structural related trichothecene group, which 
comprise numerous bioactive fungal metabolites. The symptoms produced by trichothecenes are related 
to the inhibition of the protein synthesis and symptoms such as vomiting or immunosuppression may be 
observed (Bennett and Klich, 2003). Of the mycotoxins detected in Danish maize silage the 
trichothecenes deoxynivalenol and nivalenol but also gliotoxin and mycophenolic acid at high doses 
have immunosuppressive effects (Table 1.1). Unfortunaly, long-term in vivo studies evaluating 
immunosuppressive and combined effect are sparse (Driehuis et al., 2008a). Continuous exposure to low 
levels of mycotoxins with immunosuppressive effects may increase an animal’s susceptibility to 
infectious diseases, however under normal circumstances deoxynivalenol is extensively metabolised by 
the cows (JECFA, 2001). 

Beauvericin, citrinin, enniatins, mycophenolic acid and roquefortine C, which were present in Danish 
silage, all have antibiotic properties (Table 1.1) and may therefore potentially affect rumen 
microorganisms (Tapia et al., 2002). For example, there are indications that roquefortine C 
concentration can induce a shift in the rumen microflora composition at high concentrations (Tüller, 
2005). However, no direct effects were observable at high doses of mycophenolic acid (300 mg /animal 
daily) and roquefortine C (50 mg /animal daily) in two sheep studies (Tüller, 2005; Mohr et al., 2007). It 
appears therefore unlikely that even consumption of few Penicillium hots-spots with high occurrence of 
these two compounds can have a direct adverse effect on the health of dairy cows. Adverse effects of 
andrastines, citreoisocoumarin, marcfortines, 1-hydroxyeremophil-7(11),9(10)-dien-8-one and (3S)-3-
acethoxyeremophil-1(2),7(11),9(10)-trien-8-one fromPenicillum are also not expected due to low 



85

cytotoxicity (Aly et al., 2008; III). P. roqueforti and P. paneum  have been associated with ill-thrift and 
disease in cattle herds. Mouldy maize silage infected with P. roqueforti produced loss of appetite, 
disturbance of rumen activity in dairy cows (I), which might be related to the odour and fungal 
metabolites having antibiotic properties. Intoxication might be due to PR-toxin, which is known to be 
very toxic in mice (Moreau and Moule, 1978; Chen et al., 1982), though PR-toxin still have not been 
confirmed in field samples (Nout et al., 1993; Table 5.1). Patulin was also not detected Dansih hot-spots 
and silages, but if present it could contribute to problems in livestock (Scudamore and Livesey, 1998).  

A. fumigatus metabolites from agar extracts gave problems for young calves diarrhoea, irritability, loss 
of appetite, serious enteritis and interstitial changes in the lungs (Cole et al,. 1977b) and the 
fumigaclavine A-C, fumitremorin C and gliotoxin detected in field samples hot-spots may therefore 
potentially affect animals. Hereof are gliotoxin with immunosuppressive effects and fumigaclavine A 
and B having acute and neurotoxic properties currently categorised as mycotoxins (Table 1.1). 
Administration of a single 25 mg/kg fumitremorgin C dose to mice did not appear to cause any major 
toxicity, whereas fumitremorgin A, which was not detected in silage, caused severe tremors and death 
when injected intravenous in mice (Table 1.1). Depending of the intake of spoiled and actual toxin levels 
may experience acute toxic effects after ingesting of A. fumigatus hot-spots, however the toxins were not 
detected in Danish silage stacks sampled as a whole.

