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Abstract

The paper presents various formulations of characteristics-based schemes

in the framework of the arti�cial-compressibility method for variable-

density incompressible �ows. In contrast to constant-density incompress-

ible �ows, where the characteristics-based variables reconstruction leads

to a single formulation, in the case of variable density �ows three dif-

ferent schemes can be obtained henceforth labeled as: transport , conser-

vative and hybrid schemes. The conservative scheme results in pseudo-

compressibility terms in the (multi-species) density reconstruction. It is

shown that in the limit of constant density, the transport scheme becomes

the (original) characteristics-based scheme for incompressible �ows, but

the conservative and hybrid schemes lead to a new characteristics-based

variant for constant density �ows. The characteristics-based schemes

are combined with second and third-order interpolation for increasing

the computational accuracy locally at the cell faces of the control vol-

ume. Numerical experiments for constant density �ows reveal that all the

characteristics-based schemes result in the same �ow solution, but they

exhibit di�erent convergence behavior. The multigrid implementation and

numerical studies for variable density �ows are presented in Part II of this

study.
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1 Introduction

The development of advanced computational models for variable density �ows

is motivated by several application problems including chemical reactors [1, 2];

multi-material mixing [4, 3, 5]; environmental �ows [6]; combustion engineering

[7]; biological �ow and mass transport [8]; highly strati�ed �ows [9]; interfaces

between �uid of di�erent density [10]; inertial con�nement fusion [11]; and prob-

lems in astrophysics [12]. Depending on the application, variable density �ows

can feature low or high speeds, a range of spatial and time scales as well as

large density and temperature gradients, which in association with fast chem-

ical reaction rates can result in sti� numerical solutions and slow convergence

rates.

Another area of variable density �ows is that of incompressible �uids with large

(discontinuous) density variations (interfaces). Water/air free surface �ow is a

classical example, e.g., a water drop falling into a pool of water. Other impor-

tant examples are the �lling of a cast metal mold with a molten metal alloy;

the production and transport of micron-sized ink drops during inkjet printer

operation; as well as environmental and combustion problems. Although the

present paper is not concerned with discontinuous interfaces, for completeness

we mention that the variable density formulations and algorithms used in the

above problems should be combined with special interface techniques such as

volume tracking methods. These methods have spawned a plethora of papers

including an important review [13] and extensive reference in textbooks [14],

and continued development in ever more complex computational geometries. In

addition to the interface tracking approach [13, 15], other approaches include
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utilization of interface-capturing schemes (see, e.g., [16]) and hybrid approaches,

e.g., [17, 18].

A class of computational approaches that is frequently used for variable density

problems is the pressure-projection method [19]. Bell and Marcus [20] and later

on Almgren et al. [21, 22] have developed second-order projection algorithms

for variable-density incompressible �ows. An extensive discussion of robust

fractional-step projection methods for variable density �ows can be found in

[23]. A recent review of approximate and exact projection methods can also

be found in [14]. Pressure-projection based methods have also been used in

conjunction with �nite-element schemes, see e.g. [24] and [25]; in the latter

an unconditionally stable method was developed based on two projections per

time step and its performance was investigated both in �nite volume and �nite-

element implementations.

Another family of methods for solving incompressible �ows is based on the ar-

ti�cial compressibility formulation of Chorin [26]. The arti�cial compressibility

approach circumvents the di�culty of the pressure decoupling in the incom-

pressible Navier-Stokes equations by adding a pseudo-time pressure derivative

to the continuity equation. The new system of equations can then be iterated in

pseudo-time until the divergence-free �ow �eld is satis�ed. The method can be

used both for steady and unsteady �ows and there are a number of papers in the

literature describing implicit and explicit strategies for solving steady and un-

steady �ow problems in conjunction with the arti�cial compressibility [14], [27]-

[38]. The arti�cial compressibility method leads to hyperbolic and hyperbolic-

parabolic equations for inviscid and viscous incompressible (constant density)

�ows, respectively. The discretization schemes and solvers developed for ar-
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ti�cial compressibility have many similarities with the methods developed for

compressible �ows. Therefore, numerical developments for compressible �ows

can be transferred to incompressible �ows.

Although the arti�cial compressibility has been used extensively for constant

density �ows, the development of numerical schemes in the framework of arti�-

cial compressibility for variable, density incompressible �ows has received scant

attention in the literature. Riedel [39] used arti�cial compressibility formula-

tion to construct an unstructured �nite volume method for the solution of 2-D

steady viscous, incompressible, reacting �ows, while Pan and Chang [40] devel-

oped a surface-capturing total variation diminishing (TVD) method with slope

modi�cation for multi-�uid incompressible Navier-Stokes formulation. Finally,

Quian et al. [41] developed interface-capturing high-resolution Godunov-type

scheme for hydraulic �ow problems.

The aim of the present work is to develop high-resolution, characteristics-based

schemes, in conjunction with the arti�cial compressibility approach for variable-

density incompressible �ows. High-resolution methods have attracted the inter-

est of researchers in a broad range of application problems. A detailed account

of the theory, numerical design practices and computational implementation of

high-resolution methods for incompressible and low-speed �ows can be found

in [14]. These methods can provide high spatial accuracy and accurate repre-

sentation of the �ow physics, thus allowing accurate solutions to be obtained

on moderate grids. The origin of the characteristics-based schemes derived here

can be found in previous works dealt with compressible [42] and incompressible

(constant density) �ows [14, 36]. Using the arti�cial compressibility framework,

in the present paper we derive characteristics-based schemes for variable-density,
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multi-species �ows.

In Part I, we present the derivation of characteristics-based schemes and assess

the accuracy and e�ciency of these schemes in the limit of constant-density

incompressible �ows. The implementation of the schemes in conjunction with

multigrid acceleration techniques and numerical studies that assess the accuracy

and e�ciency of the schemes in variable density �ows, are presented in Part II

of this study.

2 Problem formulation

Constant density incompressible �ows are governed by the continuity and mo-

mentum equations [14, 43, 44]:

∇ · ~u = 0 , (1)

∂~u

∂t
+ (~u · ∇) ~u = −1

ρ
∇p + ν∇2~u . (2)

In the above equations, ~u is the velocity vector with components (u, v, w) for

the three Cartesian directions (x, y, z), respectively; ρ is the �uid density; p is

the pressure; and ν denotes viscosity.

For incompressible �ows, the decoupling between continuity and momentum

equations is due to the absence of the pressure from the former. This can be

circumvented by using the arti�cial approach of Chorin [26], which introduces

a pseudo-time pressure derivative in the continuity equation ( τ is the pseudo-
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time),

1
β

∂p

∂τ
+∇ · ~u = 0 , (3)

where β is the arti�cial compressibility parameter that needs to be properly

chosen in order to achieve numerical convergence. For steady state problems,

(3) is solved along with the momentum equations until the pseudo-time pressure

derivative vanishes. For unsteady problems a similar procedure is applied and

this is discussed below.

For multispecies �ows, (2) needs to be written in a form that takes into account

the varying local viscosity, νl. Moreover, the equations can become dimension-

less by introducing the local Reynolds number Rel = UoL/νl, where Uo and

L denote reference values for the velocity and spatial dimension, respectively,

while νl is the local kinematic viscosity. One can also introduce a reference

(constant) viscosity νo and de�ne the corresponding Reynolds number, based

on νo, as Re = Relνl/νo. The dimensionless form of (2) is then given by

∂~u

∂t
+ (~u · ∇) ~u = −1

ρ
∇p +

1
Rel

∇2~u . (4)

Calculation of the local viscosity for a mixture of �uids may be not a trivial

problem. For immiscible �uids, calculation of the local �uid properties is reduced

to the determination of the interface position, which is equivalent to the solution

of convection equations for �uid properties [17, 45]. However, for miscible �uids

local �uid properties should be computed using approximate methods (see, e.g.,

[46]). Alternatively, the local viscosity can be determined by a volume weighted
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average [47] and this is the approach followed here.

