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Abstract

Short-term forecasting of wind generation requires a modelof the function for the conversion of me-
teorological variables (mainly wind speed) to power production. Such a power curve is nonlinear and
bounded, in addition to being nonstationary. Local linear regression is an appealing nonparametric ap-
proach for power curve estimation, for which the model coefficients can be tracked with recursive Least
Squares (LS) methods. This may lead to an inaccurate estimate of the true power curve, owing to the
assumption that a noise component is present on the responsevariable axis only. Therefore, this assump-
tion is relaxed here, by describing a local linear regression with orthogonal fit. Local linear coefficients
are defined as those which minimize a weighted Total Least Squares (TLS) criterion. An adaptive es-
timation method is introduced in order to accommodate nonstationarity. This has the additional benefit
of lowering the computational costs of updating local coefficients every time new observations become
available. The estimation method is based on tracking the left-most eigenvector of the augmented covari-
ance matrix. A robustification of the estimation method is also proposed. Simulations on semi-artificial
datasets (for which the true power curve is available) underline the properties of the proposed regression
and related estimation methods. An important result is the significantly higher ability of local polynomial
regression with orthogonal fit to accurately approximate the target regression, even though it may hardly
be visible when calculating error criteria against corrupted data.
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1 Introduction

Wind power is a renewable energy that now represents a significant part of the electricity gener-
ation mix in a number of European countries. This phenomenonis not only limited to Europe,
as the installation of important wind power capacities is also being discussed and planned in
rapidly developing countries such as China, India or Brazil. However, large scale integration
of wind generation causes difficulties in the management of apower system, owing to its vari-
ability and limited predictability. An additional challenge is to conciliate this integration with
the on-going deregulation of the European electricity markets. Increasing the value of wind
generation through improving the performance of prediction systems is one of the priorities in
wind energy research for the coming years (Thor and Weis-Taylor 2002). A status report on
wind power forecasting has been published in (Giebelet al. 2003).

Short-term predictions of wind power production at a given site, say up to 48-72 hours ahead,
are commonly produced by using as input predictions of relevant meteorological variables,
provided by a meteorological office. Relevant meteorological variables obviously include wind
speed, but also wind direction, air density or temperature.Forecasts of meteorological variables
are converted to power forecasts by passing them through theso-called wind farm power curve.
From a statistical point of view, the challenge here is to estimate this conversion function, which
is nonlinear and bounded, in addition to being nonstationary due to e.g. changes in the site
environment, seasonality or climate change.

Local polynomial regression is an appealing nonparametricapproach to modeling a wind farm
power curve, for which the model coefficients can be adaptively estimated with recursive Least
Squares (LS) methods, see e.g. (Nielsenet al. 2002, Sanchez 2006). An assumption when ap-
plying LS estimation methods is that a noise component is present in the response variable only,
i.e. the power output in our case. However, it appears unlikely that the forecasts of meteoro-
logical variables used as input do not have an error component. Recently,Pinsonet al. (2007)
showed that the application of local polynomial regressionwith LS fit may yield somewhat inac-
curate estimate of the true conversion function, even though it may still be appropriate for point
prediction purposes where error measures are calculated against noisy response data (Jonsson
1994). Our aim here is to describe a method that provides better estimates of the true conversion
function, by relaxing the assumption that the noise component is only on the response variable.
This work is motivated by the current research efforts on wind power ensemble forecasting
(Giebel 2005, and references therein). More particularly,Nielsenet al. (2006) concluded that
a better understanding of the ability of various estimatorsto approximate the true regression
function that defines a wind farm power curve is needed to improve ensemble predictions of
wind generation.

Our approach has been developed with local linear regression as a basis, in order to obtain
a nonparametric estimate of the nonlinear power curve. Howver, in contrast to classical LS
estimation, the coefficients of the local linear models are then orthogonally fitted by using a
Total Least Squares (TLS) criterion. Developments towardsthe fitting of a linear model with
a TLS criterion can be traced back to the works byGolub and Van Loan(1980). This is used
here in a nonparametric regression framework to fit local linear models. The aim of this ap-
proach is hence similar to that of principal curves, as introduced byHastie and Stuetzle(1989)
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and subsequently discussed byTibshirani (1992), Verbeeket al. (2002), andEinbecket al.
(2005), among others: it is to locally minimize the distance between observations and the esti-
mated nonparametric regression function. In order to accommodate nonstationarity, an adaptive
estimation method is introduced which, for each local linear model, is based on tracking the
left-most eigenvector of the augmented covariance matrix.Adaptivity in time is ensured by
exponential forgetting of past observations. Since in practice noise distributions may be skewed
and heavy-tailed in addition to not being Gaussian, a robustversion of the estimation method is
presented for estimates that would be less affected by such noise characteristics.

The paper is structured as follows. The proposed local linear regression with orthogonal fitting
is defined in Section2. The issue of adaptive estimation of the local model coefficients for
this regression is then addressed in Section3. In Section4, the proposal for robustification
of the previously introduced estimation method is described. The properties of the regression
and estimation methods are demonstrated in Section5. Simulations are based on semi-artificial
data. They are primarily produced by passing real-world wind speed data through a modelled
power curve in order to obtain noise-free power data. Both wind speed and power data are
then corrupted to generate realistic datasets of wind speedforecasts and corresponding power
measurements. The use of such datasets will allow us to demonstrate that the proposed method
is better able to approximate the target regression when noise is present in both wind speed
and power variables, since the target regression is indeed available. Concluding remarks in
Section6 end the paper.