Mouldy feed containing 30-40 µg/kg citrinin may have caused mycotoxicosis at a cattle farm (Griffiths 
and Done 1991). This is the approximate citrinin level detected by (Schneweis et al., 2001) in maize 
silage hot-spots, however clinical trails do not indicate strong actute effects of citrinin (Flajs and
Peraica, 2009) and its occurrence is also expected to be low. Fumonisin B1 is unaffected in the rumen 
microbial (EFSA, 2005) but because of very poor absorbtion when given orally (SCF, 2000a) severe 
acute intoxications do not occur under farm conditions (Fink-Gremmels 2008b). Low concentrations of 
beauvericin and enniatins have frequently been detected in Danish maize silage (Sørensen et al., 2008). 
In vitro data suggest biological activity these compounds but there is a clear lack animal studies and 
more data are needed to evaluate their toxicity (Jestoi, 2008). The toxicity of alternariols is also not well 
examined (Frisvad et al., 2006). Though their occurrences and concentrations in Danish maize silage 
were low they may be relevant in relation to human exposure due to their mutagenic properties 
(Appendix A; Pfeiffer et al., 2007). Aflatoxin B1 have been detected in foreign maize silage (Garon et 
al., 2006), but Aspergillus flavus and A. Parasiticusis, which produce this toxin, is not relevant in Danish 
and climate conditions (I; Sørensen 2009). If complete feeding stuffs for dairy cows complies with the 
regulatory limit of maximum 5 µg/kg (European Commission, 2003) no acute adverse health effects in 
dairy cattle are to be expected. (EFSA, 2004). 

Co-occurrence and continuous exposure to low levels of mycotoxins may cause concerns. It has been 
hypothesed that mycotoxins may contribute to loss in milk yield, increased, somatic cell counts in the
milk, and an increased number of animals with laminitis and other infectious diseases (Fink-Gremmels 
2008b). Maize silage contained often more than one fungal metabolite (IV), which emphasizes the need 
for thorough examination of chronic exposure and possible synergistic effects when livestock is exposed 
to mixtures of mycotoxins. With the current knowledge it seems unlikely that the low levels and low 
frequency of mycotoxins in Danish silage stacks have direct adverse effect on dairy cows. Mycotoxins 
and antibiotics were present in considerable amount in maize silage with visible fungal growth. For that 
reason it cannot be excluded that dairy cows feeding on heavily spoiled silage in some cases may be 
negatively affected. 
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7. CONCLUSION 

The overall aim of this PhD project was to evaluate the mycotoxin hazard for cattle feeding on maize 
silage. Special emphasis was placed on detection of secondary fungal metabolites in Danish maize 
silage. The cytotoxicity significance of secondary metabolites from common pre- and post-harvest fungi
infecting maize and silage was determined. 

A new LC-MS/MS method for detection of 27 fungal secondary metabolites in maize silage was 
developed and successfully validated. Nineteen of the analytes can be detected quantitatively and eight 
qualitatively with recoveries from 37 to 205% and LODs from 1 to 739 µg/kg. Only for citrinin, 
fumonisin B1 and fumonisin B2, the validation results were unsatisfying. The pH-buffered QuEChERS 
extraction method ensured the same extraction conditions for fungal hot spots (pH>7) and well-
fermented maize silage (pH~4). As the QuEChERS extraction method originally was applied to 
pesticides, the current work strongly indicates that it will be possible to combine mycotoxin and 
pesticide analyses with this extraction method.  

The LC-MS/MS method covers secondary metabolites from the most common fungal species isolated in 
Danish climatic conditions including the pre-harvest Fusarium and Alternaria species and the post-
harvest fungi Penicillium roqueforti, P. paneum, Byssochlamys nivea, Monascus ruber and Aspergillus 
fumigatus.

When the LC-MS/MS method was applied to 99 Danish fresh and ensiled maize silage samples, the 
following mycotoxins and other secondary fungal metabolites were detected: Alternariol, alternariol 
monomethyl ether, deoxynivalenol, enniatin B, nivalenol and zearalenone originating from pre-harvest 
fungi and andrastin A, citreoisocoumarinm, marcfortine A, marcfortine B, mycophenolic acid and 
roquefortine A and C from post-harvest fungi. Fresh and ensiled maize silages were most frequently 
contaminated by mycotoxins from pre-harvest fungi, but the maximum recommended levels for 
Fusarium toxins in maize based feed recommended by The European Commission (2006) were not 
exceeded. However, few samples contained deoxynivalenol and zearalenone values above the guidance 
values of 5000 and 500 µg·kg-1, respectively, which exist for complete feedstuffs to dairy cattle. 

