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The quasicontinuum method is a way of reducing the number of degrees of freedom in an atomistic
simulation by removing the majority of the atoms in regions of slowly varying strain fields. Due to the different
ways the energy of the atoms is calculated in the coarse-grained regions and the regions where all the atoms are
present, unphysical forces called “ghost forces” arise at the interfaces. Corrections may be used to almost
remove the ghost forces, but the correction forces are nonconservative, ruining energy conservation in dynamic
simulations. We show that it is possible to formulate the quasicontinuum method without these problems by
introducing a buffer layer between the two regions of space. The method is applicable to short-ranged poten-
tials in the face-centered cubic, body-centered cubic, and hexagonal close-packed crystal structures.

DOI: 10.1103/PhysRevB.69.214104 PACS number(s): 62.20.2x, 02.70.Ns, 46.15.2x

I. INTRODUCTION

A successful description of material properties sometimes
involves a careful description of the material at both atomic
and microscopic length scales. A couple of methods have
been proposed for coupling these length scales, including the
coupled finite element/molecular-dynamics/tight-binding
method,1,2 the coarse-grained molecular-dynamics method,3,4

and the quasicontinuum(QC) method,5–7 the latter being the
subject of this paper.

The QC method combines continuum and atomic descrip-
tions, thus allowing for an efficient description of three-
dimensional(3D) systems where several length scales are of
importance.8–11A semiempirical interatomic potential is used
for the atomistic region and the continuum region is de-
scribed by a special finite element method, where the ele-
ments are tetrahedra with atoms at the corners. Each element
has a crystal orientation matching the corner atoms. The el-
ement region is joined to the atomistic region giving rise to
an interface between the two regions.

It turns out to be very difficult to define the energy of the
interface region in such a way that the coupling of the two
descriptions is completely seamless. By seamless, we mean
no discontinuities in the force, stress, and displacement
fields. We have found that by introducing a buffer layer of
atoms, to be treated in a special way, between the element
region and the atomistic region, we can achieve a seamless
coupling of the two descriptions.

In the following we will first describe the traditional QC
method and how it fails at interfaces. After introducing the
concept of local and nonlocal atoms from Ref. 6, we develop
the idea of a different kind of quasi-nonlocal atom, which
will enable us to seamlessly couple local and nonlocal re-
gions, and account for how to calculate the energy of quasi-
nonlocal atoms. The method is limited to potentials with a
relatively short range. In face-centered-cubic(fcc) and
hexagonal-close-packed(hcp) crystal structures, the range of

the potential is limited to the fourth-nearest neighbors, and in
body-centered-cubic(bcc) crystals to the third-nearest neigh-
bors.

Finally, we will look at two illustrations of the new QC
method: Calculation of the vacancy formation energy in Al
anda iron, and a calculation of the grain boundary energy of
a tilt boundary in Cu. The Al calculations use an embedded
atom model(EAM) potential,12 the a-iron calculations use a
Finnis-SinclairN-body potential,13,14 and for the Cu calcula-
tions we use an effective medium theory(EMT) potential.15

The cutoff distance is between fourth- and fifth-nearest
neighbors for the EAM, between second- and third-nearest
neighbors for theN-body potential, and between third and
fourth for the EMT potential.

II. THE QUASICONTINUUM METHOD

The basic idea of the QC method is very simple. In order
to perform an atomic simulation efficiently and save compu-
tational resources, a continuum approximation is adopted
where atomic deformation-gradient fields are small, assum-
ing that the continuum method provides almost the same
result as a full atomistic simulation. Figure 1(a) shows a full
atomistic configuration near a vacancy(model A). The en-
ergy of the system is given by a sum of atomic energies

EA = o
aPNA

Ea
N, s1d

whereEa
N is the energy of atoma and NA is the set of all

atoms in systemA. We call these atoms nonlocal6 because
the energy depends on the positions of all atoms within a
certain cutoff distanceRc from the atoms. The force acting
on atoma is then
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Fa
A = −

] Ea
N

] r a

− o
a8PNa

A

] Ea8
N

] r a

, s2d

whereNa
A is the set of(nonlocal) neighbors of atoma within

the cutoff.
Figure 1(b) shows the QC model(model B) correspond-

ing to modelA. Here, open circles are nonlocal atoms treated
exactly as in modelA and solid circles are so-called local
atoms making up the corners of a triangulation of the region
with a slowly varying deformation gradient. In this study the
Delaunay triangulation16 is used to divide a system region
into finite elements: in the two-dimensional(2D) example in
Fig. 2(a), the elements of the triangulation are triangles and
in the 3D case, the elements will be tetrahedra. Each local
atom b (corner atom) represents a certain number of atoms
vb

e in each of the neighboring elementse. We define the
energy of a local atomb as

Eb
L = o

e

vb
eEe

E, s3d

where Ee
E is the energy of a nonlocal atom in an infinite

crystal in a state of strain determined by the corners of the
elemente.

