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Linear GPR Inversion for Lossy Soil and a Planar
Air–Soil Interface

Peter Meincke

Abstract—A three-dimensional (3-D) inversion scheme for fixed-
offset ground penetrating radar (GPR) is derived that takes into
account the loss in the soil and the planar air–soil interface. The
forward model of this inversion scheme is based upon the first
Born approximation and the dyadic Green function for a two-layer
medium. The forward model is inverted using the Tikhonov-regu-
larized pseudo-inverse operator. This involves two steps: filtering
and backpropagation. The filtering is carried out by numerically
solving Fredholm integral equations of the first kind and the back-
propagation is performed using fast Fourier transforms (FFTs).
Numerical results are provided to illustrate the performance of the
inversion scheme.

Index Terms—Diffraction tomography, ground penetrating
radar (GPR), inverse scattering, pseudo-inverse operator.

I. INTRODUCTION

W ITHIN the framework of geophysical diffraction tomog-
raphy [1], several inversion schemes have been devel-

oped for monostatic or fixed-offset ground penetrating radars
(GPRs) [2]–[6]. Molyneux and Witten [2] derived two different
two-dimensional (2-D) inversion schemes referred to as the far-
field method and the Fourier transform (FT) method, respec-
tively. These two inversion schemes were tested on measured
data in [3] and it was concluded that the FT method is superior.
In deriving the FT method it was assumed that the first Born ap-
proximation applies, the background medium is homogeneous
and the buried object, of which a quantitative image is desired, is
located deep in the soil. Thereby, a relation between the one-di-
mensional (1-D) spatial FT of the data measured over a line and
the 2-D spatial FT of the permittivity variation in the soil was ob-
tained. An inversion scheme involving a closed-form expression
for the desired image was then derived using the inverse spatial
FT. This inversion scheme constitutes a more general form of the
filtered backpropagation algorithm of [1] because it applies to
illumination by 2-D point sources and to multiple frequencies.
Recently, Hansen and Meincke-Johansen [4] presented a 3-D
version of the FT method in which the planar air–soil interface
is taken into account. In [4] a configuration in which the GPR
antennas are 4 cm above the ground was considered and for this
configuration an improved image quality was achieved when
including the interface in the inversion. However, as also was
the case in [2] and [3], the background medium was assumed
lossless—an assumption that usually does not hold for soil. A
heuristic approach was suggested in [4] to compensate for the
loss. Since this approach is not exact it produces unwanted arti-
facts in the image, as shown in [4, Fig. 5]. Therefore, it is highly
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desirable to develop a version of the inversion scheme of [4] that
rigorously takes into account the loss in the soil.

Deming and Devaney [5], [6] employed the Tikhonov-regu-
larized pseudo-inverse operator to obtain an inversion scheme
for GPR in which the background medium is lossy and homoge-
neous. The pseudo-inverse operator implies two solution steps:
1) filtering of the radardataand 2)backpropagationof the filtered
data. In [5], a 2-D configuration was considered and the incident
fieldwas assumed toconsist of severalplanewaveswith the same
frequency but with different directions of incidence. Also, it was
shownthat in thecaseofa losslessbackgroundmediumandan in-
finite number of plane waves (infinite view), the pseudo-inverse
solution reduces to the filtered backpropagation algorithm of [1].
The approach of [5] was extended in [6] to a 3-D configuration in
which the incident field originates from an arbitrary transmitting
antenna. The receiving antenna can also be arbitrary and several
probing frequencies can be included. However, the calculation of
the filters to be applied in the filtering step is extremely time con-
suming since it involves evaluation of several 4-D integrals with
highly oscillating integrands. This fact hampers the practical ap-
plicabilityof theapproach in [6].Also, in [6] theair–soil interface
is not taken into account.

In the present paper, a pseudo-inverse based inversion scheme
for fixed-offset GPR is presented that takes into account both the
loss in the soil and the air–soil interface. The starting point is the
forward model of [4], which is based upon the first Born approx-
imation, the dyadic Green function for a two-layer medium, and
an asymptotic approximation valid when the object is located
deep (a few center wavelengths) in the soil. However, instead
of inverting this forward model using the inverse FT, as done in
[4] (and thus neglecting loss in the soil), the Tikhonov-regular-
ized pseudo-inverse operator is used. Since the applied forward
model is approximate the calculation of the filters in the filtering
step is much less time consuming than the corresponding calcu-
lation in [6].

