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Abstract

Photonic crystals can be designed to control and confine light. Since the introduction of the

concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure,

i.e. the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based on

numerical optimization studies, we have discovered some surprisingly simple geometric properties

of optimal planar band gap structures. We conjecture that optimal structures for gaps between

bands n and n + 1 correspond to n elliptic rods with centers defined by the generators of an

optimal centroidal Voronoi tesselation (Transverse Magnetic polarization) and to the walls of this

tesselation (Transverse Electric polarization).

PACS numbers: 42.70.Qs, 2.60, 2.70
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Photonic Crystals (PhCs) are structures composed of periodic distributions of high and

low index materials. With lattice constants of the order of the wavelength of light, PhCs

can alter or inhibit its propagation [1, 2]. PhCs are also called Photonic Band Gap (PBG)

structures referring to the forbidden frequency bands where light cannot propagate through

them. In order to control wide banded signals, it is of interest to find structures that have

maximum relative band gap sizes. The gap center frequency can afterwards be controlled

by simple geometric scaling. Depending on polarization, it seems to be well established that

planar band gap structures for Transverse Magnetic (TM) polarization consist of triangular

arrangements of circular high index (glass) rods in air and that structures for Transverse

Electric (TE) polarization consist of triangular arrangements of circular low index (air)

inclusions in a glass lattice. It is now well understood that the rod-based TM gaps can be

explained by hopping (tunneling) between individual Mie resonators and that the hole-based

TE gaps can be explained as a Bragg-like multiple scattering phenomenon [3]. However,

optimality of these structures has not been proven although it has been argued that they

should be good due to the near circular shape of the associated Brillouin zone [4]. In

general, their use is motivated by geometric simplicity, manufacturability and extensive

parametric studies [5]. In the quest for optimal planar band gap structures, a multitude

of papers have performed parameter variation studies on various simple triangular, square

and hexagonal unit cell and inclusion shapes in lower and higher bands. However, few

papers have considered the inverse problem: find the distribution of dielectric material in

air (or opposite) that maximizes the relative band gap size. Previous inverse approaches

can be divided into gradient-based approaches [6–8], exhaustive search methods [9] and

evolutionary methods [10, 11]. These papers have produced many interesting optimized

topologies. However, clear conclusions about global optima are still missing.

In this letter we conjecture that optimal PBG structures can be determined from simple

geometric considerations. More specifically we propose a simple geometric scheme that

provides (near)optimal structures with gaps between any two bands. Based on our findings

we conjecture that the globally optimal structure for TM polarization is the triangular

distribution of circular rods and that the globally optimal structure for TE polarization is a

triangular distribution of hexagonal (instead of the commonly used circular) holes, i.e. the

honeycomb structure. Our findings are based on the interpretation of an extensive numerical

optimization study.
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FIG. 1: Band diagram for a periodic arrangement of circular dielectric cylinders with εr = 11.56

and radius r/a = 0.25 in air. The two grey rectangles indicate band gaps where TM-polarized

waves cannot propagate. Insets show the reciprocal lattice with the irreducible Brillouin zone

indicated by the grey triangle (left) and the periodic lattice (right) with lattice constant a.

For lossless electromagnetic waves propagating in the xy-plane, TM (E-field in the z-

direction) and TE (H-field in the z-direction) polarized waves can be described by two

decoupled wave equations

TM : ∇2Ez(x) +
ω2εr(x)

c2
Ez(x) = 0, (1)

TE : ∇ ·
(

1

εr(x)
∇Hs(x)

)
+

ω2

c2
Hz(x) = 0. (2)

The distribution of dielectric is assumed periodic in the xy-plane and constant in the z-

direction, i.e. εr(x + Rj) = εr(x), where Rj are primitive lattice vectors with zero z-

component. The scalar fields satisfy the Floquet-Bloch wave conditions Ez = eik·xEk and

Hz = eik·xHk, respectively, where Ek and Hk are cell periodic fields. Solving (1) for wave

numbers k belonging to the boundaries of the irreducible Brillouin zone we get a band

diagram as shown in Fig. 1. We measure the relative band gap between bands n and n + 1

as

∆ωn

ω0
n

= 2
min

k
: ωn+1(k)−max

k
: ωn(k)

min
k

: ωn+1(k) + max
k

: ωn

(k), (3)

where k are all wave vector values on the boundaries of the irreducible Brillouin zone. If

∆ωn/ω
0
n > 0 for a particular n, we say that there is a complete band gap between bands n

and n + 1.
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The open question is: what is the periodic distribution of dielectric εr(x + Rj) = εr(x)

that maximizes the relative band gap between any bands ∆ωn/ω
0
n? And further: what is the

geometry that has the maximum band gap amongst all bands?

