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Multiset Canonical Correlations Analysis
and Multispectral, Truly Multitemporal
Remote Sensing Data

Allan Aasbjerg Nielsen

Abstract—This paper describes two- and multiset canonical of original variables with maximum correlation. Partial least
correlations analysis (CCA) for data fusion, multisource, multiset, squares regression is mentioned in Section Il also.
or multitemporal exploratory data analysis. These techniques |, gection 111, this analysis is generalized to deal with more

transform multivariate multiset data into new orthogonal vari- . ; . o .
ables called canonical variates (CVs) which, when applied in than two sets of variables. The idea is to optimize characteris-

remote sensing, exhibit ever-decreasing similarity (as expressed by“CS of the diSperSion matrix of the transformed variables to ob-
correlation measures) over sets consisting of 1) spectral variablestain high correlations between all new variables simultaneously.
at fixed points in time (R-mode analysis), or 2) temporal variables These characteristics include

with fixed wavelengths (T-mode analysis). The CVs are invariant L .
to linear and affine transformations of the original variables * maximization of the sum of the elements;

within sets which means, for example, that the R-mode CVs are ¢ maximization of the sum of the squared elements;
insensitive to changes over time in offset and gain in a measuring ¢ maximization of the largest eigenvalue;

device. In a case study, CVs are calculated from Landsat TM « minimization of the smallest eigenvalue;

data with six spectral bands over six consecutive years. Both R- o minimizati ;

and T-mode CVs clearly exhibit the desired characteristic: they minimization of the determinant.

show maximum similarity for the low-order canonical variates These measures are not confined and the optimizations take
and minimum similarity for the high-order canonical variates. place subject to different chosen constraints and orthogonality
These characteristics are seen both visually and in objective criteria. The latter are briefly mentioned in Section IV, which

measures. The results from the multiset CCA R- and T-mode . : . '
analyses are very different. This difference is ascribed to the noise also describes computer implementations of the techniques.

structure in the data. The CCA methods are related to partial Resylts from such analyses are linear Coimbinations termed
least squares (PLS) methods. This paper very briefly describes canonical variates (CVs) that when used with remote sensing
multiset CCA-based multiset PLS. Also, the CCA methods can data transform the original data into new orthogonal variables

be applied as multivariate extensipns to empirical orthogonal that show decreasing similarity over sets consisting of
functions (EOF) techniques. (Multiset) CCA is well-suited for

inclusion in geographical information systems (GIS). 1) SpeCtrfﬂ" variables at fixed points in time (R-mode
Index Terms—Geographical information systems (GIS), min- analysis); . . .

imum and maximum similarity variates, multiset partial least 2) temporal variables with fixed wavelengths (T-mode

squares (PLS), multisource data fusion, multivariate empirical analysis).

orthogonal functions (EOF). The higher order canonical variates exhibit minimum similarity

and they are therefore measures of differences in all variables
I. INTRODUCTION simultaneously.

HIS paper deals with multiset canonical correlation Multiset partial least squares methods emerge from this type
I Ppap Wi Ui n y Sfdescription with a special choice of optimization criteria, con-
analysis (MCCA) for data fusion, multisource, multiset

. . - Straints, and orthogonality criteria leading to an optimization of
or multitemporal exploratory data analysis. MCCA deals W'tEfovariance rather ?han cgrrelation measgres P
S::gglhei‘t r;aturarlr?lljlzspl|tesctl:§| IQ;(t)eHn;[Zr?jza(::laQO\t/\levgzl g?]:p:ao If applied to several variables that change over time, this type
coara h'ica'?l;é ion 0\?er several points in time 9 r(‘51feanalysis constitutes a multivariate extension to the technique
geograpni gon P . ' _ of empirical orthogonal functions (EOF) [1] often applied in
In Section I, ordinary two-set canonical analysis is de'eophysical data analysis

scribed. Two-set canonical correlations analysis investiga Sn Section V. a Landsat TM case with data from 1984 to 1989
the relationship between two groups of variables. It finds X

. . S covering a small forested region in northern Sweden is used
corresponding sets of linear combinations of the two groups. : :

