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Abstract

Short-term forecasting of wind generation requires a moflehe function for the conversion of me-
teorological variables (mainly wind speed) to power prdigtuc Such a power curve is nonlinear and
bounded, in addition to being nonstationary. Local linegyression is an appealing honparametric ap-
proach for power curve estimation, for which the model cogdfits can be tracked with recursive Least
Squares (LS) methods. This may lead to an inaccurate estiofidhe true power curve, owing to the
assumption that a noise component is present on the respamaile axis only. Therefore, this assump-
tion is relaxed here, by describing a local linear regressigh orthogonal fit. Local linear coefficients
are defined as those which minimize a weighted Total Leasti®guTLS) criterion. An adaptive es-
timation method is introduced in order to accommodate mtiastarity. This has the additional benefit
of lowering the computational costs of updating local coedfits every time new observations become
available. The estimation method is based on tracking fhenest eigenvector of the augmented covari-
ance matrix. A robustification of the estimation method #agroposed. Simulations on semi-artificial
datasets (for which the true power curve is available) uimdethe properties of the proposed regression
and related estimation methods. Animportant result isith@fecantly higher ability of local polynomial
regression with orthogonal fit to accurately approximaeettinget regression, even though it may hardly
be visible when calculating error criteria against coregptlata.
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1 Introduction

Wind power is a renewable energy that now represents a signifpart of the electricity gener-
ation mix in a number of European countries. This phenoménant only limited to Europe,
as the installation of important wind power capacities gdbeing discussed and planned in
rapidly developing countries such as China, India or Braibwever, large scale integration
of wind generation causes difficulties in the managementpmiveer system, owing to its vari-
ability and limited predictability. An additional challge is to conciliate this integration with
the on-going deregulation of the European electricity raegk Increasing the value of wind
generation through improving the performance of predicigstems is one of the priorities in
wind energy research for the coming year$i¢r and \Weis-Taylor 2002 A status report on
wind power forecasting has been publishedins(elet al. 2003.

Short-term predictions of wind power production at a giveea, say up to 48-72 hours ahead,
are commonly produced by using as input predictions of eglevneteorological variables,
provided by a meteorological office. Relevant meteorolalgrariables obviously include wind
speed, but also wind direction, air density or temperattoeecasts of meteorological variables
are converted to power forecasts by passing them througdotiealled wind farm power curve.
From a statistical point of view, the challenge here is tonegte this conversion function, which
is nonlinear and bounded, in addition to being nonstatipmiare to e.g. changes in the site
environment, seasonality or climate change.

Local polynomial regression is an appealing nonparamapproach to modeling a wind farm
power curve, for which the model coefficients can be adalytestimated with recursive Least
Squares (LS) methods, see elgig|senet al. 2002, Sanchez 2006 An assumption when ap-
plying LS estimation methods is that a noise component isgmtan the response variable only,
i.e. the power output in our case. However, it appears unlitkeat the forecasts of meteoro-
logical variables used as input do not have an error comgoRatently,Pinsonet al. (2007)
showed that the application of local polynomial regressidh LS fit may yield somewhat inac-
curate estimate of the true conversion function, even thaumgay still be appropriate for point
prediction purposes where error measures are calculasdsagoisy response datao(1sson
1994). Our aim here is to describe a method that provides bettien&®s of the true conversion
function, by relaxing the assumption that the noise compbisenly on the response variable.
This work is motivated by the current research efforts ondnypower ensemble forecasting
(Giebel 2005 and references therein). More particulatlyglsenet al. (2006 concluded that
a better understanding of the ability of various estimatorapproximate the true regression
function that defines a wind farm power curve is needed to avgpensemble predictions of
wind generation.

Our approach has been developed with local linear regressoa basis, in order to obtain
a nonparametric estimate of the nonlinear power curve. Howa contrast to classical LS
estimation, the coefficients of the local linear models aentorthogonally fitted by using a
Total Least Squares (TLS) criterion. Developments tow#ndditting of a linear model with
a TLS criterion can be traced back to the workstaylub and Van Loan(1980. This is used
here in a nonparametric regression framework to fit locadmmodels. The aim of this ap-
proach is hence similar to that of principal curves, as shiced by-Hastie and Stuetzl€1989



and subsequently discussed byshirani (1999, Verbeeket al. (2002, andEinbecket al.
(2009, among others: it is to locally minimize the distance betwebservations and the esti-
mated nonparametric regression function. In order to accodate nonstationarity, an adaptive
estimation method is introduced which, for each local lim@adel, is based on tracking the
left-most eigenvector of the augmented covariance matidaptivity in time is ensured by
exponential forgetting of past observations. Since ingiramoise distributions may be skewed
and heavy-tailed in addition to not being Gaussian, a rolersion of the estimation method is
presented for estimates that would be less affected by sk nharacteristics.

