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Abstract

This paper describes a new approach to online forecasting of power production from PV
systems. The method is suited to online forecasting in many applications and in this paper
it is used to predict hourly values of solar power for horizons of up to 36 hours. The data
used is fifteen-minute observations of solar power from 21 PV systems located on rooftops
in a small village in Denmark. The suggested method is a two-stage method where first a
statistical normalization of the solar power is obtained using a clear sky model. The clear
sky model is found using statistical smoothing techniques. Then forecasts of the normalized
solar power are calculated using adaptive linear time series models. Both autoregressive
(AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes
numerical weather predictions (NWPs) as input. The results indicate that for forecasts up
to two hours ahead the most important input is the available observations of solar power,
while for longer horizons NWPs are the most important input. A root mean square error
improvement of around 35 % is achieved by the ARX model compared to a proposed reference
model.

Key words: Solar power, prediction, forecasting, time series, photovoltaic, numerical
weather predictions, clear sky model, quantile regression, recursive least squares

1. Introduction

Efforts to increase the capacity of solar
power production in Denmark are concen-
trating on installing grid connected PV sys-
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tems on rooftops. The peak power of the
installed PV systems is in the range of 1 to
4 kWp, which means that the larger sys-
tems will approximately cover the electric-
ity consumption (except heating) of a typi-
cal family household in Denmark. The PV
systems are connected to the main electric-
ity grid and thus the output from other



p Solar power W

pcs Clear sky solar power W

τ Normalized solar power -

t Time index -

k Forecast horizon index -

i, j Miscellaneous indexes -

pt Observation of average solar power W

p̂t+k|t k-step prediction of solar power W

p̂cst Estimated clear sky solar power W

ĝi,k i’th update of NWP of global irradiance W/m2

ĝ00k,t NWP of global irradiance updated at 00:00 W/m2

ĝ12k,t NWP of global irradiance updated at 12:00 W/m2

p00k,t Observation of solar power corresponding to ĝ00k,t W

p12k,t Observation of solar power corresponding to ĝ12k,t W

τt Normalized solar power -

τ̂t+k|t k-step prediction of normalized solar power -

τ̂nwp
t NWPs transformed into normalized solar power -

xt Day of year -

yt Time of day -

et+k k-step prediction error -

q Quantile level -

h Bandwidth of smoothing kernel -

λ Forgetting factor -

power production units has to be adjusted
in order to balance the total power pro-
duction. The cost of these adjustments in-
creases as the horizon of the adjustments
decreases and thus improved forecasting of
solar power will result in an optimized total
power production, and in future power pro-
duction systems where energy storage is im-
plemented, power forecasting is an impor-
tant factor in optimizing utilization of stor-
age facilities (Koeppel and Korpas, 2006).

The total electricity power production in

Denmark is balanced by the energy mar-
ket Nord Pool, where electricity power is
traded on two markets: the main market
Elspot and a regulation market Elbas. On
Nord Pool the producers release their bids
at 12:00 for production each hour the fol-
lowing day, thus the relevant solar power
forecasts are updated before 12:00 and con-
sist of hourly values at horizons of 12 to
36 hours. The models in this paper focus
on such forecasts, but with the 1-to-11-hour
horizons also included.
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Interest in forecasting solar power has in-
creased and several recent studies deal with
the problem. Many of these consider fore-
casts of the global irradiance which is essen-
tially the same problem as forecasting solar
power. Two approaches are dominant:

• a two-stage approach in which the solar
power (or global irradiance) is normal-
ized with a clear sky model in order to
form a more stationary time series and
such that the classical linear time series
methods for forecasting can be used.

• another approach in which neural net-
works (NNs) with different types of in-
put are used to predict the solar power
(or global irradiance) directly.