In order to calculateEe
E in the 3D case, each elemente

must have a local set of lattice basis vectorsae
1, ae

2, andae
3,

describing the strain state of the infinite crystal. The lattice
basis vectors of an element are linearly related to the posi-
tions of the four corner atoms(see, e.g., Ref. 11). Everything
outside an element is irrelevant for its energy—that is where
the termlocal comes from.

We have to divide an elemente into representative re-
gions for the corner atomsb to decide the values ofvb

e. The
representative region of each local atom can be defined by
using the Voronoi diagram. This is the dual structure of the
Delaunay triangulation, so one corner of the Voronoi polyhe-
dron is certain to correspond to one element. Hence,vb

e can
be obtained as the size of the region of the elemente which
is part of the Voronoi polyhedron of the atomb. Notice that
in a case of an element with a narrow shape as shown in Fig.
2(b), a corner of the Voronoi polyhedron is outside of the
corresponding element, so the element region cannot be di-
vided by the Voronoi diagram. In this case, the element re-
gion is divided by the position of its center of gravity. As an
alternative to using the Voronoi diagram, one could use the
solid angle of the corner of the element to determinevb

e. The
values ofvb

e are determined at the beginning of the simula-
tion, and remain fixed during the simulation.

Let NB and LB be the nonlocal and local atoms, respec-
tively, of systemB. For the QC systemB, the total energy is

EB = o
aPNB

Ea
N + o

bPLB

Eb
L . s4d

To compare with systemA, we now write down the force
acting on atoma in the modelB

Fa
B = −

] Ea
N

] r a

− o
a8PNa

B

] Ea8
N

] r a

− o
bPLB

] Eb
L

] r a

, s5d

where Na
B is the nonlocal neighbors of atoma within the

cutoff Rc for modelB.
Looking at the specific nonlocal atoma depicted in Figs.

1(a) and 1(b), we now compareFa
A and Fa

B, which ideally
should be equal. Thea atom in the modelB is not a corner of
any element, so the last terms in Eq.(5) vanishes. Subtract-
ing, we get forFa

B−Fa
A

FIG. 1. Coupling of atomic and continuum
model with one vacancy. To the left is a fully
atomistic model, to the right a quasicontinuum
model. In the quasicontinuum model open circles
show nonlocal atoms and solid circles show local
atoms. In the small gradient fields far from the
vacancy, each local atom in the quasicontinuum
model represents several nonlocal atoms in the
fully atomistic model.

FIG. 2. Representative regionvb
e of local atomb in elemente is

obtained by using the relation between the Delaunay triangulation
(solid lines) and the Voronoi diagram(broken lines). When a corner
of the Voronoi polyhedron of the elemente8 is outside the element,

the center of gravity(solid square) is used to definevb8
e8 .
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o
a8PNa

A\Na
B

] Ea8
N

] r a

, s6d

whereNa
A\Na

B is the set of nonlocal neighbors of thea atom
present in the modelA and not in the modelB—in other
words: The neighbor atoms of atoma that have been
changed from nonlocal atoms in modelA to local atoms in
modelB.

The difference in Eq.(6) is nonzero for a nonlocal atom
close to a nonlocal/local interface, which proves the exis-
tence of unphysical forces(ghost forces) in the simple QC
model. Similarly, one can show that there are ghost forces
acting on local atoms close to a nonlocal/local interface.
These ghost forces will be present even if the atoms have the
positions of a perfect crystal. Relaxing the structure of model
B to remove the forces in the perfect crystal structure, will
lead to an unphysical ground-state energylower than that of
the correct modelA.

One way to remove the ghost forces is to introduce
“static” correction forces as it is done in Ref. 6. Relaxing the
structure using these forces will require a recalculation of the
correction forces, since they depend on the atomic positions.
The updating of the correction forces can be done more or
less frequently.6 A very serious problem with the use of cor-
rection forces is that they are not derivable from a “correc-
tion potential energy,” i.e., they are nonconservative. We
have found that this leads to serious problems with energy
conservation during a molecular-dynamics simulation. Other
ways of handling the ghost force problem also result in non-
conservative forces.11 A more elegant solution to the ghost
force problem would clearly be desirable. In this study, we
improve the QC method so that atomic forces derived from
the total energy are well behaved: No ghost forces and a
seamless interface between local and nonlocal regions.