The paper is structured as follows. The proposed local liregression with orthogonal fitting
is defined in Sectior2. The issue of adaptive estimation of the local model coeffits for
this regression is then addressed in SecBorn Section4, the proposal for robustification
of the previously introduced estimation method is describEhe properties of the regression
and estimation methods are demonstrated in Sebti@mulations are based on semi-atrtificial
data. They are primarily produced by passing real-worlddweipeed data through a modelled
power curve in order to obtain noise-free power data. Bothdvwdpeed and power data are
then corrupted to generate realistic datasets of wind sfmedasts and corresponding power
measurements. The use of such datasets will allow us to daratsthat the proposed method
is better able to approximate the target regression whesersipresent in both wind speed
and power variables, since the target regression is indegthlble. Concluding remarks in
Section6 end the paper.

2 Definition of the regression

Focus is given to the case for which wind speed is the unigpkaeatory variable, and thus for
which the regression function to be estimated is that foctreversion of wind speed to power
production. However, the methodology described hereatiarbe generalized to the case of
multiple explanatory variables, e.g. wind speed and doactLet {y;},i = 1,...,n, be the
time-series of measured power production, &nd,: = 1, ..., n, that of wind speed forecasts
for the same points in time. Botfy;} and{u;} include a noise component originating from
on-site measuring devices and prediction errors, resgyti

Y = y;+€i7 Z.:]-a"'an (2)
where{u!} and{y;} are seen as the time-series of the true underlying wind speegower
variables, whilg[¢; } and{e;} are sequences of mutually independent random variablesede

and with finite variance, also independentgf It is assumed that a regression model relates
the true underlying wind speed and power variables

y;k = g(”:)? /l::]‘?"’?n (3)

whereg is a nonlinear function to be estimated. Note thabay also be considered as nonsta-
tionary.



One recognizes inlj-(3) a nonparametric regression problem with errors in vagsbln con-
trast to the approaches described in esgi(and Truong 199&arrolet al. 1999, the follow-
ing does not require any form of knowledge on the variance @disnrement error in explana-
tory variables. It is chosen instead to follow the concepadf-consistency, initially introduced
by Hastie and Stuetzl€1989 and subsequently generalized byrpey and Flury(1996 and
Delicado (2001). Such a concept exhibits the statistical property of a gmoarve in the ‘mid-
dle’ of all points that orthogonally project onto it. The &scatter of data hence imposes the
nonlinear dependency between noises in explanatory apdnss variables. Theoretical devel-
opments related to self-consistency and regression ai@alaleain (Hastie and Stuetzle 1989
Tarpey and Flury 1996 Local linear regression is used here to defjress a smooth curve in
a nonparametric framework. It consists of estimating aorect coefficients for local linear
models to be fitted at a certain number of "fitting pointSlgveland and Devlin 199gi.e. for
some specific wind speed values. Then, the local linear rm@telfitted with a weighted TLS
criterion in order to minimize the Euclidian distance betwelata points and their orthogonal
projections onto the regression curve.

2.1 Local linear models and estimates

Let us focus on a single fitting poimt defined on the range of wind speed values. A first-order
Taylor expansion of at is

g(u+ou) = g(a)+ Vg(a)du + o(du) 4)

with éu being a small deviation from. Assuming thay is sufficiently smooth, such Taylor
expansion can serve for local approximatipwith linear polynomials. Write

¢ = o) = [¢o(@) ¢u(a)] (5)

the vector of local model coefficientsat|.]" stands for the transposition operator. For obvious
dependence of the local model coefficients on the chosemyfpint, and in order to alleviate
notations, the dependence ans omitted in the following, unless absolutely necessamgr F
a given observatiom; close to, write [1 u; — " the column vector corresponding to the
first-order polynomial evaluated at — @. Then, if discarding the remaining temdu) in (4),

it becomes

g(wi) = [1 u;—a]" ¢ (6)
The coefficientsp, and ¢; thus correspond to the value and first-order derivative at ,
respectively.

For a dataset of size, the local linear model off]) is fitted atu by expressing the model
estimatesp as those which minimize

~

¢ = argmin S (¢) = argminzn:wip (€) (7)
4 ¢ -1

wherep is a criterion that defines the loss associated with a modeluale; , andw; is a weight



that defines the importance to givedonhile considering the fitting point. Finally, provided
that a local linear model is fitted at a certain number of fittpoints, the local polynomial
regression for any wind speed value can be obtained by tiyparinterpolation of theb,-
coefficients estimated at every fitting point.

2.2 Orthogonal fitting of local linear models

Fitting local linear models with an LS criterion corresperd the case for which i/} p is a

quadratic criterion, i.ea(¢) = ¢, and for which the model residualfor time stepi is calculated
ase; = y; — [1 u; — @] " ¢. This means that a residual is defined by considering a distan the
response variable axis only (cf. Fify. dashed line). Similarlyy; is given by a function of the
distance between the wind speed observatioand the fitting point; (Cleveland and Devlin
1988 Nielsenet al. 2000).