In a study Chowdhury and Rahman (1987)
make sub-hourly forecasts by normalizing
with a clear sky model. The solar power is
divided into a clear sky component, which
is modelled with a physical parametriza-
tion of the atmosphere, and a stochastic
cloud cover component which is predicted
using ARIMA models. Sfetsos and Coonick
(2000) use NNs to make one-step predic-
tions of hourly values of global irradiance
and compare these with linear time series
models that work by predicting clearness
indexes. Heinemann et al. (2006) use satel-
lite images for horizons below 6 hours, and
in (Lorenz et al., 2007) numerical weather
predictions (NWPs) for longer horizons, as
input to NNs to predict global irradiance.
This is transformed into solar power by a
simulation model of the PV system. Ho-
caoglu et al. (2008) investigate feed-forward
NNs for one-step predictions of hourly val-
ues of global irradiance and compare these
with seasonal AR models applied on solar
power directly. Cao and Lin (2008) use NNs
combined with wavelets to predict next day

hourly values of global irradiance. Differ-
ent types of meteorological observations are
used as input to the models; among others
the daily mean global irradiance and daily
mean cloud cover of the day to be fore-
casted.

This paper describes a new two-stage
method where first the clear sky model ap-
proach is used to normalize the solar power
and then adaptive linear time series mod-
els are applied for prediction. Such models
are linear functions between values with a
constant time difference, where the model
coefficients are estimated by minimizing a
weighted residual sum of squares. The co-
efficients are updated regularly, and newer
values are weighted higher than old values,
hence the models adapt over time to chang-
ing conditions.

Normalization of the solar power is ob-
tained by using a clear sky model which
gives an estimate of the solar power in clear
(non-overcast) sky at any given point in
time. The clear sky model is based on sta-
tistical smoothing techniques and quantile
regression, and the observed solar power is
the only input. The adaptive linear predic-
tion is obtained using recursive least squares
(RLS) with forgetting. It is found that the
adaptivity is necessary, since the character-
istics of a PV-system are subject to changes
due to snow cover, leaves on trees, dirt on
the panel, etc., and this has to be taken into
account by an online forecasting system.

The data used in the modelling is de-
scribed in Section 2. The clear sky model
used for normalizing the solar power is de-
fined in Section 3 followed by Section 4
where the adaptive time series models used
for prediction are identified. In Section 5 an
approach to modelling of the uncertainty in
the forecasts is outlined. The evaluation of
the models and a discussion of the results
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are found in Section 6 and finally the con-
clusions of the study are drawn in Section
7.

2. Data

The data used in this study is observa-
tions of solar power from 21 PV systems
located in a small village in Jutland, Den-
mark. The data covers the entire year 2006.
Forecasts of global irradiance are provided
by the Danish Meteorological Institute us-
ing the HIRLAM mesoscale NWP model.

The PV array in each the 21 PV sys-
tems is composed of “BP 595” PV modules
and the inverters are of the type “BP GCI
1200”. The installed peak power of the PV
arrays is between 1020 Watt peak and 4080
Watt peak, and the average is 2769 Watt
peak. Let pi,t denote the average value of
solar power (W) over 15 minutes observed
for the i’th PV system at time t. These ob-
servations are used to form the time series

{pt; t = 1, . . . , N} (1)

where

pt =
1

21

21∑
i=1

pi,t . (2)

This time series is used throughout the
modelling. The time series covers the pe-
riod from 01 January 2006 to 31 December
2006. The observations are fifteen-minute
values, ie. N = 35040. Plots of {pt} are
shown in Figure 1 for the entire period and
for two shorter periods.

The NWPs of global irradiance are given
in forecasts of average values for every third
hour, and the forecasts are updated at 00:00
and 12:00 each day. The i’th update of the
forecasts is the time series

{ĝi,k, k = 1, . . . , 12} (3)

which then covers the forecast horizons up
to 36 hours ahead, and is given in (W/m2).

Time series are resampled to lower sample
frequencies by mean values and when the
resampled values are used this is noted in
the text. In order to synchronize data with
different sample frequencies, the time point
for a given mean value is assigned to the
middle of the period that it covers, e.g. the
time point of an hourly value of solar power
from 10:00 to 11:00 is assigned to 10:30.

As an example of the NWPs of global
irradiance Figure 2 shows values at time
of day 10:30 of {pt} resampled to three
hour interval values plotted versus the cor-
responding {ĝi,k} values with a 24 hour hori-
zon. Clearly the plot indicates a significant
correlation. Hence it is seen that there is
information in the NWPs, which can be uti-
lized to forecast the solar power.