In heavily infected maize silage several post-harvest secondary fungal metabolites were detected by LC-
MS/MS or LC-DAD-HR-MS: Andrastin A-D, byssohclamic acid, citreoisocoumarin, citrinin, 
fumigaclavine A-C, fumitremorgin C, gliotoxin, marcfortine A-C, mycophenolic acid, PR-toxin, 
roquefortine A and C, (3S)-3-acethoxyeremophil-1(2),7(11),9(10)-trien-8-one and 1-hydroxyeremophil-
7(11),9(10)-dien-8-one. High concentrations can be present with visible fungal growth. The maximum 
concentrations (±95% confidence interval) of andrastin A, gliotoxin, mycophenolic acid and 
roquefortine C were 36 (±10) mg /kg, 0.9 (±0.2) mg /kg, 55 (±15) mg /kg, 40 (±21) mg /kg, respectively. 

A resazurin assay with Caco-2 cells has been optimised to test cytotoxicity of fungal extracts. The 
median inhibitory concentration (IC50) of seven mycotoxins ranged from 0.004 to 83 ug/mL for T-2 
toxin and citrinin, respectively. 

All fungal genera (Alternaria, Aspergillus, Byssochlamys, Fusarium, Monascus, Penicillium), which 
often spoil maize and maize silage, produced cytotoxic metabolites on agar. PR-toxin was identified as a 
major cytotoxic metabolite of P. roqueforti. Roquefortine C was moderate cytotoxic, whereas the 
Penicillium metabolites mycophenolic acid, andrastin A, 1-hydroxyeremophil-7(11),9(10)-dien-8-one 
and N6-formyl-roquefortin-C had low to none cytotoxic effects. The cytotoxicity of A. fumigatus could 
be attributed to gliotoxin but at least one other metabolite also decreased the viability of Caco-2 cells 
since also an extract without gliotoxin was cytotoxic. Other cytotoxic compounds than zearalenone, 
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deoxynivalenol, nivalenol from F. graminearum and citrinin from Monascus ruber were also produced. 
The cytotoxic P. paneum and B. nivea agar extracts contained cytotoxic levels of patulin. 

Heavily B. nivea infected maize silage containing mycophenlic acid (∼50 mg/kg), byssochlamic and 
other metabolites than patulin, was more cytotoxic than uninfected silage. Silage samples inoculated 
with P. paneum, M. ruber or A. fumigatus were not significantly cytotoxic. Additionally, the cytotoxicity 
of a P. roqueforti maize silage hot-spot was also not more severe than uninfected silage, despite the 
presence of the strongly cytotoxic PR-toxin and other secondary fungal metabolites. Due to the high 
cytotoxicity of crude maize silage extracts the in vitro assay was unsuitable for mycotoxin screening of 
maize silage in general. 

Overall, the present work has shown that animals feeding on well-fermented maize silage are exposed to
low levels of mycotoxins. Some post-harvest secondary metabolites were present in substantial levels in 
hot-spots, but their frequencies and concentrations were low in Danish fresh and ensiled maize silage.
Besides the mycotoxins monitored in maize silage fungi are, however, able to produce several other 
cytotoxic compounds and animals feeding on heavily spoiled silage may be affected by the high 
mycotoxin and/or antibiotics contents. Altogether the results obtained in this PhD project do not indicate 
that mycotoxins in maize silage have caused the general health problems observed at Danish dairy cattle 
farms. 
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8. PERSPECTIVES 

In the last decade increasing industrialisation of the dairy production has resulted in a growing use of 
maize silage, bigger herds, less grazing and less manual attention to the individual cow (Barrett 2004; 
Thomsen, 2005; Statistics Denmark, 2010). Though, all the changes within dairy production are not 
necessarily causally related to the increase of illness among cows observed at the same time. 

The current PhD project is a part of a large Danish collaborative study (2005-2010) aiming to determine 
if mycotoxins in maize silage cause disease and poor performance in dairy cattle and if mycotoxins in 
the feed are carried over into blood and milk. Today we have much more detailed information about the 
fungi that spoil Danish maize and silage and which mycotoxins they produce in situ. Based on the 
results collected in the joint project, it is not fully possible to exclude that mycotoxins in maize silage 
can cause incidents of illness and ill-thrift in Danish dairy cattle in some cases. However the low levels 
of pre-harvest mycotoxins and low occurrence of post-harvest contaminants in Danish maize silages 
indicate that mycotoxins are probably not involved in general health problems observed at Danish dairy
cattle farms. 