In addition to the basic �uid �ow equations, for multi-species �ow problems

advection-di�usion equations are added to the system for tracing species prop-

agation. The advection-di�usion equations can be casted in terms of molecular

concentrations, mass fractions, mole fractions etc. The choice of formulation de-

pends on which representation is more convenient for each particular problem.

In the present paper, we have chosen to cast the equations in terms of partial

densities, ρi. For a �ow containing N species, the total density is de�ned by the

sum of partial densities ρ ≡ Σρi (i = 1, N ). The advection-di�usion equations

for species transport are given by

∂ρi

∂t
+ (~u · ∇) ρi =

1
Pe
∇ ·

(
l=N∑

l=1

Dm
li ρ∇ρl

ρ

)
. (5)

In the above equation, Pe = UoL/D and Dm
li = Dm∗

li /D stand for the Peclet

number and the normalized multi-component di�usion coe�cients, respectively,

where D is a reference di�usion coe�cient and Dm∗
li are the elements of the

dimensional, multicomponent N × N di�usion matrix. In pure di�usion prob-

lems the equations for species transport (5) should be solved for all species [45].

When the �ow equations are solved simultaneously with the advection-di�usion

equations for species transport, it is more convenient to solve the advection

equation for the total density of the �ow. Because in this case the system of

equations becomes overde�ned � the equation for total density can be obtained

as a sum of equations for partial densities � the system for species transport can

be reduced to (N − 1) equations for partial densities ρi, i.e.
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



∂ρ

∂t
+ (~u · ∇) ρ = 0

∂ρi

∂t
+ (~u · ∇) ρi =

1
Pe
∇ ·

(
N−1∑

l=1

Dliρ∇ρl

ρ

)

i = 1, N − 1

(6)

where Dli are the elements of the reduced (N − 1) × (N − 1) matrix [48].

Generally, there is not a broadly established de�nition or solution for multi-

component and reduced di�usion matrices apart from the dilute-gas limit [49].

In this paper, the reduced di�usion matrix is considered to be known. For

a steady-state �ow problem the equations to be solved are (2), (3) and (6).

The arti�cial compressibility approach can also be used for time-dependent �ow

problems using the dual-time stepping technique [30, 32], which results in adding

a pseudo-time derivative in the momentum equations as well. For the variable-

density �ow case, pseudo-time density derivatives also need to be added to the

species transport equations, thus yielding the following system of equations





∂~u

∂τ
= −∂~u

∂t
−

(
(~u · ∇) ~u +

1
ρ
∇p− 1

Rel
∇2~u

)

∂p

∂τ
= −β∇ · ~u

∂ρ

∂τ
= −∂ρ

∂t
− (~u · ∇) ρ

∂ρi

∂τ
= −∂ρi

∂t
−

(
(~u · ∇) ρi − 1

Pe
∇ ·

(
N−1∑

l=1

Dliρ∇ρl

ρ

))
(7)

At each real time step, t, the solution of (7) is obtained by iterating in pseudo-

time τ until convergence is achieved within a prescribed convergence tolerance;

thus driving the pseudo-time derivatives to zero and satisfying the incompress-

ibility (divergence free) condition at each real time step.

We write the system (7) in conservative form for the vector of unknown variables
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U = (p/β, ρu, ρv, ρw, ρ, ρi)
T and introduce the inviscid (Ec

I ,F
c
I ,G

c
I ) and viscous

(Ec
V,Fc

V,Gc
V) �ux vectors for Cartesian coordinates (x, y, z):

∂U
∂τ

= −∂Ur

∂t
+

∂Ec
V

∂x
+

∂Fc
V

∂y
+

∂Gc
V

∂z
− ∂Ec

I

∂x
− ∂Fc

I

∂y
− ∂Gc

I

∂z
, (8)

where Ur = (0, ρu, ρv, ρw, ρ, ρk)T and the inviscid and viscous �uxes are given

by





Ec
I =

(
u, ρu2 + p, ρuv, ρuw, ρu, ρiu

)T

Fc
I =

(
v, ρuv, ρv2 + p, ρvw, ρv, ρiv

)T

Gc
I =

(
w, ρuw, ρvw, ρw2 + p, ρw, ρiw

)T

(9)

and





Ec
V =

(
0, τxx, τxy, τxz, 0, 1

Pe

N−1∑

l=1

Dliρ
∂ρl/ρ

∂x

)T

Fc
V =

(
0, τyx, τyy, τyz, 0, 1

Pe

N−1∑

l=1

Dliρ
∂ρl/ρ

∂y

)T

Gc
V =

(
0, τzx, τzy, τzz, 0, 1

Pe

N−1∑

l=1

Dliρ
∂ρl/ρ

∂z

)T

(10)

respectively, where τij stand for the components of the viscous stress tensor.

Let us consider an arbitrary curvilinear system (ξ (x, y, z) , η (x, y, z) , ζ (x, y, z))

where the Jacobian of the transformation is given by J =
∣∣∣∂(x,y,z)

∂(ξ,η,ζ)

∣∣∣. The system

of (8) can be written in curvilinear coordinates (see, for example, [14]) as

∂JU
∂τ

= −∂JUr

∂t
+

∂EV

∂ξ
+

∂FV

∂η
+

∂GV

∂ζ
− ∂EI

∂ξ
− ∂FI

∂η
− ∂GI

∂ζ
. (11)

The inviscid, (EI,FI,GI), and viscous, (EV,FV,GV), �uxes can be written in

curvilinear coordinates as
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



EI = J
(
Ec

I
∂ξ
∂x + Fc

I
∂ξ
∂y + Gc

I
∂ξ
∂z

)

FI = J
(
Ec

I
∂η
∂x + Fc

I
∂η
∂y + Gc

I
∂η
∂z

)

GI = J
(
Ec

I
∂ζ
∂x + Fc

I
∂ζ
∂y + Gc

I
∂ζ
∂z

)

EV = J
(
Ec

V
∂ξ
∂x + Fc

V
∂ξ
∂y + Gc

V
∂ξ
∂z

)

FV = J
(
Ec

V
∂η
∂x + Fc

V
∂η
∂y + Gc

V
∂η
∂z

)

GV = J
(
Ec

V
∂ζ
∂x + Fc

V
∂ζ
∂y + Gc

V
∂ζ
∂z

)

(12)

Using the above notation, in the next section we present the derivation of

characteristics-based schemes for variable-density incompressible �ows.

