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We present a unified description of the position-space wave functions, the momentum-space
wave functions, and the phase-space Wigner functions for the bound states of a Morse
oscillator. By comparing with the functions for the harmonic oscillator the effects of
anharmonicity are visualized. Analytical expressions for the wave functions and the phase
space functions are given, and it is demonstrated how a numerical problem arising from the
summation of an alternating series in evaluating Laguerre functions can be circumvented. The
method is applicable also for other problems where Laguerre functions are to be calculated.
The wave and phase space functions are displayed in a series of curves and contour diagrams.
An Appendix discusses the calculation of the modified Bessel functions of real, positive
argument and complex order, which is required for calculating the phase space functions for

the Morse oscillator.

I. INTRODUCTION
The celebrated Morse potential has the form
Vix) = D(1 — e~ )2,

It was constructed by Morse' from restrictions on its behav-
ior for large values of |x|, and from the requirement that it
should lead to a quantum mechanical energy level spectrum
of the form

&, =[(n+1/2) — y(n+ 1/2)*1fiw,,
n=0,1, . . ,Nyu- 2)

— 0 <X< 0. (D

Qualitatively, this is the characteristic energy level spectrum
of a vibrating, nonrotating diatomic molecule. An energy
level spectrum does admittedly not determine the potential
uniquely,>* but the analytic expression (1) does in general
give a good fit to the potential curves of diatomic molecules.
The energy levels and wave functions of the Morse oscillator
are, accordingly, good approximations to those of actual
molecules.

In a diatomic molecule x stands for » — r,, where ris the
internuclear distance and 7, its “equilibrium” value. Thus,
the true domain of x is from — r, to 0, but the physical
effects of substituting — « for —r,, as in Eq. (1), have
been found to be entirely negligible.'*

The Schriodinger equation for the Morse oscillator is, in
the coordinate representation,

_#dY
2m dx?

For a diatomic molecule m is the reduced mass and ¢¥(x)
represents the nuclear vibration. But, although we take Eq.
(3) to be the Schrodinger equation for a nonrotating mole-
cule, it is important to note that the rotational influence on
the vibration can be taken into account to a fair approxima-
tion by simply changing the parameters r,, @, and D in the
potential. This was shown by Morse! and Pekeris,’ and has

+ Vx)yp =& 3)
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more recently been discussed by, e.g., Rundgren® and Elsum
and Gordon.”

Today, the Morse potential plays a dominant role in
model calculations in molecular spectroscopy, even for po-
lyatomic molecules. But it is also being extensively used in
several other branches of chemical physics, including colli-
sion theory, the theory of intra- and intermolecular energy
transfer, the theory of photodissociation, etc. The Morse os-
cillator has accordingly been the subject matter of many de-
tailed studies. These studies have almost exclusively been
carried out in the position space representation, but recently
there has also been an increasing interest in the use of the
phase space representation, especially in connection with
time dependent problems. The phase space representation
works with Wigner functions instead of wave functions, but
a general analysis of these functions is still lacking for the
Morse oscillator.

The present paper remedies this situation by presenting
a self-contained treatment of the Morse oscillator in the
phase space representation. This representation combines
the position-space and momentum-space characteristics in a
single picture. We have previously discussed the phase-space
description of stationary states for some other one-dimen-
sional systems like the harmonic oscillator,®® a particle in a
linear potential,® and a free particle.” In addition, we have
presented detailed phase-space pictures of the hydrogen
atom,'® the LiH molecule,'' and a series of closed-shell
atoms.'? The present phase-space analysis of the Morse os-
cillator is also a natural and instructive extension of these
studies.

In order to put our results in perspective, we begin (Sec.
IT) by recalling the form of the wave functions and the
Wigner functions for the harmonic oscillator. We present
these functions in such a way that the harmonicity of the
potential is reflected as a complete symmetry between the
wave functions in position space and the wave functions in
momentum space. Correspondingly, the contours of the

© 1988 American Institute of Physics 4535
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4536 J. P. Dahl and M. Springborg: Morse oscillator

Wigner functions become circles centered on the origin of
phase space.

