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The Barkhausen Criterion (Observation ?)

Erik Lindberg, IEEE Life member
Faculty of Electrical Eng. & Electronics,
348 Technical University of Denmark,
DK-2800 Kongens Lyngby, Denmark
Email: el@elektro.dtu.dk

Abstract—A discussion of the Barkhausen Criterion
which is a necessary but NOT sufficient criterion for steady
state oscillations of an electronic circuit. An attempt to
classify oscillators based on the topology of the circuit.
Investigation of the steady state behavior by means of the
time-varying linear approach (“’frozen eigenvalues”).

I. INTRODUCTION

Oscillators occur all over in nature and in man-
made systems. Their behavior is characterized by size
(amplitude) and period (frequency). They are controlled
by the basic principle of nature which says that a system
always try to go to a minimum energy state. We observe
oscillators varying in size from le™3! for the galaxies in
space to 1e 3! for the super-strings proposed in physics.
Steady state oscillations may be limit cycle oscillations
or chaotic oscillations.

Autonomous oscillators are non-linear oscillating sys-
tems which are only influenced by a constant energy
source. When two oscillating systems are coupled they
try to synchronize in order to obtain the minimum energy
state.

Electronic oscillators are man-made non-linear circuits
which show steady state oscillating behavior when pow-
ered only by dc power supplies. The behavior may be
limit cycle behavior or chaotic behavior. The order of the
circuit is the number of independent memory elements
(capacitive, inductive or hysteric).

For many years we have seen that some basic circuit
theory textbooks introduce the Barkhausen Criterion as
the necessary and sufficient criterion for an electronic
circuit to be an oscillator. Also the concept of linear
steady state oscillators is introduced. The aim of this
discussion is to point out that steady state oscillators
must be non-linear circuits and linear oscillators are
mathematical fictions.

In some textbooks you may also find statements like:
“an oscillator is an unstable amplifier for which the non-
linearities are bringing back the initial poles in the right
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Fig. 1. Barkhausen’s original observation

half plane of the complex frequency plane, RHP, to the
imaginary axis”. This statement is not true [1]. When
you solve the implicit non-linear differential equations
modeling an electronic circuit the kernel of the numerical
method is the solution of a linear circuit. By means of
Taylor evaluation the nonlinear components are replaced
with linear approximations and iteration is performed
until a solution is obtained. The iteration is based on
Picard (static) or Newton-Raphson (dynamic) methods.
In each integration step a small-signal model is found
for the circuit corresponding to a linearization of the
Jacobian of the differential equations.

Non-linear circuits may be treated as time-varying
linear circuits so it make sense to study the eigenvalues
as function of time in order to better understand the
mechanisms behind the behavior of an oscillator.

II. BARKHAUSEN’S OBSERVATION

In 1934 H. Barkhausen (1881-1956) [2] pointed out
that an oscillator may be described as an inverting ampli-
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fier (a vacuum tube) with a linear frequency determining
feedback circuit (fig. 1). The non-linear amplifier is
a two-port with a static gain-factor equal to the ratio
between the signals at the ports. The linear feedback
circuit is a two-port with a feed-back-factor equal to
the ratio between the port signals. It is obvious that
the product of the two factors becomes equal to one.
The product is called the Barkhausen Criterion or the
Allgemeine Selbsterregungsformel in German language.

2 NAW » 3
1 +
5
7 — + 4
. H(s)
5 Lt —1°

V(3,5) = A*V(1,2) = -A+V(2,1)
H(s) = V(6,7)/V(4,5) = V(2,1)/V(3,5)
V(2,1) = V(3,5) « H(s) = -A*V(2,1) * H(s)
1 = —A*H(s) = -A=*N(s)/D(s)

D(s)+A+*N(s) = 0

Fig. 2. Barkhausen’s Criterion. Characteristic polynomial

Barkhausens figure may be redrawn as shown in
fig. 2 where the non-linear amplifier is assumed to
be a perfect amplifier with infinite input impedance,
zero output impedance and linear time-varying gain A.
The feedback circuit is assumed to be a linear, lumped
element, time-invariant passive two-port with a rational
transfer function H(s). It is obvious that the closed-loop
gain is always equal to one (1) and the phase-shift is
equal to a multiple of 360° (27). Furthermore it is seen
that the Barkhausen Criterion is just an expression for
the characteristic polynomial of the circuit as function
of the amplifier gain. For zero gain the characteristic
polynomial becomes equal to the denominator of H(s).
For infinite gain the characteristic polynomial becomes
equal to the numerator of H(s).

