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Abstract  

Background: An important concern revealed in the public discussion of the use of genetically 

modified (GM) plants for human consumption, is the potential transfer of DNA from these plants to 

bacteria present in the gastrointestinal tract. Especially, there is a concern that antibiotic resistance 

genes used for the construction of GM plants end up in pathogenic bacteria, eventually leading to 

untreatable disease. 

 

Findings: Three different bacterial species (Escherichia coli, Bacillus subtilis, Streptococcus 

gordonii), all natural inhabitants of the food and intestinal tract environment were used as recipients 

for uptake of DNA. As source of DNA both plasmid and genomic DNA from GM plants were used 

in in vitro and in vivo transformation studies. Mono-associated rats, creating a worst-case scenario, 

did not give rise to any detectable transfer of DNA.  

 

Conclusion: Although we were unable to detect any transformation events in our experiment, it 

cannot be ruled out that this could happen in the GI tract. However, since several steps are required 

before expression of plant-derived DNA in intestinal bacteria, we believe this is unlikely, and 

antibiotic resistance development in this environment is more in danger by the massive use of 

antibiotics than the consumption of GM food harbouring antibiotic resistance genes.  

 

 



 

Findings  

A major concern in relation to marketing of genetically modified (GM) plants for human 

consumption is the possible transfer of antibiotic resistance genes used as marker genes in GM 

plants to the human or animal intestinal microbiota. The uptake of these resistance genes by bacteria 

present in the gastrointestinal (GI) tract could potentially render pathogens resistant to antimicrobial 

agents currently used, thereby resulting in untreatable diseases [1]. 

Transformation is the only known gene transfer mechanism by which bacteria can take up DNA 

released from plants. One key factor is thus DNA persistence in the GI tract, the availability of 

competent bacteria, and their state of competence [2]. Several studies indicate that DNA, and 

especially plant-associated DNA, is able to survive the conditions in the GI tract and be available 

for uptake by bacteria resident in the gastrointestinal tract  [3-8].  

Several of the bacteria found in the GI tract, either carried by the food or innate GI bacteria, have 

been found to be naturally transformable [9]. But the question is whether these bacteria also possess 

or develop competence in this environment. In this work we used as recipients the naturally 

transformable bacteria Bacillus subtilis which is often a contaminant of food, and Escherichia coli 

and Streptococcus gordonii that are part of the normal gut microbiota. We used mono-associated 

rats that can be considered as a worst-case model, and as a biological magnifier making it possible 

to study one bacterial species separately and often in high number. All animal experiments were 

carried out under the supervision of the Danish National Agency for Protection of Experimental 

Animals. 

 



Escherichia coli 

In vitro experiments were performed using an overnight culture of DB1317 (Table 1) mixed with 

plasmid pMR2 (100 µg/ml) in Luria-Bertani (LB) media and incubated at 37 °C. Sampling at 2 and 

4 hrs gave rise to transformants on LB media containing chloramphenicol (25 µg/ml) at a frequency 

of up to 10-7 transformants (TF) per recipient (data not shown). Plasmid extraction and restriction 

analysis confirmed that transformants harboured the plasmid pMR2 (data not shown). Cells 

incubated without addition of plasmid DNA (negative controls) did not give rise to any 

chloramphenicol resistant colonies. When adding faecal or intestinal samples from germfree rats to 

the LB medium to a final concentration of 10%, and performing the same experiment as described 

above, no transformants were detected (detection limit 2.3 x 10-9 TF/rec).  

Although ex vivo experiments with intestinal and faecal samples could not detect any uptake of 

DNA, the situation may be different in vivo where specific environmental factors may be present 

enhancing uptake of DNA by E. coli. Therefore an in vivo experiment with E. coli strain MS15978 

(DB1317 harbouring plasmid pMR1) was performed. Four germfree Sprague-Dawley rats (14-17 

weeks old) bred and housed as previously described [6] were dosed p.o. by gavage with 1 ml cell 

suspension (app. 109 cfu/ml) of E. coli strain MS15978 at day 1 of the experiment. One rat served 

as a control and was not fed with plasmid DNA, while the other three animals received 100 µg 

plasmid pMR2 each working day from day 8 to 17 of the experiment. Dosing the rats with plasmid 

pMR2 gave us the opportunity to look at uptake (chloramphenicol resistance, 25 µg/ml) as well as 

homologous recombination (kanamycin resistance, 500 µg/ml) by marker-rescue of the deleted 

nptII gene on pMR1 [10]. The strain colonized the animals to a concentration of up to 1011 cfu/g 

faeces (Figure 1). However, the plasmid pMR1 was not stably maintained in the strain MS15978 

during colonization of the animals. Therefore a selective pressure was put on the plasmid (1000 

µg/rat/day of ampicillin p.o. by gavage) at day 10 to 17 of the experiment. This restored the 



population of pMR1 containing cells (see Figure 1). At sacrifice at day 17, pMR1 containing E. coli 

cells were found throughout the intestinal tract at the following app. densities: duodenum: 103 cfu/g; 

ileum: 106 cfu/g; caecum and colon: 108 cfu/g. Transformants were detected neither in faecal or 

intestinal samples on Brain Heart Infusion (BHI) media containing either chloramphenicol (25 

µg/ml) or kanamycin (500 µg/ml) (detection limit 100 cfu/g).   