0 illustrate the technique. The purpose of the case study is to
demonstrate the method and to suggest a possible way of inter-
Manuscript received July 23, 1999; revised June 22, 2001. This work Wageting the resulting transformed variables. It is not the purpose
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or Markov random field methods to fuse image data with larg#fithout loss of generality, we choose, p] so thate” $;,a =
spatial resolution differences [3] are not dealt with here. b’ 3,,b = 1 which leads to
The methods described here are well suited for integration in T 1 T 1
a geographical information system (GIS). 2= T2y Mora b o1 By, Ziob
a,TEHa, bT222b

[I. Two-SET CANONICAL CORRELATIONS i.e., we find the desired projections fof by considering the
t{;)onjugate eigenvectos, . . . ,a, corresponding to the eigen-

2 2 —1 H H
analyze linear relations between two sets of variables. The tellUe®s = -~ = p, 0f 3512335, 3y with respect td;, . Sim-
nique is described in most standard textbooks on muItivaridL@rly’ we may find the desired pI‘OjethIOI’]S fb’r_bly cons!dr:ermg
statistics, e.g., [5] and [6]. Work on nonlinear canonical corr&1€ €onjugate eigenvectobs, . . ., b, of X; 3y, 31, with re-

lations analysis is dealt with in [7]-[11]. This type of analysi§PeCt {822 corresponding to the same eigenvalgsif p = g
will not be pursued here. this will be all the eigenvalues and -vectors®$; X1; 3. If

Two-set canonical correlations analysis investigates the refas ? the last eigenvalue will be 0 with multiplicity — p. (As
e solutionsz andb are interrelated we only need to find one

tionship between two groups of variables. It finds correspondi
sets of linear combinations of the original two groups of var! them.)
ables. The first set of linear combinations are the ones with the .
. . S ' . A Partial Least Squares (PLS)
largest correlation. This correlation is called the first canonica
correlation and the two linear combinations are called the firstCanonical corelations analysis (CCA) is closely re-
canonical variates. The second set of linear combinations &ted to the method of partial least squares, PLS, in which
the ones with the largest correlation subject to the condition that= CoV{a’ X, 6"Y} = a’'1,b (often withY as a scalar
they are orthogonal to the first canonical variates. This correlgsponse variable) is maximized with another choice of con-
tion is called the second canonical correlation and the two linegifaints, namely”a = "% = 1 leading to
combinations are called the second canonical variates. Higher T T
. . . . X 2 a 2122210, b 221212()

order canonical correlations and canonical variates are defined R = 7 = T
similarly. aa b b

We consider dp + ¢)-dimensional random variable € ¢)  (see[12]). We see that in this case matrix inversion is not needed
ideally following a Gaussian distribution split into two groupsvhich is good if we have many variables and few observations.
of dimensiong andg, respectively, (without loss of generalityOnly the first pair of canonical variates (or latent variables) cor-
we assume thaE{X} = E{Y} = 0, whereE{-} denotes responding to the largest eigenvalue are calculated and the re-

Canonical correlations analysis was first introduced in [4]

expectation) sponse CV is regressed on the predictor CV
X 0 5 5 V=cU-+e.
o 11 12
[Y} €Np,X) =N <[0} ’ [221 EQQD If more information is present in the residuals, their projec-

tions replace the original response variables (i.e., re@abg

and we assume that the relevant dispersion matrices are non&in- cUb), the pred|ctor_var|ables are projected into a subspace
gular. Of courses,, = 2L, orthogonal to the solution found (i.e., replaXeby X — Up)
: =33,.

We are searching for linear combinationsXfandY with p = X11a/a’ X11a), and we iterate; see also [13]-{16].

B. The MAD Transformation

= zp:aiXi — X V{U} =a" 2110 The above CCA technique is used in [17]-[22] to find linear

— o combinations that give maximal multivariate differences. The

q name chosen for the transformation, multivariate alteration de-

V= ZbiYi =b"Y V{V} =b" b tection (MAD), is due to the application to change detection

i=1 in remote sensing (and the acronym). Although it is presented
as a change detection technique in remote sensing, the tech-

(where |-} denotes variance) with maximum correlation ~ Nique applies to nonspatial multivariate differences also. The

- MAD transformation has been used in an attempt to differen-
T tiate between geogenic and anthropogenic influences on soils in
Covil/, V} - o Zizb ~amining processing area, see [23]. References [17] and [19] also