Knap and Ortiz8 approach the problem in an alternative
way, by changing the description of the coarse-grained re-
gion. Instead of calculating the energy of each homoge-
neously strained element, they use small clusters of atoms
around each corner atom. This avoids the ghost forces, but
introduces an approximation to the energy and forces in the
local region. This approximation can be improved by in-
creasing the cluster size8 at the expense of an increase in the
computational burden.

III. A SEAMLESS COUPLING OF ATOMISTIC AND
CONTINUUM REGIONS

The problem with ghost forces is due to the fact that the
interaction range of a nonlocal atom is different from that of
a local atom. To solve this problem, we introduce a type of
atom, namedquasi-nonlocalatom, to be positioned between
the nonlocal and local regions. The concept of a quasi-
nonlocal atom is very simple: A quasi-nonlocal atom can feel
first nearest-neighbor atoms and all nonlocal atoms within
the cutoff distanceRc. The idea of the improved QC model is
shown in Fig. 3(a) (modelC). Double circles correspond to
quasi-nonlocal atoms. Quasi-nonlocal atoms are located as a
buffer in between local and nonlocal atoms, so that no non-
local atom interacts with any local atom.

The potential energy of a quasi-nonlocal atom is calcu-
lated as if it was a nonlocal atom with one important differ-
ence: When calculating the energy of a quasi-nonlocal atom,
only the positions of nearest-neighbor atoms as well as the
positions of nonlocal atoms within the cutoff distance are
used. On the local side of the interface, the distance vectors
to the nearest-neighbor atoms are used to extrapolate the po-
sitions of second nearest neighbors, third nearest neighbors,
and so on. This is illustrated in Fig. 3(b). Big open circles
and double circles around the quasi-nonlocal atomg are the
nearest-neighbor atoms, gray circles are extrapolated neigh-
bor atoms, and broken circles are nonlocal atoms not needed
to calculate the potential energy of the quasi-nonlocal atom
g. If the position of an extrapolated neighbor atom and the
positions of a nonlocal atom are almost the same, the nonlo-
cal atom is used instead of the extrapolated position.17 By
using these extrapolated neighbor atoms, we have enough
information to calculate the potential energy of a quasi-
nonlocal atom in the same way as for a nonlocal atom. Note
that local atoms near the interface must be located at all
lattice sites, because quasi-nonlocal atoms need first neigh-
bor atoms for extrapolation of atoms further away than
nearest-neighbor atoms. As a result, each quasi-nonlocal
atom represents only one atom—just as a nonlocal atom.
Consequently, a quasi-nonlocal atom acts like a nonlocal
atom on the nonlocal side of the interface, and it acts like a
local atom on the local side of the interface.

The total energy of the improved QC model is given by

E = o
aPN

Ea
N + o

gPQ

Eg
Q + o

bPL

Eb
L , s7d

whereN, Q, andL are the sets of nonlocal, quasi-nonlocal,
and local atoms respectively.

As an example, let us look at the two-dimensional hex-
agonal lattice shown in Fig. 4(a). The quasi-nonlocal atomg1

extrapolates the second-nearest-neighbor atom at position 14
by usingg5 andg6, andg14 extrapolates the neighbor atom at
1 by using the sameg5 andg6, so these quasi-nonlocal atoms
extrapolate the neighbor atom corresponding to each quasi-
nonlocal atomic position by using common first neighbor

FIG. 3. Concept of a quasi-nonlocal atom.(a) Quasi-nonlocal
atoms (double circles) are located between nonlocal and local
atomic regions.(b) The quasi-nonlocal atomg images neighbor
atoms(gray circles) by using first neighbor atomic positions(big
open and double circles) except for nonlocal atoms(small open
circles) within the interactive field.
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atoms. Similarly, the quasi-nonlocal atomg1 extrapolates the
third-nearest-neighbor atom at position 9 by usingg3, andg9

will extrapolate the position of its third-nearest-neighbor
atom at position 1 by using the sameg3. We see that the
symmetry of interactions is restored. If we want to extrapo-
late the position of fourth-nearest neighbors, then we lose
this symmetry: The atom at position 23 is a fourth-nearest
neighbor ofg1 and it can be extrapolated by usingg2 andg7,
but g23 will use g18 and g19 for extrapolation of atomg1.
This gives an imbalance in the calculation of forces, result-
ing in ghost forces: for example, a displacement of atomg7