In this study we observed low-frequency spontaneous transformation of E. coli strain DB1317 

growing in LB media without addition of divalent cations or temperature shift, conditions pivotal 

for high frequency transformation. However, adding faecal or intestinal samples from germfree rats 

to the LB media let drop the number below the detection limit of 2.3 x 10-9 TF/rec. This could 

indicate that adding these samples either inhibited uptake of DNA, or that the DNA was degraded in 

the samples. A recent published paper (Nordgaard et al., 2007) observed the same inhibitory effect 

of intestinal content from germfree mice on the transformation process of Acinetobacter baylyi. 

Previous studies incubating plant DNA in GI samples ex vivo showed that the DNA was rapidly 

degraded in samples from the small intestine, whereas hardly any degradation was observed when 

incubating the DNA in samples from the lower part of the GI tract [6]. However, DNA persistence 

was studied using PCR, a sensitive method needing only scarce amounts of DNA for amplification. 

Studies incubating plasmid DNA in faecal samples from germfree rats showed that by simple gel 

electrophoresis, the plasmid could not be observed after 10 minutes of incubation, whereas by PCR 

a strong band could be detected even after 20 min of incubation (unpublished results). Since the 

transformation frequency in LB media is already low, the degradation of DNA in the samples is 

probably lowering the transformation frequency further, so that a possible transfer event is below 

detection limit. The same may be true for the in vivo studies where no uptake of DNA by E. coli 

could be observed, in concordance with an earlier study showing that although plasmid DNA was 

detected in the GI tract, the concentration was very low [6].  



 

 

Bacillus subtilis 

Using minimal salt (MS) medium, the plasmid pAW105, and following the in vitro transformation 

procedure of Spizizen [11] we got a transformation frequency of up to 10-6 TF/recipient (Figure 2). 

PCR with primers detecting pAW105 sequences confirmed that the obtained transformants 

harboured the plasmid (data not shown). As such the used system for in vitro studies can be 

regarded as an efficient transformation system. Supplementing the MS medium with 10% intestinal 

contents (stomach, ileum, caecum, or colon) from B. subtilis mono-associated rats resulted in 

transformants from all samples with a frequency of up to 1.1 x 10-7 TF/recipients (data not shown). 

This showed that this concentration of intestinal content allows transformation of B. subtilis to 

nearly the same extent as in pure MS medium. 

One animal experiment was performed with ten germfree rats mono-associated with B. subtilis 168 

and eight of those fed high amounts of plasmid pAW105. Figure 3 shows that in spite of daily doses 

of overnight cultures containing app. 109 B. subtilis cells, the bacteria only reached a concentration 

in faeces ranging from 103 to 105 cfu/g. During the experimental period of three weeks, the animals 

received about 100 µg of plasmid DNA each working day, but neither in faecal or intestinal samples 

transformants on LB + Cm (5 µg/ml) were detected (detection limit 10 cfu/g).  

An explanation of lack of transformants in the rats could be the low number of B. subtilis present in 

the GI tract with app. 103 cfu/g in ileum, 103 cfu/g in caecum and 105 cfu/g in colon. In vitro the 

highest transformation frequency observed was 10-6 TF/recipient. Therefore the likelihood of 

detection of a transformed B. subtilis within a faecal population of 103-105 cfu/g is unlikely.  

 



Streptococcus gordonii 

Previous published studies have shown that the used strain, LTH 5597, is capable of taking up 

plasmid DNA and genomic plant DNA under in vitro conditions [12].  

The strain LTH 5597given by p.o gavage to ten germ-free rats at day 1 and 4 colonized well (Figure 

4), but it was noticed that the amount of erythromycin resistant cells was declining during the first 

week, indicating that plasmid pMK110 was lost from the population. Therefore, from day 8 of the 

experiment all animals received 100 µg erythromycin each working day throughout the rest of the 

experiment. As can be seen from the figure this restored the population of cells containing plasmid 

pMK110. 

At day 7 to 10 of the experiment, eight animals received 1 mg DNA extracted from GM potato; this 

corresponds to approximately 109 nptII genes. Faecal samples were taken and plated onto selective 

media (BHI containing 1 mg/ml kanamycin), but no transformants were detected (detection limit 10 

cfu/g faeces). To select for potential transformants, samples were pooled, incubated in Brain Heart 

Infusion (BHI) media containing 1 mg/ml kanamycin at 37 °C overnight, and plated onto selective 

media containing kanamycin. But again no transformants were detected (detection limit 10 cfu/ml).  