VV{UTVIV}Y  VaTSab"S00b  suggest the use of the maximum autocorrelation factor (MAF)

transformation, [24], to postprocess the MAD variates. Refer-

Let R = Cov{l/, V'} denote the covariance betweBrand}’. €nce [25] uses MAF to process the simple differences. Refer-

To maximizep we setdp/da = dp/0b = 0 and get ence [26] uses a hybrid canonical correlation/principal compo-
nents technique to enhance uncorrelated parts of Landsat TM

- equivalents of ATM data in a gold exploration study. Change
o’ X1a312b =R¥1a detection techniques based on canonical variates are also de-
b 39003016 =R 90b. scribed in [27] and [28].

p=Cor{U,V} =
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I1l. M ULTISET CANONICAL CORRELATIONS

Multiset canonical correlations analysis (MCCA) is a tech
nique for analyzing linear relations between more (than tw
sets of variables. Earlier work in this field comprise [29]-[32]
Reference [33] gives an interesting example using satellite d:
and two types of geochemical data. Work on nonlinear MCC
is reported in [48].

We consider ann = my + ma + --- + m,, dimensional
random variableX ideally following a Gaussian distribution
split inton groups of dimensions:;, ms to m,, (my < ma <
-+ < m,,), respectively, (without loss of generality we assum
thatE{Xi} =0)
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and we assume that the relevant dispersion matrices are non
gular. Of courses;; = X7,

An obvious extension from the two-set case is t
search for linear combinationg”? = [U1,Us,...,U,] of
X" =[x{,x3,....Xx]]

1985
1984

i}
2y

T™L T™2

T T
Ul =a; Xl, V{Ul} = a; 2110,1
T T
U2 IG,QXQ, V{UQ} = Qo 2220,2
Cve
. (&4
. Cva
cv3
U, =a.X,, V{U,} =a-Z,.a
n n n { n} n —nnln o
with dispersion matrix ™ e
afEllal alegae afElnan Fig. 2. Sketch of T-mode multiset canonical correlations analysis. Variables
032210,1 032220,2 a%“g%an indicated in top row are transformed into CVs in bottom row.
o=
arXniar a0 a5, Bnnn 3) MAXVAR;
or 3y = {al'Z;;a;} = {pi;} for short. As in the two-set case 4) MINVAR;
5) GENVAR.

there is ond/J; = U, a; = a;;, andXy = Xy for each .
k=1,...,my,m = min(ma,...,my). These measures are not constrained, but several natural