3. Clear sky model

A clear sky model is usually a model
which estimates the global irradiance in
clear (non-overcast) sky at any given time.
Chowdhury and Rahman (1987) divide the
global irradiance into a clear sky component
and a cloud cover component by

G = Gcs · τc (4)

where G is the global irradiance (W/m2),
and Gcs is the clear sky global irradiance
(W/m2). Finally τc is the transmissivity of
the clouds which they model as a stochastic
process using ARIMA models. The clear
sky global irradiance is found by

Gcs = I0 · τa (5)

where I0 is the extraterrestrial irradiance
(W/m2). τa is the total sky transmissiv-
ity in clear sky which is modelled by atmo-
spheric dependent parametrization.
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Figure 1: The observations of average solar power used in the study. Upper plot: The solar power over the
entire year 2006. Lower plots: The solar power in two selected periods.
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Figure 2: All three hour interval values of solar
power at time of day 10:30 versus the correspond-
ing NWPs of global irradiance with 24 hour horizon.
Hence the plot shows observations and predictions
of values covering identical time intervals.

In this study the same approach is used,
but instead of applying the factor on global
irradiance it is applied on solar power, i.e.

p = pcs · τ (6)

where p is the solar power (W) and pcs is
the clear sky solar power (W). The fac-
tors τ and τc are much alike, but since the
clear sky model developed in the present
study estimates pcs by statistical smooth-
ing techniques rather than using physics,
the method is mainly viewed as a statistical
normalization technique and τ is referred to
as normalized solar power.

The motivation behind the proposed nor-
malization of the solar power with a clear
sky model is that the normalized solar
power (the ratio of solar power to clear
sky solar power) is more stationary than
the solar power, so that classical time se-
ries models assuming stationarity (Madsen,
2007) can be used for predicting the nor-
malized values. The non-stationarity is il-
lustrated by Figure 3 where modified box-
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Figure 3: Modified boxplots of the distribution of
the solar power as a function of time of day. The
boxplots are calculated with all the fifteen-minutes
values of solar power, i.e. covering all of 2006. At
each time of the day the box represents the center
half of the distribution, from the first to the third
quantile. The lower and upper limiting values of the
distribution are marked with the ends of the vertical
dotted lines, and dots beyond these indicate outliers.
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Figure 4: Modified boxplots of the distribution of
the normalized solar power as a function of time
of day. The boxplots are calculated with all fifteen-
minutes values available, i.e. covering all of 2006.

Figure 5: The solar power as a function of the day
of year, and the time of day. Note that only positive
values of solar power are plotted.

Figure 6: The estimated clear sky solar power
shown as a surface. The solar power is shown as
points.

plots indicate the distribution of solar power
pt as a function of time of day. Clearly a
change in the distributions over the day is
seen and this non-stationarity must be con-
sidered. Figure 4 shows the same type of
plot for the normalized solar power and it
is seen that the distributions over the day
are closer to being identical. Thus the effect
of the changes over the day is much lower
for the normalized solar power than for the
solar power.

The clear sky model is defined as

pcs = fmax(x, y) (7)
6
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Figure 7: The one dimensional smoothing kernels
used. Left plot is the kernel in the day of year (x)
dimension. Right plot is the kernel in the time of
day (y) dimension. They are multiplied to form the
applied two dimensional smoothing kernel.

where pcs is the clear sky solar power (W),
x is the day of year and y is the time of
day. The function fmax(·, ·) is assumed to
be a smooth function and thus fmax(·, ·) can
be estimated as a local maximum (Koenker,
2005). Figure 5 shows the solar power
plotted as a function of x and y, and the
estimated clear sky solar power f̂max(·, ·)
is shown as a surface in Figure 6. Due
to outliers the weighted quantile regression
method outlined in Appendix A is used to
find the local maximum. The f̂max(·, ·) is
then used to form the output of the clear
sky model as the time series

{p̂cst , t = 1, . . . , N}, (8)

where p̂cst is the estimated clear sky solar
power (W) at time t, and N = 35040. The
normalized solar power is now defined as

τt =
pt
p̂cst

(9)

and this is used to form time series of nor-
malized solar power

{τt, t = 1, . . . , 35040}. (10)