3 Characteristics-based schemes

Both the advective and viscous �uxes are discretized on the cell centres using

the intercell values (Fig. 1), e.g.,

∂EI

∂ξ
=

(EI)i+ 1
2 ,j,k − (EI)i− 1

2 ,j,k

∆ξ
. (13)

Let us consider (11) retaining only the inviscid part of the operator and omitting

the derivative in real time. The latter can be treated as a source term without

a�ecting the derivation of the characteristics-based scheme. Then (11) is written

∂JU

∂τ
+

∂EI

∂ξ
+

∂FI

∂η
+

∂GI

∂ζ
=

∂JU

∂τ
+

∂J
(
Ec

I
∂ξ
∂x

+ Fc
I

∂ξ
∂y

+ Gc
I

∂ξ
∂z

)

∂ξ
+ (14)

∂J
(
Ec

I
∂η
∂x

+ Fc
I

∂η
∂y

+ Gc
I

∂η
∂z

)

∂η
+

∂J
(
Ec

I
∂ζ
∂x

+ Fc
I

∂ζ
∂y

+ Gc
I

∂ζ
∂z

)

∂ζ
=

J
∂U

∂τ
+ J

(
∂ξ

∂x

∂Ec
I

∂ξ
+

∂ξ

∂y

∂Fc
I

∂ξ
+

∂ξ

∂z

∂Gc
I

∂ξ

)
+

J

(
∂η

∂x

∂Ec
I

∂η
+

∂η

∂y

∂Fc
I

∂η
+

∂η

∂z

∂Gc
I

∂η

)
+

J

(
∂η

∂x

∂Ec
I

∂η
+

∂η

∂y

∂Fc
I

∂η
+

∂η

∂z

∂Gc
I

∂η

)
+
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Ec
I

(
∂

∂ξ

(
J

∂ξ

∂x

)
+

∂

∂η

(
J

∂η

∂x

)
+

∂

∂ζ

(
J

∂ζ

∂x

))
+

Fc
I

(
∂

∂ξ

(
J

∂ξ

∂y

)
+

∂

∂η

(
J

∂η

∂y

)
+

∂

∂ζ

(
J

∂ζ

∂y

))
+

Gc
I

(
∂

∂ξ

(
J

∂ξ

∂z

)
+

∂

∂η

(
J

∂η

∂z

)
+

∂

∂ζ

(
J

∂ζ

∂z

))
,

where the brackets in the last three terms are zero (this can be shown by substi-

tuting the expression for the Jacobian into the brackets and performing di�er-

entiation). We consider the one-dimensional counterpart of (14), with respect

to the ξ-direction (for non-moving grids),

∂U
∂τ

+
∂ξ

∂x

∂Ec
I

∂ξ
+

∂ξ

∂y

∂Fc
I

∂ξ
+

∂ξ

∂z

∂Gc
I

∂ξ
= 0 , (15)

divide by
√(

∂ξ
∂x

)2

+
(

∂ξ
∂y

)2

+
(

∂ξ
∂z

)2

and introduce the notation

L =

√(
∂ξ

∂x

)2

+
(

∂ξ

∂y

)2

+
(

∂ξ

∂z

)2

(16)

and k̃ = 1
L

∂ξ
∂k , where k = x, y, z. Eq. (15) can then be written as a system of

equations





1
βL

∂p

∂τ
+ x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ
= 0

1
L

∂ (ρu)
∂τ

+ x̃
∂

(
ρu2 + p

)

∂ξ
+ ỹ

∂ (ρuv)
∂ξ

+ z̃
∂ (ρuw)

∂ξ
= 0

1
L

∂ (ρv)
∂τ

+ x̃
∂ (ρuv)

∂ξ
+ ỹ

∂
(
ρv2 + p

)

∂ξ
+ z̃

∂ (ρvw)
∂ξ

= 0

1
L

∂ (ρw)
∂τ

+ x̃
∂ (ρuw)

∂ξ
+ ỹ

∂ (ρvw)
∂ξ

+ z̃
∂

(
ρw2 + p

)

∂ξ
= 0

1
L

∂ρ

∂τ
+ x̃

∂ (ρu)
∂ξ

+ ỹ
∂ (ρv)

∂ξ
+ z̃

∂ (ρw)
∂ξ

= 0

1
L

∂ρi

∂τ
+ x̃

∂ (ρiu)
∂ξ

+ ỹ
∂ (ρiv)

∂ξ
+ z̃

∂ (ρiw)
∂ξ

= 0

i = 1, N − 1

(17)

Eqs. (17) do not correspond to the system comprising of (1), (4) and (6) -
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or (7) based on the arti�cial compressibility formulation - unless we apply the

divergence-free condition. For example, applying the divergence-free condition

to the density equations, we obtain the non-conservative form





1
L

∂ρ

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρ

∂ξ
= 0

1
L

∂ρi

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρi

∂ξ
= 0

i = 1, N − 1

(18)

which represents advection of density along streamlines. Eqs. (17) contain

`non-physical' terms that are divergence-velocity dependent and arise from the

implementation of the arti�cial compressibility approach, while Eqs. (18) corre-

spond to (6) or (7) after implementing arti�cial-compressibility. Through proper

combinations of (17) and (18), one can derive three di�erent formulations for

eqs. (17), which in turn lead to di�erent characteristics-based discretizations as

we will present later. The three formulations are:

• Transport formulation : The equations for densities are written as ad-

vection equations in non-conservative form (18) and these are, subse-

quently, used to eliminate the total density from the momentum equations

(17).

• Hybrid formulation : The conservative equation for the total density is

used to eliminate density from the momentum equations in (17). The lat-

ter are solved in conjunction with advection equations for species transport

(18).

• Conservative formulation : Eqs. (17) are solved without taking into

account (18).
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The above three formulations converge to the same system of equations as the

divergence of velocity tends to zero, but they yield di�erent characteristics-based

(CB) schemes. The derivation of these schemes is discussed below.

3.1 Transport CB scheme

The transport formulation leads to the following non-conservative system of

equations:





1
βL

∂p

∂τ
+ x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ
= 0

1
L

∂u

∂τ
+ (ux̃ + vỹ + wz̃)

∂u

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
u +

1
ρ

∂p

∂ξ
x̃ = 0

1
L

∂v

∂τ
+ (ux̃ + vỹ + wz̃)

∂v

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
v +

1
ρ

∂p

∂ξ
ỹ = 0

1
L

∂w

∂τ
+ (ux̃ + vỹ + wz̃)

∂w

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
w +

1
ρ

∂p

∂ξ
z̃ = 0

1
L

∂ρ

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρ

∂ξ
= 0

1
L

∂ρi

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρi

∂ξ
= 0

i = 1, N − 1
(19)

Introducing the vector of non-conservative variables, Unc =
(

p
β , u, v, w, ρ, ρi

)
,

(19) can be written in a matrix form

1
L

∂Unc

∂τ
+ A

∂Unc

∂ξ
= 0 , (20)

where A, (4 + N)× (4 + N), is given by
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A =




0 βx̃ βỹ βz̃ 0 0 . . . 0
1
ρ x̃ λ0 + ux̃ uỹ uz̃ 0 0 . . . 0
1
ρ ỹ vx̃ λ0 + vỹ vz̃ 0 0 . . . 0
1
ρ z̃ wx̃ wỹ λ0 + wz̃ 0 0 . . . 0
0 0 0 0 λ0 0 . . . 0
0 0 0 0 0 λ0 . . . 0
. . . . . . . . . .
0 0 0 0 0 0 . . . λ0




, (21)

with the columns and rows from 6 to N+4 corresponding to the species densities.

