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CO M M U N I C AT10 N 

Decay of Charge Deposited on the 
Wall of a Gaseous Void 

I. W. McAllister 
Electric Power Engineering Department 

Technical University of Denmark, Lyngby, Denmark 

ABSTRACT 
Following partial discharge activity within a gaseous void, charg- 
es will accumulate on the wall of the void. In the present paper, 
the decay of such charges due to surface currents at the void 
wall is studied analytically, and the factors affecting this decay 
are indicated. 

INTRODUCTION 

ARTIAL discharges can occur in a gaseous void within P solid insulation. Such discharges deposit free charges 
on the void wall. Depending on the polarity of the applied 
field, the electric field produced by these wall charges can 
either inhibit or promote further discharge development. 
However, should the void wall exhibit a finite surface con- 
ductivity, the wall charges will become neutralized in time 
by surface currents a t  the wall. This behavior will lead to  
a time-dependent wall charge field. In the present paper, 
the decay of the surface charge is investigated theoreti- 
cally, and the factors influencing this decay are discussed. 

CONTINUITY EQUATION FOR 
SURFACE CURRENTS 

HE surface in question is considered to  be the inter- T face between a medium 'a' and a medium 'b'. The 
latter is a sphere of radius R, while the former occupies 
the remaining space which extends to  infinity. Hence with 
respect to  spherical coordinates r ,  8, $J the interface is 
represented by the surface r = R. As we are examining 
the behavior of surface currents due to  an interface which 

exhibits a finite surface conductivity r, the relevant con- 
tinuity equation is 

where 2 is the surface curre_nt density, U the surface 
charge density and?  time._ Q, . I? represents the sur- 
face divergence of K [l]. K is related t o  the tangential 
electric field strength 3, a t  the surface by 

I? = rd, (2) 

Employing the continuity equation in the above form 
implies tkat ,  in this study, the volume conduction current 
density J is zero in each medium. Before proceeding with 
the present analysis, it will be assumed that the surface 
conductivity is homogeneous and isotropic such that a 
linear relationship exists between I? and 2,. 
For the present class of boundary value problems, the 

general potential functions associated with the two media 
bounding the interface can be expressed as [2] 

where ( P ~  and (Pa represent the time zero potential distri- 
butions in medium 'a' and medium 'b', respectively, and 
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are thus solutions of Laplace's equation. The temporal 
variation T is a function o f t  alone with T(0)  = 1. 

By congdering the field boundary conditions associat- 
ed with K and U, it is possible to  derive the equivalent 
continuity equation t o  be fulfilled by the potential func- 
tions a, and ab a t  the spherical interface [2]. For r = R, 
one obtains 

terms of spherical coordinates consist of infinite series, 
(7) cannot be used directly to  determine the relevant 
A. In this situation reference must be made to  (5) from 
which, upon differentiating (10) and ( l l ) ,  we find that,  
for r = R, 

with T = E,R/I'. In ( 1 2 ) ,  E, is used to  denote relative 
permittivity. The potential solutions associated with the 
two media are thus 

(13) 

W ni-1 

a, = A, [ 3 P , , ( ~ ~ ~  e )  exp 
In (5) the form of the first term, which is related to G 8 .  

I? , arises because the potential distributions in the two 
media bounding the interface are solutions of Laplace's 

derivative of the potential, the term can be derived from 

term is not a misprint. In deriving (5), the orientation of 
the interface is such that r, 2 r b .  In addition, it must 
be emphasized that the derivation of (5) is based on the 
assumption of a constant I?. 

n = O  

(14) 

equation. Hence as this term is concerned with the second W 

@ b  = An [ i] pn(cos 0 )  exp 
either pa or pi,, i.e. the lack of a potential subscript in this n = O  

To determine A, it is necessary to  consider the nature 
of the initial charge distribution. 

As the bracketed terms in (5) are independent o f t ,  the As a first approach, let q be a point charge located on 
the void wall coincident with the axis of symmetry ( r  = 
R, 8 = 0 ) .  From the potential solution for a dielectric 
sphere and a point charge given in standard textbooks 
[3,4],  we can deduce that 

solution to this differential equation is 

(6) T = exp(-At) 

with 

(7) 

Consequently the general potential solutions are and thus the associated potential solutions are 

-n(n + 1) pa and 
bution a t  time t = 0. 

