
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction

Larsen, Mette Voldby; Lundegaard, Claus; Lamberth, K.; Buus, S.; Lund, Ole; Nielsen, Morten

Published in:
BMC Bioinformatics

Link to article, DOI:
10.1186/1471-2105-8-424

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of
methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 424. DOI: 10.1186/1471-2105-8-
424

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13732851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/1471-2105-8-424
http://orbit.dtu.dk/en/publications/largescale-validation-of-methods-for-cytotoxic-tlymphocyte-epitope-prediction(23ae6db9-2d27-408c-b047-3a979e0b7057).html


BioMed Central

Page 1 of 12
(page number not for citation purposes)

BMC Bioinformatics

Open AccessResearch article
Large-scale validation of methods for cytotoxic T-lymphocyte 
epitope prediction
Mette V Larsen*1, Claus Lundegaard1, Kasper Lamberth2, Soren Buus2, 
Ole Lund1 and Morten Nielsen1

Address: 1Center for Biological Sequence Analysis, BioCentrum-DTU, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark 
and 2Institute for Medical Microbiology and Immunology, Panum Institute 18.3.12, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark

Email: Mette V Larsen* - metteb@cbs.dtu.dk; Claus Lundegaard - lunde@cbs.dtu.dk; Kasper Lamberth - k.lamberth@immi.ku.dk; 
Soren Buus - s.buus@immi.ku.dk; Ole Lund - lund@cbs.dtu.dk; Morten Nielsen - mniel@cbs.dtu.dk

* Corresponding author    

Abstract
Background: Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational
vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes.
NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so
by integrating predictions of proteasomal cleavage, TAP transport efficiency, and MHC class I affinity. At
least four other methods have been developed recently that likewise attempt to predict CTL epitopes:
EpiJen, MAPPP, MHC-pathway, and WAPP. In order to compare the performance of prediction methods,
objective benchmarks and standardized performance measures are needed. Here, we develop such large-
scale benchmark and corresponding performance measures and report the performance of an updated
version 1.2 of NetCTL in comparison with the four other methods.

Results: We define a number of performance measures that can handle the different types of output data
from the five methods. We use two evaluation datasets consisting of known HIV CTL epitopes and their
source proteins. The source proteins are split into all possible 9 mers and except for annotated epitopes;
all other 9 mers are considered non-epitopes. In the RANK measure, we compare two methods at a time
and count how often each of the methods rank the epitope highest. In another measure, we find the
specificity of the methods at three predefined sensitivity values. Lastly, for each method, we calculate the
percentage of known epitopes that rank within the 5% peptides with the highest predicted score.

Conclusion: NetCTL-1.2 is demonstrated to have a higher predictive performance than EpiJen, MAPPP,
MHC-pathway, and WAPP on all performance measures. The higher performance of NetCTL-1.2 as
compared to EpiJen and MHC-pathway is, however, not statistically significant on all measures. In the large-
scale benchmark calculation consisting of 216 known HIV epitopes covering all 12 recognized HLA
supertypes, the NetCTL-1.2 method was shown to have a sensitivity among the 5% top-scoring peptides
above 0.72. On this dataset, the best of the other methods achieved a sensitivity of 0.64. The NetCTL-1.2
method is available at http://www.cbs.dtu.dk/services/NetCTL.

All used datasets are available at http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php.

Published: 31 October 2007

BMC Bioinformatics 2007, 8:424 doi:10.1186/1471-2105-8-424

Received: 21 February 2007
Accepted: 31 October 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/424

© 2007 Larsen et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17973982
http://www.biomedcentral.com/1471-2105/8/424
http://creativecommons.org/licenses/by/2.0
http://www.cbs.dtu.dk/services/NetCTL
http://www.cbs.dtu.dk/suppl/immunology/CTL-1.2.php
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8:424 http://www.biomedcentral.com/1471-2105/8/424

Page 2 of 12
(page number not for citation purposes)

Background
The CTLs of the immune system must be able to discrim-
inate between healthy and infected cells, since only the
infected cells are to be eliminated. To facilitate the dis-
crimination, all nucleated cells present a selection of the
peptides contained in their proteins on the cell surface in
complex with Major Histocompatibility Complex class I
(MHC class I) molecules. The course of events leading to
MHC class I presentation includes the ongoing degrada-
tion of the cell's proteins by the proteasome [1-5]. A sub-
set of the generated peptides are then transported into the
Endoplasmatic Reticulum (ER) by Transporter associated
with Antigen Presentation (TAP) molecules [6-8]. Once
inside the ER, the peptides may bind to MHC class I mol-
ecules, which are subsequently transported to the cell sur-
face, where the complexes may be recognized by passing
CTLs. The most restrictive step involved in antigen presen-
tation is binding of the peptide to MHC class I. It is esti-
mated that only 1 out of 200 peptides will bind a given
MHC class I allele with sufficient strength to elicit a CTL
response [9]. However, also proteasomal cleavage and
TAP transport efficiency show some degree of specificity
[4,9].