The remaining of the paper is organized as follows. In Sec-
tion II the forward model is presented. The forward model ap-
plies to a fixed-offset GPR placed upon a planar interface sep-
arating lossy soil and air. It predicts, within the first Born ap-
proximation, the output of the receiving antenna due to the
scattering by a 3-D buried object. Arbitrary GPR antennas are
accounted for through the current density of the transmitting an-
tenna and the plane-wave characteristic of the receiving antenna.
The inversion of the forward model is performed in Sections III,
III-A and III-B using the Tikhonov-regularized pseudo-inverse
operator. In Section III-D, it is shown that the pseudo-inverse
based inversion scheme reduces to the result of [4] when there
is no loss in the soil. The special case of an infinitely long scat-
tering object, referred to as 2.5-D, is considered in Section III-E.
To carry out the inversion, it must be assumed that the contrast
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Fig. 1. Fixed-offset GPR configuration. The offset is described by the vector
r = R + ẑz .

in permittivity (i.e., the difference between the permittivities of
the object and the soil) times the frequency is either much larger
or much smaller than the contrast in conductivity. The first case
is considered in Section III, except in Section III-F in which the
second case applies. Numerical results for the 2.5-dimensional
(2.5-D) case involving a circular cylinder buried deep in lossy
soil is presented in Section IV. Finally, Section V draws conclu-
sions and makes suggestions for future research.

II. FORWARD MODEL

Consider the configuration in Fig. 1 in which a planar inter-
face separates air and soil. A Cartesian coordinate system
is introduced such that the plane coincides with the interface
and such that is air. The air has the permittivity and the
permeability , whereas the soil has the permittivity, con-
ductivity , and permeability . The constitutive parameters

, , , and are all assumed to be real quantities and in-
dependent of both position and frequencyover the bandwidth
of the transmitted fields . Thus, the prop-
agation constant of air is and that of soil is

. A fixed-offset GPR configura-
tion is considered in which the position of the receiving antenna
is described by the vector with . The po-
sition of the transmitting antenna is with the
offset kept constant. The forward model to be
presented in this section gives an expression for the outputof
the receiving antenna that is solely due to the field scattered by
the buried object. Hence, does not include contributions from
the reflection in the interface and from the direct field from the
transmitting antenna. In [4], the first Born approximation and a
plane-wave expansion of the dyadic Green function
for a two-layer medium were used to derive an expression for
the output when both the transmitting and receiving antennas
are ideal dipoles [4, (12)]. In the following, a similar expression
for , valid for arbitrary transmitting and receiving antennas, is
derived. To this end, the background field in the soil, radi-
ated by the transmitting antenna described by the current density

1 , is needed

(1)

1The subscripts on J indicates that the current density depends on the
input signals . The form of this dependence can be either measured or calcu-
lated. This matter is, however, not the concern of the present paper.

where the reciprocity relation
is used. The dyadic Green function is written as a plane-wave
spectrum as

(2)

In this expression, ,
, , and similarly for .

The square roots in and have nonnegative real and imagi-
nary parts. The dyadic in (2), that accounts for the interface,
is [4, (6)]

(3)

where it has not been explicitly indicated that and
depend on and . When there is no inter-

face, i.e., , (3) reduces to
. Inserting the

plane-wave expansion (2) of the dyadic Green function into the
expression (1) for the background field, one obtains

(4)

where the relation has been employed. The quan-
tity is a spatial FT of the current density describing the trans-
mitting antenna

(5)

Using the first Born approximation, the scattered field
, due to the presence of the buried object, is explicitly

expressed in terms of the background fieldas

(6)
where the object function is defined as

(7)
Using this expression (6) for the scattered field, the plane-wave
spectrum (2) of the dyadic Green function and the plane-wave
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characteristic of the receiving antenna, the output
of this antenna can be written as

(8)

The plane-wave characteristic is defined such that
is the output when the receiving antenna

is located at and the incident electric field is the plane
wave with
[7], [8, p. 266].