For each (xt, yt) corresponding to the so-
lar power observation pt, weighted quan-
tile regression estimates the q quantile by

a Gaussian two dimensional smoothing ker-
nel, defined in Appendix A. The smoothing
kernel is used to form the weights applied in
the quantile regression. As seen in Figure
7, which shows the smoothing kernel used,
the weights in the day of year dimension
w(xt, xi, hx), are decreasing as the absolute
time differences are increasing. Similarly for
the weights in the time of day dimension
w(yt, yi, hy). The applied weights are finally
found by multiplying the weigths from the
two dimensions. The choice of the quantile
level q to be estimated and the bandwidth
in each dimension, hx and hy, is based on a
visual inspection of the results. A level of
q = 0.85 was used since this gives τt ≈ 1 for
days with clear sky all day, as seen in Fig-
ure 8. The plot for days with varying cloud
cover in Figure 9 show that estimates where
τt > 1 occur. These are ascribed to reflec-
tions from clouds and varying level of wa-
ter vapour in the atmosphere. Future work
should elaborate on the inclusion of such ef-
fects in the clear sky model.

For small p̂cst values the error of τt is nat-
urally increasing and at nighttime the error
is infinite. Therefore all values of p̂cst where

p̂cst
max({p̂cst })

< 0.2 (11)

are removed from {τt}. The function
max({p̂cst }) gives the maximum value in
{p̂cst }.

The estimates of clear sky solar power are
best in the summer period. The bad esti-
mates in winter periods are caused by the
sparse number of clear sky observations. It
should also be possible to improve the nor-
malization toward dusk and dawn, and thus
lower the limit where values in {p̂cs} are
removed, either by refining the modelling
method or by including more explanatory
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variables such as e.g. air mass.

Finally it is noted that the determinis-
tic changes of solar power are really caused
by the geometric relation between the earth
and the sun, which can be represented in
the current problem by the sun elevation as
x and sun azimuth as y. The clear sky so-
lar power was also modelled in the space
spanned by these two variables, by apply-
ing the same statistical methods as for the
space spanned by day of year and time of
day. The result was not satisfactory, i.e.
the estimated clear sky solar power was less
accurate, probably because neighboring val-
ues in this space are not necessarily close in
time and thus changes in the surroundings
to the PV system blurred the estimates.

4. Prediction models

Adaptive linear time series models (Mad-
sen, 2007) are applied to predict future val-
ues of the normalized solar power τt. The
inputs are: lagged observations of τt and
transformed NWPs τ̂nwp

t . Three types of
models are identified:

• a model which has only lagged observa-
tions of τt as input. This is an autore-
gressive (AR) model and it is referred
to as the AR model.

• a model with only τ̂nwp
t as input. This

is referred to as the LMnwp model.

• a model with both types of input. This
is an autoregressive with exogenous in-
put (ARX) model and it is referred to
as the ARX model.

The best model of each type is identified by
using the autocorrelation function (ACF).

4.1. Transformation of NWPs into predic-
tions of normalized solar power

In order to use the NWPs of global irra-
diation ĝi,k as input to the prediction mod-
els, these are transformed into τ̂nwp

t which
are meteorological based hourly predictions
of τt. This is done by first transforming ĝi,k
into solar power predictions and then trans-
forming these by the clear sky model. The
time series {ĝi,k}, defined in (3), holds the
i’th NWP forecast of three hour interval val-
ues, and was updated at

timei = t0 + (i− 1) · 12h (12)

where t0 = 2006-01-01 00:00. Thus the time
series with sample period of one day

{ĝ00k,t, t = 1, . . . , 364} = (13)

{ĝi,k, i = 1, 3, . . . , 727},

consist of all the NWPs updated at time of
day 00:00 at horizon k, i.e. the superscript
“00” forms part of the name of the variable.
Similarly the time series

{ĝ12k,t, t = 1, . . . , 364} = (14)

{ĝi,k, i = 2, 4, . . . , 728},

consist of all the NWPs updated at time of
day 12:00. The corresponding time series
of solar power covering the identical time
intervals are respectively

{p00k,t, t = 1, . . . , 364} = (15)

{pt, t = k, (1 · 8 + k), . . . ,

(363 · 8 + k)}

and

{p12k,t, t = 1, . . . , 364} = (16)