The matrix A has the following distinct eigenvalues: N + 2 eigenvalues λ0 =

ux̃ + vỹ + wz̃ and the eigenvalues λ1 = λ0 + s and λ2 = λ0 − s, where s =

√
λ2

0 + β/ρ is the arti�cial speed of sound. Our objective is to derive solutions

for the primitive variables along the characteristics l = 0, 1, 2. De�ning the

characteristic directions by ∆ξ
∆τ = ξ−ξl

∆τ = λl

√
ξ2
x + ξ2

y + ξ2
z , the pseudo-time

derivatives in (19) can be discretized as follows

∂f (τ, ξ)
∂τ

∼= f (τ + ∆τ, ξ)− f (τ, ξ)
∆τ

=

f (τ + ∆τ, ξ)− f (τ, ξl)
∆τ

+
f (τ, ξl)− f (τ, ξ)

∆τ
=

f (τ + ∆τ, ξ)− f (τ, ξl)
∆τ

− ∆ξ

∆τ

f (τ, ξl)− f (τ, ξ)
∆ξ

=

f (τ + ∆τ, ξ)− f (τ, ξl)
∆τ

− f (τ, ξl)− f (τ, ξ)
∆ξ

λ
√

ξ2
x + ξ2

y + ξ2
z
∼=

f (τ + ∆τ, ξ)− f (τ, ξl)
∆τ

− ∂f

∂ξ
λ
√

ξ2
x + ξ2

y + ξ2
z =

f̃ − f

∆τ
− ∂f

∂ξ
λ
√

ξ2
x + ξ2

y + ξ2
z , (22)

where f̃ ≡ f (τ + ∆τ, ξ) and f ≡ f (τ, ξl) (see Fig. 2). Using (22), (19) is writ-

ten:
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



1
βL

p̃− pl

∆τ
− λ

β
pξ + x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ
= 0

1
L

ũ− ul

∆τ
+ (λ0 − λ)

∂u

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
u +

1
ρ

∂p

∂ξ
x̃ = 0

1
L

ṽ − vl

∆τ
+ (λ0 − λ)

∂v

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
v +

1
ρ

∂p

∂ξ
ỹ = 0

1
L

w̃ − wl

∆τ
+ (λ0 − λ)

∂w

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
w +

1
ρ

∂p

∂ξ
z̃ = 0

1
L

ρ̃− ρl

∆τ
+ (λ0 − λ)

∂ρ

∂ξ
= 0

1
L

ρ̃i − ρil

∆τ
+ (λ0 − λ)

∂ρi

∂ξ
= 0

i = 1, N − 1

(23)

To eliminate the spatial derivatives from (23) we make use of the idea presented

in the book of Courant and Hilbert [50] regarding elimination of unknowns in

a system of linear equations, known as Riemann method. According to [50],

one can multiply each from the equations in (23) with arbitrary coe�cients

(a, b, c, d, e, fi, i = 1, N − 1), sum up the equations, group the multipliers of

spatial derivatives and set them equal to zero, thus yielding the following system

of equations:





a

β
(p̃− pl) + b (ũ− ul) + c (ṽ − vl)+

d (w̃ − wl) + e (ρ̃− ρl) +
N−1∑

i=1

fi (ρ̃i − ρil) = 0

−a
ρ

β
λl + bx̃ + cỹ + dz̃ = 0

ax̃ + b (λ0 − λl + ux̃) + cvx̃ + dwx̃ = 0
aỹ + buỹ + c (λ0 − λl + vỹ) + dwỹ = 0
az̃ + buz̃ + cvz̃ + d (λ0 − λl + wz̃) = 0

e (λ0 − λl) = 0
fi (λ0 − λl) = 0
i = 1, N − 1

(24)

where the subscript l stands for the characteristics. For λ = λ0, (24) yields
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



a

β
(p̃− p0) + b (ũ− u0) + c (ṽ − v0)+

d (w̃ − w0) + e (ρ̃− ρ0) +
N−1∑

i=1

fi (ρ̃i − ρi0) = 0

−a
ρ

β
λ0 + bx̃ + cỹ + dz̃ = 0

a + bu + cv + dw = 0
e · 0 = 0
fi · 0 = 0

i = 1, N − 1

(25)

The coe�cients e and fi can take any values that satisfy the last two equations

in (25) and ∀i. Thus, from the �rst equation in the above system we obtain

ρ = ρ0 and ρi = ρi0. Taking into account that λ0 corresponds to a streamline,

we can write that x̃v0 − ỹu0 = z̃u0 − x̃w0 = 0, i.e., vorticity is zero along the

streamline. The above yields the following system





(ṽ − v0) x̃− (u− u0) ỹ = 0
(w̃ − w0) x̃− (u− u0) z̃ = 0

ρ− ρ0 = 0
ρi − ρi0 = 0
i = 1, N − 1

(26)

For λ = λ1 = λ0+s it follows from the last two equations of (24) that e = fi = 0,

thus the system is written as:





1
β

(p̃− p1) +
b

a
(ũ− u1) +

c

a
(ṽ − v1) +

d

a
(w̃ − w1) = 0

−a
ρ

β
(λ0 + s) + bx̃ + cỹ + dz̃ = 0

ax̃ + b (−s + ux̃) + cvx̃ + dwx̃ = 0
aỹ + buỹ + c (−s + vỹ) + dwỹ = 0
az̃ + buz̃ + cvz̃ + d (−s + wz̃) = 0

. (27)

This system is essentially the same as for the incompressible, (constant density)

�ow [14, 36] and its solution for p is given by

p̃ = p1 − ρλ1

[
x̃ (ũ− u1) + ỹ (ṽ − v1) + z̃ (w̃ − w1)

]
. (28)
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Similarly, for λ = λ1 = λ0 + s one obtains:

p̃ = p2 − ρλ2

[
x̃ (ũ− u2) + ỹ (ṽ − v2) + z̃ (w̃ − w2)

]
. (29)

The solution of the system (26), (28) and (29) yields the following formulas for

the reconstructed (tilde) variables:





p̃ =
1
2s

(λ1p2 − λ2p1 − β (R1 −R2))

ũ = u0 +
x̃

2sρ
R3

ṽ = v0 +
ỹ

2sρ
R3

w̃ = w0 +
z̃

2sρ
R3

ρ̃ = ρ0

ρ̃i = ρi0

i = 1, N − 1

, (30)

In (30) we have introduced the auxiliary functions R1, R2 and R3, which are

given by





R1 = x̃ (u0 − u1) + ỹ (v0 − v1) + z̃ (w0 − w1)
R2 = x̃ (u0 − u2) + ỹ (v0 − v2) + z̃ (w0 − w2)

R3 = p1 − p2 + λ2ρR2 − λ1ρR1

(31)

In the limit of constant-density �ow, the eigenvalues and the reconstruction

formulas for the transport CB scheme (30) correspond to the formulas obtained

for incompressible, constant-density �ows [14, 36].

3.2 Hybrid CB scheme

The hybrid formulation leads to the following system of equations (with respect

to the �ux EI):
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



1
βL

∂p

∂τ
+ x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ
= 0

1
L

∂u

∂τ
+ (ux̃ + vỹ + wz̃)

∂u

∂ξ
+

1
ρ

∂p

∂ξ
x̃ = 0

1
L

∂v

∂τ
+ (ux̃ + vỹ + wz̃)

∂v

∂ξ
+

1
ρ

∂p

∂ξ
ỹ = 0

1
L

∂w

∂τ
+ (ux̃ + vỹ + wz̃)

∂w

∂ξ
+

1
ρ

∂p

∂ξ
z̃ = 0

1
L

∂ρ

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρ

∂ξ
= 0

1
L

∂ρi

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρi

∂ξ
= 0

i = 1, N − 1

(32)

The system (32) can be written in the matrix form (20), where A, (4 + N) ×

(4 + N), is given by:

A =




0 βx̃ βỹ βz̃ 0 0 . . . 0
1
ρ x̃ λ0 0 0 0 0 . . . 0
1
ρ ỹ 0 λ0 0 0 0 . . . 0
1
ρ z̃ 0 0 λ0 0 0 . . . 0
0 0 0 0 λ0 0 . . . 0
0 0 0 0 0 λ0 . . . 0
. . . . . . . . . .
0 0 0 0 0 . . . . λ0




(33)

The matrix A has N+2 eigenvalues λ0 and the eigenvalues λ1 = (λ0+s)/2, λ2 =

(λ0 − s)/2, where the arti�cial speed of sound is given by s =
√

λ2
0 + 4β

ρ .