Defining the FT with respect to the horizontal
components of the observation point as

(9)

and using (8), the expression for can be written as

(10)

where

(11)

As shown in the Appendix of [4], the double integral overin
(10) can be asymptotically evaluated when the object is located
deep in the soil and the GPR antennas are close to the interface
to yield

(12)

with ,
, and

(13)

Equation (12) constitutes the 3-D forward model to be inverted
in Section III. Although this forward model is derived using
the assumption that the object is deep in the soil, it remains
valid for surprisingly shallow objects. In [4] it is shown through
numerical investigations that inversion schemes based on (12)
give accurate images of objects buried just two center wave-
lengths from the interface. Unfortunately, the asymptotic evalu-
ation in the Appendix of [4] becomes too inaccurate for
Re , and the forward model (12) should therefore only

be used when Re . Physically, this means that the
forward model does include some of the evanescent plane waves
in the air but it does not include any evanescent plane waves in
the soil.

III. I NVERSION

To carry out the inversion, it is assumed that
over the frequency interval of consideration
(the case in which is dealt with in Section III-F).
Then and the forward model (12) can be
written as

(14)

where is a linear operator mapping into . is
the space of square integrable functions of positionconfined
within . is the space of square integrable functions
defined on Re .
The inner products in and are defined in the usual way

(15)

(16)
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where denotes the complex conjugation. Introducing
Re , it is seen that if , then

for .
Due to the compactness of the kernel in the integral equation

(14), the solution of the inverse problem defined in (14)
is unstable [9], [10], that is, the solution is highly sensitive to
noise in the radar data . Regularization is therefore needed, in
particular when dealing with noisy data, to obtain a stable and
useful solution. In this work, Tikhonov regularization is applied
and hence, a minimization problem of the form

(17)

is considered. This problem can also be formulated as
subject to , where

depends on [9, p. 85]. The regularization parameter in
(17) controls the amount of filtering applied to obtain the
solution. The larger the value of, the more filtering. It is
obvious that there exists an optimum value of—if is too
small, the residual norm is small but the norm

is too large because the solution is affected by noise.
If is too large on the other hand, the norm is small
but the residual norm is too large. In fact, whenis large the
high spatial frequencies of the solution are efficiently
damped. Consequently, the spatial bandwidth of the solution is
determined by . A discussion on the difficulties in choosing
the optimum for the inversion scheme of this paper is found
in Section III-C.

The minimization problem (17) could at this stage be solved
by discretizing the continuous operatorsuch that it becomes
a matrix and then using standard techniques for solving dis-
crete ill-posed problems by Tikhonov regularization [9, Section
5.1]. However, in this way the matrix becomes unpractically
large and also, the advantage of having the operator in the conve-
nient explicit form (14) is not taken into account. Therefore, the
operator is here kept in continuous form and in line with the
procedure in [5], [6], the minimization problem (17) is solved
by applying the Tikhonov-regularized pseudo-inverse operator
[11, p. 88]

(18)

where the adjoint operator defined by
is

(19)

and the unit step function serves as a masking function.
It is seen that when applying to , the output at the plane

is backpropagated to the plane . To proceed, the
filtered data are introduced as the solution to

(20)

The spatial bandwidth of the filtered data is assumed to be the
same as that of , that is, for Re .
Using the definition (20) along with (18), the contrast in permit-
tivity is obtained from

(21)

Hence, by solving (18) using the solution steps (20) and (21),
the data are first filtered and then backpropagated to obtain the
sought-for function . In Section III-B it is shown how a
priori information can be incorporated to give a better estimate
of the object function.

The backpropagation (19) can be easily and efficiently calcu-
lated using fast Fourier transforms (FFTs). The filtering, on the
other hand, is more complicated. The next section is devoted to
this filtering step.