Section III discusses the form of the Morse wave func-
tions in position space, and introduces a position variable Q
which has a close resemblance to the harmonic oscillator
coordinate introduced in Sec. II. This leads to an especially
clear exposure of the anharmonicity effects. In Sec. III, we
also draw attention to the fact that the analytic expression
for the Morse wave functions is computationally unstable, in
the sense that a direct use of this expression leads to a serious
loss of significant figures for higher excited states. We pres-
ent a recurrence relation which allows us to circumvent this
problem.

In Sec. IV we derive and display the form of the Morse
wave functions in momentum space. These have not pre-
viously been discussed in the literature. We also show that
the Schrodinger equation in momentum space is a linear dif-
ference equation rather than a differential equation. A mo-
mentum space approach should, for instance, be of relevance
in collision studies. But, in addition, our analysis adds to the
general understanding of momentum wave functions for
simple systems.

Section V contains our detailed description of the
Wigner functions for the Morse oscillator. We discuss how
the functions may be calculated and display their form in a
particular case, as one moves from the ground state to the
highest excited states. Again, the phase space coordinates
are chosen in such a way that the anharmonicity effects are
easily visualized. The results obtained in this section extend
and surpass those by previous workers and should be of con-
siderable use in future discussions of, for instance, excited
states dynamics.

Section VI contains our concluding remarks. In the Ap-
pendix we discuss the calculation of the modified Bessel
functions which occur in the expression for the Wigner func-
tions.

il. THE HARMONIC OSCILLATOR

In this section we review the position, momentum, and
phase-space descriptions of the harmonic oscillator, for later
comparison with the Morse oscillator.

The Hamiltonian for a harmonic oscillator with mass m
and angular frequency w, is"?

a2

=P 4 %mwf,sz, (4)

2m
where % and p are the position and momentum operators,
respectively. They satisfy the usual commutation relation
%p) = ifi. (5)
The stationary states of the oscillator are determined by the
eigenvalue equation

F\v) = €|¥), (6)

with & being the energy.
By dividing both sides of Eq. (6) with i, we get instead

H|p)=E|y), )
with

H=3P? 107 (8)
and

E is the dimensionless energy, and Q and P are the dimen-
sionless coordinate and momentum operators

Q0 = (moy/#)'*%, (10)

P= (mwgh)~". (11)
They satisfy the commutation relation

[0P] =i (12)

The substitutions (9)-(11) make all harmonic oscilla-
tors mathematically equivalent. The Hamiltonian (8) may,
accordingly, be said to define the standard harmonic oscilla-
tor.

Let us now introduce the coordinate representation in
which

2 a d
=Q, P= —i—, 13
2=0 i 0 (13)
and |¢) is represented by the wave function
P(Q) = (Q|¥). (14)
Then Eq. (7) becomes the Schrodinger equation
1d% 1.,
- — = Ey. 15
240 +- Q“Yy=FEy (15)
It has the well-known solutions®
E =n+1/2, n=012, .., (16)

¥.(Q) = (' ?2n) " V2H, (Q)exp( —40%),  (ID)

where H, (Q) is the nth Hermite polynomial, and ¢, (Q) is
normalized such that

f” $.(@?do=1. (18)

For later comparisons, Fig. 1 shows the potential energy
function

V(@) =40* (19)
that appears in the Schrodinger equation (15). It also shows
the four lowest energy levels [Eq. (16) ]. Figure 2 shows the
wave functions (17) for the same levels.

Let us now also introduce the momentum representa-
tion, in which

2 d

—is P=P 20
Q=ip (20)
|9) is then represented by the momentum wave function
¢(P) = (P|y), 21
which is the Fourier transform of ¥(Q),
¢(P) = (27)_'/2f ¥(Q)e~P2dQ. 22)

Evaluating the integral gives

J. Chem. Phys., Vol. 88, No. 7, 1 April 1988
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HARMONIC OSCILLATOR

I m

0 T
-4 -2

FIG. 1. Harmonic oscillator potential and energies.
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Q

¢, (P) = (—D)*(7/2"n!)~V2H, (P)exp( — 4P?).
(23)

Thus, ¥, (Q) and ¢, (P) have the same analytical form,
apart from the physically unimportant phase factor ( — )"
This is in accordance with the fact that the momentum rep-
resentation of Eq. (7) is

_1ad%
2 dpP?
which is similar to Eq. (15).