2 Definition of the regression

Focus is given to the case for which wind speed is the unique explanatory variable, and thus for
which the regression function to be estimated is that for theconversion of wind speed to power
production. However, the methodology described hereaftercan be generalized to the case of
multiple explanatory variables, e.g. wind speed and direction. Let {yi}, i = 1, . . . , n, be the
time-series of measured power production, and{ui}, i = 1, . . . , n, that of wind speed forecasts
for the same points in time. Both{yi} and{ui} include a noise component originating from
on-site measuring devices and prediction errors, respectively,

ui = u∗i + ξi, i = 1, . . . , n (1)

yi = y∗i + εi, i = 1, . . . , n (2)

where{u∗i } and{y∗i } are seen as the time-series of the true underlying wind speedand power
variables, while{ξi} and{εi} are sequences of mutually independent random variables, centred
and with finite variance, also independent ofu∗i . It is assumed that a regression model relates
the true underlying wind speed and power variables

y∗i = g(u∗i ), i = 1, . . . , n (3)

whereg is a nonlinear function to be estimated. Note thatg may also be considered as nonsta-
tionary.
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One recognizes in (1)-(3) a nonparametric regression problem with errors in variables. In con-
trast to the approaches described in e.g. (Fan and Truong 1993, Carrolet al. 1999), the follow-
ing does not require any form of knowledge on the variance of measurement error in explana-
tory variables. It is chosen instead to follow the concept ofself-consistency, initially introduced
by Hastie and Stuetzle(1989) and subsequently generalized byTarpey and Flury(1996) and
Delicado (2001). Such a concept exhibits the statistical property of a smooth curve in the ‘mid-
dle’ of all points that orthogonally project onto it. The local scatter of data hence imposes the
nonlinear dependency between noises in explanatory and response variables. Theoretical devel-
opments related to self-consistency and regression are available in (Hastie and Stuetzle 1989,
Tarpey and Flury 1996). Local linear regression is used here to defineg as a smooth curve in
a nonparametric framework. It consists of estimating a vector of coefficients for local linear
models to be fitted at a certain number of ”fitting points” (Cleveland and Devlin 1988), i.e. for
some specific wind speed values. Then, the local linear models are fitted with a weighted TLS
criterion in order to minimize the Euclidian distance between data points and their orthogonal
projections onto the regression curve.

2.1 Local linear models and estimates

Let us focus on a single fitting point̃u, defined on the range of wind speed values. A first-order
Taylor expansion ofg at ũ is

g(ũ+ δu) = g(ũ) + ∇g(ũ)δu+ ◦(δu) (4)

with δu being a small deviation from̃u. Assuming thatg is sufficiently smooth, such Taylor
expansion can serve for local approximationg with linear polynomials. Write

φ = φ(ũ) = [φ0(ũ) φ1(ũ)]
⊤ (5)

the vector of local model coefficients atũ. [.]⊤ stands for the transposition operator. For obvious
dependence of the local model coefficients on the chosen fitting point, and in order to alleviate
notations, the dependence onũ is omitted in the following, unless absolutely necessary. For
a given observationui close toũ, write [1 ui − ũ]⊤ the column vector corresponding to the
first-order polynomial evaluated atui − ũ. Then, if discarding the remaining term◦(δu) in (4),
it becomes

g(ui) = [1 ui − ũ]⊤φ (6)

The coefficientsφ0 andφ1 thus correspond to the value and first-order derivative ofg at ũ,
respectively.

For a dataset of sizen, the local linear model of (6) is fitted at ũ by expressing the model
estimateŝφ as those which minimize

φ̂ = arg min
φ

S (φ) = arg min
φ

n
∑

i=1

wiρ (ǫi) (7)

whereρ is a criterion that defines the loss associated with a model residualǫi , andwi is a weight
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that defines the importance to give toǫi while considering the fitting point̃u. Finally, provided
that a local linear model is fitted at a certain number of fitting points, the local polynomial
regression for any wind speed value can be obtained by linear-type interpolation of theφ0-
coefficients estimated at every fitting point.

2.2 Orthogonal fitting of local linear models

Fitting local linear models with an LS criterion corresponds to the case for which in (7) ρ is a
quadratic criterion, i.e.ρ(ǫ) = ǫ2, and for which the model residualǫi for time stepi is calculated
asǫi = yi− [1 ui− ũ]⊤φ. This means that a residual is defined by considering a distance on the
response variable axis only (cf. Fig.1, dashed line). Similarly,wi is given by a function of the
distance between the wind speed observationui and the fitting point̃u (Cleveland and Devlin
1988, Nielsenet al. 2000).

In contrast, the curve that passes through the ‘middle’ of the data points is defined as that which
minimizes the Euclidean distance between the data points and the regression linel. Denote by
p̃ the localization of the fitting point onl. Such regression line is parameterized by the vector
of local coefficientsφ = [φ0 φ1]

⊤ estimated at̃u. φ0 corresponds to they-value atũ, while
φ1 relates to the slope of the regression line. For a given data point pi = (ui, yi), the Euclidian
distance betweenpi and l is given by that betweenpi and its orthogonal projectionp⊥i on l.
This corresponds to the dash-dotted lines in Fig.1. The orthogonal projectionp⊥i exists and
is unique, ensuring the existence and uniqueness of the proposed regression. Introduction to
orthogonal fitting of linear models can be found in e.g. (de Groen 1996, Felus 2004).