Reliable predictions of immunogenic peptides can mini-
mize the experimental effort needed to identify new
epitopes to be used in, for example, vaccine design or for
diagnostic purposes. We have previously described a
method, NetCTL (hereafter renamed NetCTL-1.0), which
integrates the predictions of proteasomal cleavage, TAP
transport efficiency, and MHC class I affinity to an overall
prediction of CTL epitopes [10]. In the following, we
describe an improved version of NetCTL, version 1.2. Sev-
eral other groups have likewise attempted to generate
methods that enable CTL epitope identification. On an
independent evaluation dataset of known HIV CTL
epitopes, NetCTL-1.0 has previously been shown to have
a higher predictive performance than the publicly availa-
ble SYFPEITHI Epitope Prediction method [11,12] and
the BIMAS HLA Peptide Binding Prediction method
[13,14]. Here, we compare the performance of NetCTL-
1.2 to four other publicly available methods, which have
been described within the last few years: MAPPP [15],
which combines proteasomal cleavage predictions with
MHC class I affinity predictions, and EpiJen [16], MHC-
pathway [17,18], and WAPP [19], which operate with pre-
dictions of both proteasomal cleavage, TAP transport effi-
ciency, and MHC class I affinity. Even for skilled scientist
within the field it is not straightforward to compare the
performance of the various methods, since they do not
necessarily have the same output format and do not cover
the same output range. In addition, many different per-
formance measures can be applied, but not all are equally
well suited for every method. It is also important to keep
in mind that some performance measures are not mean-

ingful on their own. An example of the latter is the per-
formance measure sensitivity. In the case of finding CTL
epitopes among a large number of peptides, sensitivity is
defined as the number of peptides correctly predicted to
be CTL epitopes (also called the number of True Positives,
TP) divided by the total number of CTL epitopes in the
dataset (also called Actual Positives, AP). A method,
which finds all CTL epitopes, has a sensitivity of 1. This
performance can, however, easily be achieved if the
method predicts every peptide to be a CTL epitope. Obvi-
ously, such a method is totally useless. In this study, we
have defined a number of performance measures, which
together give an objective assessment of the methods. On
all measures, we find that NetCTL-1.2 has a higher predic-
tive performance than EpiJen, MAPPP, MHC-pathway,
and WAPP, although when comparing NetCTL-1.2 with
EpiJen and MHC-pathway, the higher predictive perform-
ance of NetCTL-1.2 is not statistically significant on all
measures.

Results
NetCTL-1.2
NetCTL predicts CTL epitopes by integrating predictions
of proteasomal cleavage, TAP transport efficiency, and
MHC class I binding [10]. Version 1.2 is an improvement
on several accounts. Firstly, it predicts epitopes restricted
to the A26 and B39 supertypes thus completing the list of
12 recognized supertypes [20]. Secondly, it has an
improved performance as compared to the older version
1.0. This is partly due to the use of newer methods for pre-
dicting MHC class I affinity and proteasomal cleavage.
Furthermore, a larger dataset has been used to deduce the
optimal weights on proteasomal cleavage, TAP transport
efficiency, and MHC class I affinity, respectively. When
testing the performance of NetCTL-1.0 versus NetCTL-1.2
on the independent HIV evaluation dataset consisting of
216 known CTL epitopes, NetCTL-1.0 has an average AUC
(Area Under the ROC Curve) per epitope-protein pair of
0.931, while NetCTL-1.2 has an average AUC per epitope-
protein pair of 0.941. This difference in predictive per-
formance between NetCTL-1.0 and NetCTL-1.2 is signifi-
cant at P = 0.02 (paired t-test). For comparison, NetMHC-
3.0NO_HIV, which is the MHC class I affinity predictor used
in NetCTL-1.2, has an average AUC per epitope-protein
pair of 0.922. The difference in predictive performance
between NetCTL-1.2 and NetMHC-3.0NO_HIV is significant
at P = 0.004 (paired t-test).

Comparing different methods for CTL epitope prediction 
by using the AUC value
We wanted to compare the performance of NetCTL-1.2 to
that of four other publicly available CTL epitope predic-
tion methods: EpiJen [16], MAPPP [15], MHC-pathway
[17,18], and WAPP [19]. For the comparisons, we use two
evaluation sets containing experimentally verified HIV
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CTL epitopes and their source proteins: The HIV dataset,
which we compiled ourselves, contains 216 epitope-pro-
tein pairs restricted to all 12 recognized supertypes. When
comparing the performance of NetCTL-1.2 to that of any
of the other four methods, only the subset of supertypes
also covered by the test method is included. The other
dataset is called HIVEpiJen. It was taken almost in complete
from [16] and contains 87 epitopes restricted to the A1,
A2, or A3 supertypes. All five methods can perform predic-
tions for these three supertypes.

In the above section, we used the AUC value to compare
NetCTL-1.2 to NetCTL-1.0 and NetMHC-3.0NO_HIV. This
measure is, however, not appropriate for the EpiJen and
WAPP methods. These methods do not produce a single,
combined score for each peptide in the dataset. Instead,
the proteasomal cleavage and TAP transport predictors act
as filters that reduce the number of possible epitopes. In
addition, the EpiJen server maximally outputs the 5%
peptides, which have the highest predicted MHC class I
affinity and at the same time pass the proteasomal cleav-
age and TAP transport filters. The problem is exemplified
in the ROC (Receiver Operating Characteristic) curve

shown in Figure 1. For NetCTL-1.2, MAPPP, and MHC-
pathway, the combined score is used as the predicted
value. For EpiJen and WAPP, we used the predicted MHC
class I affinity as the predicted value. The ROC curves for
the two last-mentioned methods come to an abrupt stop,
since there are no predicted values for peptides that do not
pass the proteasomal cleavage and TAP transport filters.
The ROC curves also highlight the need for extracting sen-
sitivity at comparable specificity levels and vice versa in
order to achieve objective benchmark comparisons
between different methods: Any of the methods can be
assigned the highest sensitivity, if the specificity is not set
at a comparable level.