In the two-set case we obtain new variables with hoices for constraints under which to carry out the optimiza-
high measure of similarity by maximizing the scalar = {ions come to mind:
Corr{a’{Xl,a’ipXQ}_ Here, we must maximize all correla- 1) the projection vectors are unit vectors within each set
tions/covariances between the new variables simultaneously. (ala; = 1);
To do this, the following measures B&f;; can be optimized: 2) the sum of the projection vectors is a unit vector
1) maximize sumof element¥’(=>_7_, Y7, af j;a;); S ala; = 1)
2) maximize sum of squared elementsV( = 3) the new variables have unit varianeg &;;a; = 1);
S E;;l(afzijaj)?); 4) the sum of the variances of the new variables is unity
3) maximize largest eigenvalug(); Sl alSia =tr =y = 1);
4) minimize smallest eigenvalug.(); where constraint 3 (causing, to be correlations rather than
5) minimize determinant (d&y = [T;_; ). covariances) is the natural extension from the two-set case. If
Reference [32] lists all these possibilities and names them  the sets analyzed are different variables measured over time
1) SUMCOR,; this type of analysis constitutes a multivariate extension to the
2) SSQCOR technique of empirical orthogonal functions (EOF) [1].
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TABLE | TABLE I
CORRELATIONS BETWEEN R-MODE CANONICAL VARIATES 1 FOR ALL CORRELATIONS BETWEEN T-MODE CANONICAL VARIATES 1 FORALL
FIVE METHODS FIVE METHODS
SUMCOR SUMCOR
1.0000 09114 0.8534 0.8768 0.8893 0.8852 1.0000 09420 09548 0.6414 08919 0.9275
09114 1.0000 0.9327 0.9248 0.8939 0.9037 0.9420 1.0000 0.9531 0.7571 0.9059 0.9021
0.8534 0.9327 1.0000 0.9202 0.8861 0.9048 0.9548 0.9531 1.0000 0.6989 0.9038 0.9219
0.8768 0.9248 0.9202 1.0000 0.8868 0.9127 0.6414 0.7571 0.6989 1.0000 0.7366 0.6392
0.8893 0.8939 0.8861 0.8868 1.0000 0.9544 0.8919 0.9059 0.9038 0.7366 1.0000 0.9673
0.8852 0.9037 0.9048 09127 0.9544 1.0000 0.9275 09021 09219 0.6392 0.9673 1.0000
SSQCOR SSQCOR
1.0000 0.9114 0.8532 0.8765 0.8893 0.8851 1.0000 09442 09574 0.6385 0.8935 0.9301
0.9114 1.0000 0.9330 0.9250 0.8939 0.9038 0.9442 1.0000 0.9547 0.7547 0.9064 0.9038
0.8532  0.9330 1.0000 0.9204 0.8860 0.9049 0.9574 0.9547 1.0000 0.6942 0.9049 0.9241
0.8765 0.9250 0.9204 1.0000 0.8867 0.9126 0.6385 0.7547 0.6942 1.0000 0.7326 0.6337
0.8893 0.8939 0.8860 0.8867 1.0000 0.9545 0.8935 09064 0.9049 0.7326 1.0000 0.9678
0.8851 0.9038 0.9049 0.9126 0.9545 1.0000 0.9301 0.9038 09241 0.6337 0.9678 1.0000
MAXVAR MAXVAR
1.0000 0.9114 0.8534 0.8767 0.8893 0.8852 1.0000 09437 09566 0.6396 0.8931 0.9293
09114 1.0000 0.9328 0.9249 0.8939 0.9037 0.9437 1.0000 09543 0.7549 0.9064 0.9034
0.8534 0.9328 1.0000 0.9202 0.8860 0.9048 0.9566 0.9543 1.0000 0.6958 0.9047 0.9235
0.8767 0.9249 0.9202 1.0000 0.8867 0.9127 0.6396 0.7549 0.6958 1.0000 0.7333 0.6358
0.8893 0.8939 0.8860 0.8867 1.0000 0.9544 0.8931 0.9064 0.9047 0.7333 1.0000 0.9677
0.8852 0.9037 0.9048 0.9127 0.9544 1.0000 0.9293 0.9034 0.9235 0.6358 0.9677 1.0000
MINVAR MINVAR
1.0000 0.8334 0.7259 0.7709 0.7651 0.7797 1.0000 0.9451 0.8939 04978 0.8767 0.9316
0.8334 1.0000 0.9195 0.9027 0.8472 0.8709 0.9451 1.0000 0.8535 0.6725 0.8988 0.9055
0.7259 0.9195 1.0000 0.8595 0.7692 0.8246 0.8939 0.8535 1.0000 0.3950 0.7683 0.8438
0.7709 0.9027 0.8595 1.0000 0.8667 0.9023 0.4978 0.6725 0.3950 1.0000 0.6609 0.5046
0.7651 0.8472 0.7692 0.8667 1.0000 0.9564 0.8767 0.8988 0.7683 0.6609 1.0000 0.9666
0.7797 0.8709 0.8246 0.9023 0.9564 1.0000 0.9316 0.9055 0.8438 0.5046 0.9666 1.0000
GENVAR GENVAR
1.0000 0.9067 0.8390 0.8645 0.8896 0.8792 1.0000 09488 0.9666 0.5350 0.8903 0.9369
0.9067 1.0000 0.9412 0.9276 0.8903 0.9022 0.9488 1.0000 0.9566 0.6985 0.9036 0.9058
0.8390 0.9412 1.0000 0.9241 0.8772 0.9031 0.9666 0.9566 1.0000 0.5687 0.8953 0.9302
0.8645 0.9276 0.9241 1.0000 0.8795 0.9076 0.5350 0.6985 0.5687 1.0000 0.6778 0.5261
0.8896 0.8903 0.8772 0.8795 1.0000 0.9577 0.8003 0.9036 0.8953 0.6778 1.0000 0.9676
0.8792 0.9022 0.9031 0.9076 0.9577 1.0000 0.9369 0.9058 0.9302 0.5261 0.9676 1.0000