Application of the Riemann method for the system (32) yields,





a
1
β

(p̃− pl) + b (ũ− ul) + c (ṽ − vl)+

d (w̃ − wl) + e (ρ̃− ρl) +
N−1∑

i=1

fi (ρ̃i − ρil) = 0

ax̃ + b (λ0 − λl) = 0
aỹ + c (λ0 − λl) = 0
az̃ + d (λ0 − λl) = 0

e (λ0 − λl) = 0
fi (λ0 − λl) = 0
i = 1, N − 1

(34)

where the subscript l stands for the characteristics. When λ = λ0, (34) yields,
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



a
1
β

(p̃− pl) + b (ũ− ul) + c (ṽ − vl)+

d (w̃ − wl) + e (ρ̃− ρl) +
N−1∑

i=1

fi (ρ̃i − ρil) = 0

−a
ρ

β
λ0 + bx̃ + cỹ + dz̃ = 0

ax̃ = 0
aỹ = 0
az̃ = 0
e · 0 = 0
fi · 0 = 0

i = 1, N − 1

(35)

Similarly to the transport scheme, in the present case ρ̃ = ρ0 and ρ̃i = ρi0. Also

(35) gives a = 0, thus from the second equation of the above system we obtain

b = −(cỹ + dz̃)/x̃. Substituting the results into the �rst equation, consolidating

the coe�cients and setting their multipliers equal to zero, we obtain:

{
(ṽ − v0) x̃− (ũ− u0) ỹ = 0
(w̃ − w0) x̃− (ũ− u0) z̃ = 0 (36)

When λ = λ1 = (λ0 + s) /2, one obtains λ0 − λ1 = λ2 and





a

β
(p̃− p1) + b (ũ− u1) + c (ṽ − v1)+

d (w̃ − w1) + e (ρ̃− ρ1) +
N−1∑

i=1

fi (ρ̃i − ρi1) = 0

−a
ρ

β
λ1 + bx̃ + cỹ + dz̃ = 0

ax̃ + bλ2 = 0
aỹ + cλ2 = 0
az̃ + dλ2 = 0

eλ2 = 0
fiλ2 = 0

i = 1, N − 1

(37)

which yields e = 0 and fi = 0, thus leading to the following system,
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



a
1
β

(p̃− p1) + b (ũ− u1) + c (ṽ − v1) + d (w̃ − w1) = 0

−a
ρ

β
λ1 + bx̃ + cỹ + dz̃ = 0

− x̃

λ2
a = b

− ỹ

λ2
a = c

− z̃

λ2
a = d

(38)

Substituting the expressions for the coe�cients b, c and d from the last three

equations into the second equation and taking into account that x̃2+ ỹ2+ z̃2 = 1

and λ1λ2 = −β/ρ, we �nd that the second equation in (38) becomes an identity.

Substituting the expressions for the coe�cients b, c and d into the �rst equation

one obtains:

a
1
β

(p̃− p1)− a
x̃

λ2
(ũ− u1)− a

ỹ

λ2
(ṽ − v1)− a

z̃

λ2
(w̃ − w1) = 0 , (39)

which yields that either we have a solution identical to zero for all the coe�cients

or

p̃− p1 − βx̃

λ2
(ũ− u1)− βỹ

λ2
(ṽ − v1)− βz̃

λ2
(w̃ − w1) = 0 . (40)

Since λ2λ1 = −β
ρ , the last equation can be written as

p̃− p1 + λ1ρx̃ (ũ− u1) + λ1ρỹ (ṽ − v1) + λ1ρz̃ (w̃ − w1) = 0 . (41)

Similarly, when λ = λ2 = (λ0 − s) /2 we obtain λ0 − λ2 = λ1 and

p̃− p2 + λ2ρx̃ (ũ− u2) + λ2ρỹ (ṽ − v2) + λ2ρz̃ (w̃ − w2) = 0 . (42)
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Equations (36), (41) and (42) lead to the following solution for the characteristics-

based variables,





p̃ =
1
s

(λ1p2 − λ2p1 − β (R1 −R2))

ũ = u0 +
x̃

sρ
R3

ṽ = v0 +
ỹ

sρ
R3

w̃ = w0 +
z̃

sρ
R3

ρ̃ = ρ0

ρ̃i = ρi0

(43)

where the auxiliary functions R1, R2 and R3 are de�ned by (31). Similarly

to the transport scheme, in the hybrid schemes the densities take the form of

(passive) advected scalars. However, the eigenvalues as well as the formulas for

the characteristics-based pressure and velocities (tilde variables) are di�erent.

3.3 Conservative CB scheme

We consider the system (17) and write it in the form





1
βL

∂p

∂τ
+ x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ
= 0

1
L

∂u

∂τ
+ (ux̃ + vỹ + wz̃)

∂u

∂ξ
+

1
ρ

∂p

∂ξ
x̃ = 0

1
L

∂v

∂τ
+ (ux̃ + vỹ + wz̃)

∂v

∂ξ
+

1
ρ

∂p

∂ξ
ỹ = 0

1
L

∂w

∂τ
+ (ux̃ + vỹ + wz̃)

∂w

∂ξ
+

1
ρ

∂p

∂ξ
z̃ = 0

1
L

∂ρ

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρ

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
ρ = 0

1
L

∂ρi

∂τ
+ (ux̃ + vỹ + wz̃)

∂ρi

∂ξ
+

(
x̃

∂u

∂ξ
+ ỹ

∂v

∂ξ
+ z̃

∂w

∂ξ

)
ρi = 0

(44)

The system (44) can be written in the matrix form of (20), where A, (4 + N)×

(4 + N), is given by:
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A =




0 βx̃ βỹ βz̃ 0 0 . . . 0
1
ρ x̃ λ0 0 0 0 0 . . . 0
1
ρ ỹ 0 λ0 0 0 0 . . . 0
1
ρ z̃ 0 0 λ0 0 0 . . . 0
0 x̃ρ ỹρ z̃ρ λ0 0 . . . 0
0 x̃ρ1 ỹρ1 z̃ρ1 0 λ0 . . . 0
. . . . . . . . . .
0 x̃ρN−1 ỹρN−1 z̃ρN−1 0 0 . . . λ0




. (45)

The columns and rows 6 to N+4 correspond to the species densities. The matrix

A has N +2 eigenvalues λ0 = ux̃+vỹ+wz̃, and the eigenvalues λ1 = 1/2(λ0+s)

and λ2 = 1/2(λ0 − s), where s =
√

λ2
0 + 4β

ρ is the arti�cial speed of sound.