{pt, t = k + 4, (1 · 8 + k + 4), . . . ,

(363 · 8 + k + 4)},
9



where {pt} has been resampled to three
hour interval values. The NWPs are mod-
elled into solar power predictions by the
adaptive linear model

p̂00k,t = βt + αt ĝ
00
k,t + et , (17)

note that the hat above the variable indi-
cates that these values are predictions (esti-
mates) of the solar power. A similar model
is made for the NWP updates at time of
day 12:00 giving p̂12k,t. The interpretion of
the coefficients βt and αt is not further elab-
orated here, but it is noted that they are
time dependent in order to account for the
effects of changing conditions over time, e.g.
the changing geometric relation between the
earth and the sun, dirt on the solar panel.
This adaptivity is obtained by fitting the
model with k-step recursive least squares
(RLS) with forgetting, which is described
in Appendix B. In order to use the RLS al-
gorithm, p00k,t has to be lagged depending on
k. Each RLS estimation is optimized by
choosing the value of the forgetting factor
λ from 0.9, 0.905, . . . , 1 that minimizes the
root mean square error (RMSE ).

The last steps in the transformation of
the NWPs is to normalize p̂00k,t and p̂12k,t with
the clear sky model, and resample up to
hourly values by linear interpolation. Fi-
nally the time series

{τ̂nwp
t , t = 1, . . . , 8760} (18)

of the NWPs of global irradiance trans-
formed into predictions of normalized solar
power is formed, and this is used as input
to the ARX prediction models as described
in the following. More details can be found
in (Bacher, 2008).

4.2. AR model identification

To investigate the time dependency in
{τt}, i.e. dependency between values with a

Lag
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Figure 10: ACF of the time series of normalized
solar power {τt}.

constant time difference, the ACF is calcu-
lated and plotted in Figure 10. Clearly an
AR(1) component is indicated by the ex-
ponential decaying pattern of the first few
lags and a seasonal diurnal AR component
by the exponential decaying peaks at lag
= 24, 48, ... . By considering only first-order
terms this leads to the 1-step AR model

τt+1 = m+ a1τt + a2τt−23 + et+1 . (19)

And a reasonable 2-step AR model is

τt+2 = m+ a1τt + a2τt−22 + et+2 . (20)

Note that here the 1-step lag cannot be
used, since this is τt+1 i.e. a future value,
and thus the latest observed value is in-
cluded instead. Formulated as a k-step AR
model

τt+k = m+ a1τt + a2τt−s(k) + et+k
(21)

s(k) = 24 + k mod 24 (22)

where the function s(k) ensures that the lat-
est observation of the diurnal component is
included. This is needed, since for k = 25
the diurnal 24 hour AR component cannot
be used and instead the 48 hour AR com-
ponent is used. This model is referred to as
the AR model.
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Figure 11: ACF of the time series of errors {et+k} for selected horizons k of the AR model. The vertical
bars indicate the lags included in each of the models, and the grayed points show the lags which cannot be
included in the model.

Figure 11 shows the ACF of {et+k}, which
is the time series of the errors in the model
for horizon k, for six selected horizons after
fitting the AR model with RLS, which is de-
scribed in Appendix B. The vertical black
lines indicate which lags are included in the
model. For k = 1 the correlation of the
AR(1) component is removed very well and
the diurnal AR component has also been
decreased considerably. There is high cor-
relation left at lag = 24, 48, . . .. This can
most likely be ascribed to systematic er-
rors caused by non-stationarity effects left
in {τt}, and it indicates that the clear sky
model normalization can be further opti-
mized. For k = 2 and 3 the grayed points
show the lags that cannot be included in the
model and the high correlation of these lags
indicate that information is not exploited.
The AR model was extended with higher
order AR and diurnal AR terms without
any further improvement in performance,
see (Bacher, 2008).
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Figure 12: ACF of the time series of errors {et+k}
at horizon k = 1 and k = 24 of the LMnwp model.
The grayed points show the lags which cannot be
included in the model.
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Figure 13: ACF of the time series of errors {et+k}
at horizons k = 1 and k = 24 of the ARX model.
The vertical bars indicate the lags included in each
of the models, and the grayed points show the lags
which cannot be included in the model.