—– Here is Fig. 1 —–

Let d⊥(pi, l) denote the Euclidean distance betweenpi and its orthogonal projectionp⊥i on l.
When aiming at orthogonally fitting the local linear models,the model residualǫ⊥i related to the
wind speed and power observations at time stepi is readily given by

ǫ⊥i = d⊥(pi, l), i = 1, . . . , n (8)

Then, the objective function to be minimized in order to obtain the estimates of the local coef-
ficients satisfying the orthogonal fit follows the general form of (7),

S⊥(φ) =

n
∑

i=1

w⊥

i ρ
(

ǫ⊥i
)

(9)

whereρ is a quadratic criterion, but where the model residuals are defined by (8). Moreover, the
definition of the weightw⊥

i to give to the model residual at timei should be different from that
used for LS fitting. Indeed, it appears reasonable here to havew⊥

i as a function of the distance
betweeñp andpi, but alongl. This distance, denoted bydl(p̃, pi), is that betweeñp andp⊥i . The
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weightw⊥

i can then be obtained e.g. with

w⊥

i = w⊥

i (l) = η

(

dl(p̃, pi)

h

)

, i = 1, . . . , n (10)

whereh is the chosen bandwidth for that fitting point, andη is a Kernel function like the tricube
function, for instance,

η : x ∈ R
+ → η(x) ∈ [0, 1], η(x) =

{

(1 − x3)3, x ∈ [0, 1]
0 , x > 1

(11)

Finally, the regression curve is defined at each fitting pointby the estimates of the local model
coefficients that minimize (9), i.e.

φ̂
⊥

= arg min
φ

S⊥(φ) (12)

Note that a usual linear model can easily be orthogonally fitted with the methods presented in
e.g. (Golub and Van Loan 1980). However, the definition (10) of the local weights means that
such weights are actually a function of the model estimates themselves. This yields a complex
nonlinear optimization problem which, to our knowledge, has not been treated in the relevant
literature.

3 Adaptive estimation of local model coefficients

For the wind power application the target regressiong may be seen as nonstationary, though
slowly varying. The relation between the wind at a wind farm and the resulting power produc-
tion evolves with time, due to e.g. ageing of the turbines. Inaddition, for real-world applications
in an online setting, when estimating the local model coefficients one does not want to consider
the whole set of available observations every time new observations become available. This
calls for the development of a recursive estimation method that permits tracking of the local
model coefficients. Another advantage of such a method is to reduce the computational cost of
estimation. Hereafter, it is considered that at timen a set ofn past observations is available for
each time-series, and thus that the dataset grows as time increases. The proposed estimation
method follows from the fact that the coefficients of a linearmodel such as those in (12) can
be expressed as a function of the smallest singular value andthe related singular vector of the
augmented data matrix. For proofs and more details regarding singular value decomposition,
refer to (Golub and Van Loan 1980, 1996).

6



3.1 Formulation of the time-dependent objective function

Denote byφ̂
⊥

n the estimate of the local model coefficients at timen. The objective function to

be minimized for estimatinĝφ
⊥

n is a modified version of that given in (9),

φ̂
⊥

n = arg min
φ

n

S⊥

n (φn) = arg min
φ

n

n
∑

i=1

βn(i)w⊥

i ρ
(

ǫ⊥i
)

(13)

whereǫ⊥i andw⊥

i are the model residual and related weight at time stepi, as introduced in (8)
and (10). In the following,ln denotes the regression line defined byφn. In the above,βn is a
function that permits the exponential forgetting of past observations. This is defined as

βn(i) =

{

λeff
i βn−1(i− 1), 1 ≤ i ≤ n− 1

1 , i = n
(14)

whereλeff
i is the effective forgetting factor, as originally introduced byNielsenet al. (2000).

λeff
i is such that exponential forgetting is applied to an observation if and only if that observation

lies in the vicinity of the fitting point̃u. The vicinity is in turn controlled by the bandwidth
parameterh. The effective forgetting factor is hereby defined as

λeff
i = 1 − (1 − λ)w⊥

i (15)

whereλ is the user-defined forgetting factor,0 < λ ≤ 1. Note that in the stationary case,
one does not want to downweight past observations. Then,λ is set toλ = 1, resulting in
βn(i) = 1, ∀n, i.

3.2 Updating of the estimates at a given time

An important assumption for using this recursive procedureis that the estimatêφ
⊥

n−1 of the
local coefficients at timen − 1 is the optimal estimate, i.e. that which minimizes the objective
function formulated in (13). Also, it is considered that the true regression modelg is slowly

varying, and thus that the estimatesφ̂
⊥

n−1 andφ̂
⊥

n are very similar. Therefore, denotingln and
ln−1 by the estimated regression lines at timesn andn− 1, and by denoting̃pn andp̃n−1 as the
location of the fitting point on these lines, we have

dln(p̃n, pi) ≃ dln−1
(p̃n−1, pi) (16)

at least for the last few time stepsi, i.e. those related to model residuals only slightly down-
weighted by exponential forgetting. Consequently, this translates to

w⊥

i (ln) ≃ w⊥

i (ln−1) (17)

again for at least a number ofi-values,i being inferior though when it approachesn. Such
an approximation allows us to use at timen the last regression line for assigning a weight (as
defined in (10)) to the new observations to be considered.
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Denote byAn ∈ R
n×2 the data matrix at timen, i.e. the matrix whoseith row contains the

vector of observations[1 ui− ũ] at timei, i = 1, . . . , n. Consequently, the so-called augmented
data matrixA+

n ∈ R
n×3 is defined as

A
+
n = Wn

1

2 [An yn] (18)

that is, the data matrix to which is added a right column corresponding to the vector of power
observations, subsequently multiplied by the square root of the weight matrixWn ∈ R

n×n.
Wn is a diagonal matrix whoseith element on the diagonal is the weightw⊥

i given to theith

observation.