The pre-harvest contaminants of Danish maize plants included; Fusarium, Alternaria, Epicoccum, 
Phoma infects (Sørensen, 2009). The most frequent Fusarium species identified were; F. graminearum 
and F. culmorum, F. avenaceum, F. verticillioides and F. proliferatum. Less common wereF. 
subglutinans, F. tricinctum, F. equiseti, F. sporotrichioides (Nicolaisen et al., 2009; Sørensen, 2009). 
The most frequent post-harvest fungi were Penicillium roqueforti and P. paneum, Zygomycetes, and 
Aspergillus fumigatus. Byssochlamys nivea, Monascus ruber and Geotrichum candidum occurred less 
frequently (Storm, 2009). The risk of post-harvest fungal spoilage of well-fermented maize silage could 
be limited by keeping stacks well sealed for more than seven months before opening (Storm, 2009). 

Though Fusarium and Penicillium species are ubiquitously present, their occurrences were not always 
accompanied by significant mycotoxin contamination. Some post-harvest mycotoxins were present in 
substantial levels in hot-spots, but their frequencies and concentrations were low in Danish maize silage. 
Fresh and ensiled maize silages were mainly contaminated by metabolites from pre-harvest fungi, but 
the maximum levels for Fusarium toxins in feed recommended by The European Commission (2006) 
were not exceeded. In Danish maize used for silage making the Fusarium toxins deoxynivalenol, 
zearalenone, nivalenol, moniliformin, enniatin B and B1 had high occurrence, whereas the occurrence of 
T-2 toxin, HT-2 toxin, fumonisin B1 and fumonisin B2 were low (Nielsen et al., 2005; 2006; 2007; 2008; 
Sørensen et al., 2007; 2008). However the concentration levels of the toxins were low. In the four year 
monitoring period (2004-2007) the recommended maximum levels for Fusarium toxins were only 
exceeded in one of 239 maize samples due to high levels of zearalenone and deoxynivalenol. The 
occurrence of Fusaium toxin was low in the monitoring period, but considerably year to year variations 
may occur (Rasmussen et al., 2007). 

The monitoring showed that the animals feeding on silage sometimes will be exposed to several 
secondary fungal metabolites at the same time, which may enhance the effect of single toxins. 
Kristensen et al., (2007) conducted a study where four lactating dairy cows were subjected to diets 
containing about 50% maize silage. Treatments included one control silage and three qualities of 
problematic maize silage (silage with Fusarium toxin, Penicillium-infected silage, and silage with high 
propanol content). The milk yield, fat and protein yield did not differ between treatments. 

It can not be excluded that problems could be caused by mycotoxins not included in the surveys. F. 
equiseti was e.g. frequently isolated from maize (Sørensen et al., 2007) and is able to produce 
scirpentriol, 15-monoacetoxyscirpenol and diacetoxyscirpenol (Hestbjerg et al., 2002). These type A 
trichothecenes are expected to be of minor significance (Sørensen, 2009), because they have been found
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to occur in comparable levels as T-2 and HT-2 toxin in maize (Schollenberger et al., 2006). T-2 and HT-
2 toxin had a low occurrence in fresh Danish maize plants but the others have not been monitored in 
Denmark. The possible occurrence of PR-toxin in silage requires more research. Green hot-spots 
collected in the joint project could be analysed to see if PR-toxin are formed in field conditions. The 
potential number of mycotoxins present in silage is large; however bio-guided fractioning of agar 
extracts using in vitro assays can help to identify which metabolites to target. 

Carry-over of mycotoxins from feed to blood and subsequent to milk has not been tested experimentally 
in the joint project. However the carry-over of some Fusarium toxins has already been well described in 
literature. Human exposure through milk is considered to be low for deoxynivalenol, zearalenone, 
fumonisins compared to other sources such as cereal products (EFSA, 2004a, 2004c; EFSA, 2005). 
Instead metabolites such as alternariols and PR-toxin having mutagenic properties will probably be more 
relevant to target for the human exposure. The metabolism and bioavailability of mycotoxins could be 
examined in blood, milk and rumen fluid samples available from the dairy cows fed on mycotoxin 
contaminated silages (Kristensen et al., 2007). Probably after just a few modifications the developed 
LC-MS/MS method should be able to analyse these samples, which might bring important information 
on the animal and human exposure. If biotransformations of the mycotoxin occur in the rumen or liver, 
the degradation products have to be targeted. Decomposition of fungal agar metabolites by rumen fluid 
in vitro could hint at important metabolites to determine in rumen-fluid. 
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APPENDIX A - SCREENING FOR GENOTOXICITY 