4.3. LMnwp model identification

The model using only NWPs as input

τt+k = m+ b1τ̂
nwp
t+k|t + et+k (23)

is referred to as LMnwp . It is fitted using
RLS and the ACF of {et+k} is shown in Fig-
ure 12 for two horizons. For k = 1 clearly
correlation is left from an AR(1) compo-
nent, but as seen for both horizons the ac-
tual NWP input removes diurnal correlation
very well.

4.4. ARX model identification

The model using both lagged observa-
tions of τt and NWPs as input is an ARX
model. The LMnwp revealed an exponential
decaying ACF for short horizons and thus
an AR(1) term is clearly needed, whereas
adding the diurnal AR component has only
a small effect. The results show that in fact
the diurnal AR component can be left out,
but it is retained since this clarifies that no

improvement is achieved by adding it, this
is showed later. The model

τt+k = m+a1τt+a2τt−s(k)+b1τ̂
nwp
t+k|t+et+k,

(24)

is referred to as the ARX model. The model
is fitted using RLS and the ACF of {et+k}
is plotted in Figure 13. It is seen that the
AR(1) component removes the correlation
for the short horizons very well. The ARX
was extended with higher order AR and di-
urnal AR terms without any further im-
provements in performance.

4.5. Adaptive coefficient estimates

The plots in Figure 14 show the online co-
efficient estimates for the AR model, where
a value of λ = 0.995 is used since this is the
value that minimizes the RMSE k best for all
horizons in the current setting. Clearly the
values of the coefficient estimates change
over time and this indicates that the adap-
tivity is needed to make an optimal model
for online forecasting.

5. Uncertainty modelling

Extending the solar power forecasts, from
predicting a single value (a point forecast)
to predicting a distribution increases their
usefulness. This can be achieved by mod-
elling the uncertainties of the solar power
forecasts and a simple approach is outlined
here. The classical way of assuming normal
distribution of the errors will in this case
not be appropriate since the distribution of
the errors has finite limits. Instead, quan-
tile regression is used, inspired by Møller
et al. (2008) where it is applied to wind
power forecasts. Plots of {τt} versus {τ̂t}
for a given horizon reveal that the uncer-
tainties depend on the level of τ̂ . Figure

12
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Figure 14: The online estimates of the coefficients in the AR model as a function of time. Two selected
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15 shows such plots for horizons k = 1 and
k = 24. The lines in the plot are estimates
of the 0.05, 0.25, 0.50, 0.75 and 0.95 quan-
tiles of the probability distribution function
of τ as a function of τ̂ . The weighted quan-
tile regression with a one dimensional kernel
smoother, described in Appendix A, is used.

Figure 15 illustrates that the uncertain-
ties are lower for τ̂ close to 0 and 1, than
for the mid-range values around 0.5. Thus
forecasts of values toward overcast or clear
sky have less uncertainty than forecasts of
a partly overcast sky, which agrees with re-
sults by Lorenz et al. (2007). Further work
should extend the uncertainty model to in-
clude NWPs as input.

6. Evaluation

The methods used for evaluating the pre-
diction models are inspired by Madsen et al.
(2005) where a framework for evaluation of
wind power forecasting is suggested. The
RLS fitting of the prediction models does
not use any degrees of freedom and the
dataset is therefore not divided into a train-
ing set and a test set. It is, however, noted
that the clear sky model and the optimiza-
tion of λ does use the entire dataset, and
thus the results can be a little optimistic.
The values in the burn-in period are not
used in calculating the error measures. In
Figure 14 the burn-in periods for the AR
model are shown.

6.1. Error measures

The k-step prediction error is

et+k = pt+k − p̂t+k|t (25)

The Root Mean Square Error for the k’th
horizon is

RMSE k =

(
1

N

N∑
t=1

e2t+k

) 1
2

. (26)

The RMSE k is used as the main evaluation
criterion (EC) for the performance of the
models. The Normalized Root Mean Square
Error is found by

NRMSE k =
RMSE k

pnorm
(27)

where either

pnorm = p̄ =
1

N

N∑
t=1

pt. (28)

or pnorm is the average peak power of the 21
PV systems.