In contrast, the curve that passes through the ‘middle’ @fidta points is defined as that which
minimizes the Euclidean distance between the data pointshenregression liné Denote by

p the localization of the fitting point oh Such regression line is parameterized by the vector
of local coefficientsp = [¢y ¢;]' estimated afi. ¢, corresponds to thg-value ati, while

¢, relates to the slope of the regression line. For a given daitd p; = (u;, y;), the Euclidian
distance betweep; and! is given by that betweep; and its orthogonal projectiop- on .
This corresponds to the dash-dotted lines in EigThe orthogonal projectiop;- exists and

iS unique, ensuring the existence and uniqueness of thegedpregression. Introduction to
orthogonal fitting of linear models can be found in e Groen 199G-elus 200).

—HereisFig. 1 —

Let d_ (p;, ) denote the Euclidean distance betwegemand its orthogonal projectiop- on .
When aiming at orthogonally fitting the local linear modéhe model residuat related to the
wind speed and power observations at time stgpeadily given by

e = dy(p;, 1), i=1,....n (8)

2

Then, the objective function to be minimized in order to abthe estimates of the local coef-
ficients satisfying the orthogonal fit follows the generahficof (7),

SHe) = D_win() (9)

wherep is a quadratic criterion, but where the model residuals af@ed by 8). Moreover, the
definition of the weightv;- to give to the model residual at timieshould be different from that
used for LS fitting. Indeed, it appears reasonable here tedawas a function of the distance
betweerp andp;, but alongl. This distance, denoted hly(p, p;), is that betweep andp;-. The



weightw;- can then be obtained e.g. with

wil:wf(l):n(@), i=1,...,n (10)

whereh is the chosen bandwidth for that fitting point, apts a Kernel function like the tricube
function, for instance,

(1—2%)3, z€[0,1]

n:reR" — nlx)el0,1], n(x):{o o1 (11)

Finally, the regression curve is defined at each fitting ploynthe estimates of the local model
coefficients that minimized), i.e.
Al

¢ = argmin S*(¢) (12)
¢

Note that a usual linear model can easily be orthogonalldfitrith the methods presented in
e.g. (Golub and Van Loan 1990 However, the definition1(0) of the local weights means that
such weights are actually a function of the model estimdttesselves. This yields a complex
nonlinear optimization problem which, to our knowledges Imat been treated in the relevant
literature.

3 Adaptive estimation of local model coefficients

For the wind power application the target regresgjamay be seen as nonstationary, though
slowly varying. The relation between the wind at a wind fama &he resulting power produc-
tion evolves with time, due to e.g. ageing of the turbinesddition, for real-world applications
in an online setting, when estimating the local model coeffits one does not want to consider
the whole set of available observations every time new ebsiens become available. This
calls for the development of a recursive estimation mettmad permits tracking of the local
model coefficients. Another advantage of such a method isdoae the computational cost of
estimation. Hereafter, it is considered that at time set ofn past observations is available for
each time-series, and thus that the dataset grows as timeages. The proposed estimation
method follows from the fact that the coefficients of a lineaydel such as those iiZ%) can

be expressed as a function of the smallest singular valu¢heneelated singular vector of the
augmented data matrix. For proofs and more details regasingular value decomposition,
refer to Golub and Van Loan 1980999.



3.1 Formulation of the time-dependent objective function

Denote by&i the estimate of the local model coefficients at timeThe objective function to
be minimized for estimatinq}i is a modified version of that given i®)

¢, = argminS}(¢,) = argmin’y_ B, (D)wip (cf) (13)
®n N

wheree;- andw;- are the model residual and related weight at time steg introduced ing)
and (0). In the following,/,, denotes the regression line definedday. In the aboveg, is a
function that permits the exponential forgetting of past@tations. This is defined as

ﬁn(z) — { i‘?ﬁﬁnl<i_1>7 Zlf,;gn_l (14)

where ¢ is the effective forgetting factor, as originally introdutby Nielsenet al. (2000).
2efis such that exponential forgetting is applied to an obs@madf and only if that observation
lies in the vicinity of the fitting pointi. The vicinity is in turn controlled by the bandwidth
parameteh. The effective forgetting factor is hereby defined as

AT — 1 — (1= M} (15)
where ) is the user-defined forgetting factdr, < A < 1. Note that in the stationary case,

one does not want to downweight past observations. Thes,set toA = 1, resulting in
Bn(i) =1, ¥n,i.

3.2 Updating of the estimates at a given time

. . . . . . ~ L
An important assumption for using this recursive procedsrthat the estimate,_, of the
local coefficients at time — 1 is the optimal estimate, i.e. that which minimizes the otoyec
function formulated in 13). Also, it is considered that the true regression madel slowly

. . ~ L ~ L .. .
varying, and thus that the estima@s_, and¢, are very similar. Therefore, denotingand
l,,_1 by the estimated regression lines at timmeendn — 1, and by denoting,, andp,,_; as the
location of the fitting point on these lines, we have

di,, (D> i) =~ di,,  (Pn—1, Di) (16)

at least for the last few time stepsi.e. those related to model residuals only slightly down-
weighted by exponential forgetting. Consequently, trasstates to

wz‘l(lr) = wz‘l(lnfl) (17)
again for at least a number ofvalues,i being inferior though when it approaches Such

an approximation allows us to use at timehe last regression line for assigning a weight (as
defined in (L0)) to the new observations to be considered.