In the two-set case all of these methods with constraints 3 affed maximize” without constraints. By settingf’/da; = 0
4 reduce to the standard Hotelling case described in SectiofVff 96t
(except for a scaling factor for constraint 4). n
Reference [31] examines thes8corR method and [32] ex- Z Y = NYa,i=1,...,n
amines all the above methods using constraint 3. Reference [17] j=1
examines all the above methods using all constraints. As anj|-
lustration, we consider theusiIcorR method with constraints 3

. ) X X2 - By, ay
and 4 shown in the following.
g 221 222 e EQn as
A. Maximize Sum of Covariances S S o 5] La,
)\1 211 0 s 0 a

To maximize the sum of covariances under constraints we use
a Lagrange multiplier technique. _

0 )\2 222 e 0 (1]
1) Constraint 3.7 Z;;a; — 1 = 0: Introduce : : ' : :

: SRR : (1)
0 0 o Al La,
SettingdF/a\; = 0 merely reproduces the constraints. Be-
cause the;s are not equal this system of equations is more gen-
n n n eral than a generalized eigensystem. Invariance of the solution
= Z Za;rpzijaj - Z A (TS0, — 1) to linear transformations within sets is easily shown (after the
i=1 transformation the\;s will be the same, the;s will not).

F IV — Z )\7 (a?Ewaq — 1)

=1

i=1 j=1
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,alX¥;a; —1=0: Introduce

L

2) Constraint4:y";

and maximizeF' without constraints. By settinGF/da; = 0

, We

i.e.

find the desired projections foX; by computing the conjugate

symmetric) generalized eigensystem,

This is a (real

., @;m, corresponding to the first,;

eigenvectors;, a;o, . .
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Fig. 4. R-mode CVs. Rows are years 1984 to 1989 and columns are CV1-CV6.

min(my, me, ..., m,) €igenvalues\; > Ay > --- > A,,, of where thes;;,s come from either of the above solutions. With an
the above eigensystem. obvious choice of notation we get

=ATX,
B. Multiset Canonical Variates : IAzTXz

We are now able to define theultiset canonical variates

=A’X,

A =[a11,a12,. .., Aim, | IS My X My

As =[as1,a22,...,8m, ]IS m2 X My

T . , _ ic ;
Uk =, X0, k=1,2,...,my A =[anl, @nz,y - oy Gy | 1S My X My
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Fig. 5. T-mode CVs. Rows are TM bands 1 to 5 and 7 and columns are CV1-CV6.

C. Multiset Partial Least Squares To maximizeV; under constraint 1, again use Lagrange multi-
iers and maximize

We can base a true multiset or multiblock partial least squa
(PLS) method on MCCA with modified optimization criteria 1
and 2 mentioned above if we use constrainkfiq; = 1, with n
>;; replaced by the null matrix since in this case we do not P =Vi—> Af(aja;—1)
want to include the diagonal terms Bf;. To see this, consider =1
for example the maximization of the sum of all nondiagonal
elements ins, without constraints. By settingF; /da; = 0 we get

n

n n
‘71: E E a;‘FEUaJ. E Efjajz)\,;a,;, i=1,....n

i=1 j=1,j7i i=1,#i
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Fig. 8. R-mode CVs 6, 5, and 4 as red, green, and blue (1984-1989).

*

i
|
g

Fig. 10. T-mode CVs 6, 5, and 4 as red, green, and blue (TM bands 1-5 and 7).

or we place the response variables in the first set and perform a

multiple regression analysis
0 Xp - XNp]Jwm Aray U =cUs+ - +¢,U, +e.
o1 0 o 3y, a A2ao
. . . . . If more information is present in the residuals their projections

' | ' i ' ' replace the original response variables (i.e., repfacby X | —

2711 2712 e 0 Ay, )\nan n . . . .