The RANK measure
Since the AUC measure is not applicable to all methods,
we designed a new measure, which we call the RANK
measure. Looking at each epitope-protein pair separately
for either the HIV or HIVEpiJen dataset, we rank all possible
9 mers according to the prediction score of a given
method. Next, we compare two methods at a time:
NetCTL-1.2 and one of the four test methods (EpiJen,
MAPPP, MHC-pathway, or WAPP). Again, we use the

ROC curvesFigure 1
ROC curves. The analysis has been performed on 41 A3 restricted epitope-protein pairs from the HIV dataset.



BMC Bioinformatics 2007, 8:424 http://www.biomedcentral.com/1471-2105/8/424

Page 4 of 12
(page number not for citation purposes)

combined score as the predicted value for NetCTL-1.2,
MAPPP, and MHC-pathway, and the predicted MHC class
I affinity for EpiJen and WAPP. We then count how often
NetCTL-1.2 ranks the epitope higher than the test
method, and vice versa. To facilitate a fair comparison to
the EpiJen and WAPP methods, where predictions are lim-
ited to a subset of the peptides, only the top N of the
NetCTL-1.2 predictions are included, where N is the
number of peptides assigned a prediction score by the test
method (EpiJen or WAPP). All peptides without a pre-
dicted value are assigned the rank 9999 to put them at the
bottom of the rank-list. In this way, all methods are com-
pared on an equal number of peptide data. Figure 2 shows
the results. In Figure 2A, it is seen that for all comparisons,
NetCTL-1.2 more frequently ranks the epitope higher
than any of the four test methods on the HIV dataset. The
difference is significant at P < 0.01 (Binomial test). In Fig-
ure 2B, the results are shown for the HIVEpiJen dataset. Also
here, NetCTL-1.2 more frequently ranks the epitope
higher than the test method. For WAPP the difference is
significant at P < 0.01, while for EpiJen, MAPPP, and
MHC-pathway the difference is significant at P < 0.05
(Binomial test).

Specificity at a predefined sensitivity
When using the default settings at the NetCTL-1.2,
MAPPP, and WAPP servers, thresholds are defined that
separate the predicted epitopes from the predicted non-
epitopes. At the EpiJen server, one can choose between
defining the top-scoring 5%, 4%, 3%, or 2% peptides as
epitopes. MHC-pathway does as yet not offer any thresh-
olds for separating predicted epitopes from non-epitopes.
These differences pose a challenge when comparing the
performance of the methods as regards to sensitivity and
specificity, since it is a prerequisite for the calculation of
these measures that the predicted epitopes can be sepa-
rated from the non-epitopes. Furthermore, as mentioned
earlier, it is generally problematic to distinguish which
method has the highest predictive performance, if one
method has the highest sensitivity, while the other
method has the highest specificity. To overcome these
problems, we chose to compare the specificity of the
methods at a series of predefined sensitivity values. We
chose three predefined sensitivities: 0.3, 0.5, and 0.8. For
the HIV dataset, we again compared two methods at a
time: NetCTL-1.2 and one of the four test methods, in
order to include epitopes restricted to as many supertypes
as possible. For the HIVEpiJen dataset, all methods can be
compared simultaneously, since all methods can predict
epitopes restricted to the A1, A2, and A3 supertypes. We
first identified the prediction threshold values that result
in the desired sensitivity when averaging over all epitope-
protein pairs. We then used the same thresholds to find
the average specificity. Figure 3 shows the results for the
HIV dataset. It can be seen that NetCTL-1.2 has a signifi-

cantly higher specificity than EpiJen, MAPPP, and WAPP
at all sensitivities (P < 0.01, unpaired student's t-test).
When comparing NetCTL-1.2 to MHC-pathway, it can be
seen that at an average sensitivity of 0.3 and 0.5 NetCTL
has a higher specificity than MHC-pathway although this
difference is not statistically significant. At an average sen-
sitivity of 0.8, NetCTL-1.2 has significantly higher specifi-
city than MHC-pathway (P < 0.05, unpaired student's t-
test).

When using the HIVEpiJen dataset for the analysis, NetCTL-
1.2 has a higher specificity than all the test methods at all
sensitivities, although for EpiJen and MHC-pathway the
difference is not statistically significant at all sensitivities
(the results are available as supplementary material at
[21]).

Sensitivity among the 5% top-scoring peptides
For an experimentalist who wants to find epitopes in a
specific protein, it is interesting to know how many of the
actual epitopes one can expect to find if testing a certain
top-fraction of the peptides. For this, we calculate the sen-
sitivity among the 5% top-scoring peptides. For the HIV
dataset, we made the calculations for NetCTL-1.2 and one
of the four test methods at a time. For the HIVEpiJen dataset,
all methods could be compared using the same dataset,
since all methods can predict epitopes restricted to the A1,
A2, and A3 supertypes. Table 1 and 2 show the results.
Table 1 shows that when NetCTL-1.2 is compared sepa-
rately to either of the test methods using the HIV dataset,
NetCTL-1.2 has the highest sensitivity among the 5% top-
scoring peptides with sensitivity values in the range of
0.70–0.78 depending on the evaluation dataset. When
evaluating on the HIVEpiJen dataset (Table 2) NetCTL-1.2
also achieves the highest sensitivity of 0.75. On this data-
set, MAPPP achieves the second highest sensitivity (0.64),
closely followed by MHC-pathway (0.63). EpiJen achieves
a sensitivity of 0.60, while WAPP only achieves a sensitiv-
ity of 0.44 among the 5% top-scoring peptides.