The wave functions in Fig. 2 may, accordingly, also be
taken to represent the momentum wave functions, with the
phase factor ( — )" neglected, and the axis labels being
changed from (Q,¢¥) to (P,¢).

Finally, let us introduce the phase-space representation
in which a state |¢) is represented by a Wigner function'
f(Q,P), defined by the following equivalent expressions:

f(Q,P)=if° dQ'WQ—0")*
ﬂ- — 00
XY@+ Q")exp( — 2iQ'P) (25)

+ %qus = Ep, (24)

and

-1.0

FIG. 2. Harmonic oscillator wave functions. The dotted reference lines mark the @ = 0 and ¢ = O axes, and the turning points for a classical vibrator with the

same energy.
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AQP) =ir dP'$(P— P')*
T J—»

X@(P+ P')exp(2iQP'). (26)
A Wigner function satisfies the normalization condition
[ [ doaenor =1, 27)

and plays the role of a phase-space probability density, in an
operational sense.'
Substitution of Eq. (17), or Eq. (23), gives

QP = (— L exp( = RHLO(2RY),  (28)
wT

where
R?>=Q%+ P} (29)

and L (” (2R ?) is a Laguerre polynomial. The general (as-
sociated) Laguerre polynomial is here given by the defini-
tion'’

T'nh+a+1)
nl(a+1)

where F| is a confluent hypergeometric function (Kum-
mer’s function).?

Expression (27) was first derived by Groenewold, '® and
independently by Bartlett and Moyal,'” and Takabayasi, '® as
well as later authors. Two independent derivations have also
been presented by one of the present authors.®®

Equation (28) shows that the contours of £, (Q,P) are
circles centered on the origin of phase space. For the four
lowest states of the harmonic oscillator, Fig. 3 shows the
variation of £, (Q,P) along a line extending from the origin.
We note that the value at the origin is ( — 1)"/7. This re-
flects the fact that the wave functions (17) have a definite
parity.®'?-2! We also note the following relation which holds
for any Wigner function?*??:

L&) = Fi(—nma+1€),  (30)

f
0.4
n=0
L K]
——n=2
-—=-—n=3

1
0 1 2 3 4
R

FIG. 3. Wigner functions for the four lowest states of the harmonic oscilla-
tor, along a line extending from the origin of phase space.

QP < U/m (31)

and for all (Q,P), provided the operators Qand Pare chosen
to satisfy Eq. (12).

lil. THE MORSE OSCILLATOR IN POSITION SPACE

Let us now focus on the Morse potential (1) and the
associated Schridinger Equation (3), i.e.,

_®ay

2m dx?

We introduce the dimensionless variable

+D(1 — e~ )= & (32)

y=ax, — wo<y<owm, (33)
and get the equation

AW h2e— (1 -1y =0, (34)

dy’

where

e=%/D (35)
and A is a dimensionless parameter,

A= V2mD . (36)

ati

We shall only consider bound states and assume these to be
normalized such that

f Y dy=1 (37)

— ®

It is then found that the solutions of Eq. (34) have the form
Yan (D) = N(An)EA "~ V2= 62 PA=2—D(g)

(38)
where
E=2e7’, O<é<w (39)
and
n=01, .. ,[1-1/2], (40)

with [x] denoting the largest integer smaller than x. The
normalization constant has the value
[(2/1 —2n—1DI'(n+1)]"?
r(2A —n)
and the Laguerre polynomial is defined by Eq. (30).
Equation (40) shows that the number of bound states is
[A 4+ 1/2]. The energies are given by the expressions

N(/i,n) == » (41)

€, — 1= — 711—2—(/1 —n—1/2)? (42)
and
%, = [(n U~ 1/2)2]ﬁm0, (43)
where
0y = [21)a2 ]'/2. 44
m

Thus, the parameter y of Eq. (2) equals 1/(24).

The analytical expression (38) is contained in Morse’s
original paper.’ The closed form for the normalization con-
stant (41) was first derived by Scholz?® and by Pekeris.’ It
has later been rediscovered by several authors, including

J. Chem. Phys., Vol. 88, No. 7, 1 April 1988
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Rundgren,® Nieto and Simmons,? and Birtwistle.”* Note,
however, that some of the authors mentioned use a definition
of the Laguerre polynomials different from ours, viz.