Applying the Riemann method [50] for the system (44) we obtain





a

β
(p̃− pl) + b (ũ− ul) + c (ṽ − vl)+

d (w̃ − wl) + e (ρ̃− ρl) +
N−1∑

i=1

fi (ρ̃i − ρil) = 0

−a
ρ

β
λl + bx̃ + cỹ + dz̃ = 0

ax̃ + b (λ0 − λl) + eρx̃ +
N−1∑

i=1

fiρix̃ = 0

aỹ + c (λ0 − λl) + eρỹ +
N−1∑

i=1

fiρiỹ = 0

az̃ + d (λ0 − λl) + eρz̃ +
N−1∑

i=1

fiρiz̃ = 0

e (λ0 − λl) = 0
fi (λ0 − λl) = 0
i = 1, N − 1

(46)

where the subscript l stands for the characteristics. For λ = λ0, (46) yields
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



a

β
(p̃− p0) + b (ũ− u0) + c (ṽ − v0)+

d (w̃ − w0) + e (ρ̃− ρ0) +
N−1∑

i=1

fi (ρ̃i − ρi0) = 0

−a
ρ

β
λ0 + bx̃ + cỹ + dz̃ = 0

ax̃ + eρx̃ +
N−1∑

i=1

fiρix̃ = 0

aỹ + eρỹ +
N−1∑

i=1

fiρiỹ = 0

az̃ + eρz̃ +
N−1∑

i=1

fiρiz̃ = 0

e · 0 = 0
fi · 0 = 0

i = 1, N − 1

(47)

From the above system we obtain

a =
β

λ0ρ
(bx̃ + cỹ + dz̃) , (48)

and

e = −a
1
ρ
−

N−1∑

i=1

fi
ρi

ρ
= − β

λ0ρ
(bx̃ + cỹ + dz̃)−

N−1∑

i=1

fi
ρi

ρ
(49)

Substituting the formulas for a and e into the �rst equation of the system (47),

we obtain:

(
(p̃− p0)

1
λ0ρ

x̃− b
β

λ0ρ2
x̃ (ρ̃− ρ0) + (ũ− u0)

)
b +

(
(p̃− p0)

1
λ0ρ

ỹ − β

λ0ρ2
y (ρ̃− ρ0) + (ṽ − v0)

)
c +

(
(p̃− p0)

1
λ0ρ

z̃ − b
β

λ0ρ2
z̃ (ρ̃− ρ0) + (w̃ − w0)

)
d +

N−1∑

i=1

fi

(
(ρ̃i − ρi0)− ρi

ρ
(ρ̃− ρ0)

)
= 0 . (50)
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For a non-trivial solution of (50), the terms in the brackets should be zero, thus





(p̃− p0)
λ0ρ

x̃− β (ρ̃− ρ0)
λ0ρ2

x̃ + (ũ− u0) = 0

(p̃− p0)
λ0ρ

ỹ − β (ρ̃− ρ0)
λ0ρ2

ỹ + (ṽ − v0) = 0

(p̃− p0)
λ0ρ

z̃ − β (ρ̃− ρ0)
λ0ρ2

z̃ + (w̃ − w0) = 0

(ρ̃i − ρi0)− ρi

ρ
(ρ̃− ρ0) = 0

i = 1, N − 1

(51)

For λ = λ1 = (λ0 + s)/2 one can write λ0 − λ1 = λ2. This yields,





a

β
(p̃− p1) + b (ũ− u1) + c (ṽ − v1)+

d (w̃ − w1) + e (ρ̃− ρ1) +
N−1∑

i=1

fi (ρ̃i − ρi1) = 0

−a
ρ

β
λ1 + bx̃ + cỹ + dz̃ = 0

ax̃ + bλ2 + eρx̃ +
N−1∑

i=1

fiρix̃ = 0

aỹ + cλ2 + eρỹ +
N−1∑

i=1

fiρiỹ = 0

az̃ + dλ2 + eρz̃ +
N−1∑

i=1

fiρiz̃ = 0

eλ2 = 0
fiλ2 = 0

i = 1, N − 1

. (52)

From the last two equations, we obtain e = 0 and fi = 0, thus yielding:





a 1
β (p̃− p1) + b (ũ− u1) + c (ṽ − v1) + d (w̃ − w1) = 0

−a ρ
β λ1 + bx̃ + cỹ + dz̃ = 0

− x̃
λ2

a = b

− ỹ
λ2

a = c

− z̃
λ2

a = d

(53)

Multiplying the last three equations by x̃, ỹ and z̃, respectively, and taking into

account that x̃2 + ỹ2 + z̃2 = 1 and λ1λ2 = −β
ρ , the second equation in (53)
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becomes an identity. Substituting the formulas for the coe�cients b, c and d

into the �rst equation of (53) we obtain

a

(
1
β

(p̃− p1)− x̃

λ2
(ũ− u1)− ỹ

λ2
(ṽ − v1)− z̃

λ2
(w̃ − w1)

)
= 0 , (54)

which yields that either we have a solution identical to zero for all the coe�cients

or

1
β

(p̃− p1)− x̃

λ2
(ũ− u1)− ỹ

λ2
(ṽ − v1)− z̃

λ2
(w̃ − w1) = 0 . (55)

Because λ2λ1 = −β
ρ , (55) can be written as

(p̃− p1) + λ1ρ (x̃ (ũ− u1)− ỹ (ṽ − v1)− z̃ (w̃ − w1)) = 0 . (56)

Similarly, when λ = λ2 = (λ0 − s)/2 and λ0 − λ2 = λ1, we obtain

(p̃− p2) + λ2ρ (x̃ (ũ− u2)− ỹ (ṽ − v2)− z̃ (w̃ − w2)) = 0 . (57)

The solution of (51), (56) and (57) yields the following formulas for the characteristics-

based variables,





p̃ =
1
s

(λ1p2 − λ2p1 − β (R1 −R2))

ũ = u0 +
x̃

sρ
R3

ṽ = v0 +
ỹ

sρ
R3

w̃ = v0 +
z̃

sρ
R3

ρ̃ = ρ0 +
ρ

β

(
p− p0 +

λ0

s
R3

)

ρ̃i = ρi0 +
ρi

β

(
p− p0 +

λ0

s
R3

)

(58)

26



where the auxiliary functions R1, R2 and R3 are de�ned by (31). The eigenvalues

obtained for the conservative scheme are the same with those obtained for the

hybrid scheme; these correspond to the eigenvalues obtained by other researchers

for variable density �ow equations [39, 41, 51]. The formulas for pressure and

velocities are the same with those obtained for the hybrid scheme. The density

formulas for the three schemes are di�erent: compare the last two equations in

(30), (43) and (58). For the conservative scheme the density formulas include

a pseudo-compressibility term. Numerical experiments presented in Part II of

this study reveal that the addition of the pseudo-compressibility term increases

the speed of propagation of density disturbances, which in turn leads to faster

convergence both in steady and time-dependent �ows.

3.4 Intercell variables interpolation

For the calculation of the characteristics �ow variables Vl = (pl, ul, vl, wl, ρl, ρi,l)T

(l = 0, 1, 2), at the cell faces we employ Godunov-type discretization. Note that

λ1 and λ2 are always positive and negative, respectively, thus obtaining





V0 =
VL + VR

2
− sign (λ0)

VR −VL

2
V1 = VL

V2 = VR

(59)

where sign(λ0) = 1 or −1 for λ0 > 0 and λ0 < 0, respectively. The variables

with indices L and R denote left and right states of intercell values that are

calculated by polynomial interpolation.