Discussion
Reliable CTL epitope predictions can minimize the exper-
imental effort needed to identify new CTL epitopes to be
used in for example vaccine design or for diagnostic pur-
poses. Tong et al. [22] comments on the reports of algo-
rithms that integrate MHC class I predictions with TAP
and proteasomal cleavage specificities: "These techniques
are still in their infancy and need to be further developed
and thoroughly tested". Here, we make a first attempt to
test the performance of five of these methods on two eval-
uation sets of experimentally verified HIV CTL epitopes. It
turned out to be a highly non-trivial task to design an
objective benchmark. Mainly because the prediction
methods each generate epitope predictions in a specific
format and potentially with different mechanisms that fil-
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Performance on the RANK measureFigure 2
Performance on the RANK measure. For each epitope-protein pair, the rank that is assigned to the epitope when using 
NetCTL-1.2 is compared to the rank assigned when using the test method (EpiJen, MAPPP, MHC-pathway, or WAPP). The 
height of the bars indicates how often, respectively, NetCTL or the test method ranks the epitope highest. A: The HIV dataset 
has been used for the analysis. When comparing NetCTL-1.2 to either of the test methods, only predictions for supertypes 
that the test method covers are included. B: The HIVEpiJen dataset has been used for the analysis. ** The difference is significant 
at P < 0.01. * The difference is significant at P < 0.05.
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Comparing specificitiesFigure 3
Comparing specificities. The HIV dataset has been used for the analysis. In order to include epitopes restricted to as many 
supertypes as possible, NetCTL-1.2 is compared to each of the other methods separately. For each comparison, only predic-
tions for supertypes that the test method covers are included. The average specificity is found at a predefined average sensitiv-
ity using either NetCTL-1.2 or one of the four test methods (EpiJen, MAPPP, MHC-pathway, WAPP). A: Average sensitivity = 
0.3, B: Average sensitivity = 0.5, C: Average sensitivity = 0.8. Only NetCTL-1.2, MAPPP and MHC-pathway provide enough 
predicted scores to obtain a sensitivity of 0.8. The error bars are the standard error. ** The difference is significant at P < 0.01. 
* The difference is significant at P < 0.05.
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ter the number of prediction scores made available to the
user. Our final performance measures consist firstly of a
RANK measure that allows for an objective comparison of
accuracy between the different prediction methods. For
comparing prediction specificity, we define three levels of
prediction sensitivity, so that comparisons can be per-
formed at equal levels. Finally, we compare the sensitivity
among the 5% top-scoring peptides as obtained by each
method.

Using the defined performance measures, we performed a
large-scale benchmark calculation comparing the predic-
tive performance of a series of publicly available methods
for CTL epitope prediction. The benchmark included the
EpiJen, MAPPP, WAPP, and MHC-pathway methods, and
an updated version of the NetCTL method. The updated
version of NetCTL, version 1.2, can make predictions for
the A26 and B39 HLA supertypes thus completing the list
of 12 recognized supertypes, and was shown to have a
higher predictive performance than the old version 1.0.
We find that NetCTL-1.2 has a higher predictive perform-
ance than EpiJen, MAPPP, MHC-pathway, and WAPP on
all measures. When comparing NetCTL-1.2 with MAPPP
and WAPP, the higher performance of NetCTL-1.2 is sta-
tistically significant on all measures. When comparing
NetCTL-1.2 with EpiJen, the higher performance of
NetCTL-1.2 is statistically significant for all measures
except when comparing the specificities at the sensitivity
values of 0.3 and 0.5 on the HIVEpiJen dataset. When com-
paring NetCTL-1.2 with MHC-pathway, the higher per-
formance of NetCTL-1.2 is statistically significant for all
measures, except when comparing the specificities at the
sensitivity values of 0.3 and 0.5 on either evaluation data-
set. It is not surprising that MHC-pathway reaches almost
as high predictive performance as NetCTL-1.2 on some of
the performance measures. These two methods have sev-
eral features in common: Firstly, the MHC binding predic-
tion methods included in the MHC-pathway and NetCTL

prediction methods, have recently in a large scale bench-
mark been shown to have comparable performance [18].
Secondly, they use identical methods for predicting TAP
transport efficiency; namely the matrix method developed
by Peters et al. [23]. Thirdly, they integrate the predicted
values obtained from the separate proteasomal cleavage,
TAP transport efficiency, and MHC class I affinity predic-
tors into one combined score. Regarding differences it can
be mentioned that the proteasomal cleavage predictor
used for MHC-pathway is trained on in vitro data, while
NetCTL-1.2's proteasomal cleavage predictor, NetChop-
3.0, is trained on natural MHC class I ligands.