Denote byA, € R™*? the data matrix at time, i.e. the matrix whosé™ row contains the
vector of observationd u; —a] attimei, i = 1,...,n. Consequently, the so-called augmented
data matrixA;; € R"*? is defined as

Af = W,2[A, y,] (18)
that is, the data matrix to which is added a right column spoading to the vector of power
observations, subsequently multiplied by the square rothe weight matrixW, € R™*",

W, is a diagonal matrix whos&" element on the diagonal is the weight given to thei""
observation.

The recursive estimation method follows from the idea that3VD of the augmented data ma-
trix A" is related to the eigenvalue decomposition (EVD) of the aemped inverse covariance
matrixR;” = A" A+, Indeed, if the singular value decompositionAf is

U,"A'vV, = D, (19)
whereU,, andV,, are orthogonal matrices of appropriate dimensions, thereagily have
V,.'R/V, = D,? (20)

This means that the smallest singular vadyef A is equal to the square root of the smallest
eigenvalue ofR;. And, the right-most singular vectar,, of A" corresponds to the right-
most eigenvector dR.”. Consequently, recursively es.timatitzizgL can be done by tracking the
smallest eigenvalue (and related eigenvectolxpf Several methods are available in the liter-
ature for recursive updating &, and recursive estimation of its eigenvalues, see for istan
(Ljung et al. 1978 Yu 1991).

Here, the method employed is based on the updating of the entgohcovariance matriR;'.
Since the largest eigenvalug of P;" is equal to the inverse of the smallest eigenvaluBpf
it is clear that

and consequently, tracking the right-most eigenvectd® pfis equivalent to tracking the left-
most eigenvector dP;’.

N

In a first stage, it is necessary to update the augmentedianeamatrixP;’ , as new observa-
tions become available. Writg, the augmented vector of observations at timeentered on

u,
Z, = [1 u, — yn]T (22)

In parallel, the weightv:-(1,,) to assign tae, is approximated witho:-(1,,_), following (17).
The effective forgetting factox®™ is consequently computed usiri.

An update of the augmented covariance mdijxat timen can be obtained by using the matrix
inversion lemma (see e.gV/l@dsen 2006p. 245))

+ Tp+
1 P ,z,z, P, _,

P+ — + —
o ! 1+7nZnTP:71Zn

(23)



with ~,, defined by
W

In a second stage, the power method is used for estimatirigriest eigenvalue and the asso-
ciated eigenvector dP;', as described bisolub and Van Loan(1996 pp. 406-408). Let!”
be a unit vectory'? € R3. By iteratively computing”’, & > 0, such that

k—1
(®) Pivi Y

ST T =
the sequence of vectors,”) converges to the left-most eigenvector®f, provided that the
related maximum eigenvalue is unique. Denoterhyandr,, the estimated largest eigenvector
and eigenvalue oP;", respectively. Since it is assumed that the process caeside slowly
varying, v = V,_1 Can serve as an initialization to the power method at imé®nly few
steps of the power method should be sufficient to comppiteue to an expected high similarity
betweenP; , andP;. In addition, owing to symmetry oP;', it is possible to calculate an
estimate of the error bound@(lub and Van Loan 1996pp. 406-408), i.e. an upper bound on
the difference between the largest eigenvalyef P and thek™ iterated eigenvalue estimate
P s given by

k) = v T pry () (26)

n n-n

and the error bound calculation yields
vn — VP < V2([PIVE — BV, (27)
Therefore, one can iterate @1{1 andz/ ) until a defined error bound is reached.

Finally, since the obtained eigenvectoy corresponds the right-most singular vector of the
augmented data matriAf, and following (Golub and Van Loan 1990 the estimate of the

n?

local coefficients at tim@ can be obtained with

AL 1 R
b, = —— [On1 Dna]’ (28)

Un,3

Note that the updating procedure based on the matrix irmeitsimma might prove to be un-
stable (iavas and Regalia 19%9In such a case, one may choose to work Rth instead of
P;'. When doing so, it will still be necessary to inv@}" at each time step in order to apply
the power method t®;!.



3.3 Initialization

The initialization part consists of choosing appropriai&ial augmented covariance mati
and initial estimatep, of the local model coefficients. A common choice is to take

Py = 6'1 (29)

as an initial inverse augmented covariance matrix, Weh identity matrix of appropriate size,
andoj a small number that is user-definedis usually set at a very small value, reflecting the
fact that no information on the covariance of data is avélalhs a consequence of this lack
of information, one also considers an initialization pdrauring which the estimates are not
updated {lielsenet al. 2000. This initialization period continues until a point is okeed where
there are a certain number of occurrences (say 10) of thenivejgbeing larger than a chosen
threshold value, e.g. 0.5.

Regarding local model estimates, one can defipas a vector of zeros or as a best guess on
the target regression. A best guess can be obtained frorhebestical power curve of the wind
farm consideredv((]o) is then set to

T

v - {(&é ) —1} (30)

. . . . ~ L ALl “
i.e. so that its last elemen 5 is set tov, 3 = —1, in order to havep,, = ¢,_, if v,, = v,,_;.