would result in atomg1 seeing a displacement of atomg23,
but atomg23 would not see atomg1 moving, as atomg23

does not use atomg7 to calculate the position of atomg1.
The conclusion is that we can extrapolate only the positions
of atoms that are first-nearest neighbors to a first-nearest
neighbor. This means that the range of the interatomic poten-
tial used for calculation of a two-dimensional hexagonal
structure must be limited to include up to third-nearest neigh-
bors only. If one of the neighboring atoms, for example, the
atom at position 9 as shown in Fig. 4(b), is a nonlocal atom
then the two atoms,g1 and a9, interact directly. Thus no
asymmetry is introduced, and no ghost forces appear. This is
shown in more detail in the Appendix.

We will now look at some particular crystal structures,
and show how the extrapolation can be done. Using the ex-
ample in Fig. 5, we want to write down expressions for a
second-, third-, and fourth-nearest neighbor, using only the
position of the central quasi-nonlocal atomg and the vectors
pointing from the central atom to the nearest neighborssdh

=r h−r gd.

A. Face-centered cubic

Figure 5(a) shows first neighbors of the quasi-nonlocal
atom g and the superposed atomic configurations on the
(111) atomic planes. Full circles express nearest neighbors to
the black atomg and middle, large, and small circles mean
atoms in the same plane, one plane above or below as the
black atomg. Dashed circles correspond to first neighbors to
the first neighborsad of the atomg.

We can extrapolate neighbors by using the 12 difference
vectorsdh as follows:

r 2nd= r g + 1
2sda + df + dj + dkd, s8d

r 3rd = r g + da + dj , s9d

r 4th = r g + 2da. s10d

These three equations are chosen to be as symmetric as
possible. In similar ways the other neighbors are found, for a
total of 6 second-nearest, 24 third-nearest, and 12 fourth-
nearest neighbors.

A fifth-nearest neighbor is not a first-nearest neighbor of a
first-nearest neighbor in the fcc structure, and the cutoff for
the interatomic potential can therefore not include the fifth-
nearest neighbor shell.

B. Body-centered cubic

Figure 5(b) shows first neighbors to the quasi-nonlocal
atom g and the superposed atomic configurations on the
(110) atomic planes in the bcc structure. Using eight vectors
dh, the positions of the neighbor atoms can be extrapolated
as follows:

r 2nd= r g + 1
2sda + db + dg + dhd, s11d

r 3rd = r g + da + db. s12d

There are 6 and 12 equations for second and third neigh-
bors, respectively. A fifth neighbor is a first neighbor of a

FIG. 4. (a) In a 2D hexagonal lattice, the quasi-nonlocal atom 1
can extrapolate the positions of its next-nearest neighbors(such as
atom 14) and its third-nearest neighbors(such as atom 9) from
common nearest neighbors(atoms 5+6 and atom 3, respectively).
But it cannot extrapolate the position of fourth-nearest neighbors
(such as atom 23) from common nearest neighbors.(b) If a neigh-
bor such as atom 9 is a nonlocal atom, its position is not
extrapolated.

FIG. 5. First-nearest neighbors to the black atomg and super-
posed atomic configurations on(111), (110), and(0001) planes for
(a) fcc, (b) bcc, and(c) hcp structures.
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first neighbor to the atomg, but a fourth neighbor does not
satisfy the extrapolation rule, so the cutoff for the interatomic
potential cannot include the fourth-nearest-neighbor shell.

C. Hexagonal closed packed

The extrapolation rule will work with the hexagonal-
close-packed lattice, if the potential is limited to fourth-
nearest neighbors. Figure 5(c) shows first-nearest neighbors
to the atomg and the superposed atomic configurations on
the (0001) atomic planes. A third neighbor is two layers di-
rectly above or below the black atomg. The positions of the
neighbors can be obtained by using 12 difference vectorsdh:

r 2nd= r g + 1
2sda + db + dg + dhd, s13d

r 3rd = r g + 2
3sdg + dh + did, s14d

r 4th = r g + da + db. s15d

There are 6, 2, and 18 equations for second, third, and fourth
neighbors, respectively.

D. Other structures

In a simple-cubic lattice, the extrapolation is only possible
to second-nearest neighbors. This thus limits the range of the
potentials for this crystal structure. Crystal structures which
can be seen as linear distortions of fcc and bcc should clearly
also work. This includes body-centered tetragonal unit cells,
if the c/a ratio is such that the crystal is not too far from a
fcc or bcc lattice.