A. Filtering

The term in the filtering step (20) can be explicitly
expressed as

(22)

Using the fact that there is loss in the soil, Im and
the integrations in (22) over and can be evaluated to yield

By subsequently evaluating the integration over, the relation

Re
(23)

is obtained. When inserting (23) into (20), an integral equation
is obtained for the determination of the filtered data
for each , satisfying , where is defined fol-
lowing (16)2. To solve this integral equation numerically it must
be transformed into a matrix equation by discretization. There
are many ways to discretize such an integral equation. In this
case, the discretization method should be chosen such that the
resulting matrix A is self adjoint (Hermitian). The reason for this
is that A reflects the self-adjoint operator . This requirement
is satisfied by using a simple quadrature rule. To this end, first

2If jKj > K , then~s (K; !) = 0 for ! < ! < ! and no integral
equation must be solved.
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assume that the radar dataare available at equidistant fre-
quencies

(24)

where . With denoting the
lowest integer in the range for which
, there are values of the radar data and

the filtered data that are zero and
values that are nonzero. Second, a simple quadrature

rule applied to (23) transforms the filtering step (20) into the
following matrix equation:

(25)

where and denotes Kro-
necker’s delta. Moreover

(26)

and

(27)
This completes the derivation of the inversion scheme. In sum-
mary, to obtain the image of the buried object one must first
filter the radar data using (25) and subsequently backpropagate
the filtered data employing (21).

B. Incorporating a Priori Information

Due to the fact that the buried object can be illuminated from
one side only in a GPR survey, the obtained radar data does
not contain enough information to estimate the correct value
of using a linear inversion scheme. However, ifa priori
information about the object can be incorporated in the inversion
scheme, a better estimate of can be obtained. This is the
case in [4], in which the fact that the object function is real is
used asa priori information. Unfortunately, the same procedure
cannot be applied in an exact manner in this work because it
requires that the soil is lossless. However, the procedure can
be used approximately. To see this, consider the forward model
(14). This model can be written as

(28)

When there is no loss and the argument of
is real and thus, the forward model (28) can be inverted using
the inverse spatial FT . This is indeed the procedure of [4].
Hence, . From (28), it is seen that the radar
data only provides information about in the upper half
space .To obtain the information in the lower half space,
the relation is used, which holds for real
functions and for real arguments. Using thisa priori in-
formation yields

Re

Re (29)

where denotes the inverse FT with integration in the upper
half space only. When loss is present in the soil the argument of

in (28) is no longer real, and the inverse FT cannot be used
to accurately invert the forward model. The artifacts in Fig. 5
of [4] are the result of such an invalid application of the inverse
FT. To get rid of the artifacts, the pseudo-inverse operator of this
paper must be applied. Unfortunately, it is difficult to incorpo-
ratea priori information exactly using the pseudo-inverse oper-
ator. However, since the pseudo-inverse operator reduces to the
inverse FT when there is no loss (see Section III-D) it is sug-
gested to incorporatea priori information in the same way as
done in (29). Hence, instead of using (21), it is suggested to use

Re (30)

to obtain a more accurate estimate of .

C. Discussion

Although there exist many other and more accurate dis-
cretization methods the simple procedure outlined above turns
out to give surprisingly good results even for low values of

, see the numerical example in Section IV. A more accurate
method of moments approach with pulse expansion functions
and point matching has been investigated [12]. The image
quality of this method is not significantly better than that ob-
tained from the simple quadrature rule of the present paper. The
simple quadrature rule is preferred here due to its simplicity.

The FT in (9) is most conveniently calculated
using FFTs. Hence, is available at discrete values of
and for each of these values, (25) constitutes an by
square matrix equation, where defined following (24) de-
pends on . When , is maximum and equals ,
whereas takes on the minimum value 1 when .

The filters depend on the properties of the GPR, i.e.,
the frequencies ( ), the offset ( ), the antennas
( ) and the distance over the air-soil interface ().
They also depend on the electromagnetic properties of the soil
( ). All these quantities are independent of the radar data
and can therefore be calculated in advance before data are
to be processed.