You may open the loop and study another circuit
closely related to the oscillator circuit. This circuit has
a time independent bias-point. You may perform the
normal linear small-signal analysis (ac analysis) and
study the natural frequencies (poles, eigenvalues). You
may design the open-loop gain to be one (1/360°) and
you may also make the closed-loop circuit unstable with
poles in the right half of the frequency plane, RHP, in the
hope that the circuit will start to oscillate. However when
you close the loop the bias-point of the amplifier will
change and you have no guarantee that oscillations start
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Fig. 3. Proper Barkhausen topology with H(s) as a modified full
graph admittance circuit

up. The conclusion is that you must base your design on
the characteristic polynomial of the closed-loop circuit.

Figure 3 shows a realization of the closed-loop circuit
where the feed-back circuit is represented with a mod-
ified full graph admittance circuit. The admittance YE
between node 6 and node 7 is deleted and the admittance
YF between node 4 and node 5 is deleted.

The characteristic polynomial with a full graph
feedback admittance circuit may be found from

YEx (YA + YD + YC + YB) +

(YA + YB)x (YD + YC) +

Ax (YAxYC — YBxYD) 0

)]

where the admittances are functions of the complex
frequency s. The admittance YF does not occur because
it is in parallel with the output voltage source of the
amplifier.

The amplifier is a voltage controlled voltage source
(VCVS) and the output signal is returned to the input
by positive (YA, YB) and negative (YC, YD) voltage
division. This structure has been used to investigate
various oscillator families [3], [4], [5].

When you study the poles (eigenvalues) of the lin-
earized Jacobian of the non-linear differential equations
you may observe that they move around in the complex
frequency plane as function of time. The signals are
increasing when the poles are in RHP (the right half
plane). The signals are decreasing when the poles are
in LHP (the left half plane). You may observe how a
complex pole pair in RHP goes to the real axis and splits-
up into two real poles of which one goes towards zero
and the other towards infinity. The two real poles meet
again in LHP and leave the real axis as a complex pole
pair [6].
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The basic mechanism behind the behavior of the
oscillator is a balance of the energy received from the
power source when the poles are in RHP with the
energy lost when the poles are in the LHP. The real
part of the poles may go between +oo and —oo. At
a certain instant the frequency is determined by the
imaginary part of the complex pole pair. The phase noise
observed corresponds to the part of the period where
the instantaneous frequency deviates from the dominant
frequency, the oscillator frequency [7].

III. CLASSIFICATION OF OSCILLATORS

So far classification of oscillators is not found in
the basic electronics textbooks in a proper way. You
may classify with respect to waveform as relaxation,
sinusoidal, multi-frequency or chaotic. You may classify
with respect to application as e.g. used to synchronize
systems (clock of computers), used to communication
(carrier of waveforms, audio) or used to test of systems
(instrumentation). You may classify with respect to im-
plementation as e.g. voltage controlled (VCO), integrated
or lumped element. However a given oscillator may fall
into several of these classes. Classification based on
structure (topology) seems to be the only proper way,
see e.g. [8] where oscillators are classified according to
number of memory elements.

Based on the topology of the circuit oscillators may be
classified as belonging to one of the following classes.

Class I: Proper Barkhausen Topology.

Proper Barkhausen topology is a loop of an amplitude
determining inverting non-linear amplifier and a passive
frequency determining linear feed-back circuit.

The two circuits in the loop are 4-terminal or 3-
terminal two-ports (fig. 1 and fig. 2). The bias point of
the amplifier vary with time.

It is obvious that the power source limits the amplitude
of the oscillator. The following question should be dis-
cussed: Can you separate the design of the non-linearity
from the design of the gain and the linear frequency
determining sub-circuit when designing an oscillator ?

Class II: Modified Barkhausen Topology.