4 Robustification of the estimation method

As LS estimates are only optimal (for estimating the targgression) if the noise on the re-
sponse variable is Gaussian, the orthogonal estimatesettaom the method described above
may not be optimal when noise sequencesl)n (2) deviate from Normal. When considering
the modeling of the conversion of wind to power in real-wafuplication, noise distributions
may actually be skewed and heavy-tailed in addition to nomtdo€aussiani(ange and Focken
200§ Pinson 200k Therefore, in order for the orthogonal estimates to be dédéfected by such
noise characteristics, a proposal for the robustificatibthe method described in the above
Section is given here. The approach is inspired by the M-ggignation methods employed
for robustification of LS estimators, initially introducdxy Huber (1981) for linear models,
and subsequently used in nonparametric regression witht b$ &.g. Canet al. 1994 Welsh
1999). It has been shown that this type of robustification apgressuitable for a large range of
contaminated distributions(¢lly 1992). The M-type estimator described here directly follows
from that developed biyinsonet al. (2007 for local polynomial regression with time-varying
coefficients. First the use of bounded-influence criterrardbust estimation is presented, fol-
lowed by the description of resulting changes in the regarsstimation procedure.

10



4.1 Using a bounded-influence criterion

Robustification is based on downscaling the influence oklaegiduals which may be consid-
ered as suspicious. The quadratic criterpdn (9) is replaced by a bounded-influence criterion
pm- Bounded influence means that the derivatiygeof p,, is bounded

Also, it is considered that,, is convex and consequently, if denoting by, the derivative of

(CI

Y e € R — 4 (e) € [0, Msyg (32)
for almost alle, since);, cannot be defined for some points if it is a piecewise functifg,,

denotes the upper bound @f), (¢) values.

In order to stay in line with the concept of self-consisteqityrpey and Flury 199@elicado
20017, the objective is still to have local model estimates thatimize a quadratic criterion.
pm IS selected as the Huber criterion, which combines a quadasss in its central part, and a
linear one for largée|-values,

pm(€,¢) = { 2 2 el < ¢ (33)

cle| — R le| > ¢

with thec-parameter, referred to as the threshold point, contigpthe transition from quadratic
to linear. Consequently, the relatég,-function is an odd function given by

VAN , lef<e
VYm(e,¢c) = pp,(e) = { csignle), |e| > c (34)
and its derivative)! is
/ o . 1, ‘5| <c
o) = e = { o |5 @5)

The Huber loss function is symmetric and such that, = —minr = c. The upper bound on
the derivative ofy,, is Mgy, = 1.

4.2 Changes in the recursive estimation procedure

For the case of local linear regression, defining the M-tygigretor related tqbi necessitates
replacingp with p,, in (9). In addition, the weightv;- associated to thé" observation has to
be accounted for. This is because model residuals with a leighwshould not be additionally
downweighted by the bounded-influence criterion. Consetlydy making the thresholdof

the Huber criterion a function ((fwf)fl/z, the objective function can be reformulated so that
it instead accounts for the loss related to weighted rediansonet al. 2007). The robust

11



estimatesifl at timen are given by

S = i (9) = agmin Y 0w (oo 3
10) arg min (o) arg;mn;ﬁ(z)p € \/UTC (36)

¢

One notices that in comparison tb3j, the weightw;- is no longer used to scale the loss of the
i model residual, but instead to scale the model residudfl iiséore calculating the associated
loss.

In addition, 3 is still a function that permits an exponential forgettinfgpast observations
in the vicinity of the considered fitting points. Howeverjstmodified here so that only non-
suspicious observations are dealt with. It is defined sitgita 3, in (14), except thate™ the
robust effective forgetting factor at timas instead given by

A= 1 (1= Awt, (l\/ﬁ ) (37)

The robustification of the recursive estimation procedweessarily implies a change in the
updating of the augmented covariance matrix. The updatingdla forP;*, is obtained in a
similar fashion than that formulated i&3), i.e.

PH* 4z 5 TPpt+*
P (J_ [T ) O L e 38

P =
n eff
e

with ~,, given by @4).

The above updating formula means t#t*; is not updated, i.eP;’* = P}* , if the new

n—11

observations are considered as suspicious. The power yethwell asZ8), are finally applied
. . . . L .
in the same manner in order to obtain the local model coefisi®, at timen.

5 Simulations

Simulation results on semi-artificial datasets are usedjtdilght the properties of the proposed
local linear regression with adaptive orthogonal fittingrtodel the conversion of wind speed
to power. The interest of such semi-artificial datasetsas tifne true power curve is available.
This will allow us to demonstrate the greater ability of tmegosed regression with orthogonal
fitting (in comparison to classical LS fitting) to approxiradhe true regression function when
noise is present in both wind speed and power variables.