There exist many methods for an efficient determination of
the optimum regularization parameter, e.g., the generalized
cross-validation and L-curve methods [9, Ch. 7]. It is important
to note that these methods must be applied to the problem (18).
They cannot be applied to the filtering step (20) because it does
not satisfy the Picard condition [9, p. 9]. This is explained more
carefully in the Appendix of this paper. Future research aims to
find an efficient way to determine the optimumfor the special
problem (18). Until this goal has been achieved, the regulariza-
tion parameter is to be determined by trial and error.

There are several differences between the pseudo-inverse
based inversion scheme of this paper and that of [6]. First, the
forward model of this paper takes into account the air–soil
interface which, as mentioned in the Introduction, is not
accounted for in [6]. Second, by using the asymptotic forward
model (12) instead of the full model (10) the filters in the
filtering step become much easier and faster to calculate.
The application of the asymptotic forward model implies,
however, that evanescent plane waves in the soil are neglected
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and that the object must be buried a few center wavelengths
from the interface. As illustrated in Section IV below, a high
image quality is obtained despite these assumptions. Third, the
frequency is assumed continuous in (14) and thereby, the
filtering step consists of solving Fredholm integral equations
of the first kind. It is thus evident that the accuracy of the
filtering depends on the discretization method chosen to solve
these integral equations. In [6], on the other hand,is assumed
discrete from the very beginning and therefore, one specific
discretization method is chosen and the fact that the filtering
step is an integral equation does not become clear.

D. No Loss in the Soil

If , that is, the soil is lossless, the step from (22) to
(23) does not hold. Instead, the integrations overand in
the expression (22) for can be evaluated to yield

. Using the rela-
tion , where and
subsequently integrating over and yields

(31)

Hence, according to (30), the expression for is as
(32), shown at the bottom of the page. This result is identical to
the one presented in [4, Eq. 20].

E. 2.5-D Case

Assume now that the object function is independent of. This
would be the case, for instance, when the buried object is an in-
finitely long -directed pipe. The solution steps (20) and (30)
still hold in this case but to apply the other expressions in Sec-
tion III, the relation must be enforced and the expres-
sion (19) for the adjoint operator must be replaced by

(33)

where is the 1-D FT of the radar data defined by

(34)

and is obtained from (13) with .
As an example, assume that the transmitting and receiving

antennas are -directed ideal dipoles such that and
. Assume also that the antennas have the sameand

coordinates, i.e., . In this case,
becomes

(35)

F. Case in Which

When the object function can be approximated
as and the forward model (12) becomes

(36)

The image of is obtained using

Re (37)

where the adjoint operator is

(38)

In addition, in the matrix (25), must be

(39)

Re

(32)
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Fig. 2. Configuration consisting of a circular cylinder located in lossy soil.
The constitutive parameters are(� ; � ) = (8:1� ; 0:01 S/m) and(� ; � ) =
(8� ; 0:01 S/m).

Fig. 3. Image of��=� for the configuration shown in Fig. 2. The regulariza-
tion parameter� = 0.

with

(40)
The equations for the 2.5-D case is straightforwardly obtained
by following the same approached as that outlined in Sec-
tion III-E.

IV. NUMERICAL EXAMPLES

To demonstrate the performance of the inversion scheme of
this paper the 2.5-D configuration shown in Fig. 2 is consid-
ered. This configuration is similar to the one considered by
Hansen and Meincke-Johansen in [4] and consists of an infin-
itely long -directed circular cylinder with diameter 15 cm lo-
cated at m. In the first example, the constitu-
tive parameters of the cylinder are S/m ,
and those of the soil are S/m . The GPR
uses 60 frequencies equally spaced in the rangeMHz

GHz, where . Moreover, the ideal dipole an-
tennas of the GPR aredirected, have a fixed offset of

cm and are located cm above the interface. The
synthetic scattering data are obtained from an exact method de-
scribed in [13]. Fig. 3 shows the image of obtained from

Fig. 4. Image of��=� for the configuration shown in Fig. 2. Gaussian noise
with variance 10 is added and the regularization parameter� = 0.

Fig. 5. Image of��=� for the configuration shown in Fig. 2. Gaussian noise
with variance 10 is added and the regularization parameter is given by� =
5:10 .