Modified Barkhausen topology is a loop of an in-
verting linear amplifier and a passive amplitude and
frequency determining two-port non-linear feed-back
circuit.

From mathematical point of view a linear amplifier
with constant gain is easy to implement for analysis and
design purposes but a number of questions should be
discussed. Is it possible to create a linear real world am-
plifier which does not influence frequency and amplitude
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? Is the dc bias point of the amplifier time-invariant ?
What kind of passive non-linearity should be introduced
in the feed-back circuit ?

Class III: A topology different from I and II, i.e.
non-linear amplifier and non-linear feed-back circuit.

An example of a circuit belonging to this class is the
classic multi-vibrator with two capacitors and two cross-
coupled transistors (3-terminal amplifiers) [4].

In [7] an oscillator based on the differential equations
which have sine and cosine as solutions is investigated.
The oscillator is based on a loop of two active RC
integrators and an inverter. By choosing different time
constants for the two RC integrators phase noise in the
output of one of the amplifiers could be minimized.

IV. AN EXAMPLE TO BE DISCUSSED -
WIEN BRIDGE OSCILLATOR

Figure 4 shows a Wien Bridge oscillator with proper
Barkhausen topology (Class I) in the case where resistor
RCL is oo. The circuit is investigated in [9] where
the operational amplifier is assumed a perfect linear
amplifier with gain A = 100k. The components cor-

D1
5
VW
— RCL
W VW
RD 2
RA
VW
1] 1
I+
- cA

Fig. 4. Wien Bridge Oscillator

responding to a complex pole pair on the imaginary axis
are: Cy = Cp = C = 10nF, Ry = Rp = R = 20k(,
Rp 3k and R¢ 6k(2. The frequency becomes
795.8 Hz and wy = 5k rad/sec. The poles of the linear
Wien Bridge oscillator are found as function of resistor
Rc. If Ro is amended with a large resistor Rcp in
series with a non-linear element made from two diodes
in antiparallel as shown in fig. 4 you have a mechanism
for controlling the movement of the poles between RHP
and LHP so you can avoid making use of the non-
linear gain. The circuit becomes a Class II oscillator
with modified Barkhausen topology. For Rc = 7k (>
6k), D1 = Doy D1N4148 and three values of
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Rer: Rop = 0o, Rop, = 38kS) and R, = 17.5KkQ2 it is
demonstrated that you may control both frequency and
amplitude of the oscillator. When you change the perfect
linear A = 100k amplifier to an AD712 operational
amplifier with a dominant pole at 12Hz and a high-
frequency pole at 15MHz the non-linear control in the
feed-back circuit is overruled by the non-linearities of the
amplifier and the circuit becomes a Class III oscillator.

'Spice
emo Version 10.0.0

1.8

-183uU

-182uy -181uy -180uU -99uy -98uu -97uu
o U{3 ui1.2)

3)
Aran 0 1000 100 1m, RELTOL = 1e-j, RC = 6.010e+3, RCL = 17.5e+3,
AD712 SPICE Macro-model 4/92,Rev.B: POLEAT 12HZ dc power supply:
COMMON-MODE GAIN ZERO AT 300 HZ, POLE AT 15 MHZ +HOV/-10V

Fig. 5. Dynamic transfer characteristic of the amplifier with almost
constant bias point

|
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Frequency

AEEEE o]

3Hz hHz 5Hz

RC = 6.010e+3,

6Hz 7Hz 8Hz
RCL = 17.5e+3,

9QHz  18Hz
Frequency

Fig. 6. Frequency spectrum of amplifier output

The circuit is now scaled to low frequencies by means of
new capacitor values C4 = Cp = C' = 10uF and a new
value Rc = 6.010k2 (> 6k2). Figure 5 shows that it is
possible to adjust the circuit into a Class II oscillator
with an almost linear amplifier. In order to start-up
oscillations the initial conditions for the capacitors were
chosen as V(CA) = -0.17406342924 V and V(CB) =
+0.044747527689 V i.e. values close to an instant time
of the steady state. Figure 6 shows how the harmonics
are reduced. Figure 7 shows the dynamic and the static
gain as functions of time. It is seen how the dynamic
gain is almost constant in a large part of the period.