The formulation given here does not work for the dia-
mond structure. An atom has 4 nearest neighbors, and 12
second-nearest neighbors, but a second-nearest neighbor
only shares a single-nearest-neighbor atom with the central

atom, making it impossible to extrapolate the position of a
second-nearest neighbor from the positions of common near-
est neighbors. This limits the applicability of the method to
nearest-neighbor potentials only. However, with a nearest-
neighbor potential there are no ghost forces even in the origi-
nal formulation of the quasicontinuum method, provided that
a single fully resolved layer of local atoms is provided at the
interface layer.

In many crystal structures, there are internal degrees of
freedom in the unit cell, as it contains more than one atom.
In some cases, such as the diamond structure, symmetry ar-
guments fix these internal degrees of freedom. In other cases
relaxations within the unit cell must explicitly be done in the
local region. This is an extension of the normal quasicon-
tinuum method, but no particular difficulties are expected.
The method presented here for eliminating the ghost forces
can probably be extended to these cases if the extrapolation
is done on the lattice vectors instead of on the interatomic
distances. This would make it possible to simulate materials
in the diamond structure. This has, however, not been tested
yet.

IV. APPLICATIONS

Before starting a simulation, the regions where atomic
deformation gradients are expected to be small are divided
into elements by a Delaunay triangulation. At the same time,
vb

e is calculated. Neighbor lists for nonlocal atoms are pre-
pared, and it is checked that there are no nonlocal atoms
interacting with local atoms. For each subsequent calculation
of the energy and forces, each quasi-nonlocal atom must ex-
trapolate the neighbors it needs by using its nearest-neighbor
atoms. If a quasi-nonlocal atom interacts with nonlocal at-
oms, then we do not need to extrapolate neighbor atoms
corresponding to those atoms. After the above processes

FIG. 6. Atomic configuration
of each model.(a) Full atomistic
model, (b) old style QC model
without correction of ghost forces,
(c) and (d) improved QC model
with new buffer layers. Open,
solid, and double circles represent
nonlocal, local, and quasi-
nonlocal atoms, respectively.
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have finished, we can calculate the potential energy and force
of each atom. In this study, to get an equilibrium state of a
system, the conjugate gradient method18 is used to define a
search direction and the golden section method18 is used to
find the minimum energy in that direction.

A. Vacancy formation energy (point defect)

In this section, the atomic forces in a perfect fcc crystal as
well as the vacancy formation energy are calculated for alu-
minum using an EAM potential12 and using four different
models. The cutoff distance of the potential is 6.29 Å which
includes fourth-nearest-neighbor atoms. Figure 6 shows
schematically the atomic configurations at the center plane
which is perpendicular to thex direction. White, dark gray,
and light gray regions in the figures, correspond to local
atomic regionsLd, nonlocal atomic regionsNd, and quasi-
nonlocal atomic regionsQd, respectively, and open circles,
solid circles, and double circles indicate nonlocal atoms, lo-
cal atoms, and quasi-nonlocal atoms, respectively. Periodic
boundary conditions are adopted in all directions. A full ato-
mistic simulation is performed in modelA, an old style QC
simulation with ghost forces is used in modelB, and the
improved QC method with quasi-nonlocal atoms is used in
modelsC andD. The important numbers for each setup are

listed in Table I. The number of representative atoms is the
total number of atoms in each model represented by local,
nonlocal, and quasi-nonlocal atoms.

First, we calculate the potential energy and forces for the
perfect fcc structure using our four models. Figure 7 showsz
components of the force of each model in its initial configu-
rations. Ideally, no atomic forces should appear in the perfect
fcc structure. As expected, a full nonlocal simulation(model
A) gives no forces. On the other hand, nonzero forces(ghost
forces) appear near the interface between nonlocal and local
atomic regions in modelB. In the modelsC and D with
quasi-nonlocal atoms no ghost forces are found.

Figure 8 shows atomic displacement in thez direction of
the equilibrium positions from the initial perfect fcc configu-
rations. Nonzero displacements can be observed at the inter-
face between local and nonlocal regions in modelB because
of the ghost forces. The relaxation of modelB reduces the
total energy by 1.2 eV, which corresponds to a negative in-
terface energy of 7.1 mJ/m2 for a nonlocal/local interface in
the (111) plane. The absolute value of the ghost plane energy
corresponds to 9.3% of aS3 boundary(twin boundary) en-
ergy for Al with the same interatomic potential.