NetCTL-1.2, MAPPP, and MHC-pathway integrates the
predicted values into one, overall score, while EpiJen and
WAPP use a number of successive filters that step by step
reduce the number of possible epitopes. Doytchinova et
al. [16] has stated that the "combined score as used by
SMM (MHC-pathway) and NetCTL, obscures the final
result, because a low (or even negative) TAP and/or pro-
teasomal score could be compensated for by a high MHC
score." We would here like to offer our interpretation of
how the combined score can be understood in a biologi-
cal meaningful manner: First of all, we see the predictive
values as probabilities. Secondly, one has to keep in mind
that there is not just one copy of a given protein in the cell.
This means that if for example a certain peptide has a low
predicted cleavage score and will only be generated in 1
out of a 100 cleavage events, the peptide can still survive
all the way to the cell surface and become a CTL epitope,
if the TAP transport efficiency and MHC class I affinity are
sufficiently high.

We have throughout the analysis on the HIV dataset com-
pared NetCTL-1.2 to each of the other test methods sepa-
rately. This was done in order to include epitopes
restricted to as many supertypes as possible. Had we cho-
sen only to include epitopes restricted to supertypes that

Table 1: Determining the sensitivity among the 5% top-scoring peptides on the HIV dataset

NetCTL-1.2 EpiJen NetCTL-1.2 MAPPP NetCTL-1.2 MHC-
pathway

NetCTL-1.2 WAPP

HIV 0.72 0.63 0.70 0.57 0.70 0.64 0.78 0.44

The HIV dataset has been used for the analysis. To be able to include epitopes restricted to as many supertypes as possible, NetCTL-1.2 is 
compared to each of the other methods separately. For each comparison, only predictions for supertypes covered by the test method are included.

Table 2: Determining the sensitivity among the 5% top-scoring peptides on the HIVEpiJen dataset

NetCTL-1.2 EpiJen MAPPP MHC-pathway WAPP

HIVEpiJen 0.75 0.60 0.64 0.63 0.44

The HIVEpiJen dataset has been used for the analysis. All methods can be compared simultaneously since this dataset only contains epitopes 
restricted to the A1, A2, or A3 supertypes, which all methods cover.
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all methods had in common, we could only have
included the A1, A2, and A3 supertypes. The shortcoming
of this approach is that comparisons can not be made
directly in between the test methods. For comparisons in
between the test methods, we refer to calculations done
on the HIVEpiJen dataset, which only contains epitopes
restricted to the A1, A2, and A3 supertypes.

Lastly, we would like to note that the NetCTL method pre-
dicts CTL epitopes that are presented via a pathway that
utilizes TAP for peptide entry into ER. Additional path-
ways also exist as reviewed in [24]. Their contribution to
the total presentation of MHC class I ligands is, however,
thought to be minor [25-27].

Conclusion
Using objective benchmarks and standardized perform-
ance measures, we have demonstrated that NetCTL-1.2
has a higher predictive performance than EpiJen, MAPPP,
MHC-pathway, and WAPP, although when comparing
NetCTL-1.2 with EpiJen and MHC-pathway, the higher
predictive performance of NetCTL-1.2 is not statistically
significant on some of the measures.

The benchmark datasets are all available and downloada-
ble from the Internet. Together with the detailed descrip-
tion on how to perform the calculations and extract the
different performance measures presented here, it is our
hope that other researches readily can repeat the bench-
mark analysis, and in an objective manner compare novel
methods for CTL epitope discovery to the five methods
included here.

Methods
Datasets
Training set
In August 2006, 1730 9 meric peptides present in the SYF-
PEITHI database [12,28] and listed as either "Example for
Ligand" or "T-cell epitope" were extracted. The peptides
were grouped according to MHC class I allele and one of
the 12 supertypes as defined in [20]. Peptides that had
been used to develop one or more of the methods for pre-
dicting proteasomal cleavage, TAP transport efficiency, or
MHC class I affinity for NetCTL-1.2 were removed. Then,
for every peptide, the source protein was found in the
SwissProt database. If more than one source protein was
possible, the longest human protein was chosen, and if
there were no possible human proteins, the longest other
protein was chosen. The final SYFPETHI dataset contained
a total of 863 epitope-protein pairs. All 9 meric peptides
contained in the source protein sequences, except those
annotated as epitopes in either the complete SYFPEITHI
or Los Alamos HIV databases [29], were taken as negative
peptides (non-epitopes). When using this definition of
epitope/non-epitope one has to take into account that

some epitopes will falsely be classified as non-epitopes
because the SYFPEITHI and Los Alamos HIV databases are
incomplete. Since the MHC class I molecules are very spe-
cific, binding only a highly limited repertoire of peptides,
this misclassified proportion will, however, be very small.
A given MHC class I molecule has a specificity of ~1% [9].
In a protein of 100 amino acids, one expects to have one
binding and 99 non-binding peptides. The potential
number of false classifications is hence orders of magni-
tudes smaller than the actual number of negatives. Fur-
thermore, the measured performance of all the methods
should be equally affected by the false negatives in the
dataset, thus while the reported absolute performance of
the methods might be underestimated, we do not expect
the false negatives to affect the relative ranking of the dif-
ferent methods.

This dataset will hereafter be referred to as the SYFPEITHI
dataset.