L, (&) =(=DT(a+n+ 1)L (E). (45)

This is the definition used in most discussions of the Cou-
lomb problem.'?

We shall now comment on the numerical evaluation and
the graphical representation of the Morse functions (38).

At first sight, the right-hand side of Eq. (38) is a rather
innocent expression. The Laguerre polynomial is, however,
an alternating series, and a straightforward evaluation is ac-
comparied by a substantial loss of significant figures for
larger values of n. This is illustrated in Fig. 4 which shows
the number of significant figures lost for A = 30 and y = 0.
This number is defined as log|u,,,,/s|, where u_,, is the ab-
solute value of the numerically largest term in a sum, and s is
the value of the sum itself. Obviously, it is necessary to go
beyond double precision on a computer in order to obtain
reliable values for the Morse functions for all values of n. The
situation is even worse if bilinear expressions are considered,
as in the evaluation of matrix elements and Franck—Condon
factors. Here it may be necessary to go beyond quadruple
precision.

Several methods to circumvent these numerical difficul-
ties have been proposed. We shall merely mention a few re-
cent publications in which further references may be found.
For some important operators it is possible to evaluate
closed expressions for matrix elements,’® or semiclassical
methods and their extension, the phase-integral method,?’
may be used. Other methods are based on Morse functions
determined by expansions in an orthonormal basis set or by
numerical integration of the Schrodinger equation.?® Yet
other methods draw on the fact that Morse oscillators with A
values differing by one are connected by a so-called spectrum
generating algebra,?%-3

As a variant of the latter methods we have developed a

N e
{ 1

Fu.gures Lost
S
i

FIG. 4. Number of significant figures lost in the numerical evaluation of
Morse functions, for A = 30 and y = 0.

simple and stable method for evaluating the Morse functions
be means of a recurrence relation. We define the parameter s
by the relation

s=21—-2n—-1, (46)
and write
Y5 (€) = N(s,n)e = 5726 2L (&), (47)

instead of Eq. (38). Observing Eq. (41) and the recurrence
relation

an,"(é') =2n+s—1 —§)L$,S)_|(§)

—(n+s—1LY (&) (48)
then gives, after some algebra:
172
i =——| {@n+s-1-pv._,®
n(s+n)

—[(n=D(n+s5— D] _,(O}. (49)

By defining ¢°_, (£) to be zero, this relation allows us to
generate ¢}, (£) from the simple function

Y5 (€) = N(5,0)e —£72£ 2, (50)
Relation (49) is similar to the relation

n@ =02 @[ .@
51)

for harmonic oscillator wave functions, but it is stressed that
keeping s fixed in Eq. (49) implies that A varies in steps of
unity.

A relation related to Eq. (49) has been given by Sension
and Strauss.** Their expression is, however, more complicat-
ed than ours and only approximate. We have found it to be
quite inaccurate.

In Sec. II we plotted the potential and the wave func-
tions for the standard harmonic oscillator, and noted that
the contours of the associated Wigner functions were circles
centered on the origin of phase space. It is convenient and
desirable to define standard variables for a given Morse os-
cillator in such a way that the anharmonicity effects stand
out as clearly as possible. This is done by introducing a new
position variable Q according to the definition

0 = (may/#)x, (52)

where o, is the angular frequency for small oscillations, as
defined by Eq. (44). By combining Egs. (36) and (44) we
also get

Q=a/lx. (53)
The Schrodinger equation (32) then becomes

_LldYy + A1 —exp( — QN ]’y =Ey,
2do? 2
(54)
where
E=&/(fiw,) = e, (55)

with € as given by Eq. (35).
Equations (52) and (55) are similar to Egs. (10) and
(9), respectively. The potential energy function is now

J. Chem. Phys., Vol. 88, No. 7, 1 Aprii 1988
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MORSE OSCILLATOR

MORSE OSCILLATOR
LAMBDA = 20

FIG. 5. The Morse potentials and bound
state energies for A =4 and 4 = 20, ac-
cording to Egs. (56) and (57).