P, (cos e)  exp are deduced from the interfacial charge distri- 

APPLICATION TO A 
SPHERICAL VOID 

s the initial discharge development in the void is pre- A sumed to be axially symmetric, we consider the wall 
charge distribution to  exhibit the same symmetry. In 
such situations, the appropriate solutions for the time ze- 
ro potentials are 

W n + l  

P a = x A n [ : ]  Pn(cos8) for r > R  (10) 
n = O  

w r --I n+1 .~ 
P a  = E A n  Pn(cos8) for r > R (10) 

n = O  

W 

pb = C A n  [L]"pn(cos8 )  R for r < R (11) 
n = O  

where Pn(cos8) is a Legendre polynomial. At the void 
wall (r = R ) ,  pa and automatically fulfill the potential- 
equality requirement. As the solutions for pa and ' p b  in 

For E,, = 1 and &rb > 1, (16) and (17) represent the 
potential solutions for a charged, insulating spherical par- 
ticle. As t -+ 00, the charge will become dispersed around 
the spherical surface to  form a shell of uniform charge 
density. Confirmation of this behavior is obtained on ex- 
panding the series in (16) and (17) and taking the limit 
for t + 00. 

A void is however a closed volume, and thus the net 
charge within any void following partial discharge activi- 
ty will remain zero. Consequently to  represent this con- 
dition, i t  is necessary to  consider a second wall charge, of 

I 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 13, 2009 at 05:32 from IEEE Xplore.  Restrictions apply. 



1204 McAllister: Decay of Charge Deposited on the Wall of a Gaseous Void 

opposite polarity, located diametrically opposite the first 
charge, i.e. -q a t  r = R, 8 = x .  Using the principle of 
superposition, we can obtain the composite solutions for 
a,, and @ b  by simply adding appropriate solutions of the 
types given in (16) and (17). For -9, Pn(cos8) is replaced 
by P,(cos[x - e ] ) .  Because we have 

pn(cOs e) - pn(- cos e)  = o 

pn(cose) - pn(- cos e)  = 2 ~ ~ ( ~ ~ ~  e )  

(18) 

(19) 

for n even, while for n odd 

we can express the composite potentials in a more con- 
venient form on replacing n by 2n  + 1. This substitution 
leads to 

00 4 n +  3 
@,o = - 

2 ~ f o R  n=O { (2n + 2)Era 4- (2n 1)Erb 

'I 1 -(2n + 1)(2n + 2) [ (2n + 2)Era + (2n + 1 ) E r b  7 

The subscript 0 indicates that  these potential functions 
relate to  a zero net charge condition in the void and hence, 
as t -+ 00, the values of both @,o and @ b o  should tend 
to  zero. This condition is fulfilled, because n = 0 in 
(20)  and (21) does not produce a time-independent term. 
With crb = 1, the above expressions will represent the 
potential variations in the bulk material (@,o) and in the 
void ( @ b o )  when a simple point-charge configuration is 
used to  simulate the void wall charges a t  time zero. 

SURFACE CHARGE DENSITY 
AT VOID WALL 

OR the situation under discussion, the surface charge F density U a t  the void wall is given by 

Hence upon differentiating (20) and (21) and inserting in 
(22), we obtain for E r g  = 1 

W 

U =2uo { (4n+ 3)P2,+l(COS8)X 

(23) n = O  

where 

(24) 
Q u0 = - 

4xR2 
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Figure 1. 
Temporal variation of the surface charge density 
U at the time-zero charge location. 

The temporal variation of U at the time-zero location 
of the charge is illustrated in Figure 1. U decays mono- 
tonically with t ,  but as the value of U is obtained from 
the summation of many exponential terms, see (23), the 
decay is not truly exponential in nature. Moreover, the 
greater the value of the bulk permittivity, the slower will 
be the observed the rate of this decay. 

At locations which are charge-free a t  t = 0, U increases 
initially to  some maximum value and thereafter decays, 
see Figure 2. The value of the bulk permittivity influ- 
ences both the time to  the maximum U-value (t,,,) and 
the value itself (U,,,). The variation in U,,, is relatively 
minor. However, both U,,, and t,,, are strongly influ- 
enced by the proximity of the surface location in question 
to  that of the time-zero source position. 