V. CONCLUSION

It is demonstrated that the Barkhausen Criterion is
a necessary but not sufficient criterion for steady state
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s U(3) 7 U(1,2) Static gain = V(3)/V(1,2)

“1.80
12.8s 12.55
5 U(3) = U(1) = UE2)

Jgran 0 15 0 1m,

13.0s 13.55 14.0s

Time
RELTOL = 1e-%, RC = 6.010e+3, RCL = 17.5e+3,

Fig. 7. Dynamic and static gain

oscillations of an electronic circuit. Barkhausen did not
“open the loop” ! Oscillators may be classified into
three groups based on the Barkhausen Observation. A
Wien bridge oscillator with an almost linear inverting
amplifier and a nonlinear passive amplitude and
frequency determining feed-back circuit is investigated
by means of the time-varying linear approach (’frozen
eigenvalues”).
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Heinrich Georg Barkhausen (December 2, 1881 —
February 20, 1956), born at Bremen, was a German
physicist.

He studied at the Technical University of Munich
(1901), TU Berlin (1902) and University of Munich
(1903) and Berlin before obtaining a doctorate at the
University of Géttingen in 1907.

He became Professor for Electrical Engineering at
the Technische Hochschule Dresden in 1911 at the
age of 29, thus obtaining the world'’s first chair in
this discipline.



He discovered in 1919 an effect named after him, the
Barkhausen effect, which suggested that ferro-
magnetic materials contain regions of like-oriented
atoms. Induced changes in the magnetic orientation
of these domains affect the whole domain and not
individual atoms. With suitable equipment, these
changes of orientation (Jumps) can be heard.

The Barkhausen stability criterion states that an
oscillator will oscillate when the total phase shift
from input to output back to input is an integral
multiple of 360 degrees and the system gain is equal

to 1. ’?



The Barkhausen Stability Observation
states that
when an oscillator

oscillates with steady state signals
then

the total phase shift around the loop
from input to output and back to input
Is an integral multiple of 360 degrees
and the loop gain is equal to 1
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OSCILLATORS

® An oscillator is
a system which show oscillations

® Oscillators occur all over
In nature and in man-made systems

® YOou may observe

steady state,
damped or
unstable oscillators
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OSCILLATORS
e |inear steady state oscillators

are mathematical fiction

¢ Poles must be on
the imaginary axis all the time

e You can not
balance on the razors edge

Steady state oscillators must be
non-linear circuits



OSCILLATORS

® Steady state oscillations may be of
chaotic nature or limit cycle nature

e Size (amplitude) and Period (frequency)

® Minimum energy state



OSCILLATORS

e Autonomous oscillators are non-linear
oscillating systems which are only
Influenced by a constant energy source

® When two oscillating systems are
coupled they try to synchronize in order
to obtain the minimum energy state

® Entrainment is defined as the tendency
for two oscillators to lock into phase so
that they vibrate in harmony



® When you solve the implicit
hon-linear differential equations
modeling an electronic circuit
the kernel of the numerical method is
the solution of a linear circuit

® By means of Taylor evaluation
the nonlinear components are
replaced with linear approximations and
Iiteration is performed until
a solution is obtained.



® When you study the poles (eigenvalues) of the
linearized Jacobian of the non-linear
differential equations you may observe that
they move around in the complex frequency
plane as function of time.

® The signhals are increasing when the poles are
In RHP (the right half plane).

® The signals are decreasing when the poles are
In LHP (the left half plane).



COMPUTER AIDED CIRCUIT ANALYSIS

® The kernel of analyzing nonlinear circuits
IS the solution of a linear circuit

® All elements may be modelled
by means of controlled sources

® During the iterations the elements
may be approximated with either
a dynamic value or a static value




NUMERICAL INTEGRATION with

Variable Integration Step
and
Variable Order Polynomial Approximation

Newton-Raphson lteration
=di/dv
Replace with dynamic value g

Picard lteration

Replace with static value




i Nonlinear controlled
source 1i=G(v)

static

G=IV! /di [dynamic
| 'dv | g=dildv

V v



Non-linear circuits may be treated
as time-varying linear circuits

so it make sense to study
the eigenvalues as function of time

In order to better
understand the mechanisms

behind
the behavior of an oscillator.
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O Barkhausen Criterion —

the necessary and sufficient criterion
for an electronic circuit
to be an oscillator ?