The mean value of the RMSE k for a range
of horizons

RMSE ks,ke =
1

ke − ks + 1

ke∑
k=ks

RMSE k (29)

is used as a summary error measure. When
comparing the performance of two models
the improvement

IEC = 100 · EC ref − EC

EC ref

(%) (30)

is used, where EC is the considered evalua-
tion criterion.

6.2. Reference model

To compare the performance of prediction
models, and especially when making com-
parisons between different studies, a com-
mon reference model is essential. A refer-
ence model for solar power is here proposed
as the best performing naive predictor for
the given horizon. Three naive predictors of
solar power are found to be relevant. Per-
sistence

pt+k = pt + et+k, (31)
14
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Figure 16: RMSEk for the three naive predictors
used in the Reference model.

diurnal persistence

pt+k = pt−s(k) + et+k (32)

s(k) = fspd + k mod fspd (33)

where s(k) ensures that the latest diurnal
observation is used and fspd is the sample
frequency in number of samples per day,
and diurnal mean

pt+k =
1

n

n∑
i=1

pt−s(k,i) + et+k (34)

s(k, i) = i · fspd + k mod fspd (35)

which is the mean of solar power of the last
n observations at the time of day of pt+k.
The value of n is chosen such that all past
samples are included.

Figure 16 shows the RMSE k for each of
the three naive predictors. It is seen that for
k ≤ 2 the persistence predictor is the best
while the best for k > 2 is the diurnal per-
sistence predictor. This model is referred to
as the Reference model.

6.3. Results

Examples of solar power forecasts made
with the ARX model are shown in Figure
17 for short horizons and in Figure 18 for
next day horizons. It is found that the

forecasted solar power generally follows the
main level of the solar power, but the fluc-
tuations caused by sudden changes in cloud
cover are not fully described by the model.

The NRMSE k is plotted for each model
in Figure 19. Clearly the performance is in-
creasing from the Reference model to the
AR model and further to the ARX model.
The differences from using either the solar
power or the NWPs, or both, as input be-
come apparent from these results.

At k = 1 the AR model that only uses so-
lar power as input is better than the LMnwp

which only uses NWPs as input, but at k =
2, . . . , 6 the LMnwp is better, though only
slightly. This indicates that for making fore-
casts of horizons shorter than 2 hours, solar
power is the most important input, whereas
for 2 to 6 hours horizons, forecasting sys-
tems using either solar power or NWPs can
perform almost equally. The ARX model
using both types of input does have an in-
creased performance at all k = 1, . . . , 6 and
thus combining the two types of input is
found to be the superior approach.

For k = 19, . . . , 29, which are the next
day horizons, very clearly the LMnwp model
and the ARX model perform better than
the AR model. Since the LMnwp model and
the ARX model perform almost equally,
it is seen that no improvement is achieved
from adding the solar power as input, and
thus using only the NWPs as input is found
to be adequate for next day horizons.

A summary of the improvement in per-
formance is calculated using (29) and (30).
The improvements compared to the Ref-
erence model are calculated for the four
models by IRMSE1,6

for short horizons and
IRMSE19,29

for next day horizons. The re-
sults are shown in Table 1. These results
naturally show the same as stated above,
though the difference at k = 1 from AR to

15
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Models IRMSE1,6
IRMSE19,29

AR over Reference 27% 17%
LMnwp over Reference 25% 36%
ARX over Reference 35% 36%

LMnwp over AR -2% 23%
ARX over AR 12% 23%

ARX over LMnwp 13% 1%

Table 1: Summary error measures of improvements
compared to the Reference model for short horizons
k = 1, . . . , 6 and next day horizons k = 19, . . . , 29 .

LMnwp cannot be seen. These results show
that a RMSE improvement of around 35 %
over the Reference model can be achieved
by using the ARX model.