Mutagenic activity in bacterial systems is accepted as an initial step in the evaluation of the carcinogenic 
potential of chemicals (McMahon et al., 1979). Several in vitro tests for genotoxicity exists 
(Mortelmans, 2000; Kirkland et al., 2005).  

umu-test
The umu-test developed in the early 1980s (Oda et al., 1985) is a well-validated method (ISO, 2000), 
which determines genotoxic activity by activation of the SOS-repair system induced by DNA damage. 
The umuC promotor gene involved in the SOS response has been transcriptional fused with the reporter 
gene lacZ encoding β-galactosidase. The induction of umu gene expression in Salmonella typhimurium
could then be measured colorimetrically, as β-galactosidase hydrolyses non-colored β-d-galactosides 
into a coloured cleavage product. In the current assay the fused gene umuC'-'lacZ was hosted by
Salmonella typhimurium (TA1535) carrying the plasmid (pSK1002). The screening for genotoxic 
activity in 96-well plates was based on Reifferscheid et al. (1991) with few modifications. In brief: The 
genotoxicity was determined as hydrolyses of the o-nitrophenyl-β-d-galactosid into to o-nitrophenol. 
The β-d-galactosidase activity was calculated as described by Miller (1972) from the quantitative 
absorbance at different wavelength. This activity was expressed relative to the response of the negative 
control, the so-called induction rate (IR). To establish a genotoxic response two conditions should be
met: An increase by 0.5 or more of the induction rate (IR≥1.5) and the observation of a concentration-
response (ISO, 2000). Test both with and without introduction of S9 liver mix (S9) into the assay was 
carried out. Methanol used as a toxin solvent constituted 2% of the growth medium. The genotoxic 
concentration-responses of A. tenuissima (IBT 41188), B. nivea (IBT 28552) and P. roqueforti (IBT 
28547) YES extract (0.004 to 0.54 plug/mL bacterial medium) were tested after 2 h exposure. 
Metabolites were extracted from 13-14 days old YES incubated at 25°C in darkness, except for A. 
tenuissima, which grew in alternating light. Agar plugs were cut from the colonies of several plates and 
extracted using a micro-scale method by Smedsgaard (1997) with a few modifications. 

Results and discussion
A. tenuissima (IBT 41188) YES extract caused a significant concentration-related increase in the 
induction rate of the SOS repair system in two independently repeated umu-tests without S9 addition. 
The extract A. tenuissima also induced a genotoxic response in one experiment where S9 liver extract 
was introduced to the in vitro mutation assay (Figure A.1). B. nivea (IBT 28552) and P. roqueforti (IBT 
28547) YES extracts was not identified as genotoxic tested with and without addition of S9 liver extract. 
The methanol applied as a toxin solvent at 2% of growth medium had no effect on bacterial cell viability 
and mutagenicity (data not shown). 

Figure A.1. Genotoxicity in the umu-test after 2 h exposure 
to Alternaria. tenuissima YES extract. Induction rate (IR) of 
umu gene expression in Salmonella typhimurium
(TA1535/pSK) measuring o-nitrophenol colorimetrically 
tested on different days without (ο, ◊) and with (○) addition 
of S9 liver extract. The means of 3 replicates measurements 
were fitted by two curves. 
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The content of secondary fungal metabolites have been determined for the fungal YES extracts tested 
for genotoxicity (Table A.1). Several Alternaria toxins were detectable in the YES extract of IBT41188 
tested positive for genotoxic effects. The genotoxicity of A. tenuissima, observed in the umu-test, are in 
line with DNA strand-breaking activity of AME and AOH in mammalian cells in vitro (Pfeiffer et al., 
2007). Alternaria toxins have also been associated with human esophageal cancer in China (Liu et al., 
1992). The P. roqueforti YES extract did not induce umu gene expression in Salmonella typhimurium
(TA1535/pSK), despite the presence of PR-toxin and several other fungal metabolites. Crude extracts of
P. roqueforti were also previously tested negative in the Ames test (Schoch et al., 1984). The present 
results were in accordance with the Salmonella strain dependent mutagenicity of PR-toxin in the Ames 
test. Mutagenicity of PR-toxin was observed in the Salmonella tester stain TA97 but not in the TA1537 
we applied (Levin et al., 1982). B. nivea metabolites patulin, mycophenolic acid and byssohclamic acid 
have not previously been associated with genotoxicity, which is supported by our negative results. It 
indicates that genotoxic metabolites are not produced by B. nivea. However, more extracts and different 
assays should be studied to confirm this. 