NOT sufficient !

e Steady state oscillators must be
non-linear circuits.

e Linear oscillators are
mathematical fictions.



Amplifier A >

Frequency-selective
Network g

In a real oscillator, there is no input signal X5 at all. Here it is included
to explain the principle of operation. The oscillator operates under
positive feedback, and hence the feedback signal Xy 1s summed to the
Input.

- A(s)
The closed loop gain is given as: Af = 1— A( )ﬁ( )
_ Ky 5

The open loop gainis givenas:  L(s) = A(s)A(s)




Physically, it means that we have a
zero input for a finite output

In this case, we can remove the input signal, as
the circuit regenerates itself, and oscillates

Thus the requirements for an oscillator are:

(1) the magnitude of loop gain is unity, i.e.
L(s) = A(s)B(s) =1

(2) the phase shift of the loop gain £(4/)
should be zero or a multiple of 2n, i.e.2nn
where n=0,1, 2, ...

This is known as the Barkhausen Criterion
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Fig. 1 Barkhausen’s original statement
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Barkhausen’s criterion (Observation ?).
V(6,7) = H(s) »V(4,5) = H(s) = V(3,5) = H(s)* A *V(1,2)
V(6,7) = -A=V(2,1) =H(s) = —A = H(s) » V(6,7)
Closed loop gain = =AxH(s) = 1 = =A = N(s) / D(s)

Characteristic polynomial

D(s) + A=N(s) = 0
Fig. 2 —_—
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The characteristic polynomial may be found from:

(YA + YB)*(YD + YC) + A{(YA + YB)YC - (YD + YC)YB} = 0

(YA + YB)«(YD + YC) + A*(YA*YC - YD+YB) = 0
Fig. 3



@ You may open the loop and study
another circuit closely related to the

oscillator circuit.

® However when you close the loop
the bias-point of the amplifier will change

and you have
no guarantee that oscillations start up.

® The conclusion is that
you must base your design on the
characteristic polynomial of
the closed-loop circuit.



Making open-loop measurements, if done
properly, is a very effective method of
determining such things as stablity margins,
the investigation of conditional stablity, efc.
and a great deal of linear systems theory
derived via Nyquist Criterion enables many

practical multi-loop systems to be investi-
gated, including systems which are open-loop
unstable

but

it is the closed-loop system which
defines the actual performance



@ The bias-point of the amplifier
vary with time
e Ile.thegainA vary with time

e I.e. the characteristic polynomial

vary with time

e The Barkhausen Observation
IS a starting-point
for oscillator design
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® You may classify with respect to
waveform as relaxation, sinusoidal, multi-
frequency or chaotic.

® You may classify with respect to
application as e.g. used to synchronize systems
(clock of computers), used to communication
(carrier of waveforms, audio) or used to test of
systems (instrumentation).

® You may classify with respect to

implementation as e.g. voltage controlled (VCO),
integrated or lumped element.



® However a given oscillator may fall into several
of these classes.

® Classification based on structure (topology)
seems to be the only proper way, see e.g.

[8] J.R. Westra, C.J.M. Verhoeven and A.H.M. van
Roermund, Oscillators and Oscillator Systems -

Classification, Analysis and Synthesis, pp. 1-282,
Kluwer 1999.

where oscillators are classified according to
number of memory elements



@ Class |: Proper Barkhausen Topology is a loop
of an amplitude determining inverting non-linear
amplifier and a passive frequency determining
linear feed-back circuit.

® Class Il: Modified Barkhausen Topology is a loop
of an inverting linear amplifier and a passive
amplitude and frequency determining two-port
non-linear feed-back circuit.

® Class lll: A topology different from | and Il
non-linear amplifier and
non-linear feed-back circuit.



Class Feed-back
circuit




A number of questions should be discussed
In connection with the second class

® Is it possible to create a linear real world
amplifier which does not influence frequency
and amplitude ?

® Is the dc bias point of the amplifier
time-invariant ?

® What kind of passive non-linearity should be
introduced in the feed-back circuit ?