The recursive estimation method follows from the idea that the SVD of the augmented data ma-
trix A

+
n is related to the eigenvalue decomposition (EVD) of the augmented inverse covariance

matrixR
+
n = A

+
n
⊤
A

+
n . Indeed, if the singular value decomposition ofA

+
n is

Un
⊤
A

+
n Vn = Dn (19)

whereUn andVn are orthogonal matrices of appropriate dimensions, then wereadily have

Vn
⊤
R

+
n Vn = Dn

2 (20)

This means that the smallest singular value̺n of A+
n is equal to the square root of the smallest

eigenvalue ofR+
n . And, the right-most singular vectorvn of A

+
n corresponds to the right-

most eigenvector ofR+
n . Consequently, recursively estimatingφ⊥

n can be done by tracking the
smallest eigenvalue (and related eigenvector) ofR

+
n . Several methods are available in the liter-

ature for recursive updating ofR+
n and recursive estimation of its eigenvalues, see for instance

(Ljung et al. 1978, Yu 1991).

Here, the method employed is based on the updating of the augmented covariance matrixP+
n .

Since the largest eigenvalueνn of P
+
n is equal to the inverse of the smallest eigenvalue ofR

+
n ,

it is clear that
̺n = νn

−
1

2 (21)

and consequently, tracking the right-most eigenvector ofR
+
n is equivalent to tracking the left-

most eigenvector ofP+
n .

In a first stage, it is necessary to update the augmented covariance matrixP+
n−1 as new observa-

tions become available. Writezn the augmented vector of observations at timen, centered on
ũ,

zn = [1 un − ũ yn]⊤ (22)

In parallel, the weightw⊥

n (ln) to assign tozn is approximated withw⊥

n (ln−1), following (17).
The effective forgetting factorλeff

n is consequently computed using (15).

An update of the augmented covariance matrixP
+
n at timen can be obtained by using the matrix

inversion lemma (see e.g. (Madsen 2006, p. 245))

P
+
n =

1

λeff
n

[

P
+
n−1 − γn

P
+
n−1znzn

⊤
P

+
n−1

1 + γnzn
⊤P

+
n−1zn

]

(23)
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with γn defined by

γn =
w⊥

n

λeff
n

(24)

In a second stage, the power method is used for estimating thelargest eigenvalue and the asso-
ciated eigenvector ofP+

n , as described byGolub and Van Loan(1996, pp. 406-408). Letv(0)
n

be a unit vector,v(0)
n ∈ R

3. By iteratively computingv(k)
n , k > 0, such that

v
(k)
n =

P
+
n v

(k−1)
n

||P+
n v

(k−1)
n ||2

(25)

the sequence of vectorsv(k)
n converges to the left-most eigenvector ofP

+
n , provided that the

related maximum eigenvalue is unique. Denote byv̂n andν̂n the estimated largest eigenvector
and eigenvalue ofP+

n , respectively. Since it is assumed that the process considered is slowly
varying,v(0)

n = v̂n−1 can serve as an initialization to the power method at timen. Only few
steps of the power method should be sufficient to computev̂n, due to an expected high similarity
betweenP+

n−1 andP
+
n . In addition, owing to symmetry ofP+

n , it is possible to calculate an
estimate of the error bound (Golub and Van Loan 1996, pp. 406-408), i.e. an upper bound on
the difference between the largest eigenvalueνn of P+

n and thekth iterated eigenvalue estimate
ν

(k)
n . ν(k)

n is given by

ν(k)
n = v

(k)
n

⊤

P
+
n v

(k)
n (26)

and the error bound calculation yields

|νn − ν(k)
n | ≤

√
2 ||P+

n v
(k)
n − ν(k)

n v
(k)
n ||2 (27)

Therefore, one can iterate onv(k)
n andν(k)

n until a defined error bound is reached.

Finally, since the obtained eigenvectorvn corresponds the right-most singular vector of the
augmented data matrixA+

n , and following (Golub and Van Loan 1980), the estimate of the
local coefficients at timen can be obtained with

φ̂
⊥

n = − 1

v̂n,3

[v̂n,1 v̂n,2]
⊤ (28)

Note that the updating procedure based on the matrix inversion lemma might prove to be un-
stable (Liavas and Regalia 1999). In such a case, one may choose to work withR

+
n instead of

P
+
n . When doing so, it will still be necessary to invertR

+
n at each time step in order to apply

the power method toP+
n .
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3.3 Initialization

The initialization part consists of choosing appropriate initial augmented covariance matrixP+
0

and initial estimatêφ
⊥

0 of the local model coefficients. A common choice is to take

P0 = δ−1
I (29)

as an initial inverse augmented covariance matrix, withI an identity matrix of appropriate size,
andδ a small number that is user-defined.δ is usually set at a very small value, reflecting the
fact that no information on the covariance of data is available. As a consequence of this lack
of information, one also considers an initialization period during which the estimates are not
updated (Nielsenet al. 2000). This initialization period continues until a point is reached where
there are a certain number of occurrences (say 10) of the weightw⊥

n being larger than a chosen
threshold value, e.g. 0.5.

Regarding local model estimates, one can defineφ̂0 as a vector of zeros or as a best guess on
the target regression. A best guess can be obtained from the theoretical power curve of the wind
farm considered.v(0)

0 is then set to

v
(0)
0 =

[

(

φ̂
⊥

0

)⊤

− 1

]⊤

(30)

i.e. so that its last elementv0,3 is set tov0,3 = −1, in order to havêφ
⊥

n = φ̂
⊥

n−1 if v̂n = v̂n−1.