LAMBDA = 4
E-E 16
14+
4 4 2
5] 104
o
24 . 6
U S S A A S S AR A o %
Q
V(@) =4 [1—exp(— Q)] (56)

V(Q) contains the harmonic potential function (19) as its
leading term when it is expressed as an infinite expansion in

powers of 1/4/4 . The expression for the admissible energies
is

E,=(n+1/2) — %(n +1/2)% 57

The first term of this expression is just Eq. (16). These ob-
servations have also been made by Cooper who used them as
the basis for a recent perturbational treatment of the Morse
oscillator.* ‘

Figure 5 shows the potential V(Q) for A =4 and

1 1 1 111 1
0O 5 0 S 20 25 30 35 40

Q

A = 20, as well as the bound state energy levels, whose num-
ber, according to Eq. (40), just equals A when A is an integer.
Note that the variable Q has been defined such that Fig. 1
gives the harmonic part of the potential ¥ (Q), for any Morse
oscillator.

In Fig. 6 we show the Morse eigenfunctions correspond-
ing to A = 4, with Q as the position variable. The functions
are normalized according to Eq. (18), and a comparison
with Fig. 2 gives a clear and quantitative picture of the an-
harmonicity effects.

IV. THE MORSE OSCILLATOR IN MOMENTUM SPACE

Corresponding to the position coordinate x in Egs. (1)
and (32) we have a momentum p, with the associated opera-

T T T T T T T
-4 «2 0 2 4 6 0 {0 12 14 6
Q

FIG. 6. Morse oscillator wave functions in
position space. The dotted reference lines
mark the Q =0 and ¢ =0 axes, and the
turning points for a classical vibrator with
the same energy.

T — T 1 T L 1 |
-4 -2 0 2 4 6 8 0 12 14 6
Q
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tors satisfying the commutation relation (5). Let us intro-
duce a dimensionless momentum k corresponding to the di-
mensionless coordinate y of Eq. (33) by the definition

k =p/(ah). (58)
The associated operators will then satisfy the commutation
relation

k1= (59)

The momentum wave function corresponding to the posi-
tion wave function ¥(y) is accordingly

$(k) = (2m) V2 - Y(y)e~ ™ dy.

—

It is normalized such that

J'w (k) [2 dk = 1.

— o

(60)

(61)

To determine the analytical form of ¢ (k) we write the
Laguerre polynomial of Eq. (38) as

LOA=2m=1(g) = ib(l,n;i)é”} (62)
=0
where
b(A,ny) = (= 1) 1"(2,1.— 7) - :
A T@A-2n+)T(n—j+1)
(63)

Next, we write ¥(£) instead of /() in Eq. (60), observe the
definition (39), and get

4541

(k) = (2m)~V/2(24) — f “woe . (e
0

§
We then insert the analytical form of (&) from Eq. (38)
and note the relation'”

I'(z) =J-we*'t"‘dt, Re(z) >0. (65)
(]

Thus, we obtain the final result
¢/1,n (k) = N(A,n)(zﬂ.)—lﬂzl— n— 1/2/{ — ik

X 3 2b(An)TA —n +j— 4+ ik). (66)
/=0

Using this expression we have plotted the momentum
wave functions corresponding to A = 4 in Fig. 7, but with

P=k/JA (67)

as the momentum variable. This momentum variable is con-

jugate to the position variable Q in Eq. (53), and the asso-

ciated operators satisfy the commutation relation (12).
Figure 7 is based on the polar representation

#(P) = |¢(P)|exp{i arg[4(P)]}, (68)

with |#(P)| and arg(¢4(P)) plotted on the same diagram.
We note that ¢(P) is a nodeless function, the mutual ortho-
gonality of functions with different n being ensured by the
phase functions arg[ 4 (P) ]. Thus, there is an essential differ-
ence between these functions and the corresponding func-

FIG. 7. Morse oscillator wave functions in

&
I
&
o
o
-
-
&

-1.0 -

-1.5 r .

momentum space. The solid curves show
P |#(P)|, the dashed curves arg{#(P)]/
(27). The dotted reference lines mark the
P=0 and ¢ =0 axes, and the turning
points for a classical vibrator with the
same energy.
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4542

tions for the harmonic oscillator which look like the func-
tions in Fig. 2.