At day 22 of the experiment, the test animals received an overnight culture of E. coli harbouring the 

plasmid pMR2, which contains a whole copy of nptII but without a promoter. The strain established 

well in the animals with app. 108 cfu/g faeces, but again no kanamycin resistant colonies of S. 

gordonii were detected (detection limit 10 cfu/g faeces). At sacrifice the total number of bacteria in 

the different sections of the intestine where as following: duodenum: 104 cfu/g; ileum: 106 cfu/g; 

caecum and colon: 108 cfu/g. And also here no transformants were detected (detection limit 10 cfu/g 

intestinal content).  This is in agreement with another study with germ free rats mono-associated 

with S. gordonii and fed large amounts of plasmid DNA that also failed to show transformation in 

vivo [12].  



 

Concluding remarks 

In the present study, the three studied bacterial species were unable to take up free DNA in a 

germfree animal model. Using germfree mice, another study using Acinetobacter baylyi also failed 

to show in vivo transformation [13]. However, there are several more transformable bacterial 

species that are relevant for the intestinal situation [9], so we cannot rule out the possibility of 

transformation to happen in the GI tract. Nevertheless, many steps are required before a successful 

transfer of an antibiotic resistance gene from plant to bacteria has occurred. The DNA has to be 

released from the plant material, the DNA must survive the harsh gastrointestinal environment; 

competent bacteria must be present and take up the DNA, and finally has the gene to be integrated 

into the genome in a place where it can be expressed. Therefore the development of antibiotic 

resistant pathogenic bacteria is much more favoured by the use of antibiotics thereby putting a 

selective pressure on the intestinal environment, than by the consumption of antibiotic resistance 

genes present in GM plants. 
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Legends to figures 

 

Figure 1 

Colonization of four mono-associated rats with E. coli strain MS15978. Faecal samples were plated 

on both BHI (♦) and BHI including ampicillin (■). From day 10 all rats were dosed with 1000 µg 

ampicillin each day to restore the population of pMR1 containing E. coli cells. The detection limit 

for detection of transformants was 100 cfu/g faeces. Vertical bars represent standard error of the 

mean (SEM). 

 

Figure 2 

In vitro transformation frequencies (transformants per recipient) of B. subtilis 168. An overnight 

culture was diluted in MS media to OD450=0.25. The culture was grown under aerobic conditions at 

37ºC. Every hour, one ml was taken out and different amounts of plasmid (0.1 µg/ml [∆], 1 µg/ml 

[♦], and 10 µg/ml [■] were added. The cultures were incubated for further 1 hr before plating on 

selective media for counting of recipients (LB) and transformants (LB + 5 µg/ml chloramphenicol). 

 

Figure 3 

Faecal concentration (cfu/g faeces) of B. subtilis recipients (■) in eight mono-associated rats. The 

concentration of the dosage culture (cfu/ml) given during the three weeks is also indicated (♦). The 

detection limit for detecting transformants was 10 cfu/g faeces. Vertical bars represent SEM. 

 



Figure 4 

Colonization of eight animals with S. gordonii LTH 5597. Faecal samples were plated on both BHI 

(♦) and BHI including erythromycin (■). From day eight, all rats were dosed with 100 µg 

erythromycin each day to restore the population of pMK110 containing cells. The detection limit 

for detection of transformants was 10 cfu/g faeces. Vertical bars represent SEM. 

 

 



Table 1. Bacterial strains and plasmids 

Strains or plasmids Description Reference or source 

Bacterial strains:   

Escherichia coli   

DB1317  recD1014 (Nuc-) CGSC 

MS15978 DB1317 harbouring pMR1, Apr This study 

MS14395 DH5α, recA1, harbouring pMR2, Cmr [14], this study 

Bacillus subtilis    

Strain 168 1A700 BGSC 

Streptococcus 

gordonii  

  

LTH 5597 TIGR strain harbouring pMK110, Eryr [12] 

   

Plasmids:   

pMR1 pBR322 vector, nptII∆NcoI, Apr 

pMR2 pACYC184 vector, nptII without promoter, Cmr 

[10] 

[10] 

pMK110 pMG36e vector, nptII∆NcoI from pMR1, Eryr [15] 

pAW105 pUC19 vector, cat from pC194, Bacillus 

thuringiensis replicon, Apr 

[16] 

   

Plant:   

Solanum tuberosum 

cv. Apriori 

Genetically modified potato containing antisense 

GBSS (granule bound starch synthase) and intact 

nptII 

AVEBE, Foxhole, 

The Netherlands 

Abbreviations: Apr: ampicillin resistance; BGSC: Bacillus Genetic Stock Center; cat: 

chloramphenicol acetyltransferase gene; CGSC: E. coli Genetic Stock Center; Cmr: 

chloramphenicol resistance; Eryr: erythromycin resistance; GBSS: granule bound starch synthase 

gene; nptII: kanamycin resistance gene. 
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