4 Robustification of the estimation method

As LS estimates are only optimal (for estimating the target regression) if the noise on the re-
sponse variable is Gaussian, the orthogonal estimates obtained from the method described above
may not be optimal when noise sequences in (1)- (2) deviate from Normal. When considering
the modeling of the conversion of wind to power in real-worldapplication, noise distributions
may actually be skewed and heavy-tailed in addition to not being Gaussian (Lange and Focken
2006, Pinson 2006). Therefore, in order for the orthogonal estimates to be less affected by such
noise characteristics, a proposal for the robustification of the method described in the above
Section is given here. The approach is inspired by the M-typeestimation methods employed
for robustification of LS estimators, initially introducedby Huber (1981) for linear models,
and subsequently used in nonparametric regression with LS fit by e.g. (Fanet al. 1994, Welsh
1994). It has been shown that this type of robustification approach is suitable for a large range of
contaminated distributions (Kelly 1992). The M-type estimator described here directly follows
from that developed byPinsonet al. (2007) for local polynomial regression with time-varying
coefficients. First the use of bounded-influence criteria for robust estimation is presented, fol-
lowed by the description of resulting changes in the recursive estimation procedure.
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4.1 Using a bounded-influence criterion

Robustification is based on downscaling the influence of large residuals which may be consid-
ered as suspicious. The quadratic criterionρ in (9) is replaced by a bounded-influence criterion
ρm. Bounded influence means that the derivativeψm of ρm is bounded

ψm : ǫ ∈ R → ψm(ǫ) ∈ [minf , msup], minf < 0, msup> 0 (31)

Also, it is considered thatρm is convex and consequently, if denoting byψ′

m the derivative of
ψm,

ψ′

m : ǫ ∈ R → ψ′

m(ǫ) ∈ [0,Msup] (32)

for almost allǫ, sinceψ′

m cannot be defined for some points if it is a piecewise function. Msup

denotes the upper bound onψ′

m(ǫ) values.

In order to stay in line with the concept of self-consistency(Tarpey and Flury 1996, Delicado
2001), the objective is still to have local model estimates that minimize a quadratic criterion.
ρm is selected as the Huber criterion, which combines a quadratic loss in its central part, and a
linear one for large|ǫ|-values,

ρm(ǫ, c) =

{

ǫ2

2
, |ǫ| ≤ c

c|ǫ| − c2

2
, |ǫ| > c

(33)

with thec-parameter, referred to as the threshold point, controlling the transition from quadratic
to linear. Consequently, the relatedψm-function is an odd function given by

ψm(ǫ, c) = ρ′m(ǫ) =

{

ǫ , |ǫ| ≤ c
c sign(ǫ), |ǫ| > c

(34)

and its derivativeψ′

m is

ψ′

m(ǫ, c) = ρ′′m(ǫ) =

{

1, |ǫ| ≤ c
0, |ǫ| > c

(35)

The Huber loss function is symmetric and such thatmsup = −minf = c. The upper bound on
the derivative ofψm isMsup = 1.

4.2 Changes in the recursive estimation procedure

For the case of local linear regression, defining the M-type estimator related tôφ
⊥

n necessitates
replacingρ with ρm in (9). In addition, the weightw⊥

i associated to theith observation has to
be accounted for. This is because model residuals with a low weight should not be additionally
downweighted by the bounded-influence criterion. Consequently, by making the thresholdc of
the Huber criterion a function of

(

w⊥

i

)−1/2
, the objective function can be reformulated so that

it instead accounts for the loss related to weighted residuals (Pinsonet al. 2007). The robust
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estimateŝφ
∗

n at timen are given by

φ̂
⊥∗

n = arg min
φ

S⊥∗

n (φ) = arg min
φ

n
∑

i=1

β∗

n(i)ρm

(

ǫ⊥i

√

w⊥

i , c

)

(36)

One notices that in comparison to (13), the weightw⊥

i is no longer used to scale the loss of the
ith model residual, but instead to scale the model residual itself before calculating the associated
loss.

In addition,β∗

n is still a function that permits an exponential forgetting of past observations
in the vicinity of the considered fitting points. However, itis modified here so that only non-
suspicious observations are dealt with. It is defined similarly to βn in (14), except thatλeff∗

i the
robust effective forgetting factor at timei is instead given by

λeff∗
i = 1 − (1 − λ)w⊥

i ψ
′

m

(

ǫ⊥i

√

w⊥

i , c

)

(37)

The robustification of the recursive estimation procedure necessarily implies a change in the
updating of the augmented covariance matrix. The updating formula forP+∗

n−1 is obtained in a
similar fashion than that formulated in (23), i.e.

P
+∗

n =
1

λeff∗
n

[

P
+∗

n−1 − γnψ
′

m

(

ǫ⊥n
√

w⊥
n , c

)

P
+∗

n−1znzn
⊤
P

+∗

n−1

1 + γnzn
⊤P

+∗

n−1zn

]

(38)

with γn given by (24).

The above updating formula means thatP
+∗

n−1 is not updated, i.e.P+∗

n = P
+∗

n−1, if the new
observations are considered as suspicious. The power method, as well as (28), are finally applied

in the same manner in order to obtain the local model coefficientsφ̂
⊥∗

n at timen.

5 Simulations

Simulation results on semi-artificial datasets are used to highlight the properties of the proposed
local linear regression with adaptive orthogonal fitting tomodel the conversion of wind speed
to power. The interest of such semi-artificial datasets is that the true power curve is available.
This will allow us to demonstrate the greater ability of the proposed regression with orthogonal
fitting (in comparison to classical LS fitting) to approximate the true regression function when
noise is present in both wind speed and power variables.