(25), (30), (33) and (35) with . It is noted that there are
no artifacts below the pipe as was the case in [4, Fig. 5]. This
shows that the method of this paper produces images of higher
quality than that of [4] because the loss is rigorously taken into
account. The example also shows that it is not necessary to reg-
ularize when S/m and simultaneously, no noise is
present in the data.

To show the need for regularization, consider again the con-
figuration in Fig. 2 but for this second example, Gaussian noise
with variance 10 is added to the radar data. Fig. 4 shows the
image with and in Fig. 5, the regularization parameter is
given by . Clearly, the effect of increasing the reg-
ularization parameter is to reduce the impact of the noise. How-
ever, since also information about the object is filtered away
when increasing, the estimate of the maximum value of
is not as accurate as in Fig. 3 where no noise is present.
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Fig. 6. Image of�� for the case in which the pipe in Fig. 2 is perfectly
electrically conducting. The regularization parameter� = 0.

In the final example, it is shown that the inversion scheme also
can be used to detect perfectly electrically conducting (PEC)
pipes, although the Born approximation in this case is violated.3

The configuration is the same as that shown in Fig. 2, except
that the object is a PEC pipe. The image of , derived from
the procedure described in Section III-F with , is shown
in Fig. 6. Of course, the maximum value of is wrong, but a
perfect estimate of the location of the PEC pipe is obtained. The
center of the image is at the top surface of the pipe, as also was
the case in [4].

V. CONCLUSIONS ANDFUTURE WORK

This paper presented a diffraction tomography inversion
scheme for fixed-offset GPR that accounts for the loss in the
soil and the planar air–soil interface. The inversion scheme was
obtained by applying the Tikhonov-regularized pseudo-inverse
operator to the approximate forward model (12). By using this
forward model, which is valid for objects buried just a few
center wavelengths from the air–soil interface, the filtering step
becomes conveniently simple and consists of solving integral
equations of the first kind. Through numerical examples, it
was illustrated that a satisfactory image quality is obtained by
solving these integral equations by simple quadrature. Indeed,
the artifacts in the image produced by the method of [4] are no
longer present when using the inversion scheme of this paper.
The regularization parameter, however, is at present determined
by trial and error. An efficient determination of the optimum
regularization parameter is important to make the inversion
scheme complete and future research will therefore address
this problem. Another issue subject to future research is the
derivation of an approximate forward model that also works for
evanescent plane waves in the soil. With such an approximate
forward model available images of higher resolution can be
produced with the pseudo-inverse operator.

3In [14], it is explained why the linear inversion schemes based upon the Born
approximation can be used to detect PEC objects.

APPENDIX

This appendix explains why the various methods for deter-
mining the optimum regularization parameterdo not apply to
the filtering step (20). The starting point is the singular value
expansion (SVE) of the operatorin (14) [9, p. 6], [11, p. 86]

(41)

Herein, are the singular values and, are the singular
functions and the inner product in is defined in (15). The sin-
gular values are nonnegative and they can always be ordered
in nonincreasing order such that [9,
p. 7]. Similarly, the SVE of the adjoint operator is

(42)

where the inner product in is defined in (16) and the SVE of
is

(43)

Consequently, the Tikhonov-regularized pseudo-inverse oper-
ator in (18) can in terms of the SVE be written as

(44)

To obtain a square integrable solution from the Tikhonov-
regularized pseudo-inverse operator, the summation overin
(44) must converge. In fact, if there is no noise (such that the
data belong to the range of ), a square integrable solution
must exist for . Thus, to ensure convergence for , the
absolute value of the coefficients in (44) must decay
faster than the singular values for some . This requirement
is referred to as the Picard condition [9, p. 9].

Consider now the filtering step (20) and note that the operator
can be written as

(45)

Since the Picard condition is satisfied for the original problem
(18) as explained previously, the absolute value of the coeffi-
cients are guaranteed to decay faster than the singular
values of for some . However, they are not guaranteed
to decay faster than for some , and the summation in (45)
will not converge for . Consequently, the Picard condition
for the filtering step (20) is violated and the methods for deter-
mining the optimum can therefore not be applied to (20).
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