Di�erent versions of �rst, second and higher-order interpolation schemes can be
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found in [14]. In Appendix I we present the derivation of di�erent orders of

interpolation including �rst-order,

VL,j+1/2 = Vj , VR,j+1/2 = Vj+1 , (60)

second-order





VL,j+1/2 =
3
2
Vj − 1

2
Vj−1

VR,j+1/2 =
3
2
Vj+1 − 1

2
Vj+2

, (61)

and third-order,





VL,j+1/2 =
5
6
Vj − 1

6
Vj−1 +

1
3
Vj+1

VR,j+1/2 =
5
6
Vj+1 − 1

6
Vj+2 +

1
3
Vj

. (62)

For problems encompassing sharp interfaces such as Rayleigh-Taylor instabili-

ties, �ux limiting versions of the intercell interpolation can be employed. For

further discussion on �ux limiters we refer the reader to [14]. Finally, we mention

that the viscous �uxes in (11) are discretized by second-order central di�erences.

3.5 Summary of advective �ux calculation

The numerical steps for the calculation of the advective �ux are summarized

below:

• Step 1 : Calculate the eigenvalues λl for l = 0, 1, 2 using the velocities u, v

and w from the previous time step.
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• Step 2: Use (59) in conjunction with �rst, second or third-order interpo-

lation to calculate the left and right states of the characteristics variables.

For each eigenvalue, we calculate one set of primitive variables along the

characteristics.

• Step 3: Use formulas (30), (43) or (58) - depending on the choice of the

scheme - to calculate the reconstructed characteristics-based variables.

• Step 4 : Use the characteristics-based (tilde) variables to calculate the

advective �ux at the cell faces of the control volume.

The above four steps are performed for the calculation of the advective �uxes in

ξ, η and ζ directions. Then, the discretized �ux derivatives are added (including

the viscous �uxes in the case of the Navier-Stokes equations) and the system of

equations is iterated in time using a time integration scheme. In this study, we

use a fourth-order Runge-Kutta scheme which is presented in Section 4.

4 Time integration

The system of equations is solved in pseudo-time for each real-time step. This is

achieved by using a fourth-order Runge-Kutta scheme [56] in conjunction with

a nonlinear multigrid method [55]. The fourth-order Runge-Kutta scheme is

written as

U1 = Un

U2 = Un − ∆τ
2 RHS (U1)

U3 = Un − ∆τ
2 RHS (U2)

U4 = Un −∆τRHS (U3)
Un+1 = Un − ∆τ

6 (RHS(U1) + 2RHS (U2) + 2RHS (U3) + RHS (U4)) ,
(63)
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where RHS represents the right-hand side of the Navier-Stokes operator in (11).

The time step on each Runge-Kutta iteration is locally de�ned according to the

convergence requirements of the advective part of the Navier-Stokes equations.

However, for �ows at low Reynolds or Peclet numbers the pseudo-time step

should be restricted for stability purposes. Therefore, it is de�ned locally ac-

cording to the convergence requirements of inviscid, viscous and di�usion parts

of the Navier-Stokes equations:





∆τi,j,k = min
(
∆τ inv

i,j,k, ∆τvis
i,j,k, ∆τdiff

i,j,k

)

∆τ inv
i,j,k = CFLinv

(maxm=1−6{(|λ1|,|λ2|)}m)
i,j,k

∆τvis
i,j,k = CFLvisRe

4(maxn=1,2,3(dln))i,j,k

∆τdiff
i,j,k = CFLvisPe

4(maxn=1,2,3(dln))i,j,k

(64)

where dln denotes the computational cell dimension in the three directions n =

ξ, η, ζ and m stands for the index of the cell face.

5 Constant density limit

In this section we examine (30), (43) and (58) in the limit of constant-density

incompressible �ows. We remind that the formulas for constant-density, incom-

pressible �ow [14, 36] are given by

Ũ =




p̃
ũ
ṽ
w̃


 =




1
2s

(λ1k2 − λ2k1)

Rx̃ + u0(ỹ2 + z̃2)− v0x̃ỹ − w0x̃z̃
Rỹ + v0(x̃2 + z̃2)− w0z̃ỹ − u0x̃ỹ
Rz̃ + w0(ỹ2 + x̃2)− v0z̃ỹ − u0x̃z̃


 , (65)

where
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R =
1
2s

[
p1 − p2 + x̃(λ1u1 − λ2u2) + ỹ(λ1v1 − λ2v2) +

z̃(λ1w1 − λ2w2)
]

, (66)

k1 = p1 + λ1(u1x̃ + v1ỹ + w1z̃) , (67)

k2 = p2 + λ2(u2x̃ + v2ỹ + w2z̃) . (68)

We consider �rst the transport CB scheme. Setting density equal to one, 1 the

formula (30) and the corresponding eigenvalues are written as





p =
1
2s

(λ1p2 − λ2p1 − β (R1 −R2))

u = u0 +
x̃

2s
R3

v = v0 +
ỹ

2s
R3

w = w0 +
z̃

2s
R3

λ0,1,2 = λ0, λ0 ±
√

λ2
0 + β

(69)

Using λ1λ2 = −β, we can modify the formula for pressure as follows:

p =
1
2s

(λ1p2 − λ2p1) +
λ1λ2

2s
(x̃(u2 − u1) +

ỹ(v2 − v1) + z̃(w2 − w1)) =
1
2s

(λ1(p2 + λ2(x̃u2 + ỹv2 + z̃w2))−
λ2(p1 + λ1(x̃u1 + ỹv1 + z̃w1))) , (70)

1Always working with dimensionless variables, thus for constant density �ows the dimen-
sionless density would be equal to one.
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which is exactly the same as for the incompressible, constant-density case [14,

36]. Similarly, for the u velocity we obtain

u = u0 + x̃R +
x̃

2s
(λ2 − λ1) (x̃u0 + ỹv0 + z̃w0) =

x̃R− (
1 + x̃2

)
u0 − x̃ỹv0 − x̃z̃w0 =

x̃R +
(
ỹ2 + z̃2

)
u0 − x̃ỹv0 − x̃z̃w0 , (71)

where the auxiliary function R is given by (66). Equation (71) is the same as

for the incompressible, constant-density case (65). The results for the other

two velocity components can be obtained in a similar fashion. In the constant

density limit the characteristics-based solutions for the hybrid (43) and conser-

vative (58) CB schemes become identical , therefore, it is su�cient to present the

analysis only for one of these formulations. Let us consider the variables for the

conservative CB scheme (58) and set density equal to one in the formulas for

pressure, velocities and eigenvalues,




p̃ =
1
s

(λ1p2 − λ2p1 − β (R1 −R2))

ũ = u0 +
x̃

s
R3

ṽ = v0 +
ỹ

s
R3

w̃ = v0 +
z̃

s
R3

λ0,1,2 = λ0,
λ0 ±

√
λ2

0 + 4β

2

(72)

De�ning λ∗1 = 2λ1, λ∗2 = 2λ2 and β∗ = 4β, (72) are written as
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



p̃ =
1
2s

(
λ∗1p2 − λ∗2p1 − β∗

2
(R1 −R2)

)

ũ = u0 +
x̃

2s
R3

ṽ = v0 +
ỹ

2s
R3

w̃ = v0 +
z̃

2s
R3

λ0, λ
∗
1,2 = λ0, λ0 ±

√
λ2

0 + β∗

(73)

where s =
√

λ2
0 + β∗ and λ∗1,2 = λ0 ± s. The pressure and eigenvalues in (73)

cannot be brought into the form (65). Thus, (73) provides a new characteristics-

based scheme for constant-density incompressible �ows. At this stage, it is

interesting to examine the numerical behavior of the conservative and trans-

port schemes for constant-density incompressible �ows. Computations were per-

formed for the �ow through a sudden expansion-contraction. The problem has

been previously studied both computationally and experimentally [52, 53]. Ex-

periments [52] and previous simulations [53, 54] have shown that depending

on the Reynolds number the �ow through a sudden expansion-contraction may

exhibit symmetric or asymmetric �ow separation. We have carried out com-

putations for two Reynolds numbers, Re = 30 and Re = 116 that correspond

to symmetric and asymmetric separation, respectively (Fig. 3). The computa-

tional grid contained 37 × 37 and 237 × 109 points in the small channels and

main section, respectively. To measure the di�erence in the results between the

variants of the schemes, the maximum of the pressure di�erence, throughout

the �ow �eld, pdiff ,was used

pdiff = max
i,j

∣∣∣∣∣
pcons

i,j − ptrans
i,j

ptrans
i,j

∣∣∣∣∣ · 100 , (74)
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where the cons and trans denote the conservative and transport variants; the

latter is identical to the original characteristics-based scheme when the density

is considered constant. The computations revealed that the di�erence in the re-

sults between the conservative variant and the original constant-density version

of the scheme do not exceed 0.06% and 0.07% for symmetric and asymmetric

cases, respectively.