a1 Y _._,c;U;), the predictor variables are projected into a sub-

space orthogonal to the solution found (i.e., fo= 2,...,n

Now, calculate all first sets of latent variables, i.e., the firseplaceX; by X; — U;p; with p, = ¥;;a;/al Z;;a;) and we

canonical variate§’;, i = 1,...,n. Without loss of generality iterate. For ordinary two-set PLS, see [13]—-[16].
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IV. COMPUTERIMPLEMENTATIONS

Two-set canonical correlations analysis is implemented irg
computer programpat, which is a general orthogonalization®
program that also finds principal components, (rotated) pri
cipal factors, maximum autocorrelation factors (MAF), [24]
scaled MAFs [34], minimum noise fractions (MNF), [35], [36],
multivariate alteration detection (MAD) variates, [17]-[193
and canonical discriminant functions, etc. Also the multis?
canonical correlations analysis methods of maximizing tt
sum of covariances under constraints}2 ¢/ a; = 1) and
4 (> al'S;;a; = 1) are implemented inaf.

All dispersion (variance—covariance) matrices are found k&
the method of provisional means, [37]. The eigenvalue problef
associated with the analysis are solved by means of LAPAC
routines, [38]. Good general descriptions of the methods us
are given in, e.g., [39]-[41].

The remaining optimization problems concerning MCCA (i&
fact, all of them, including the eigenvalue problems) are solvé
by means of the general algebraic modeling system (GAM!
[42], NLP solver CONOPT, [43]. A computer programisecc
that calls GAMS to perform the analysis is implemented. A
a parallel to the solution of the eigensystem involved in ttz
two-set case the orthogonality criteria chosemirsecc are i
similar to the normalization criteria, for example for constrair
SaﬁEijajl = pij(skl, Whereékl =1ifk=1 and&kl = 0if not
is Kronecker’s delta.

1984 1985 1986 1987 1988 1989

1984 1985 1986 1987 1988 1988

e e e

1984 1985 1986 1987 1088 1989

1989 CV1
40 05 00 05 10-.0 05 00 05 10-10 05 00 05 10-.0 05 00 05 10-10 05 00 05 10-.0 05 00 05 1.0

V. CASE: LANDSAT TM DATA IN FORESTRY

The utility of multiset canonical correlations analysis to mul
tivariate and truly multi-temporal data is demonstrated in a case
study using Landsat-5 Thematic Mapper (TM) data covering a
small forested area approximately 20 kilometers north of Umeéa
in northern Sweden. The data consist of six by six spectral band$-ig. 6 shows Landsat TM bands 4, 5, and 3 as red, green,
with 512 x 512 20-m pixels from the summers 1984-1989 re@nd blue, respectively. Fig. 7 shows R-mode canonical variates
tified to the Swedish national grid. The acquisition dates afle 2, and 3 as red, green, and blue, respectively. We see that
1 August 1984, 26 June 1985, 6 June 1986, 12 August 198%& have indeed obtained a high degree of similarity over years.
27 June 1988, and 21 June 1989. These data are also analyagd8 shows R-mode canonical variates 6, 5, and 4 asred, green,
in [44]-[46]. and blue, respectively. This is the RGB combination that shows

As anillustration, all results reported here (except the correl@nimum similarity over years. We see that noise (striping and
tions in Tables | and Il) relate to theu8cor method with con- dropouts) is depicted well as is to be expected: if data from one
straint and orthogonality criterion 3, i.e., the CVs have unit varjear is noisy and data from another year is not (or if the noise
ance. In R-mode analysis, we consider Landsat TM bands 1 tpdterns are different) then certainly the largest difference could
and 7 for 1984 as one set of variables and similarly for 1986¢ that noise (or that difference). This observation inspires an
etc. In T-mode analysis we consider TM bands 1 for all yeaiterative use of the procedure: first identify noise, restore data
1984-1989 as one set of variables, TM bands 2 for all yeamsexclude areas with noise from further analysis and carry out
1984-1989 as another set of variables, etc. [1]. For a sketcHlug analysis once more. This iterative use is not illustrated here.
R- and T-mode analysis setup; see Figs. 1 and 2. In both figure§ig. 9 shows T-mode canonical variates 1, 2, and 3 as red,
the six sets of variables indicated on the top are transformed igi@en, and blue, respectively. Again, we see that we have ob-
six sets of new variables on the bottom. For example, in T-motined a high degree of similarity, this time over TM bands.
analysis the variables 1984 TM1, 1985 TM1,, 1989 TM1 are Fig. 10 shows T-mode canonical variates 6, 5, and 4 as red,
transformed into TM1 CVs and similarly for TM2, etc. green, and blue, respectively. We see that striping is strongly