Questions in connection with oscillator design

Design of amplitude and frequency
independently ?

What are the mechanisms behind oscillation ?
Do we have an escape mechanism like
the one we find in connection with

the pendulum clock ?

What is the difference in behavior between
tube amplifiers and semiconductor amplifiers ?



Questions in connection with oscillator design

® What is phase noise ?
® How to minimise phase noise ?
® How to minimise harmonics ?

® How does the bias point of the amplifier
vary with time ?

® Can we design an amplifier which is linear
even with timevarying bias point ?



Conclusions in connection with
classification of oscillators

Class | oscillators with proper Barkhausen
topology are still of interest
(Hartly, Colpitts, Phase-Shift, Wien-Bridge, etc.)

Class Il oscillators with a linear amplifier
might be of interest

Class lll oscillators with more than one amplifier
and multiple loops are of interest (Active filter
oscillators, Double integrator oscillators, etc.)




e Barkhausen
e Observations (Oscillators)
e Barkhausen's Criterion
e Classification of Oscillators
© An example

(Wien Bridge Oscillator)
e Conclusion
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the characteristic polynomial

82+2058+w§ = 0

1 1 1 RC+(1-A)+RD
2 a0 = L

+ +

RA«CA RB+CB RB+*CA * RD«(1 + A) + RC

2 1
- — A very large

with RA = RB = R RC = 2:RD

and CA = CB

C RC>2«RD (V< 0



The poles or the natural frequencies of the
circuit - the eigenvalues of the Jacobian

of the linearized differential equations -
are

the roots of the characteristic polynomial
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Citation from ref. [9] E. Lindberg,
“Oscillators - an approach for a better
understanding”, ECCTD 2003:

"The resistor RC iIs crucial for the sign of the
loss coefficient 2*alpha. If RC is amended with a
large resistor in series with a nonlinear element
made from two diodes in antiparallel you have a
mechanism for controlling the movement of

the poles between RHP and LHP so you can
avoid making use of the nonlinear gain. In this
way you may control both frequency and
amplitude of the oscillator.”



but

When you change the perfect linear A = 100k
amplifier to an AD712 operational amplifier with a
dominant pole at 12Hz and a highfrequency pole
at 15MHz the circuit becomes a Class lll oscillator
at 795.8 Hz.

In order to obtain a Class Il oscillator the circuit is
scaled to a frequency of 0.7958 Hz well below the
dominant pole at 12 Hz.



Wien Bridge
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+ PSpice

___________________________________________

Adran 0 1000 100 1m, RELTOL = 1e-5, RC = 6.010e+3, RCL = 17.5e+3,
AD712 SPICE Macro-model 4/92, Rev.B: POLE at 12Hz, dc power supply:

COMMON-MODE GAIN ZERO at 300 Hz, POLE at 15MHz, +10V /[ +10V

V(3) = - A=*V(1,2)

Fig.5, Dynamic transfer characteristic of the amplifier with
almost constant bias point
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Fig. 6, Frequency spectrum of amplifier output
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It is an open question whetheritis
possible to create Class Il oscillators
or not !

dran @ 1000 100 1m, RELTOL = 1e-5, RC = 6.010e+3, RCL = 17.5e+3,

ADT12 SPICE Macro-model 4/02, Rev.B: POLE at 12Hz, dc power supply:
COMMON-MODE GAIN ZERD at 300 Hz, POLE at 15MHz, #10V I +10V

V(3) = —A+~V(1,2)

Fig. 5, Dynamic transfer characteristic of the amplifier with
almosi consiant bias poini




e Barkhausen
e Observations (Oscillators)
e Barkhausen's Criterion
e Classification of Oscillators
e An example

(Wien Bridge Oscillator)
@ Conclusion



® The Barkhausen Criterion should be called
the Barkhausen Observation

It is a necessary but NOT sufficient criterion for
steady state oscillations of an electronic circuit

@ Oscillators may be divided into two groups
"Proper Barkhausen Topology” and
"Not Proper Barkhausen Topology "

@ Insight in the mechanisms behind the behavior
of an oscillator may be obtained by means of

the time-varying linear approach
(’frozen eigenvalues™)
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