Table A.1. Secondary fungal metabolites present in fungal 
YES extracts tested for genotoxicity. The concentrations 
(µg/mL cell medium) or presence (x) is reported for fungi 
isolated from silage now stored in IBT fungal collection. 

Alternaria tenuissima IBT41188

Altenuene x

Alternariol 29

Alternariol monomethyl ether 29

Altersetin x

Altertoxin I x

Tenuazonic acid 49

Byssochlamys nivea IBT 28552

Byssohclamic acid x

Mycophenolic acid 7

Patulin 2.7

Undiscribed I, II, III and IV x

Penicillium roqueforti IBT 28547

Andrastin A 67

Andrastin B x

Andrastin C x

Andrastin D x

Citreoisocoumarin x

Eremofortin C x

Mycophenolic acid 38

N6-Formyl-roquefortin-C x

PR-toxin x

Roquefortine A x

 Roquefortine C   1.6 

1-hydroxyeremophil-7(11),9(10)-dien-8-one x

(3S)-3-acethoxyeremophil-1(2),7(11),9(10)-trien-8-one x
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APPENDIX B - SOP: CYTOTOXICITY TESTING - 
PROLIFERATION OF CACO-2 CELLS

SOP: Cytotoxicity testing - Proliferation of Caco-2 cells 
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SOP: Cytotoxicity testing - Proliferation of Caco-2 cells 

Caco-2 cells maintenance 

The human intestinal epithelial cell line (Caco-2) is originally received from Aalborg University in 
Denmark and is stored at –80 ºC. When in use cells are grown in the medium DMEM/F12 added 10% 
foetal calf serum, 1% penicillin-streptomycin (100 units/ml and 100 ug /ml, respectively), 1% MEM 
nonessential amino acids and 1% L-glutamin (2 mM) in 75-cm2 culture flasks. 

1. Seed 1⋅106 cells in a T-75 flasks in 30 mL growth medium. 
2. Incubate at 37ºC in a humidified atmosphere of 5% CO2, 95% air. 
3. Change growth medium 2-3 days. 
4. Split cells at 90% cell density (∼weekly; see table 1 below) by trypsination using trypsin-

EDTA⋅4Na (0.05% and 0.02%, respectively). 

Help: Loosen cells from the flask by trypsination:

Remove the medium and rinse the flask with 2 times 4 mL PBS (Phosphate 
Buffer Solution). 
Add 4 mL trypsin to the cells and place it 5 minutes in the incubator. 
If the cells are still not detached then extent the time in the incubator and/or 
gently knock off the cells. 
Add 11 mL medium to stop the trypsination.11 

NB! It is important to have a suspension with single cells. To obtain this 
repeatedly passing the suspension in and out of a pipette tip can help.  

Help: Counting cells by the NucleoCounter

Cell stock (100 µL) is mixed with 100 µL reagent A and vortexed. Then 
additional 100 uL reagent B is added to the cell suspension and vortexed. 
Load the NucleoCassette with the pre-treated sample, place in NucleoCounter and 
press Run. The total cell count is given within ∼30 seconds. 

For details see: 
Shah, D; Naciri, M; Clee, P; Al-Rubeai, M. (2006) NucleoCounter-An efficient 
technique for the determination of cell number and viability in animal cell culture 
processes, Cytotechnology 51:39–44. 