Fig. 3 shows the original TM data. Column one is TM1presentin TM bands 1 and 2.
column two is TM2, etc. Row one is 1984, row two is 1985, etc. The transformation matrices containing the weights applied
Fig. 4 shows the R-mode CVs. Column one is CV1, colunto the original variables to obtain the CVs are not shown as these
two is CV2, etc. Row one is 1984, row two is 1985, etc. Fig. Weights are difficult to interpret because of inter-correlation be-
shows the T-mode CVs. Column one is CV1, column two isveen the original variables. Instead we show correlations be-
CV2, etc. Row one is TM1, row two is TM2, etc. tween the original variables and the CVs. (It is often seen that

Fig. 11. Correlations between R-mode CVs 1 and original data.
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Fig. 12. Correlations between R-mode CVs 6 and original data. Fig. 13. Correlations between T-mode CVs 1 and original data.

an original variable that has a, say, negative weight in the cal-Table | shows correlations between R-mode canonical vari-
culation of some transformed variable has a positive correlatigtes 1 Eq) for all five methods investigated. The same correla-
with that transformed variable.) Correlations between R-modens for T-mode analysis are shown in Table Il. Again, we see
CVs 6 and the original data given in Fig. 12 show that dissimila#-special behavior for TM4 indicating vegetation changes.

ities (differences between years) are associated with TM banddable Il shows the values of objective function, i.e., the
1 especially from 1984 to 1987. This is probably because of difuantity which is maximized, namely the sum of the elements
ferences in atmospheric conditions. Therefore analysis of atmio-3r, V. = >0/, 37, af 3j;a; under the constraint that
spherically corrected data would be interesting. Correlations kg% ;;a; = 1. We see that although R-mode analysis obtains
tween T-mode CVs 6 and the original variables given in Fig. 1the highest objective function value (i.e., level for all correla-
for TM bands 1, 2, 3, 5, and 7 reveal a pattern of positive cdions simultaneously), T-mode analysis maintains a high level
relation with 1984, negative correlation with 1985 and agaior this measure for higher order CVs than does R-mode. Also,
positive correlation with 1986 (but not as high as with 1984pr R-mode the highest difference between objective function
combined with (nearly) no correlation with 1987—1989. T-modealues occurs between CVs 3 and 4, whereas for T-mode it
CV6 for TM4 is positively correlated with TM4 in 1984—-1986,0ccurs between CVs 5 and 6. Also, there is a big reduction in
uncorrelated with TM4 in 1987 and negatively correlated witthe objective function values between T-mode CVs 1 and 2.
TM4 in 1988 and 1989. This could indicate that vegetation réhis difference is clearly visible in the imagery also (Fig. 5).
lated changes occurred from 1986 to 1988. This finding is con-In the comparisons performed in Tables | and WUMBOR,
firmed by an observation in [45]: “Several stands with ScoSsQCOR and MaxvAR seem to perform similarly. MivarR and
Pine Pinus Sylvestrishad been damaged by the snow-brea®ENVAR seem to perform differently and notin the same fashion.
in the winter 1987/1988.” Correlations between T-mode CVs[47] observes a similar different behavior fontar. This is

and TM4 given in Fig. 13 are (except for TM4 CV1) lower tharunderstandable when contemplating the design criteria behind
correlations between T-mode CVs 1 and the other bands. Agahe individual methods. 81cor and $Qcorboth focus on all

this indicates changes that are related with TM4, possibly vegmirelations between CVs, i.e., all elementsdig. MAXVAR
tation changes. For completeness Fig. 11 gives correlations beximizesthe largest eigenvalue, again afocus on all elementsin
tween R-mode CVs 1 and the original data. 3. MINVAR relies heavily on the smallest eigenvalue, whereas
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0