5.1 Semi-artificial data

Semi-artificial means that wind speed measurements from a meteorological mast at the wind
farm are used as a basis, but related power values are obtained by transformation through a
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modelled power curve. The wind farm considered is located inNorth Jutland, Denmark. Wind
speed measurements consist of hourly averages. It is assumed that such measurements are
noise-free. The time-series of wind speed and related powerproduction cover a period ofN =
10000 hours. They are normalized so that they take values in the unit interval. The model for
the nonstationary power curve is introduced in a first stage.The noise that is added to obtain
simulated but realistic datasets of wind speed and related power production is then described.

5.1.1 Model for the true power curve

The power curve giving the relation betweenu∗i andy∗i , the true wind speed and power values,
is modelled as a nonstationary double exponential function. At time stepi (i = 1, . . . , N), gi is
defined as

gi(u
∗) = exp (−τi,2 exp (−τi,1u∗)) (39)

so that the shape of the power curve is controlled by the parametersτ i = [τi,1 τi,2]
⊤. These

parameters are chosen to evolve linearly in time fromτ 1 = [10 40]⊤ to τ N = [11 40]⊤. The
resulting nonstationary power curve is illustrated in Fig.2, by giving its initial and final states.
The scatterplot of wind speed and power data over the whole simulation period is depicted
in Fig. 3(a). Owing to the distribution of wind speed values, the nonstationary power curve
actually has a significantly larger number of data points in its low power part than in its high
power part. Note that in real-world test cases, the power curve function may also be a function
of other explanatory variables e.g. wind direction.

—– Here is Fig. 2 —–

5.1.2 Noise sequences and resulting simulated data

In order to obtain simulated, but realistic, wind speed and power data for the wind farm, two
different types of noise sequence are envisaged. These noise sequences{ωx

i } and{ζx
i }, whose

characteristics are a function of a given variablex (i.e. either wind speed or power), are such
that:

• {ωx
i } is an additive Gaussian noise with zero mean and whose standard deviationσω is a

function of the level ofx, i.e.

ωx
i ∼ N (0, σω(x)2), σω(x) = aω + 4x(1 − x)bω (40)

Such additive noise simulates a permanent noise in the powermeasurements. It is as-
sumed that the variance of this noise is directly influenced by the slope of the power
curve. This is why a logistic type of function is chosen. On the wind speed axis, this
additive noise stands for the amplitude error present in wind speed forecasts. Note that
the use of such a logistic type of function is not fully realistic in this case, but it has the
interest of increasing the difficulty of estimating the target regression;
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• {ζx
i } is an impulsive noise of the same form as{ωx

i }, i.e.

ζx
i ∼ N (0, σζ(x)

2), σζ(x) = aζ + 4x(1 − x)bζ (41)

except that this noise is added at random locations characterized by a binary sequence
{Ii}. The proportion of data corrupted by this impulsive noise isgiven byπ. If consid-
ering power measurements, such a noise simulates the presence of gross errors (or even
outliers) in the data. They may originate from electronic transmission problems for in-
stance. For the case of wind speed, this type of noise simulates the presence of phase
errors in meteorological forecasts, which are less frequent than amplitude errors but of
significantly larger magnitude.

Subsequently, the time-series{yi} of simulated power data is obtained by adding these two
noises to the noise-free power data{y∗i },

yi = y∗i + ωy∗

i + ζy∗

i Iy∗

i , i = 1, . . . , N (42)

The time-series{ui} of simulated wind speed data is obtained in a similar way, i.e. with

ui = u∗i + ωu∗

i + ζu∗

i Iu∗

i , i = 1, . . . , N (43)

For both time-series, data points out of the unit interval are forced to its bounds. The noises in
the resulting dataset obviously deviate from being Gaussian.

For the simulations in the present Section, the parameters controlling noise sequences are cho-
sen such that

• wind power:(aω, bω) = (0.004, 0.9) for the additive noise, and(π, aζ, bζ) = (0.2, 0.012, 0.2)
for the impulsive noise.

• wind speed:(aω, bω) = (0.005, 0.04) for the additive noise, and(π, aζ, bζ) = (0.2, 0.01, 0.15)
for the impulsive noise.

The resulting dataset is depicted in Fig.3: Fig. 3(a) shows the noise-free data, while the cor-
rupted ones can be seen from Fig.3(b). This scatterplot of semi-artificial wind speed and related
power data resembles those one would see from real-world data, such as those studied in e.g.
(Pinson 2006).

—– Here is Fig. 3 —–

5.2 Selection of relevant parameters

Remember that̂φ
⊥

n denotes the local model coefficients obtained with adaptiveorthogonal fit-

ting at timen, while φ̂
⊥∗

n refers to those obtained with the robust version of the method. By
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extension, let us use these notations for the related nonparametric and time-varying estimates
of the power curve at that same point in time. Both methods arebenchmarked against linear
regression with adaptive LS fit, as initially described byNielsenet al. (2000) and subsequently
used for the wind power application in (Nielsenet al. 2002). The power curve estimated with
LS fit at timen is denoted bŷφn.

For both types of adaptive fitting of local linear models, onehas to select or optimize a set
of meta-parameters consisting of(i) the fitting points on the wind speed range which locate
where the local linear models are to be defined and fitted, and(ii) the bandwidth value at each
fitting point which controls the proportion of local data used for model fitting. The methodology
employed for the selection of these meta-parameters is described in the following.