We shall now give the momentum-space representation
of the Schrodinger equation for the Morse oscillator. It is
obtained from Eq. (34) by noting the correspondences:

d2
- @, —_—— ___k2,
Y-¢ p:
e—a_v¢_,(2ﬂ.)—-l/2J‘w e_ay'p(y)e—-ikydyz¢(k_ia).
- (69)
Thus, we get

2
{ —-ﬁ—z+ €— 1]¢(k) =@k — 2i) —2¢(k —i).(70)

This is a linear difference equation rather than a differential
equation.

The form of Eq. (70) reflects the fact that the operator
exp(ikp) is a translation operator in momentum space. In
the present context i is imaginary, and the translation is
accordingly a translation in the imaginary direction in a
complex k space.

When evaluating ¢(k) by Eq. (66) we encounter again
the problem of losing significant figures. It would be interest-
ing to study whether a direct attack on Eq. (70) could lead to
new and more stable ways of determining Morse wave func-
tions. We have made some introductory studies but have not
been able to answer this question in the affirmative.

V. THE MORSE OSCILLATOR WIGNER FUNCTIONS

In this section we shall explore the form of the Morse
oscillator Wigner functions

S (VK) =%f VamP—))*

X, (y+y)e 2™ dy. n

When m = n a Wigner function describes a state and when
ms£n it describes a transition between two states. The func-
tions defined here are thus more general than the functions
defined by Eq. (25) and explicitly given for the harmonic
oscillator in Eq. (28). Those functions were merely Wigner
functions associated with states, but we note that Refs. 8 and
9 also give the more general harmonic oscillator Wigner
functions.

As in the previous section we write ¥(£) instead of
¥(y), with £ defined by Eq. (39). We also introduce

r=e” (72)

as a new integration variable, and get

£A, (y,k>=if Vam (/1) (E P BT (13)
T Jo T
|

J. P. Dahl and M. Springborg: Morse oscillator

Itis now a straightforward matter to insert the actual form of
the wave functions, as given by Eq. (38). Again, we write the
Laguerre polynomials as in Eq. (62) and obtain the follow-
ing result:

2 (k) = ZN(Am)N (A ===
T

X i }": b(Amryb(Ans)E

F=05=0
XKoo n—rt 5420 (8 (74)

where

R IO

is the modified Bessel function of the third kind.** The eva-
luation of K, (£) is discussed in the Appendix.

In analogy with the notation in Sec. II we write f2 (y,k)
instead of /2, (,k), and get in particular:

FAok) = %W“- K (6). (76)

This expression has previously been derived by Lee and Scul-
ly,*® who also pointed out that “similar expressions for the
Wigner distribution function can be obtained through a
lengthy algebra for the case when the oscillator is prepared in
one of its excited states.”

For low values of m and n, Eq. (74) provides a good
basis for the calculation of f2,, (y,k). For higher values an
increasing number of significant figures are lost. There does
not seem to be any easy way to circumvent this problem
when m=%n. But when m == n the recurrence relation (49)
may be put to use. Let us write it as

(&) =(a, + b, _ (&) +e, 5_,(&), (D

where the constants a,, b,, and ¢, may be read off Eq. (49).
Let us also write

Wrglé) = f e mmen L. )
(1]

The following relations are then easily verified:
W(&fglEk) = EW(fglEk +i/2), (79)
W(1E8l6.k) = EW(figlék —if2), (80)
W(EfEgIEK) = EXW(fglEk). (81)

Using these expressions we get the recurrence relation

f;,m (§’k) = (anam + bnbmgz)f:— 1,m — l(é"k) + cn¢m.ffl--2,m-2 (f’k) + anbm -:l—- 1,m 1t (§yk - 1/2)

+ bnamgfi— 1,m—1 (é—’k + i/2) + ancnffl— 1,m -2 (é'!k) + bncmgf:— l,m—2(§7k + i/2)

+ cnamf: —2m—1 (g’k) -+ cnbmgf‘;—- 2m—1 (é"k - i/2),

(82)
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where it is understood that f3,, (§,k) is zero whenever / and/
or m is negative.