Our answer to the first question is the following: optimal band gap structures for gaps

between bands n and n+1 can be constructed geometrically by finding the minimum-energy

distribution of n points in the unit cell that satisfy symmetry and periodicity requirements.

The n points define the centers of n dielectric discs that make up the (near)optimal TM

structure. Furthermore, a Voronoi tesselation [12] based on the n points gives a partition of

the unit cell into n subdomains whose walls make up the (near)optimal TE structure.

The geometries described above are known as Centrodial Voronoi Tesselations and may

be found as follows [12]. 1) Distribute n points in the unit cell satisfying symmetry and

periodicity requirements. 2) Find the energy minimizing point distribution by the so-called

Lloyd’s algorithm, i.e. repeat a) compute the Voronoi diagram corresponding to the point

distribution, b) compute the centroid of each cell of the Voronoi diagram and c) move each

point to the centroid of the cell (still satisfying symmetry and periodicity requirements).

3) After convergence of the Lloyd’s algorithm define the TM geometry as dielectric discs

centered in the converged points and with radius r/a ≈ 0.40(εd
r)
−0.31/

√
n (exponent based

on numerical experiments) and define the TE geometry as the walls of the corresponding

Voronoi diagrams with wall thickness t/a ≈ 0.40(εd
r)
−0.34/

√
n where εd

r is the relative per-

mittivity of the dielectric. The procedure is illustrated for the square unit cell, n = 10 and

imposed 45 degree symmetry in Fig. 2. Optimal point positions and corresponding Voronoi

tessellations for n = 1 to 15 computed for square and rhombic unit cells with imposed 45

and 30 degree symmetries are shown as black dots and dashed lines, respectively, in the

composite figure 3. To answer the second question above, the global minimizer for Lloyd’s

algorithm is the regular hexagonal cell structure corresponding to a triangular distribution

of generator points [12]. Hence, based on our findings, the globally optimal configuration

for the TM case corresponds to a triangular arrangement of discs and for the TE case it is

the perfect honeycomb structure.

In the following, we describe the numerical algorithm that lead to above answers. The

goal is to find the periodic and symmetric distribution of dielectric that maximizes the

relative band gap (3) for either polarization case. The unit cell is discretized into N × N

square or rhombic elements. The distribution of dielectric is determined in a pixel-like
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FIG. 2: Geometrical procedure for generating (near)optimal planar band gap structures demon-

strated on a square cell for band n = 10. a) Initial point positions satisfying symmetry and

periodicity for Lloyd’s algorithm with free geometric parameters b1 and b2. b) Converged point

positions and associated Voronoi tessellation. c) (Near)optimal TM structure (blue) TE structure

(red) in air (grey).

fashion by the pseudo density vector ρ of length N2, where the individual elements of ρ

can take the value 0 (corresponding to air) or 1 (corresponding to dielectric). Hence, the

spatial dielectric distribution can be described by εr(ρ) = 1 + ρ(εd
r − 1), ρ ∈ (0, 1)N2

,

where the relative permittivity of air is assumed to be unity. Based on this discretization

and geometry description, we use the Finite Element Method to solve (1) or (2) for the 16

lowest eigenvalues and 30 wave vector values evenly distributed along the boundaries of the

irreducible Brillouin zone (Fig. 1). Relative band gap sizes are then found from (3).

Due to the complicated nature of the solution space, the optimization problem cannot

be solved directly by gradient based methods. On the other hand, evolution based or other

random search algorithms will be inefficient due to the large number of design variables

(N2 = O(104)) needed to describe the geometry sufficiently accurately. Therefore, we start

by an exhaustive search on coarse grids (Figs. 4a, b). During the search, we store the 20 best

topologies for each band. After a visual inspection, we select the 5 best topologically different

candidates for each band and map the topologies to fine grids. Using the refined topologies as

initial guesses, we use a gradient based algorithm known as topology optimization [6, 7, 13]

to find the optimal fine-grid structures (Fig. 4c).

The results of our optimization procedure applied to square and rhombic unit cells and

εd
r = 11.56 (corresponding to GaAs) are shown in Fig. 3. The composite plot shows the opti-

mized TM structures for each band n in blue and the optimized TE structures in red. Grey

5



FIG. 3: Composite picture showing optimal point positions (black dots) obtained from the Lloyd’s

algorithm and corresponding Voronoi tessellations (dashed lines) for band numbers increasing from

n = 1 (upper left) to n = 15 (lower right). Top: square unit cell and bottom: rhombic unit cell.