Evaluation sets
In December 2005, 342 9 meric peptides present in the
HIV Immunology CTL database of the Los Alamos HIV
Database [29] were extracted. The peptides were subse-
quently sorted as for the SYFPEITHI dataset. In all, the
epitopes in the final dataset are restricted to 29 MHC class
I alleles that can be further divided into one of the 12 rec-
ognized supertypes [20]. Subsequently, the source pro-
teins were found. If more than one protein was the
possible origin of a given peptide, the longest protein was
chosen. The final Los Alamos HIV dataset contained 216
epitope-protein pairs. All 9 meric peptides contained in
the source protein sequences, except those annotated as
epitopes in either the complete SYFPEITHI or Los Alamos
HIV databases, were taken as negative peptides (non-
epitopes). The dataset will hereafter be referred to as the
HIV dataset. Another evaluation set was taken from [16].
This dataset was compiled from the Los Alamos HIV data-
base in June 2005, but contained only epitopes restricted
to the A1, A2, or A3 supertypes. Originally it contained 99
epitopes, but we removed 12 of them, since they had been
used previously to train NetCTL-1.2. For the 87 remaining
peptides, the source proteins were subsequently found. If
more than one protein was the possible origin of a given
peptide, the longest protein was chosen. The final dataset,
which is called HIVEpiJen, thus contains 87 epitope-protein
pairs. It may be noted, that this approach differs from the
one used in [16], where all epitopes are mapped to the
HXB2 consensus protein sequence. All 9 meric peptides
contained in the source protein sequences, except those
annotated as epitopes in either the complete SYFPEITHI
or Los Alamos HIV databases, were taken as negative pep-
tides (non-epitopes). In summary, the HIV and HIVEpiJen

datasets are both compiled from the Los Alamos HIV data-
base, but whereas the HIV dataset contains 216 epitopes
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restricted to all 12 recognized supertypes, the HIVEpiJen

dataset contains 87 epitopes restricted to only the A1, A2,
or A3 supertype. The HIV dataset was compiled by our-
selves, while the HIVEpiJen dataset was taken from [16]. Of
the 87 epitopes in the HIVEpiJen dataset, 59 are also present
in the HIV dataset [21].

All above mentioned datasets are available as supplemen-
tary material at [21].

Prediction methods
NetCTL-1.2
Prediction of proteasomal cleavage patterns was done by
the NetChop 3.0 method [30,31], which is an artificial
neural network (ANN) trained on natural MHC class I lig-
and data. Prediction of TAP transport efficiency was per-
formed using the matrix method described by Peters et al.
[23]. For MHC class I affinity predictions, we use an
updated version of the method described by Nielsen et al.
[32] (NetMHC-3.0NO_HIV) and include all 12 supertypes:
A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, and B62
[20]. For training of NetMHC-3.0NO_HIV HIV data were
excluded, but otherwise the method is identical to the
method available at [33]. This was done in order to retain
the maximal size of the evaluation sets, which only consist
of HIV data. Note that the NetCTL-1.2 method available
at [34] integrates the complete NetMHC-3.0 method.
Table 3 shows which alleles are used to represent each of
the 12 supertypes. The weights on proteasomal cleavage
and TAP predictions are determined in a five-fold cross
validated manner optimizing the predictive performance
on the SYFPEITHI dataset. For each of the epitope/protein
pairs in the training set, the AUC is calculated and the set
of weights on proteasomal cleavage and TAP prediction

that achieves optimal mean AUC value are identified.
Optimal weights on cleavage and TAP transport were
found to be 0.15+/-0.01, and 0.05 +/- 0.01, respectively,
with an average AUC performance of 0.975 over the 863
epitope/protein pairs. The output from NetCTL-1.2 is a
single, combined score for every possible peptide in a
given protein.

EpiJen [16]
Like NetCTL-1.2, MHC-pathway, and WAPP, this algo-
rithm operates with three steps in order to predict CTL
epitopes: Proteasomal cleavage, TAP transport, and MHC
class I binding. Each step is based on a quantitative matrix
and acts as a filter that reduces the number of potential
epitopes. The method is available at [35] and includes
CTL epitope predictions for 18 different alleles. Table 3
shows which alleles we use to represent the supertypes in
the HIV and HIVEpiJen dataset. No alleles can represent the
A26, B39, B58, or B62 supertypes. When calculating the
performance measures for EpiJen on the HIV dataset, we
therefore only have a total of 188 epitope-protein pairs as
compared to 216 epitope-protein pairs for all 12 super-
types. Different cut offs can be chosen for the proteasomal
cleavage and TAP transport filters. In each case, we used
the recommended cut offs. The final scores are the pre-
dicted MHC class I affinities in form of -logIC50 and IC50
values. It is not possible to retrieve scores for all possible
peptides in a given protein – at most, the EpiJen server
outputs the 5% peptides that have the highest predicted
MHC class I affinity and at the same time pass the protea-
somal cleavage and TAP transport filters.

Table 3: Representative alleles

Supertype NetCTL EpiJen MAPPP MHC-pathway WAPP

A1 HLA-A*0101 HLA-A*0101 HLA-A1 HLA-A*0101 HLA-A*01
A2 HLA-A*0201 HLA-A*0201 HLA-A*0201 HLA-A*0201 HLA-A*0201
A3 HLA-A*0301 HLA-A*0301 HLA-A3 HLA-A*0301 HLA-A*03
A24 HLA-A*2402 HLA-A*24 HLA-A24 HLA-A*2402 N/A
A26 HLA-A*2601 N/A N/A* HLA-A*2601 N/A
B7 HLA-B*0702 HLA-B*07 HLA-B7 HLA-B*0702 N/A
B8 HLA-B*0801 N/A HLA-B8 HLA-B*0801 N/A
B27 HLA-B*2705 HLA-B*27 HLA-B*2705 HLA-B*2705 HLA-B*2705
B39 HLA-B*3901 N/A HLA-B*3901 N/A N/A
B44 HLA-B*4001 HLA-B*40 HLA-B40 HLA-B*4002 N/A
B58 HLA-B*5801 N/A HLA-B*5801 HLA-B*5801 N/A
B62 HLA-B*1501 N/A HLA-B62 HLA-B*1501 N/A
# epitope-protein 
pairs

