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Order-N Green’s Function Technique for Local Environment Effects in Alloys
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We have developed a new approach to the calculations of ground state properties of large crystalline
systems with arbitrary atomic configurations based on a Green’s function technique in conjunction
with a self-consistent effective medium for the underlying randomly occupied lattice. The locally self-
consistent multiple scattering method and the coherent potential approximation are two simple limits
of our general formulation. The efficiency and the excellent convergence properties of the method are
demonstrated in calculations for two alloy systems, Cu-Zn and Rh-Pd. [S0031-9007(96)00336-5]

PACS numbers: 71.15.–x

First-principles investigations of the phase stability of
materials require an accurate description of the ground
state properties of systems with an arbitrary atomic occu-
pation of the underlying crystal lattice. The obvious solu-
tion is to consider a large supercell with periodic boundary
conditions and apply conventional band-structure meth-
ods. However, in that case the computational effort in-
creases with the number of atomsN in the supercell as
N3, which at present limits the cell size to a few hundred
atoms, and an intensive search for techniques with bet-
ter scaling properties is therefore in progress. One par-
ticularly interesting approach is the locally self-consistent
multiple scattering (LSMS) method recently outlined by
Wang et al. [1]. Its central idea originates from the ob-
servation that the electron density and the density of states
on a particular atom within a large condensed system
can be obtained with sufficient accuracy by considering
only the electronic multiple scattering processes in a finite
spatial region, the so-called local interaction zone (LIZ),
centered at that atom. Thereby the solution of the
electronic-structure problem for anN-atomic system is
decomposed intoN locally self-consistent problems in-
cluding only theM atoms in the LIZ associated with each
atom in the system, and the total computational effort now
scales linearly withN, i.e., exhibitsOsNd scaling. The
LSMS method has been used to calculate the ordering en-
ergy in b-brass [1] as well as the Madelung energy for
a number of random fcc and bcc Cu-Zn alloys [2]. In
these calculations it turns out that in order to obtain a
0.1 mRy accuracy in the total energy the local interac-
tion zone must include of the order of 100 atoms. Hence,
the LSMS method becomes more efficient than conven-
tional band-structure techniques only for systems contain-
ing several hundred atoms, and needs to be implemented
on a most powerful supercomputer.

In this Letter, we present a locally self-consistent
Green’s function (LSGF) approach to the electronic-
structure problem which preserves the central idea of the

LSMS method in the form of a local interaction zone.
However, instead of solving the real-space multiple-
scattering equations we solve the Dyson equation for
Green’s function of each LIZ embedded in an effective
medium. Since the Dyson equation is exact, this effective
medium is used only to improve the convergence in real
space, i.e., reduce the size of the local interaction zone,
and may be chosen in a number of ways. For instance,
one may apply a jellium model of some density. This
has the advantage of being structureless in real space,
and one may recover the LSMS method as the free-
electron limit of our method. Alternatively, one may
apply the coherent potential approximation (CPA) to the
underlying randomly occupied lattice in which case the
convergence of the Dyson equation is greatly enhanced.
This choice has the further advantage of retaining Fermi
surface effects for random alloys. Finally, by restricting
the interaction zone to a single site the LSGF method
with this particular choice of effective medium reduces
to the CPA but with a proper treatment of the Madelung
contribution to the total energy.

Three factors contribute to the efficiency of the LSGF
method as implemented here. First, the local interaction-
zone approach leads to anOsNd scaling of the compu-
tational effort. Second, the application of a judiciously
chosen effective medium leads to a minimal size of the
local interaction zone. Third, the application of a tight-
binding linear muffin-tin orbital (TB-LMTO) basis in con-
junction with the atomic sphere approximation (ASA) [3]
as usual reduces computer time by 1 to 2 orders of mag-
nitude without significant loss of accuracy. Finally, we
note that our method is as amenable to parallelization as
the LSMS method although this was not necessary for the
applications presented here.