5.1 Semi-artificial data

Semi-artificial means that wind speed measurements fromtaamogical mast at the wind
farm are used as a basis, but related power values are abtayngansformation through a

12



modelled power curve. The wind farm considered is locatedarth Jutland, Denmark. Wind
speed measurements consist of hourly averages. It is adstimaesuch measurements are
noise-free. The time-series of wind speed and related ppweeluction cover a period af =
10000 hours. They are normalized so that they take values in thidanterval. The model for
the nonstationary power curve is introduced in a first stagee noise that is added to obtain
simulated but realistic datasets of wind speed and relateepproduction is then described.

5.1.1 Model for the true power curve

The power curve giving the relation betweghandy;, the true wind speed and power values,
is modelled as a nonstationary double exponential funcéddtime stepi (: = 1,..., N), g; IS
defined as

gi(u*) = exp (—m2exp (—7;1u")) (39)

so that the shape of the power curve is controlled by the petesr; = [r;; 7). These
parameters are chosen to evolve linearly in time from= [10 40]" to 7 = [11 40]". The
resulting nonstationary power curve is illustrated in FAgby giving its initial and final states.
The scatterplot of wind speed and power data over the whaolelation period is depicted
in Fig. 3(a) Owing to the distribution of wind speed values, the nomstalry power curve
actually has a significantly larger number of data pointdsriaw power part than in its high
power part. Note that in real-world test cases, the powerecfunction may also be a function
of other explanatory variables e.g. wind direction.

——HereisFig. 2—

5.1.2 Noise sequences and resulting simulated data

In order to obtain simulated, but realistic, wind speed aodqr data for the wind farm, two
different types of noise sequence are envisaged. These seigiencesy?} and{(’}, whose
characteristics are a function of a given variabl@.e. either wind speed or power), are such
that:

e {w7} is an additive Gaussian noise with zero mean and whose sthddeiationo,, is a
function of the level oft, i.e.

w? ~ N(0,0,(x)), 0u(z) = a,+4z(1 — )b, (40)

Such additive noise simulates a permanent noise in the pmeasurements. It is as-
sumed that the variance of this noise is directly influencgdhe slope of the power

curve. This is why a logistic type of function is chosen. Oa thind speed axis, this

additive noise stands for the amplitude error present irdwgipeed forecasts. Note that
the use of such a logistic type of function is not fully re@disn this case, but it has the

interest of increasing the difficulty of estimating the &trgegression;
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e {7} is animpulsive noise of the same formfas'}, i.e.
&~ N(0,0¢(2)"), oc(e) = ac + (1 —z)b (41)

except that this noise is added at random locations chaizsdeby a binary sequence
{Z;}. The proportion of data corrupted by this impulsive noisgiven by. If consid-
ering power measurements, such a noise simulates the peegkgross errors (or even
outliers) in the data. They may originate from electronansmission problems for in-
stance. For the case of wind speed, this type of noise sigautat presence of phase
errors in meteorological forecasts, which are less fregjttean amplitude errors but of
significantly larger magnitude.

Subsequently, the time-seri¢g;} of simulated power data is obtained by adding these two
noises to the noise-free power d4ig },

v =yl +'T, i=1... N (42)
The time-seriegu; } of simulated wind speed data is obtained in a similar waywith
w = ul Fwd IV, i=1,...,N (43)

For both time-series, data points out of the unit intervalfarced to its bounds. The noises in
the resulting dataset obviously deviate from being Gaunssia

For the simulations in the present Section, the parametetsatling noise sequences are cho-
sen such that
e wind power:(a,, b,) = (0.004, 0.9) for the additive noise, andr, a., b;) = (0.2,0.012,0.2)
for the impulsive noise.
e wind speed{a,, b,) = (0.005, 0.04) for the additive noise, ank, a, b;) = (0.2,0.01,0.15)

for the impulsive noise.

The resulting dataset is depicted in F&j.Fig. 3(a) shows the noise-free data, while the cor-
rupted ones can be seen from R¢h). This scatterplot of semi-artificial wind speed and related
power data resembles those one would see from real-wordd dath as those studied in e.g.
(Pinson 200§k

——HereisFig. 3—

5.2 Selection of relevant parameters

Remember thag, denotes the local model coefficients obtained with adajtitteogonal fit-
. . oo~ dx . . .
ting at timen, while ¢,, refers to those obtained with the robust version of the neetigy
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extension, let us use these notations for the related nanygric and time-varying estimates
of the power curve at that same point in time. Both method$arehmarked against linear
regression with adaptive LS fit, as initially describedbylsenet al. (2000 and subsequently

used for the wind power application inhliglsenet al. 2002). The power curve estimated with
LS fit at timen is denoted byp,,.

For both types of adaptive fitting of local linear models, dvas to select or optimize a set
of meta-parameters consisting @f the fitting points on the wind speed range which locate
where the local linear models are to be defined and fitted(i@nithe bandwidth value at each
fitting point which controls the proportion of local data d$er model fitting. The methodology
employed for the selection of these meta-parameters isideddn the following.