216 188 214 215 131

The table shows which alleles are used for representing the supertypes in the HIV and HIVEpiJen datasets. The first column gives the HLA supertype, 
the next five columns give the alleles used a supertype representatives for each of the five prediction method NetCTL-1.2, EpiJen, MAPPP, MHC-
pathway, and WAPP, respectively. The lower row (N) gives the total number of epitope-protein pairs in the HIV dataset covered by each of the five 
prediction methods. *A MHC type termed HLA-A26 was listed, but did not produce any results.
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MAPPP [15,36]
Unlike the other four methods, MAPPP only operates
with proteasomal cleavage and MHC class I binding. Pro-
teasomal cleavage can be done by either the FRAGPRE-
DICT [37,38] or PAProC [39,40] method. For this study
we chose FRAGPREDICT, since it is the default choice.
MHC class I binding can be done by either the SYFPEITHI
Epitope Prediction method [11] or the BIMAS HLA Pep-
tide Binding Prediction method [13]. We used the BIMAS
HLA Peptide Binding Prediction method, since we have
previously found this method to be superior [10]. Binding
to the A26 supertype was listed to be done only by the
SYFPEITHI Epitope Prediction method, but in spite or sev-
eral attempts, we never received any results for this super-
type. Consequently, we left out this supertype when doing
calculation for the MAPPP method on the HIV dataset.
Table 3 shows which alleles we use to represent the
remaining supertypes in the HIV and HIVEpiJen dataset.
Excluding the A26 supertype, we have a total of 214
epitope-protein pairs for 11 supertypes in the HIV dataset.
The output is a combined score from the proteasomal
cleavage and MHC class I binding predictions. It is possi-
ble to retrieve scores for all peptides in a given protein.

MHC-pathway [17,18]
As NetCTL-1.2, MHC-pathway integrates the scores
obtained from three methods predicting, respectively,
proteasomal cleavage, TAP transport, and MHC class I
affinity into one final score. The method for predicting
proteasomal cleavage is a matrix-based algorithm called
the Stabilized Matrix Method (SMM) trained on in vitro
cleavage data. The method for predicting TAP transport
efficiency is identical to the one used for NetCTL-1.2 and
is described in [23]. The method for predicting MHC class
I affinity is also based on a SMM. The original MHC-path-
way method [17] is available from [41], while an updated
version of the method is located at [42]. In this study we
have used the updated version. It is possible to predict
CTL epitopes restricted to 34 different human alleles.
Table 3 shows which alleles we use to represent the super-
types in the HIV and HIVEpiJen dataset. No alleles can rep-
resent the B39 supertype. When calculating the
performance measures for MHC-pathway on the HIV
dataset, we therefore only have a total of 215 epitope-pro-
tein pairs as compared to 216 epitope-protein pairs for all
12 supertypes. We used default settings for proteasomal
cleavage (immuno proteasome) and TAP transport pre-
dictions. In the final output, MHC-pathway provides a
single, combined score for all possible peptides in a given
protein.

WAPP [19]
Like NetCTL-1.2, EpiJen, and MHC-pathway, this algo-
rithm operates with predictions for proteasomal cleavage,
TAP transport, and MHC class I affinity. The proteasomal

cleavage predictor employs a matrix-based method
trained on experimentally verified proteasomal cleavage
sites. Support vector regression is used for predicting pep-
tides transported by TAP. MHC class I affinity is predicted
using a support vector machine. Each step acts as a filter
that reduces the number of potential epitopes. The
method is available at [43] and includes predictions for
HLA-A*01, HLA-A*0201, HLA-A*03, and HLA-B*2705.
Table 3 shows which alleles we use to represent the super-
types in the HIV and HIVEpiJen dataset. No alleles can rep-
resent the A24, A26, B7, B8, B39, B44, B58, or B62
supertypes. When calculating the performance measures
for WAPP on the HIV dataset, we therefore only have a
total of 131 epitope-protein pairs as compared to 216
epitope-protein pairs for all 12 supertypes. It is possible to
retrieve predicted values for proteasomal cleavage, TAP
transport, and MHC class I affinity for all possible pep-
tides in a protein. The proteasomal cleavage and TAP
transport filters can be set at different levels between 1 and
5. We used the default levels, which for both filters are 3.
These levels correspond to a predicted proteasomal cleav-
age value above -1.2 and a predicted TAP transport value
below -37.5 (as kindly informed by Pierre Dönnes). Pre-
diction scores for all methods and for all nonamers are
available as supplementary material [21].

Performance measures
Sensitivity and specificity
The formulas for calculating sensitivity and specificity are
listed below:

Sensitivity = TP/AP

Specificity = TN/AN

Where

TP = true positives, which are the correctly predicted
epitopes in the dataset, AP = actual positives, which are
the actual number of epitopes in the dataset, TN = true
negatives, which are the correctly predicted non-epitopes
in the dataset, AN = actual negatives, which are the actual
number of non-epitopes in the dataset.