The key quantity in the present approach is the on-site
block gRR of the Korringa-Kohn-Rostoker-ASA Green’s
function matrix which is used to construct the charge
density in the entire system. Following Lifshitz [4] this
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Green’s function matrix for the central atom atR in
each local interaction zone may be found from the Dyson
equation

gRR ­ g̃RR 1

MX
R0­1

g̃RR0 sP̃R0 2 PR0dgR0R (1)

when the LMTO-ASA potential functionP̃R0 for the
effective scatterers is known. One observes that although
the off-diagonal blocks of the desired Green’s function
matrix gRR0 may be long ranged this becomes irrelevant
for the on-site matrix if an effective medium can be found
such thatg̃RR0 has short range in which case the sum over
lattice sites may be restricted to a finite cluster, i.e., a local
interaction zone, containingM atoms.

Before we specify the effective medium we note that
the potential functionP̃ for the effective scatterers is
the same on all the sites in the system [5]. Therefore
the effective medium Green’s function matrix̃g may
be obtained from the solution to the electronic-structure
problem corresponding to the underlying primitive unit
cell rather than the wholeN-atomic supercell, i.e.,

g̃RR0 ­ sVBZd21
Z

BZ
dk eik?sR2R0dfP̃ 2 Sskdg21, (2)

where Sskd is the TB-LMTO structure constant matrix
for the primitive lattice andVBZ the volume of the
corresponding Brillouin zone.

If one deals with an alloy problem, it is well known that
the best single-site effective medium is given by the CPA
[6,7]. Therefore we suggest to determine the potential
function P̃ for the effective scatterers which enters the
cluster Dyson equation (1) from the CPA-like condition

g̃RR ­ kg0
RRl ­ sNd21

NX
R­1

g0
RR , (3)

where g̃RR is the on-site block of the effective medium
Green’s function matrix calculated from (2) andg0

RR is the
Green’s function matrix for the atom on siteR determined
from the single-site Dyson equation [9]

g0
RR ­ g̃RR 1 g̃RRsP̃ 2 PRdg0

RR (4)

corresponding to the CPA for multicomponent systems.
The potential function for the effective scatterers, i.e.,
the coherent potential functioñP, may now be found by
iterative solution of Eqs. (2)–(4) until the condition (3) is
fulfilled [8].

Following the CPA cycleP̃ is used together with an
anzatz forPR in the cluster Dyson equation (1) to deter-
mine the Green’s function matricesgRR for all N atoms
in the supercell which in turn are used in the conven-
tional manner [9] to determine the Fermi level from the
charge neutrality condition for the entire supercell and
to construct a new charge density and atomic potential
functionsPR. Thereby, the Madelung contribution to the
one-electron potential and the total energy is calculated
directly from the charge distribution in theN-atomic su-

percell and does not rely on models such as those pro-
posed by Luet al. [10] and by Korzhavyiet al. [11]. The
complete procedure starting with the determination ofP̃
is finally repeated until a self-consistent total energy is ob-
tained. We refer to our method with this particular choice
of effective medium as the LSGF-CPA.

We may now discuss the real-space convergence prop-
erties of the cluster Dyson equation (1), i.e., the size
M of the LIZ. If the supercell contains only one kind
of atom, one immediately finds in the LSGF-CPA that
g̃RR ­ g0

RR ­ gRR and one may use a single-site LIZ to
obtain the correctgRR . This should be contrasted with
the not less than seven coordination shells needed in the
LSMS to calculate pure metals [1]. When the atoms in
the supercell are different the size of the LIZ is less ob-
vious and must be determined numerically. However,
the Green’s function for the CPA effective medium de-
cays, apart from an oscillating factor, exponentially as
R21e2Ryl , wherel is the mean free path [12], and thereby
leads to a minimal LIZ. With the free-electron effective
medium used in the LSMS methodl diverges and the de-
cay is onlyR21, which explains the large LIZ used in the
LSMS calculations [1,2]. Note that while both the LSMS
and LSGF methods are ofOsNd they still scale asM3 and
therefore the application of a CPA effective medium re-
duces computer time by 3 orders of magnitude.