NucleoCounter™ (New Brunswick Scientific Co., Inc., Edison, NJ) 
NucleoCounter and NucleoCassette (New Brunswick Scientific Co., Inc., Edison, 
NJ, USA) 
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Day 1 Seeding of cells on 96-well plates 

1. Use cells at ~90% confluency grown in T75 flasks (register the passage number). 
2. Harvest the cells by trysination.
3. Determine the concentration of cells by counting the cells. Use a hemacytometer or as here 

the NucleoCounter. 
4. Prepare a stock of 1⋅105 cells/ml by dilution with growth medium (stock A). 
5. Seed 100 ul cell suspension on 96-well opaque plates with clear flat bottoms (figure 1) 

resulting in 1*104 cells/well. NB! Cells can be seeded with a multi-channel pipette. 
6. The outer wells of the plate are filled with 200 ul growth medium to minimize evaporation. 
7. Incubate the cells at 37ºC in a humidified atmosphere of 5% CO2, 95% air for 24 h. 

Help: Calculation of the dilution of harvested cells to stock A

Concentration of the harvested cells = Charvest = unit [cells/ml] 
Concentration of the dilution, stock A = Cstock = 1⋅105 cells/ml  
Volume of the harvested cells = Vharvest = unit [ml] 
Volume of medium V medium = unit [ml] 
Volume of stock A cellesuspension = Vtotal = Vharvest + Vmedium

Dilution factor = X = Charvest / Cstock A 

Example: 

If, V total = 35 ml and Charvest = 15 cells/mL then the dilution factor 
X = Charvest / Cstock A = 10 ⋅105 cells/ml / 1 ⋅105 cells/ml = 15. 

The volumes of medium and harvested cells should be: 

Vharvest = Vtotal / X = 35 ml / 10 = 3.5 ml 
V medium = Vtotal - Vharvest = 35 mL – 3.5 mL = 31.5 ml 

Control: 

Stock A = 3.5 mL * 10 105 cells/mL / 35 = 1 ⋅105 celler/ml

Day 2 Toxin exposure 

1. Dissolve the test compounds in an appropriate carrier; here 100% methanol (MeOH) is used. 
2. Prepare appropriate the dilutions of the test compounds. Use a sonic bath to ensure toxin 

solutions are dissolved, if necessary. Ensure the same concentration of the carrier in all solutions 
tested. 

3. Add test solutions to the cells. Each toxin solution must be tested minimum in triplicates (figure 
2). It is important, that the carrier is not applied in toxic concentrations; here MeOH constituted 
maximum 2% of the growth medium. 

Several methods are applicable: 

a. Add 4 uL toxin solution and 96 uL growth medium to the 100 uL growth medium 
already present. 
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b. Remove the medium by turning the plates up side down and add 200 uL of freshly 
prepared toxin-medium solution. 

c. Remove the medium using a pipette and add 200 uL of freshly prepared toxin-medium 
solution. 

Help: Experience with the different exposure methods

Method a) are good because cells are never exposed to air and less 
laborious. Serial dilutions with organic solvents often have 
extended duration compared to aqueous solutions. However 
method b) and c) may be easier because accurate addition of small 
volumes can give troubles. For experienced staff the standard 
derivations of the repeated measurement are approximately the 
same for all three methods.  

4. Add the positive control, which is a compound with a cytotoxic effect, here 4 ug T-2 toxin /ml 
growth medium. 

Help: Cells exposure to T-2 toxin at 4 ug/mL growth medium

T-2 toxin stock: 200 ug/ml MeOH 

a) 

Addition of 4 uL toxin stock (with 100% MeOH) to the wells
Simply add 4 uL of the T-2 toxin stock and 96 uL growth medium; 
4 uL ⋅ 200 ug/ml / 200 mL in the well = 4 ug/ml. The well has 2% 
MeOH content as 4 ul / 200 ul ⋅ 100% = 2%. 

or 

b) and c) 

Addition of 200 uL toxin solution (with 2% MeOH) to the wells
From the T-2 toxin stock (200 ug /ml MeOH) a solution of 4 
ug/ml is prepared by mixing 1960 ul growth medium with 40 ul T-
2 toxin stock. The dilution has 2% MeOH content as 40 ul / 2000 
ul ⋅ 100% = 2%. 