In a first stage, the fitting pointg ;) are chosen to be uniformly spread on the unit interval,

_ J—1 .

so that only.J, the number of these fitting points, has to be selected. Ithgrarily set to

J = 20 here, since it has been noticed that when set to a sufficimtg value/ did not have
gualitative effects on the properties of the various ediimsa In a second stage, the bandwidth
valuesh;, are parameterized from our knowledge of the distributionvofd speed values.
Such distribution is right-skewed, with the density of trealbeing inversely proportional to
the level ofu. Consequentlyy ;) is defined as

hgy = ho+h(G=1),  j=1....J (45)

with hq, h; > 0, so that local model coefficients for high wind speed levels be estimated
from more observations, even if these observations arédddarther from the fitting point.
Another advantage of this parametrization is that instdadktermining all the/ bandwidth
values, only the constant, and scale factok;, have to be selected. In general one should have
1/J < hgjy in order to obtain smooth model estimates.

Then, for each type of estimator, the meta-parameters de¥ndi@ed with one-fold cross-
validation: the first 2000 time-steps of both time-series eonsidered as a buffer training
period (for initialization of local model parameters), \Wehihe following 2000 time-steps form
the cross-validation period. The optimal set of meta-patans is chosen as that which mini-
mizes a Mean Square Error (MSE) criterion for 1-step ahesetésts, calculated against the
corrupted data (as it would be the case for real-world appbas), over the latter period. In
practice, it is obtained by trial and error.

Table1 gathers the optimal sets of meta-parameters for the vaestirmators determined from
the cross-validation procedure. The bandwidth valuesigrefieantly larger when employing
adaptive orthogonal fitting of the local linear models. Ttukows from the definition of the
weights to be assigned to observations (&D)). Since these are a function of the distance
between the fitting point considered and observations,|lbagahe regression curve, distances
will generally be of larger magnitude. Hence, in order toéhawsufficient number of effective
observations for estimating the local coefficients, thedwadth also needs to have a larger
value.
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——HereisTablel —

. ‘g ~ L ~ Lx
In parallel to the selection of the meta-parameters andherspecific case ap,, and¢,, ,
the error bound that controls the number of iterations ofoihveer method every time the aug-
mented covariance matrix is updated is set@o®. Finally, the effect of the choice of the

threshold point, which is the last parameter needed for fully definﬁiﬂg*, will be studied in
the following Paragraph.

5.3 Evaluation of estimated power curves

The remainder of the datasets, consisting of the last 60@® steps and referred to as the eval-
uation set, is used for a 1-step ahead forecasting exerdis¢éhe aim of assessing the ability of
the various estimators to approximate the true power curvaddition, since both noise-free
and corrupted data are available, this will allow us to comhan the fact that certain error
measures, when calculated against corrupted data, maljjuminate the greater ability to ap-
proximate the true regression. The 1-step ahead foreqastvaluated with both a Normalized
Mean Absolute Error (NMAE) and a Normalized Root Mean Squi&arer (NRMSE) criterion.
Both error criteria are referred to as normalized since poakies are contained in the unit in-
terval. They are thus expressed as a percentage of the Agrower of the wind farm. Even if
our aim is clearly to obtain a minimum MSE estimator, the NMétEerion may provide better
information about improving power curve estimation sinceould give less weight to large
errors related to suspicious data. For a thorough disaussidghe choice of error measures for
evaluating wind power forecasts, we refer tbe(dseret al. 2005. Error criteria are calculated
against both noise-free and corrupted data. They will berred to as NMAE (and NRMSE)
for the former case, and as NMAEand NRMSE) for the latter one.

In addition to the set of meta-parameters given in Tdltar the case of local linear regression
with adaptive orthogonal fitting, one has to choose the tolelsparameter for fully defining

qbi* Here,c is not determined with the same type of cross-validatior@dore than that used
above (which would be the usual approach for a real-worldiegippon), it is instead decided to
show the influence af on the ability of this estimator to approximate the true esgron model.
This ability is quantified with the NRMSEeriterion, whose value as a function ois depicted

in Fig. 4. Whenc equals 1, there is no observation whose influence is dowmmtﬁigé&i and

~

cj)n* are then equivalent, resulting in the same level of forepastormance. The NRMSE
criterion decreases asgets smaller, until a minimum is reached. When further desirg
the value of the threshold point, the NRMSE&iterion increases again: the fact that there
are too many observations whose influence is downweightgdtively impacts the forecast

performance of};i*. A minimum NRMSE is reached for = 0.11.
——HereisFig. 4 —

Table2 summarizes the 1-step ahead forecast performance whegthsithree different power
curves obtained with the three estimators by gatheringahgeg of all error criteria mentioned
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above over the evaluation set. The decrease in NMEen going from LS to orthogonal fit-

ting is non-negligible. However, the NRMS$Eriterion is of larger magnitude fapi than for
¢,,. Meanwhile, it appears that when error criteria are evalllapainst the noise-free data (i.e.
NMAE,; and NRMSE), they both have dramatically lower values after orthodjgriigting local

linear models. This shows thél;f has a higher ability to approximate the underlying regm@ssi
model. Hoever, this also tells that such higher ability isdh@ see when evaluating forecast
performance against real-world measurements. Such sesakly fit with the theoretical re-
sults in Jonsson 199 which indicates that an LS estimator may exhibit highdrafusample
forecast performance when calculated against noisy deta, taough it does not approximate
well to the underlying regression model. Here, the NMA®easure is actually more informa-
tive than the NRMSE one, since it makes it possible to see whether the evaluatedator

is more central. This pointis also in line with the discussio (Madserst al. 2005 on error
measures in wind power forecasting.