In a first stage, the fitting points̃u(j) are chosen to be uniformly spread on the unit interval,

ũ(j) =
j − 1

J − 1
, j = 1, . . . , J (44)

so that onlyJ , the number of these fitting points, has to be selected. It is arbitrarily set to
J = 20 here, since it has been noticed that when set to a sufficientlylarge valueJ did not have
qualitative effects on the properties of the various estimators. In a second stage, the bandwidth
valuesh(j) are parameterized from our knowledge of the distribution ofwind speed values.
Such distribution is right-skewed, with the density of the data being inversely proportional to
the level ofu. Consequently,h(j) is defined as

h(j) = h0 + h1(j − 1), j = 1, . . . , J (45)

with h0, h1 > 0, so that local model coefficients for high wind speed levels can be estimated
from more observations, even if these observations are located further from the fitting point.
Another advantage of this parametrization is that instead of determining all theJ bandwidth
values, only the constanth0 and scale factorh1 have to be selected. In general one should have
1/J ≪ h(j) in order to obtain smooth model estimates.

Then, for each type of estimator, the meta-parameters are determined with one-fold cross-
validation: the first 2000 time-steps of both time-series are considered as a buffer training
period (for initialization of local model parameters), while the following 2000 time-steps form
the cross-validation period. The optimal set of meta-parameters is chosen as that which mini-
mizes a Mean Square Error (MSE) criterion for 1-step ahead forecasts, calculated against the
corrupted data (as it would be the case for real-world applications), over the latter period. In
practice, it is obtained by trial and error.

Table1 gathers the optimal sets of meta-parameters for the variousestimators determined from
the cross-validation procedure. The bandwidth values are significantly larger when employing
adaptive orthogonal fitting of the local linear models. Thisfollows from the definition of the
weights to be assigned to observations (cf. (10)). Since these are a function of the distance
between the fitting point considered and observations, but along the regression curve, distances
will generally be of larger magnitude. Hence, in order to have a sufficient number of effective
observations for estimating the local coefficients, the bandwidth also needs to have a larger
value.
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—– Here is Table 1 —–

In parallel to the selection of the meta-parameters and for the specific case of̂φ
⊥

n and φ̂
⊥∗

n ,
the error bound that controls the number of iterations of thepower method every time the aug-
mented covariance matrix is updated is set to10−5. Finally, the effect of the choice of the

threshold pointc, which is the last parameter needed for fully definingφ̂
⊥∗

n , will be studied in
the following Paragraph.

5.3 Evaluation of estimated power curves

The remainder of the datasets, consisting of the last 6000 time-steps and referred to as the eval-
uation set, is used for a 1-step ahead forecasting exercise with the aim of assessing the ability of
the various estimators to approximate the true power curve.In addition, since both noise-free
and corrupted data are available, this will allow us to comment on the fact that certain error
measures, when calculated against corrupted data, may not illuminate the greater ability to ap-
proximate the true regression. The 1-step ahead forecasts are evaluated with both a Normalized
Mean Absolute Error (NMAE) and a Normalized Root Mean SquareError (NRMSE) criterion.
Both error criteria are referred to as normalized since power values are contained in the unit in-
terval. They are thus expressed as a percentage of the nominal power of the wind farm. Even if
our aim is clearly to obtain a minimum MSE estimator, the NMAEcriterion may provide better
information about improving power curve estimation since it would give less weight to large
errors related to suspicious data. For a thorough discussion on the choice of error measures for
evaluating wind power forecasts, we refer to (Madsenet al. 2005). Error criteria are calculated
against both noise-free and corrupted data. They will be referred to as NMAEt (and NRMSEt)
for the former case, and as NMAEr (and NRMSEr) for the latter one.

In addition to the set of meta-parameters given in Table1 for the case of local linear regression
with adaptive orthogonal fitting, one has to choose the threshold parameterc for fully defining

φ̂
⊥∗

n . Here,c is not determined with the same type of cross-validation procedure than that used
above (which would be the usual approach for a real-world application), it is instead decided to
show the influence ofc on the ability of this estimator to approximate the true regression model.
This ability is quantified with the NRMSEt criterion, whose value as a function ofc is depicted

in Fig. 4. Whenc equals 1, there is no observation whose influence is downweighted,φ̂
⊥

n and

φ̂
⊥∗

n are then equivalent, resulting in the same level of forecastperformance. The NRMSEt
criterion decreases asc gets smaller, until a minimum is reached. When further decreasing
the value of the threshold point, the NRMSEt criterion increases again: the fact that there
are too many observations whose influence is downweighted negatively impacts the forecast

performance of̂φ
⊥∗

n . A minimum NRMSEt is reached forc = 0.11.

—– Here is Fig. 4 —–

Table2 summarizes the 1-step ahead forecast performance when using the three different power
curves obtained with the three estimators by gathering the values of all error criteria mentioned
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above over the evaluation set. The decrease in NMAEr when going from LS to orthogonal fit-

ting is non-negligible. However, the NRMSEr criterion is of larger magnitude for̂φ
⊥

n than for
φ̂n. Meanwhile, it appears that when error criteria are evaluated against the noise-free data (i.e.
NMAEt and NRMSEt), they both have dramatically lower values after orthogonally fitting local

linear models. This shows thatφ̂
⊥

n has a higher ability to approximate the underlying regression
model. Hoever, this also tells that such higher ability is hard to see when evaluating forecast
performance against real-world measurements. Such results nicely fit with the theoretical re-
sults in (Jonsson 1994), which indicates that an LS estimator may exhibit higher out-of-sample
forecast performance when calculated against noisy data, even though it does not approximate
well to the underlying regression model. Here, the NMAEr measure is actually more informa-
tive than the NRMSEr one, since it makes it possible to see whether the evaluated estimator
is more central. This point is also in line with the discussion in (Madsenet al. 2005) on error
measures in wind power forecasting.