The variation of U around the void wall is shown in 
Figures 3 and 4. The former indicates the influence of 
E ~ ,  for t constant, whereas the latter shows the evolution 

r 
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Figure 2 .  
Temporal variation of the surface charge density 
U at locations which are charge-free at time zero. 

of U for E,, = 4. It is evident from Figures 3 and 4 that  
wall charge takes a considerable number of time constants 
(> 5 r )  to disperse, and that the absolute time is strongly 
influenced by the bulk permittivity. 

AXIAL ELECTRIC FIELD 
ACROSS THE VOID 

HE repetition rate of void discharges is controlled by T the time taken to re-establish a void field of sufficient 
magnitude to  support discharge growth. Among other 
parameters, this time will be influenced by the decay of 
the field produced by wall charges. As a means of por- 
traying this field, the variation of the field strength E,, 
along the void axis is considered. With reference to  E,, 
we have (a@b/W) = 0 and thus the axial field strength 
is given simply by 

Hence upon differentiating ( 2 1 )  we obtain, for €75  = 1, 

0 02 O L  0 6  0 8  1.0 
- IU 

Figure 3. 
Spatial variation of surface charge density U at 
void wall: influence of bulk permittivity. 

where 
( 2 7 )  

Q 
47r.5, Ra 

E,  = - 
It should be remembered that along the void axis 8 = 0 
or 8 = 7r, and hence P2n+l(cosO) = fl for 0 < r / R  < 1 

To illustrate the influence of the bulk polarization up- 
on the E" field in the void, the variation of E,, a t  time 
zero is shown in Figure 5 for different bulk permittivi- 
ties. E,,  = 1 corresponds to  the field between two point 
charges. From this diagram it  is clear that  the larger E,,  

is the smaller is the field in the void. 

The bulk permittivity has also an influence upon the 
rate at which the axial field decays. This aspect is indi- 
cated in Figure 6 ,  which illustrates the variation of E,, 
for different values of E,, a t  t / r  = 3. These field distri- 
butions are generated from the U distributions shown in 
Figure 3, from which the influence of E,, upon E,, can 
be readily appreciated. 
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Figure 4. 
Spatial variation of surface charge density v at 
void wall: influence of time. 

The temporal development of E,, for E?, = 4 is dis- 
played in Figure 7. The graphs indicate that as time 
increases, the void field decreases in magnitude and its 
degree of nonuniformity is steadily reduced. The corre- 
sponding c7 distributions are given in Figure 4. 

DISCUSSION AND 
CONCLUSION 

N the basis of the temporal potential distribution as- 0 sociated with a charged dielectric particle (cf  gas/ 
solid), i t  has been possible to  derive the corresponding 
distribution for a wall charged void. This void poten- 
tial distribution is derived by not only interchanging the 
media permittivities (cf solid/gas), but also by taking 
account of the inherent zero net charge condition in a 
void. This zero net charge condition is fulfilled by su- 
perimposing a second particle type solution for a source 
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Figure 5. 
Variation of the void axial electric field E,. at 
time zero: influence of bulk permittivity. 

charge of opposite polarity. Although partial discharges 
in a gaseous void create charges, i t  should be remembered 
that ,  as the void is a closed volume, the net charge in the 
void remains zero. 

The examination of the wall charge decay indicates 
that ,  in terms of the basic time constant E,R/I', this 
process can take a considerable time. The decay rate 
is significantly reduced by an increase in the permittivi- 
ty of the bulk medium. The dominating influence of this 
permittivity is likewise reflected in the increased duration 
and thereby prolonged inhomogeneity of the electric field 
sustained in the void. However the absolute value of this 
field is reduced with an increase in bulk permittivity. 

In conclusion, the present choice of a point charge to 
simulate the wall charge has the disadvantage that such a 
source is associated with a field singularity, and thus it is 
not possible to  represent the maximum field a t  the void 
wall in a realistic manner. To overcome this limitation, 
other representations of wall charges are presently under 
examinat ion. 

I 
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Figure 7. 
Variation of the void axial electric field Earn: in- 
fluence of time. 
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