However, the transport and conservative formulations exhibit some di�erences

in the convergence. Table 1 shows the number of multigrid cycles required to

achieve four orders of magnitude reduction of the residuals for the transport

and conservative schemes 2 . This fact motivated a detailed investigation of the

multigrid convergence of characteristics-based schemes for variable-density in-

compressible �ows (see Part II of this study).

6 Conclusions

To date the arti�cial compressibility formulation has received scant attention in

connection with the simulation of variable-density incompressible �ows. In this

paper, we presented the derivation of characteristics-based schemes for variable-

density incompressible �ows in the framework of arti�cial-compressibility for-

mulation. We have shown that arti�cial compressibility results in three dif-

ferent numerical formulations, which subsequently lead to three variants of

characteristics-based schemes.

The transport scheme uses the divergence-free condition in the (total) density

transport equation. The conservative scheme uses the equations in a fully con-
2The hybrid scheme becomes identical the conservative scheme in the constant-density

limit.
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servative form. In the hybrid scheme the conservative equation for the total

density is used to eliminate the density variable from the momentum equations,

while similar to the transport variant, the divergence-free condition is employed

to simplify the species transport equations. The above formulations result in

di�erent characteristics-based schemes. With regard to the density �eld, the

transport and hybrid schemes lead to reconstruction of species densities along the

streamlines, whereas the conservative scheme leads to a reconstruction formula

that contains pseudo-compressibility terms. Moreover, the transport scheme

di�ers from the conservative and hybrid schemes with respect to pressure and

velocity formulas.

The numerical behavior of the schemes was examined in the limit of constant

density incompressible �ows. It was shown that the reconstruction formulas

for the transport scheme become the same with the corresponding ones for the

characteristics-based scheme for constant-density incompressible �ows. For con-

stant density �ows the formulas for the hybrid and conservative schemes become

identical. They, however, di�er with regard to the original formulas obtained

for constant-density incompressible �ow. In e�ect, the constant-density limit

of hybrid/conservative scheme can also be considered as a new version of the

characteristics-based scheme for constant density �ows. With regard to the

behavior of the schemes in the limit of constant-density �ows, numerical exper-

iments were carried out showing that both hybrid/conservative and transport

schemes provide the same accuracy but di�er in terms of convergence (measured

here by the number of multigrid cycles). The multigrid implementation of the

above methods as well as detailed studies to assess their accuracy and e�ciency

in steady and unsteady variable-density �ows are presented in [57].
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Tables

Table 1: Number of multigrid cycles required to achieve reduction of the resid-
uals by four orders of magnitude for the computations of the incompressible
(constant-density) �ow through a sudden expansion-contraction.

Re = 30 Re = 116
Transport scheme 33 68

Hybrid/Conservative scheme 26 49
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Figure 1: Computational cell notation
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Figure 2: Schematic of characteristics-based discretization.
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Figure 3: Computational results for the �ow through a sudden expansion-
contraction ( Re = 30) and ( Re = 116). The di�erences in the results between
transport and conservative schemes do not exceed 0.07%. The hybrid and con-
servative schemes become identical for constant density �ows.
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8 Appendix I

Consider the one-dimensional stencil (equidistant grid in the computational

space) and de�ne two states, left and right, for the intercell variables, as follows

VL,j+1/2 = aVj − bVj−1 + cVj+1 + dVj+2 , (75)
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for the left state, and

VR,j+1/2 = aVj+1 − bVj+2 + cVj + dVj−1 , (76)

for the right state. The coe�cients a, b, c and d are determined according to the

following procedure:

The derivative of the characteristic variable at the cell center for the case of

a positive eigenvalue - the result will be analogous if a negative eigenvalue is

considered - yields

(∂V
∂ξ

)
j

= VL,j+1/2 −VL,j−1/2 =

aVj − bVj−1 + cVj+1 + dVj+2− =

(aVj−1 − bVj−2 + cVj + dVj+1)

(a− c)Vj − (a + b)Vj−1 + bVj−2

+(c− d)Vj+1 + dVj+2 . (77)

By developing all variables in a Taylor series expansion around the cell center

j, (77) yields

(∂V
∂ξ

)
j

= (a− c)Vj−

(a + b)
[
Vj −V(1) + V(2) −V(3) + V(4)

]

+b
[
Vj − 2V(1) + 4V(2) − 8V(3) + 16V(4)

]

47



+(c− d)
[
Vj + V(1) + V(2) + V(3) + V(4)

]

+d
[
Vj + 2V(1) + 4V(2) + 8V(3) + 16V(4)

]
. (78)

where the superscripts denote order of derivatives and the denominators in the

Taylor series expansion have been omitted and can be considered to be part of

the unknown coe�cients which are yet to be determined; the grid spacing is

considered to be equal to one since we are working in the computational space.

Equation (78) is written as

(∂V
∂ξ

)
j

= (a− b + c + d)V(1) +
[
c− a + 3(b + d)

]
V(2)

[
c + a + 7(d− b)

]
V(3) +

[
c− a + 15(b + d)

]
V(4) . (79)

Using (79) schemes of di�erent order of accuracy can be derived.

• First-order upwind scheme for

a = 1 and b = c = d = 0 . (80)

The left and right states of the variables at the cell face are accordingly

de�ned by

VL,j+1/2 = Vj , VR,j+1/2 = Vj+1 . (81)

• The second-order scheme is obtained for c = d = 0,

48



a− b = 1 , (82)

for satisfying the CFL like restriction, i.e., having the coe�cient of the

�rst-order derivative equal to one, and

3b− a = 0 , (83)

for eliminating the second-order derivative term from (79). From (82) and

(83) the values a = 3/2 and b = 1/2 are obtained. The left and right

states are accordingly de�ned by





VL,j+1/2 =
3
2
Vj − 1

2
Vj−1

VR,j+1/2 =
3
2
Vj+1 − 1

2
Vj+2

. (84)

• The third-order scheme is obtained for d = 0, the CFL-like restriction

a− b + c = 1 , (85)

and the following conditions for eliminating the second- and third-order

derivative terms from (79)

{
3b− a + c = 0
a− 7b + c = 0 . (86)

Eqs. (85) and (86) give the values a = 5/6, b = 1/6 and c = 1/3. The left

and right states are accordingly de�ned

49







VL,j+1/2 =
5
6
Vj − 1

6
Vj−1 +

1
3
Vj+1

VR,j+1/2 =
5
6
Vj+1 − 1

6
Vj+2 +

1
3
Vj

. (87)
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