In addition, Table& reveals the benefits of the robustification of the estimairmcedure used to
fit orthogonally to the local linear models. All error meassiactually have lower values when
focusing on the robust version of the estimator. Primaitilis clear that the decrease in error
criteria calculated against noise-free data is of prachwgnitude: the decrease in NMAE

of 9.71% while that in NRMSEreaches 9.97%. Note that benefits of orthogonal fitting€aut
of LS fit) of local linear models are much larger than thosefradditional robustification.

——HereisTable2 —

In a last stage, the final power curves obtained \L;A&];r\and&i* are compared. They are both
depicted in Fig5, along with the true power curve at the end of the evaluatein Bhe curve

corresponding tqb,f* provides a closer approximation of the final true power curvkis is
mainly true in the zone where the density of data is lowerfaehigh power values. Using a
LS criterion for fitting local linear models yields a tendgio flatten the shape of the estimated
power curve. This is not the case when orthogonally fittiresghmodels.

——HereisFig.5—

6 Conclusions

Local linear regression is an appealing approach to maglétie conversion of wind to power,
for which the local models are commonly fitted with an LS e¢rda. Doing so is actually
equivalent to making the assumption that a noise compoagmesent in the response variable
only. This assumption is not realistic for the wind powereiaisting application, when the
wind-to-power conversion function is estimated with metdagical forecasts as explanatory
variables. Therefore, even if a power curve estimated waHit may be considered optimal in
a minimum-MSE sense (with the MSE calculated against thgyraata), it does not provide an
accurate estimate of the true underlying conversion fonctirhis drawback of the LS-fitting
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approach has been clearly illustrated in the present paper.

In order to relax the assumption of the noise component bwirthe response variable only, the
definition of local linear regression with orthogonal figgihas been introduced. This follows
the concept of self-consistency, and has an aim similarabdhprincipal curves, though it
is restricted to a nonparametric regression frameworls ibilocally minimize the Euclidean
distance between the observations and the estimated segresirve. In practice, the estimates
of the local model coefficients are defined as those that neira TLS criterion. In order
to accommodate long-term variations of the local modelfeoehts, an adaptive estimation
method based on tracking of the left-most eigenvector ofitigmented covariance mati’
has been described. The interest of such a method is thamihates the need to compute
a singular value decomposition every time a new observagi@available, which significantly
decreases computational costs. In addition, only the antgdeovariance matriR;” needs to
be updated and stored at each time-step. Note that it willdssiple in the future to consider
other recursive schemes to upd®&g. More particularly, one may control the information
content used to updal®! in the direction of its largest eigenvalue, e.g. with seledorgetting
methods Parkumet al. 1999).

The ability of local linear regression with adaptive ortbagl fitting to better estimate the true
conversion function of wind to power has been shown from &tmns on a semi-artificial
dataset, i.e. for which both the true regression model aaltstie simulated data were available.
When calculating error criteria against the true regressmmdel, the improvement achieved
when applying the proposed regression and estimation meisondeed significant. However,
it has been clearly explained that such improvement is diffi® appraise when evaluating
estimated regressions against corrupted data. Thisyatiliietter approximation of the under-
lying conversion process is a desirable feature for apfphicao ensemble prediction of wind
power. Future works will concentrate on evaluating the Eenef using the proposed regres-
sion method for this purpose.
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0

Fig. 1. Fitting of a local linear model with LS and TLS criteria. Iretfiormer case, the distance to be
minimized is measured along theaxis (dashed line), while for the latter, this distancehist thetween
the observatiorp; and its orthogonal projectio;aniL on the curve (dash-dotted line). The fitting point
p is represented by a square while the data points are repeeskey circles. For both types of fitting,
the location ofp on theu-axis is user-defined, while its position on thexis results from the fitting

approach employed.
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Fig. 3. Simulated data. Both wind speed and power data defining tieepmwer curve are corrupted
with independent noise sequences. The noise sequenceddrazdditive and impulsive components.
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Table 1. Optimal tuning parameters when fitting local linear regim@ssvith LS and TLS criteria. They
are obtained from a one-fold cross-validation procedure.

ho hy A
LS fitting 0.024 1.5 0.987
TLS fitting 0.05 3.5 0.994
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Table 2. Minimum values of the NRMSEcriterion and related values of the other evaluation dater
for the various estimators. Error criteria are expressed psrcentage of the nominal capacity of the

wind farm.
R
NMAE, [%] 7.1453 6.9398 6.8874
NMAE; [%] 2.4677 1.0805 0.9756
NRMSE. [%] 11.4801 11.5909 11.5713
NRMSE [%] 3.0519 1.3215 1.1897
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