Colors indicate topology optimized material distributions. Blue is the optimal distribution of

dielectric for TM polarization, red is the optimal distribution of dielectric for TE polarization and

grey indicates air.
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c)

FIG. 4: Two-step optimization process. a) Coarse grid with symmetry lines for a) square unit cell

with N = 10 and 15 free design variables and b) rhombic unit cell with N = 11 and 16 design

variables. c) Result of optimization process for coarse rhombic grid for band number n = 10 (left)

and fine grid (N = 89) solution (right).

indicates air. The results are surprisingly simple and visually pleasing. We observe that the

optimized TM structures consist of evenly distributed elliptic or circular discs and that the

optimized TE structures are sub-partitioning closed-walled structures. The number of discs

and the number of sub-partitions equal the band number n and the TE structures seem to

be Voronoi diagrams based on a point set defined by the centers of the TM discs. These

observations lead us to the conclusions that optimal band gap structures can be constructed

by simple geometric rules. It is also seen that the point positions (black dots) obtained

from the Lloyd’s algorithm are virtually identical to the centers of the (blue) dielectric rods

obtained from the topology optimization procedure for all bands, both square and rhombic

unit cells. Also, in most cases the walls of the geometrically obtained Voronoi tessellations

coincide with the topology optimized (red) dielectric distributions. One noteworthy excep-

tion is the optimal topology obtained for the square cell, band n = 9, where the topology

optimized TE and TM structures correspond to two different local minima of the Lloyd’s

algorithm. This indicates that apart from the simple geometric properties of optimal band

gap structures, the exact distribution of dielectric still plays a role in the determination of

the optimal topologies and gap sizes – this explains our use of the term (near)optimal in

describing the geometrically obtained structures. Modifications to the ideal geometries are
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also seen as ellipticity of the TM discs in the cases where the distances to nearest neighbors

are varying (the long axis is oriented in the direction of the smaller neighbor distance, see

e.g. square cell gap n = 3 in Fig. 3). This is also observed for square cell gap n = 5, where

the distance from the center point to all neighbors is large, resulting in a small diameter of

the center disc.

To further support our conslusions, we compare the geometric energy of the centroidal

Voronoi tesselations with the relative band gap sizes obtained by the topology optimization

algorithm. The energy is defined as
∑n

i=1

∫
Vi
||x−xi||dx, where Vi is the area of each Voronoi

region and xi is the coordinate of generating point i. If we take the inverse of this energy

and multiply it with the energy of the perfect honeycomb, we get an inverse normalized

energy which is unity for the optimal hexagonal partition and decreases for higher energy

partitions. Energies and relative band gap sizes for the topology optimized structures are

plotted with respect to the band number in Fig. 5. The correlation is seen to be very good.

Gap size variations with respect to band number are much smaller for the square cell since

energy and band gap minimizing hexagonal partitions do not fit into the square unit cell for

small n with the imposed symmetry. On the other hand, the rhombic unit cell both allows

for the optimal hexagonal cell partition (bands n = 1, 4 and 9) and the worst case partitions

(bands n = 2 and 5), hence providing much bigger variations in gap sizes. The maximum

relative band gap size over all bands and unit cell geometries and TM polarization is 0.48

for the triangular distributions of circular discs in the rhombic unit cells (for bands 1, 4

and 9) and 0.52 for TE polarization with the honeycomb-like structures with hexagonal air

inclusions in the rhombic unit cells (for bands 1, 4 and 9).

Our results provide a new understanding of previous findings from the literature. The

optimal triangular pattern of rods for the TM case maximizes the distance between indi-

vidual rods and hence retards tunneling between Mie resonators and the corresponding TE

structures are the best possible realization of an isotropic equi-distance 2D Bragg grating.

Also, most of our optimized square cell structures can be found in ref. [8]. For those cases

where there are discrepancies, our band gap sizes are larger. In [11] it is suggested that

relaxation of symmetry requirements may increase gap size. This is true and we note that

their optimized structure is the best possible realization of a hexagonal hole structure in a

square cell. Again, this confirms our conclusions.

The optimality of triangular arrangements of discs for the TM case is already generally
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FIG. 5: Relative band gaps and geometric energies vs. band number for square cell (top) and rhom-

bic cell (bottom). Band gaps for TM polarization (blue lines and empty circles), TE polarization

(red lines and filled circles) and inverse normalized energy (black dashed and stars).

accepted. For the TE case, the triangular arrangement of circular holes is the established

geometry, however, the gain in relative band gap size is probably too small (gap for hexagonal

holes is 0.52 compared to 0.50 for circular holes) to merit the added complexity of having to

etch hexagonal holes. On the other hand, competing objectives like minimization of pressure

drop for opto-fluidic systems [14], isotropy or local defect optimizations may result in other

structures being optimal. Here, our conclusions on the geometric properties of optimal gap

structures and associated gap values may be of help.

We have also applied our optimization algorithm to the case of full gaps, i.e. simultaneous

TM and TE gaps. However, we found no systematism for this case. In the future we will

extend our procedure to the full 3D case and furthermore we are considering applying the
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topology optimization method to other interesting crystal structure design problems like e.g.

surface plasmon photonics.
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