7. Conclusions

Inspired by previous studies, the present
method for solar power forecasting has been
developed from scratch. A new approach to
clear sky modelling with statistical smooth-
ing techniques has been proposed, and an
adaptive prediction model based on RLS
makes a solid framework allowing for fur-
ther refinements and model extensions e.g.
by including NWPs of temperature as in-
put. The adaptivity of the method makes
it suited to online forecasting and ensures
comprehension of changing conditions of the
PV system and its surroundings. Further-
more the RLS algorithm is not computer in-
tensive, which makes updating of forecasts
fast. The clear sky model used to normal-
ize the solar power delivers a useful result,
but can be improved, especially for the es-
timates toward dawn and dusk, by using
polynomial-based kernel regression. A pro-
cedure based on quantile regression is sug-
gested for calculating the varying intervals
of the uncertainty of the solar power predic-
tions and the results agree with other stud-

ies. The best performing prediction model
is an ARX model where both solar power
observations and NWPs are used as input.
The results indicate that for horizons below
2 hours solar power is the most important
input, but for next day horizons no consid-
erable improvement is achieved from using
available values of solar power, so it is ade-
quate just to use NWPs as input. Thus, de-
pending on the application of the forecast-
ing system using only either of the inputs
can be considered, and a lower limit of the
latency, at which solar power observations
are needed for the forecasting system, can
be different. Finally it is noted that a com-
parison to other online solar power forecast-
ing methods, e.g. (Lorenz et al., 2007) and
(Hocaoglu et al., 2008), has not been car-
ried out, but that such a study would be in-
formative in order to describe strengths and
accuracy of the different proposed methods.

A. Weighted quantile regression

The solar power time series {pt, t =
1, . . . , N} is the realization of a stochastic
process {Pt, t = 1, . . . , N}. The estimated
clear sky solar power at time t is p̂cst and it is
found as the q quantile of fPt , the probabil-
ity distribution function of Pt. The problem
is reduced to estimating p̂cst as a local con-
stant for each (xt, yt), where x is the day
of year and y the time of day. This is done
by weighted quantile regression in which the
loss function is

ρ(q, εi) =

{
qεi , εi ≥ 0
(1− q)εi , εi < 0

(36)

where εi = pi− p̂cst . The fitting of p̂cst is then
done by

p̂cst = arg min
p̂cst

N∑
i=1

k(xt, yt, xi, yi) · ρ(q, εi).
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(37)

where

k(xt, yt, xi, yi) =
w(xt, xi, hx) · w(yt, yi, hy)∑N
i=1w(xt, xi, hx) · w(yt, yi, hy)

(38)

is the two dimensional multiplicative ker-
nel function which weights the observations
locally to (xt, yt), (Hastie and Tibshirani,
1993). Details of the minimization are
found in (Koenker, 2005). In each dimen-
sion a Gaussian kernel is used

w(xt, xi, hx) = fstd

(
|xt − xi|
hx

)
(39)

where fstd is the standard normal probabil-
ity density function. A similar kernel func-
tion is used in the y dimension, and the final
two dimensional kernel is found by multiply-
ing the two kernels as shown in (37).

B. Recursive least squares

Fitting of the prediction models is done
using k-step recursive least squares (RLS)
with forgetting, which is described in the
following using the ARX model

τt+k = m+a1τt+a2τt−s(k)+b1τ̂
nwp
t+k|t+et+k,

(40)

as an example. The regressor at time t is

XT
t = (1, τt, τt−s(k), τ̂

nwp
t+k|t), (41)

the parameter vector is

θT = (m, a1, a2, b1), (42)

and the dependent variable

Yt = τt. (43)

Hence the model can be written as

Yt = XT
t θ + et. (44)

The estimates of the parameters at t are
found such that

θ̂t = arg min
θ
St(θ), (45)

where the loss function is

St(θ) =
t∑

s=1

λt−s(Ys −XT
s θ)

2. (46)

This provides weighted least squares with
exponential forgetting. The solution at time
t leads to

θ̂t = R−1t ht, (47)

see (Madsen, 2007), where

Rt =
∑t

s=1 λ
t−sXsX

T
s , ht =

∑t
s=1 λ

t−sXsYs.

(48)

The k-step RLS-algorithm with exponential
forgetting is then

Rt = λRt−1 + Xt−kX
T
t−k (49)

θ̂t = θ̂t−1 + R−1t Xt−k(Yt −XT
t−kθ̂t−1)

(50)

and the k-step prediction at t is

Ŷt+k = XT
t θ̂t. (51)
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