a TABLE IV
. g E VALUE OF OBJECTIVE FUNCTION FORALL FIVE METHODS R-MoODE CV1
3 o f " o o n n n o )
E : 4 “ “ - Method > EUij > E(EUij)Q Amaz Amin det X¢y
s o™ ™2 ™3 ™ ™e ™ SUMCOR | 33.0725 30.4481 5.5125 0.0415 2.3488107°
f SSQCOR 33.0724 30.4482 5.5125 0.0414 2.3347107°
- MAXVAR | 33.0725 30.4482 55125 0.0415 2.3448 1075
L8 MINVAR 31.1882 27.2723 5.2038 0.0336 1.019110~*
2 g O 7 g n U n = 2 2 GENVAR | 32.9787 30.2877 54971 0.0371 2.0069 10~°
g TM1 ™2 TM3 TM4 TMS ™7
v TABLE V
- VALUE OF OBJECTIVE FUNCTION FORALL FIVE METHODS T-MODE CV1
8 s A= n,n 4 . a LT o Method [ Y3y “X(Zwi)?  Mnas Amin det Xy
= SUMCOR | 31.4869 28.0484 52730 0.0177 1.268310~°
o™ SSQCOR | 314812  28.0566 52732 0.0167 1.087210°°
f MAXVAR | 31.4842 28.0562 52734 0.0171 1.1480 107
- MINVAR 202292 24.9382 49373 0.0073 1.6008 10~
o 8 GENVAR | 30.6156 26.9877 5.1558 0.0078 3.427210°5
g s S aannf 7w _—
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Fig. 15. A; for both R-mode (top) and T-mode (bottom) CV1 (indexes 1-6),
Fig. 14. Correlations between T-mode CVs 6 and original data. ~ CV2 (indexes 7-12),.., CV6 (indexes 31-26) [see (1)].

TABLE I If we assign variables t&X; (Section IIl) in an appropriate
VALUE OF OBJECTIVE FUNCTION: SUM OF ELEMENTS IN 3 fashion the methods described can be used for simultaneous op-

timization of more objectives such as interset correlation and
Mode CVl1 CcVv2 CV3 CV4 CV5 CVeé Spatiaj correlation.
R 33.0725 28.1649 249316 14.4707 9.3141 6.0432
T 31.4869 23.5503 21.0998 19.2327 18.5041 9.2767

VI. CONCLUSIONS

Two- and multiset canonical correlations analysis for data fu-

GENVAR minimizes the determinant &;; and therefore relies sion, multisource, multiset, or multitemporal exploratory data
on several small eigenvalues. Due to lack of ground truth datmalysis is described and applied to six spectral bands from
it has not been possible to determine empirically which of theandsat TM summer data from 1984 to 1989. The resulting
five methods (if any) perform best in this context. canonical variates are invariant to linear and affine transforma-

Tables IV and V show comparisons of the actual values tibns of the original data within sets. This means, for example,
the optimization criteria for the five methods discussed for Rhat the R-mode CVs are insensitive to changes over time in
and T-mode canonical variates 1. The optimization criteria anéfset and gain in a measuring device. The CVs show the de-
not contradicted, e.g., for MVAR A, IS Smaller than for the sired characteristic, namely that they exhibit ever decreasing
other methods. Also in this comparisonyMCOR, SSQCoR and  similarity (as measured by correlation) with increasing order of
MAXVAR seem to perform similarly and MvAR and GENVAR the CVs. There is a big (visual) difference between the results of
seem to perform differently and not in the same fashion. the R- and T-mode analyses. This difference is ascribed to the

Fig. 15 shows\; for both R- and T-mode CV1-CV6 [see (1)].noise structure of the data.
Some differences within individual CVs are seen especially for Choosing other optimization criteria and constraints than
T-mode. the ones usually chosen for canonical correlation analysis, the

The difference between the results of the R- and T-modeethods described also form a basis for true multiset PLS.
analyses is believed to be due to the expected correlation in nois# the data analyzed are variables measured over time this type
over bands in the same year and the expected lack of correlatidanalysis constitutes a multivariate extension to the technique
in noise over years in the same bands. of EOF.
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Although applied to Landsat TM data here, the methods argg] A. A. Nielsen and K. Conradsen, “Multivariate alteration detection
suitable to the analysis of any data that are naturally divided into
several multivariate groups.

The methods described are well suited for integration in a

GIS.

(29]
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