The excellent real-space convergence of the LSGF-
CPA method may be judged from Fig. 1 where we show

FIG. 1. Convergence of the total energy of Cu-Zn and Rh-
Pd alloys as a function of the number of neighboring shells
included in the local interaction zone. Values obtained by the
LSGF-CPA method for random and ordered (L10 for CuZn,
L12 for Rh3Pd) structures are shown by filled circles and
squares, respectively. For comparison we also include values
obtained for the ordered structures by LMTO bulk calculations,
dashed lines, and for random structures by the Connolly-
Williams method, dotted lines. For Cu50Zn50 we used 144
atoms in the supercell and for Rh75Pd25 256, but a reduction of
these numbers to 72 atoms per cell changes the total energies
by less than 0.1 mRy.
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the total energy of fcc Cu50Zn50 and Rh75Pd25 alloys
which have been chosen as examples of systems with
ordering tendency, Cu-Zn, and a miscibility gap, Rh-Pd.
These two systems have been modeled by supercells con-
taining 144 and 256 sites, respectively, on the underlying
fcc lattice and the atoms distributed according to two par-
ticular choices of the short-range order parameters, one
corresponding to a completely random phase and the other
to a completely ordered phase. It is seen that conver-
gence for the random alloy systems is reached already
for a single-site local interaction zone indicating that the
CPA effective medium is a particularly good choice in
this case. For the ordered alloys we find that the Cu-
Zn system requires a local interaction zone of only one
coordination shell while Rh-Pd requires four coordination
shells for complete, less than 0.1 mRy, convergence. This
latter finding is in agreement with the observation that the
effective pair interactions in Rh-Pd are nonzero up to four
coordination shells [13], but are short ranged in Cu-Zn
[14]. In fact, one may show that the size of the LIZ to be
used in LSGF-CPA calculations for nonrandom distribu-
tions of atoms corresponds roughly to the range of these
effective pair and multiatom interactions.

The Connolly-Williams (CW) method [15] represents
an alternative approach which has been used with con-
siderable success in the calculation of total energies of
random alloys. Here, it is used to obtain the total en-
ergy of random Cu50Zn50 based on the total energies of
five ordered Cu-Zn alloys. The results are included in
Fig. 1, and the excellent agreement with our LSGF val-
ues demonstrates the reliability of the two alternative ap-
proaches. However, we note that in the CW method all
information about the electronic structure is lost and to ex-
tract any spectral information one must use methods such
as the LSGF-CPA which preserve that information.

Based on timings of our LSGF-CPA and LMTO band
calculations including suitablek-space samplings we have
estimated the sizeNc of the supercell where the LSGF-
CPA becomes the more efficient technique. We find that
for a local interaction zone of one coordination shell,
which is the case for Cu-Zn,Nc ­ 2 and for a zone of
four shells, which is the case for Rh-Pd,Nc ­ 45. Since
it is to be expected that the description of an alloy system,
with short-range order, in the complete concentration
range requires supercells with of the order of 100 atoms it
follows that we are always in the regime where the LSGF-
CPA will be the most efficient first-principles technique.

We have applied our LSGF-CPA method in the cal-
culation of the mixing enthalpies ofa-CuZn considering
random and ordered phases as well as phases with short-
range order. The alloy systems were modeled by a 72-
atom supercell and the local interaction zone included one
shell of nearest neighbors, i.e., 13 atoms in total. We
have tested the convergence of the calculations and find
that the total energy per atom changes much less than
0.1 mRy when the number of atoms in the supercell is

increased from 32 to 144. This is in agreement with an
earlier observation that a supercell of about 100 atoms
should be sufficient to model a random alloy, provided
the atomic distribution is chosen such that the pair corre-
lation functions are correct for the first few coordination
shells [1,16].