Now we remove one atom from the center of each model
in order to calculate the vacancy formation energy. In the
initial configurations of modelsC and D, almost the same
atomic forces as those in modelA are obtained. Figure 9
shows atomic configurations of ah111j plane with the va-
cancy in an equilibrium state for modelsA, B, and C. The
colors correspond to the absolute value of atomic displace-
ment (a) from the initial configuration for modelA, ur A

−r 0
Au and(b) from the relaxed atomic configuration of model

A for modelB, ur B−r Au and for modelC, ur C−r Au. As shown
in Fig. 9(a), atomic displacements are distributed around the
vacancy in the full atomistic simulation.

In the QC simulation with ghost forces, atomic configu-
rations near the interface between nonlocal and local regions
are different from the same region of modelA though atomic
configurations near the vacancy are not so different from that
of modelA. The value ofuxB−xAu near the vacancy is about

TABLE I. Properties of each model. In all cases, the total num-
ber of atoms is 4608, and the size of the unit cell is 34.36339.66
356.11 Å3, and the crystal orientations along thex, y, andz axes

are f1̄10g, f112̄g, and[111], respectively.

Model A B C D

No. of representative atoms 4608 2736 3408 3036

No. of nonlocal atoms 4608 1728 1728 365

No. of local atoms 0 1008 912 1599

No. of quasi-nonlocal atoms 0 0 768 1072

No. of elements 0 7104 6528 11681

FIG. 7. Atomic force in perfect fcc structure
in the initial configuration. No ghost force ap-
pears in modelsC and D with quasi-nonlocal
atoms.
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0.0005 Å. In the QC simulation with quasi-nonlocal atoms,
almost exactly the same atomic displacements are obtained
and it can be confirmed that the distribution of atomic dis-
placements near the interfaces between nonlocal and quasi-
nonlocal atoms and between quasi-nonlocal and local atoms
show a truly seamless matching[see Fig. 9(b)]. The maxi-
mum value ofuxB−xAu is about 0.04 Å, which appears at the
interface between nonlocal and local regions, and the maxi-
mum value of uxC−xAu is about 0.0001 Å, which appears

near the interface between quasi-nonlocal and local regions.
Consequently, the same vacancy formation energy as found
by full atomic simulation can be calculated by using the
improved quasicontinuum method. The vacancy formation
energy is 0.67 eV.

We also calculate the vacancy formation energy fora iron
in body-centered cubic using a simple empiricalN-body po-
tential by Finnis and Sinclair13,14 and the same procedure as
for aluminum. The cutoff distance of the potential is between

FIG. 8. Displacement in thez direction of
each atom from its initial configuration in the
equilibrium state(perfect fcc structure).

FIG. 9. Atomic configurations
around the vacancy in an equilib-
rium state.(a) Absolute value of
atomic displacement in an equilib-
rium state from initial configura-
tion of modelA, ur A −r 0

Au. (b) The
error in the atomic displacement
in the equilibrium states of models
B and C compared to the fully
atomistic modelA: ur B−r Au, and
ur C−r Au. Orientation of the atomic
plane is{111}. Darker colors cor-
respond to larger atomic displace-
ments. Maxur B−r Au.0.04 Å and
maxur C−r Au.0.0001 Å.
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second- and third-neighbor shells, so it satisfies the extrapo-
lation condition for the bcc structure. We have confirmed that
in the quasicontinuum method, a seamless coupling between
the coarse-grained and fully atomistic region is also obtained
in the bcc structure by introducing quasi-nonlocal atoms. The
vacancy formation energy is 1.83 eV.

B. Grain boundary energy (plane defect)

In this section, the energy of a CuS5k100l tilt grain
boundary is calculated. We use an EMT potential with a
cutoff distance between third- and fourth-nearest
neighbors.15 Figure 10 shows one-third of the initial atomic
configurations of three models: The upper part shows a full
atomistic model(model A), the middle part shows a QC
model with ghost force(modelB), and the lower part shows
our improved QC model(modelC). Periodic boundary con-
ditions are adopted in thex and z directions. Two initial
lattice basis vectors are prepared for grains I and II, respec-
tively. The numbers for the three models are given in Table
II. The number of degrees of freedom in the QC models is a
quarter of that in the full atomistic model.