AUC
The AUC value (the Area Under the ROC Curve) is calcu-
lated per epitope-protein pair. All overlapping 9 meric
peptides in the protein are sorted according to the pre-
dicted score. For NetCTL-1.0, NetCTL-1.2, MAPPP, and
MHC-pathway, the predicted score is combined from the
predicted proteasomal cleavage, TAP transport, and MHC
class I affinity values. For WAPP it is the predicted MHC
class I affinity for peptides that pass the proteasomal
cleavage and TAP transport filters. For EpiJen, the pre-
dicted score is also the predicted MHC class I affinity, but
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is only available for the 5% peptides that have the highest
predicted MHC class I affinity, and which at the same time
pass the proteasomal cleavage and TAP transport filters.
The epitopes in the epitope-protein pairs define the posi-
tive set, whereas the negative set is made up from all other
9 mers in the source proteins excluding 9 mers found in
the complete SYFPHITHI or Los Alamos HIV databases.
The ROC curve is plotted from the sensitivity and 1-specif-
icity values calculated by varying the cut-off value (sepa-
rating the predicted positive from the predicted negative)
from high to low. The area under this curve gives the AUC
value. The AUC value is 0.5 for a random prediction
method and 1.0 for a perfect method. When comparing
the predictive performance (measured by AUC) of two
prediction methods, a paired t-test is applied to test
whether the observed difference in average AUC values
differs significantly from zero.

RANK
Two methods at a time are compared by this performance
measure. The two methods are NetCTL-1.2 and one of the
four test methods (EpiJen, MAPPP, MHC-pathway, or
WAPP). Calculations are done on the HIV and HIVEpiJen

datasets separately. For comparison on the HIV dataset,
we only include epitope-protein pairs, where the epitope
is restricted to a supertype covered by the test method. To
facilitate comparison to the EpiJen and WAPP methods,
where only a subset of the peptides are assigned a pre-
dicted value, only the top N of the NetCTL-1.2 predictions
where included, where N is the number of peptides pre-
dicted by the test method (EpiJen or WAPP). All peptides
without a predicted value are assigned the rank 9999 to
put them at the bottom of the rank-list. In this way, all
methods are compared on an equal number of peptide
data. For MAPPP and MHC-pathway all peptides are
included. We next count how often NetCTL-1.2 ranks the
epitope higher than the test method, and vice versa. For all
comparisons, all epitopes in either the complete SYF-
PEITHI or Los Alamos HIV databases are disregarded,
except for the particular epitope belonging to the epitope-
protein pair in question. When comparing the predictive
performance (as measured by RANK) of NetCTL-1.2 and
the test method, we examine whether the observed higher
proportion of proteins for which NetCTL-1.2 ranks the
epitope highest deviates significantly from what is
expected under a binomial distribution, where both
methods have a probability of 0.5 for ranking the epitope
highest. Proteins for which the methods rank the epitope
equally high are omitted from the analysis.

Specificity at a predefined sensitivity
When using the HIV dataset for the analysis, two methods
at a time are compared by this measure: NetCTL-1.2 and
one of the four test methods (EpiJen, MAPPP, MHC-path-
way, or WAPP). We only include epitope-protein pairs,

where the epitope is restricted to supertypes covered by
the test method. All calculations are made per epitope-
protein pair, which means that for a given epitope-protein
pair the sensitivity will either be 1 (the epitope is identi-
fied at the given threshold) or 0 (the epitope is not iden-
tified at the given threshold). First, for every method three
threshold values in the form of combined scores (NetCTL-
1.2, MAPPP, and MHC-pathway) or predicted MHC class
I affinities (EpiJen and WAPP) are identified, which
achieve a sensitivity of 0.3, 0.5, or 0.8, when averaging
over all epitope-proteins pairs. Notice that EpiJen and
WAPP do not provide enough predicted scores to achieve
a sensitivity of 0.8. Due to the different size of the HIV
dataset depending on the test method in question, three
different thresholds values are found for NetCTL-1.2
when compared to either of the test methods. Next, the
specificity is calculated per epitope-protein pair using the
same threshold values. For the HIVEpiJen datasets all meth-
ods cover all epitopes. Again, three threshold values are
found for each method and the specificity is calculated per
epitope-protein pair using the same threshold values. An
unpaired student's t-test [44] is applied to test whether the
average specificity of NetCTL-1.2 at a given sensitivity is
significantly different from the average specificity at the
same sensitivity for a test method.

Sensitivity among the 5% top-scoring peptides
When using the HIV dataset, two methods at a time are
compared by this measure: NetCTL-1.2 and one of the
four test methods. We only include epitope-protein pairs,
where the epitope is restricted to supertypes covered by
the test method. For the HIVEpiJen datasets all methods
cover all epitopes. For calculating the sensitivity among
the top 5% peptides, we rank all possible 9 mers for the
proteins in the dataset in question according to the com-
bined score (NetCTL-1.2, MAPPP, and MHC-pathway) or
according to the predicted MHC class I affinity (EpiJen
and WAPP). We only operate with one epitope per protein
and accordingly remove all other known epitopes from
the SYFPEITHI or Los Alamos HIV databases from the pro-
tein in question (all known epitopes from the SYFPEITHI
or Los Alamos HIV databases are listed per supertype as
supplementary material [21]). Finally, we calculate the
sensitivity among the 5% top-scoring peptides.
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