In Fig. 2 we present the total energy of ordered and
random Cu75Zn25 as a function of lattice spacing. We
note the perfect agreement with bulk LMTO calculations
for the ordered structure and with CW calculations for
the random structure. Furthermore, the description of
charge transfer effects included in the LSGF-CPA method
leads to improved, i.e., lower, total energy of the random
phase relative to the conventional CPA results. Also, we
observe that the LSGF-CPA gives an accurate description
of ordering phenomena. Finally, Fig. 2 is one example of
a series of total-energy curves needed to derive the mixing
enthalpy of a-CuZn over the complete concentration
range. At each concentration one must minimize the total
energy with respect to the lattice spacing and subtract the
energy of the reference state to obtain the enthalpy.

The mixing enthalpies ofa-CuZn alloys were first cal-
culated in the framework of the local density approxima-
tion and the CPA by Johnsonet al. [17] who found val-
ues which were less negative than the experimental data
[18] but with correct concentration dependence. In Fig. 3
we show similar results obtained by conventional CPA
which illustrate the above statement. It is now well known
[11,19–21] that part of the discrepancy between theory and
experiment is due to the neglect of charge transfer effects
in conventional CPA, and it is expected that the remaining
discrepancy is caused by short-range order (SRO) effects
also neglected in the CPA. To investigate this expectation
we have calculated the mixing enthalpies for random Cu-
Zn with short-range order. The actual value of the SRO
parameter was obtained by the cluster variation method

FIG. 2. Total energies of random and ordered (L12 structure)
Cu75Zn25 alloys as a function of the Wigner-Seitz radiusRWS
obtained by different computational techniques. The LSGF-
CPA results are shown by open circles (completely random
alloys) and open squares (ordered compounds). The results for
the random alloys obtained by the CW method are shown as
filled circles, and the results from conventional LMTO Green’s
function calculations for the ordered phases are given by filled
squares. The CPA results for the random alloy are shown by
stars.
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FIG. 3. Mixing energiesEmix for fcc Cu-Zn alloys as a
function of Zn concentrationc. Values for the random alloy
with SRO corresponding toT ­ 773 K have been calculated
by the LSGF-CPA method (full line) and by the cluster
variation method (CVM, dot-dashed line). The experimental
data measured at the same temperature [18] are indicated by
filled circles. The mixing energies for the completely random
alloy, calculated by LSGF-CPA and by the conventional
CPA methods, are shown as a long-dashed and dashed
lines, respectively. The inset shows the Warren-Cowley SRO
parameteraCu-Zn for the first nearest neighbors obtained by
the CVM-CW method at 773 K and used in LSGF-CPA
calculations for the alloys with SRO.

(CVM) [22] and CW interactions for each concentration
considered here (10%, 20%, 25%, 30%, 40%, 50%, 75%,
and 90%) and at 773 K which is the temperature at which
the experimental mixing enthalpies were measured. Af-
ter that Cu and Zn atoms were distributed in the super-
cell according to the so obtained SRO parameters, and the
LSGF-CPA calculations performed. The resulting mixing
enthalpies are shown in Fig. 3 and it is gratifying to note
that not only do we find complete agreement with the al-
ternative CVM-CW calculations but also with the exper-
imental values. We view this as a manifestation of the
accuracy of the LSGF-CPA method and of the underlying
local density approximation.

In summary, we have introduced the LSGF method
which may be used in first-principles calculations of
the electronic properties of large systems with broken
three-dimensional symmetry. The method is based on
the Dyson equation for a cluster Green’s function the
dimension of which is reduced to a minimum due to a
judicious choice of effective medium. It exhibitsOsNd
scaling in the system size and may be more efficient
than conventional band-structure methods already forN
as small as 2–4 atoms per cell. We have demonstrated
that the LSGF results for ordered and random alloys agree
with alternative one-electron methods as they should. The
method has been applied to calculate the mixing enthalpy
for a-CuZn with short-range order and the results are in
excellent agreement with experiment.
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