Figure 11 shows atomic displacements in they direction
in each equilibrium state from the initial configuration of
each model. Open circles represent atomic displacement of
the full atomistic model. Solid triangles and open squares
represent atomic displacements in the QC model with ghost

force and the QC model with quasi-nonlocal atoms, respec-
tively. Atomic displacements near the grain boundary for
each model are nearly identical. In this region, the differ-
ences between the relaxed atomic configurations for modelA
and modelB or modelC are about 0.0005 Å. However, in
the interface region between local and nonlocal atoms, larger
discrepancies appear in modelB, where the error in the dis-
placement is up to 0.02 Å. In modelC the interface is seam-
less, and no error is seen(the maximal deviation is 0.001 Å
in both the local and quasi-nonlocal regions, this is probably
due to the discretization of the local region as no extra de-
viation is seen near the interface).

The grain boundary energy is found to be 977.5 mJ/m2

for the full atomistic model and 977.4 mJ/m2 for the new
QC model.

V. CONCLUSIONS

A version of the quasicontinuum method for simple crys-
tal structures has been formulated which avoids the problem

FIG. 10. A one-third part of the atomic configuration of aS5 grain boundary of a full atomic model(upper part), a QC model with ghost
force (middle part), and a QC model with quasi-nonlocal atoms(lower part). Open circles, solid circles, and double circles show nonlocal
atoms, local atoms, and quasi-nonlocal atoms, respectively. Periodic boundary conditions are adopted in thex andz directions.

TABLE II. Properties of each analysis model forS5 grain
boundary for Cu. The dimensions of the simulation cell are 68.18
3181.82357.40 Å3.

Model A B C

No. of representative atoms 60864 13512 15024

No. of non-local atoms 60864 8448 8448

No. of local atoms 0 5064 3504

No. of quasi-nonlocal atoms 0 0 3072

No. of elements 0 35482 26108

FIG. 11. Displacement from the initial configuration in an equi-
librium state in they direction of the full atomic model and the QC
models.N, Q, and L are the nonlocal, quasi-nonlocal, and local
atomic regions.
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of ghost forces, i.e., unphysical forces arising in the interface
region between the fully atomistic(or nonlocal) region and
the coarse-grained(or local) region. This is done by inserting
atoms, called quasi-nonlocal atoms, between the two regions.
Quasi-nonlocal atoms behave like local atoms when they in-
teract with atoms in the local region, and as nonlocal atoms
when they interact with atoms in the nonlocal region. This
ensures a consistent description, free of ghost forces. As the
forces obtained are conservative, there are no problems with
energy conservation in dynamic simulations. In previously
published methods for treating the ghost forces, the lack of
energy conservation has prevented dynamic simulations. The
price of eliminating the ghost forces is a slight increase in the
number of degrees of freedom in the simulations, as a few
extra layers of fully resolved atoms must be added to the
simulation.

The quasi-nonlocal atoms use the distances to their
nearest-neighbor atoms to extrapolate the positions of atoms
further away, except if these positions are occupied by non-
local atoms, in which case the actual position of the nonlocal
atoms are used. It is required that the extrapolated position of
a neighboring atom is obtained from displacement vectors to
nearest-neighbor atoms which are also nearest-neighbor at-
oms of the extrapolated atom. This limits the method to in-
teratomic potentials with sufficiently short range. The limit is
fourth-, fourth-, and third-nearest neighbors for hcp, fcc, and
bcc lattices, respectively.
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APPENDIX

In the following we show that no ghost forces are present
in the interface region, i.e., that the forces on all atoms are
zero if the atoms are in a homogeneously strained fcc lattice.

The interface between the local and quasi-nonlocal atoms
is trivial. The energy of a quasi-nonlocal atom near the in-
terface(see e.g., Fig. 3) is not affected by the presence of the
local atoms, since the energy of the quasi-nonlocal atom is
only a function of the position of its nearest neighbors. Simi-
larly, the energy of a local atom near the interface is not
influenced by the interface, as it is just given by suitable
fractions of the energies of the elements having the local
atom as a corner atom.

The interface between the quasi-nonlocal atoms and the
nonlocal atoms is less obvious. If all the neighbors within the
cutoff distance of a quasi-nonlocal atom(for example, atom
1 in Fig. 4) are themselves quasi-nonlocal atoms, and if they
are arranged in a regular lattice, there is clearly no force on
the atom. If one of the neighbors, as is shown in Fig. 4(b), is

replaced with a nonlocal atom, the expression for the energy
of the quasi-nonlocal atom under consideration changes. If
the derivative of the energy of the quasi-nonlocal atom(atom
1) with respect to its position is nonzero, this will contribute
to a ghost force. However, the replacement also modifies the
expression for the energy of some of the other neighboring
atoms, and this also gives a contribution to the ghost force.
We will show that these contributions cancel. We thus prove
that there is no ghost force on quasi-nonlocal atoms near the
interface to the nonlocal atoms by showing that replacing a
quasi-nonlocal neighbor of an atom with a nonlocal atom
does not modify the force.