In addition, Table2 reveals the benefits of the robustification of the estimationprocedure used to
fit orthogonally to the local linear models. All error measures actually have lower values when
focusing on the robust version of the estimator. Primarily,it is clear that the decrease in error
criteria calculated against noise-free data is of practical magnitude: the decrease in NMAEt is
of 9.71% while that in NRMSEt reaches 9.97%. Note that benefits of orthogonal fitting (instead
of LS fit) of local linear models are much larger than those from additional robustification.

—– Here is Table 2 —–

In a last stage, the final power curves obtained withφ̂n andφ̂
⊥∗

n are compared. They are both
depicted in Fig.5, along with the true power curve at the end of the evaluation set. The curve

corresponding tôφ
⊥∗

n provides a closer approximation of the final true power curve. This is
mainly true in the zone where the density of data is lower, i.e. for high power values. Using a
LS criterion for fitting local linear models yields a tendency to flatten the shape of the estimated
power curve. This is not the case when orthogonally fitting these models.

—– Here is Fig. 5 —–

6 Conclusions

Local linear regression is an appealing approach to modeling the conversion of wind to power,
for which the local models are commonly fitted with an LS criterion. Doing so is actually
equivalent to making the assumption that a noise component is present in the response variable
only. This assumption is not realistic for the wind power forecasting application, when the
wind-to-power conversion function is estimated with meteorological forecasts as explanatory
variables. Therefore, even if a power curve estimated with LS fit may be considered optimal in
a minimum-MSE sense (with the MSE calculated against the noisy data), it does not provide an
accurate estimate of the true underlying conversion function. This drawback of the LS-fitting
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approach has been clearly illustrated in the present paper.

In order to relax the assumption of the noise component beingon the response variable only, the
definition of local linear regression with orthogonal fitting has been introduced. This follows
the concept of self-consistency, and has an aim similar to that of principal curves, though it
is restricted to a nonparametric regression framework: it is to locally minimize the Euclidean
distance between the observations and the estimated regression curve. In practice, the estimates
of the local model coefficients are defined as those that minimize a TLS criterion. In order
to accommodate long-term variations of the local model coefficients, an adaptive estimation
method based on tracking of the left-most eigenvector of theaugmented covariance matrixP+

n

has been described. The interest of such a method is that it eliminates the need to compute
a singular value decomposition every time a new observationis available, which significantly
decreases computational costs. In addition, only the augmented covariance matrixP+

n needs to
be updated and stored at each time-step. Note that it will be possible in the future to consider
other recursive schemes to updateP

+
n . More particularly, one may control the information

content used to updateP+
n in the direction of its largest eigenvalue, e.g. with selective forgetting

methods (Parkumet al. 1992).

The ability of local linear regression with adaptive orthogonal fitting to better estimate the true
conversion function of wind to power has been shown from simulations on a semi-artificial
dataset, i.e. for which both the true regression model and realistic simulated data were available.
When calculating error criteria against the true regression model, the improvement achieved
when applying the proposed regression and estimation methods is indeed significant. However,
it has been clearly explained that such improvement is difficult to appraise when evaluating
estimated regressions against corrupted data. This ability of better approximation of the under-
lying conversion process is a desirable feature for application to ensemble prediction of wind
power. Future works will concentrate on evaluating the benefits of using the proposed regres-
sion method for this purpose.
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Fig. 1. Fitting of a local linear model with LS and TLS criteria. In the former case, the distance to be
minimized is measured along they-axis (dashed line), while for the latter, this distance is that between
the observationpi and its orthogonal projectionp⊥i on the curve (dash-dotted line). The fitting point
p̃ is represented by a square while the data points are represented by circles. For both types of fitting,
the location ofp̃ on theu-axis is user-defined, while its position on they-axis results from the fitting
approach employed.
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Fig. 2. Model for the true power curve. This model consists in a double exponential function, whose
parametersτ i linearly vary (in time) fromτ 1 = [10 40]⊤ to τN = [11 40]⊤ over the dataset.
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(a) Noise-free nonstationary power curve
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(b) Corrupted nonstationary power curve

Fig. 3. Simulated data. Both wind speed and power data defining the true power curve are corrupted
with independent noise sequences. The noise sequences include additive and impulsive components.
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Fig. 4. Evolution of the NRMSEt criterion as a function of the value of the threshold parameter c for

φ̂
⊥∗

n . The minimum NRMSEt is attained forc = 0.11.
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Fig. 5. Comparison of the final power curves obtained withφ̂n and φ̂
⊥∗

n , that is, from local linear
regression whose coefficients are either fitted with an LS or aTLS criterion. One can visually appraise
the greater ability of the former estimation method to yielda better estimate of the target regression.
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Table 1. Optimal tuning parameters when fitting local linear regression with LS and TLS criteria. They
are obtained from a one-fold cross-validation procedure.

h0 h1 λ
LS fitting 0.024 1.5 0.987

TLS fitting 0.05 3.5 0.994
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Table 2. Minimum values of the NRMSEr criterion and related values of the other evaluation criteria
for the various estimators. Error criteria are expressed asa percentage of the nominal capacity of the
wind farm.

φ̂n φ̂
⊥

n φ̂
⊥∗

n

NMAEr [%] 7.1453 6.9398 6.8874
NMAEt [%] 2.4677 1.0805 0.9756

NRMSEr [%] 11.4801 11.5909 11.5713
NRMSEt [%] 3.0519 1.3215 1.1897
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