5. Add the solvent control (carrier), here MeOH. It should be added in the same concentration the 
test compounds. 

6. After exposure the cells are again placed at 37ºC in a humidified atmosphere of 5% CO2, 95% 
air. 
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Day 3 Incubation 

1. No action.  

Day 4 Indicator exposure and fluorescence measurement 

1. Resazurin (0.1 mg/ml PBS) is diluted with growth medium just prior to use (2:3) (v:v). 
Mixing 4 mL resazurin (0.1 mg/ml) with 6 mL growth medium is sufficient for 4 plates. 
Protect resazurin solution from light with alu foil. 

2. The wells (figure 3) are added 20 ul diluted resazurin solution. The use of a 300 uL multi-
channel-pipette enables fast and accurate addition of the solution. 

3. Plates wrapped in alu foil are incubated at 37ºC in a humidified atmosphere of 5% CO2, 95% 
air for 5 hours. 

4. The reduced form of resazurin is measured by fluorometry on a Victor2 Multilabel Counter 
(Wallac); Fluorescence wavelengths: λex = 560 nm and λem 590 nm, slit 10. Temperature 
37ºC. Use the programme Copy of resazurin (560 nm til 590 nm; 0.1 s, shake 2.0 s). 

5. Use the fluorescence measurements generated in an excel file for each plate. 
6. Check if the assay is behaving as expected: Is there an effect of toxin added in the positive 

control? Is the response of the solvent control in the usual range? 
7. The proliferation can be calculated relative to the solvent control (figure 2, well 11E-11G). 

High cytotoxicity occurs for wells with low proliferation %. The maximal obtainable 
cytotoxic response can be calculated from the wells without cells added (figure 3, well 1B-
1G, 12B-12G). 

8. Evaluate also the standard derivation of the repetitions. 
9. Finally remember that the experiment should be repeated on 2 separate days. 

Table 1. Example of a week. 
 T-75 flask* 96-well plate** 

Monday Split cells in one flask cells 
and seed two new flasks 

Seed cells 

Tuesday Change medium Expose cells 
Wednesday

Thursday  Measure cells 
Friday Change medium  

*It is a good idea to have two flasks running parallel at the same time. If one flask 
unfortunately should be contaminated with microorganisms it is possible to 
continue with the other one. 
** It is possible to run two experiments in one week if the cells from the second 
flask are seed on Tuesday, exposed Wednesday and measured Friday.  
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Figure 1, 2 and 3: Example of plate design for exposure of cells.  

Figure 1 Seeding of cells on day 1. 
  1 2 3 4 5 6 7 8 9 10 11 12 

A Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf 

B Buf Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Buf 

C Buf Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Buf 

D Buf Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Buf 

E Buf Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Buf 

F Buf Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Buf 

G Buf Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Buf 

H Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf 

Buf = 200 uL growth medium  
Cells = cell seeded in medium = 1*104 cells/well 

Figure 2 Example of design for exposure of cells on day 2. 
  1 2 3 4 5 6 7 8 9 10 11 12 

A Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf 

B Buf #1 #1 #1 #2 #2 #2 #3 #3 #3 T-2 Buf 

C Buf #4 #4 #4 #5 #5 #5 #6 #6 #6 T-2 Buf 

D Buf #7 #7 #7 #8 #8 #8 #9 #9 #9 T-2 Buf 

E Buf #10 #10 #10 #11 #11 #11 #12 #12 #12 MeOH Buf 

F Buf #13 #13 #13 #14 #14 #14 #15 #15 #15 MeOH Buf 

G Buf #16 #16 #16 #17 #17 #17 #18 #18 #18 MeOH Buf 

H Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf 

#1-18 = Test solutions tested in tri-plicates, 2 %MeOH in the growth medium 
T-2 = Positive control with 4 ug T-2 toxin /ml growth medium, 2% MeOH 
MeOH = solvent control with 2 %MeOH in the growth medium 

Figure 3 Resazurin additions of cells on day 4. 
  1 2 3 4 5 6 7 8 9 10 11 12 

A Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf 

B Res Res Res Res Res Res Res Res Res Res Res Res

C Res Res Res Res Res Res Res Res Res Res Res Res

D Res Res Res Res Res Res Res Res Res Res Res Res

E Res Res Res Res Res Res Res Res Res Res Res Res

F Res Res Res Res Res Res Res Res Res Res Res Res

G Res Res Res Res Res Res Res Res Res Res Res Res

H Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf Buf 

Res = 20 ul diluted resazurin dilution added.
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