In the following we calculate the changeDF1 of the force
on atom 1 in Fig. 4(a) when one of the neighboring atoms
(called atomi) is replaced with a nonlocal atom. Although
the calculation is done for the two-dimensional case of Fig.
4(a), the result is easily extrapolated to three dimensions.
The following notation is used:E8 is the energy of the sys-
tem when all neighbors are quasi-nonlocal atoms,E is the
energy when the neighbori is a nonlocal atom. Similarly,Ej8
andEj are the energies of atomj in the two configurations.

If the replaced atomi is not a nearest-neighbor atom to
atom 1(e.g., i =14 or 15), only the atoms 1 andi contribute
to the change inF1:

− DF1 =
] E8

] r 1
−

] E

] r 1
=

] E18

] r 1
−

] E1

] r 1
+

] Ei8

] r 1
−

] Ei

] r 1
. sA1d

As atom 1 is not a nearest neighbor of atomi, the third term
is identically zero. The term]E18 /]r 1 contains two terms, one
from the virtual displacement of atom 1, another from the
virtual displacement of the extrapolated neighbori moving
due to the displacement of atom 1:

] E18

] r 1
=

] E1

] r i
·
] r i

s1d

] r 1
+

] E1

] r 1
= −

] E1

] r i
+

] E1

] r 1
, sA2d

wherer i
s1d signifies the position of atomi as seen from atom

1, i.e., extrapolated from the neighbors of atom 1. The quo-
tient ]r i

s1d /]r 1 gives how far the extrapolated atom moves
when atom 1 is moved. When atomi is a second- or third-
nearest neighbor to atom 1, it is clearly equal to −1. In three
dimensions, it is equal to −1 if atomi is a second- to fourth-
nearest neighbor, as can be seen from Eq.(8) to Eq. (10). If
interactions go beyond fourth-nearest neighbor the quotient
changes from −1, and ghost forces appear.

It has also been used that the functional form ofE18 andE1
are identical whenE18 is written as a function of the position
of all the neighbor positions and not just of the independent
positions of the nearest neighbors. Inserting this in equation
(A1) gives

− DF1 = −
] E1

] r i
+

] E1

] r 1
−

] E1

] r 1
−

] Ei

] r 1

= − S ] E1

] r i
+

] Ei

] r 1
D = 0, sA3d

where the last parenthesis is zero for reasons of symmetry.
Proving thatDF1 is zero when anearest-neighborquasi-

nonlocal atom is replaced with a nonlocal atom follows the
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same path, but is a little more complicated as the replace-
ment changes]Ej /]r 1 for all atoms j which extrapolate the
position of the replaced atom using the position of atom 1: If
atom 6 is replaced with a nonlocal atom, then atoms 2, 3, 4,
and 6 contribute to the change in the force on atom 1(the
expression for the energy of atoms 1, 5, and 7 do not change,
but atoms 2, 3, and 4 use the real position of atom 6 instead
of the extrapolated one). In the following,i refers to the atom
being replaced(6 in the example), andAi is the set of atoms
extrapolating the position of atomi using atom 1 sA6

=h2,3,4jd; this is identical to the set of neighbors of atomi
which have their positions extrapolated using the position of
atom 1:

− DF1 =
] E8

] r 1
−

] E

] r 1
=

] Ei8

] r 1
−

] Ei

] r 1
+ o

jPAi

S ] Ej8

] r 1
−

] Ej

] r 1
D .

sA4d

The first term is expanded similar to Eq.(A2), except that
more terms appear as the energyEi8 depends onr 1 through

the extrapolated positions of all atoms inAi. The terms
]Ej8 /]r 1 are also extrapolated in the same way as in Eq.(A2).
This gives

− DF1 =
] Ei

] r 1
+ o

jPAi

] Ei

] r j
·
] r j

sid

] r 1
−

] Ei

] r 1

+ o
jPAi

S ] Ej

] r 1
+

] Ej

] r i
·
] r i

s jd

] r 1
−

] Ej

] r 1
D

= o
jPAi

S ] Ei

] r j
·
] r j

sid

] r 1
+

] Ej

] r i
·
] r i

s jd

] r 1
D = 0. sA5d

In the last sum each term vanishes as]r j
sid /]r 1=]r i

s jd /]r 1,
i.e., when atom 1 moves atom 4 sees atom 6 being displaced
as much as atom 6 sees atom 4 being displaced.
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