Equation (82) allows us to calculate f7,, (§,k) from
Soo(Ek +il), where =0, 1+ 1, .. ., - n. We have found
this procedure to be stable towards loss of significant figures.
It is again stressed that it is s that is being kept fixed in Eq.
(82), and that A varies in steps of unity. A recurrence rela-
tion for £2,, with m# n would involve two s values according
to Eq. (46) and hence be considerably more complicated.
We do not explore it here.

On the basis of the above expressions we have made a
detailed study of the Wigner functions /2 (y,k) for A = 4 and
n =0,1,2,3. The results are shown in Fig. 8 as a set of con-
tour diagrams. In accordance with Eqgs. (53) and (67) we
have again chosen

(QP) = (VA yk /A1) (83)

as the independent variables. This choice has the advantage,
as pointed out earlier, that it gives an optimal picture of the
anharmonicity effects. In Fig. 8, the anharmonicity effects
are given by the way in which the contour curves deviate
from circles centered on the origin of phase space.

Figure 8 shows very large anharmonicity effects, espe-
cially for the excited states. It must, however, be remem-
bered that the A values encountered in physical applications
are considerably larger than four. They will typically lie in
the range from A = 10 to 100. Thus, the ground state will in
general be more harmonic than Fig. 8(a) shows, and it will
take the whole range of # vlaues to reach an early dissociat-
ing state similar to the one shown in Fig. 8(d).

FIG. 8. Wigner’s phase space function
F(Q,P) for the Morse oscillator with
A =4 for the ground state [n =0 (a)],
the first [n = 1, (b)], the second [n =2,
(c)], and the third {n =3, (d)] excited
state. The function is shown as contour
curvesin a ( Q,P) phase plane where Q and
P are the renormalized position and mo-
mentum coordinates, respectively. Con-
tour values in a.u.: positive (solid curves):
0.30, 0.20, 0.10, 0.05, 0.03, 0.02, 0.01; 0
(dashed curves); negative (dotted

curves): —0.30, —-020, -—0.10,
—0.05, —0.03, —0.02, —0.01.
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TABLE 1. Positions, values, and types of some selected local extrema in
Fig. 8. n=0, 1, 2, 3 in the table corresponds to a, b, ¢, d in the figure.

n Q P Value Type
0 0.40 0.00 0.315 max
1 0.74 0.00 —0.262 min
1.98 + 0.57 0.208 max
2 0.17 0.00 - 0.084 min
1.33 0.00 0.185 max
2.10 +0.54 —0.161 min
3.54 + 0.66 0.194 max
4.17 + 1.14 - 0.012 min
4.56 0.00 0.195 max
3 —0.91 0.00 0.012 max
0.01 0.00 —0.023 min
0.98 0.00 0.046 max
1.28 +0.76 —0.022 min
2.19 0.00 —0.062 min
3.02 +0.36 0.084 max
3.90 +0.59 —0.089 min
4.81 0.00 —0.087 min
6.36 + 0.90 —0.057 min
7.63 + 0.96 0.024 max
8.72 + 0.06 0.215 max

The information displayed in Fig. 8 is supplemented by
Table I which gives the positions of some selected maxima
and minima of the Wigner functions, and also the value of
the Wigner functions at those positions. These values may be
compared with the values that can be read off Fig. 3 for the
harmonic oscillator. Again, we draw attention to the fact
that the values of a Wigner function are bounded by the
relation (31).

The Wigner functions for the Morse oscillator have, in
particular, been used in studies of collision induced dissocia-
tion®’ and photodissociation.®® In the first of these studies
the Wigner functions were obtained by numerical integra-
tion of Eq. (71). In the second it was obtained by expanding
the Morse eigenfunctions in terms of harmonic oscillator
eigenfunctions and evaluating the general Wigner functions
for the harmonic oscillator. The expressions derived in the
present section allow a much more systematic use of the
Morse Wigner functions in molecular problems.

In closing, we would like to draw attention to a recent
article by one of us, in which the Morse oscillator is studied
in the semiclassical limit, as part of a general discussion of
the phase space representation of quantum mechanics and
the Bohr-Heisenberg correspondence rules.>

VI. CONCLUDING REMARKS

The present paper gives, for the first time, a unified de-
scription of the position-space wave functions, the momen-
tum-space wave functions, and the phase-space Wigner
functions for the bound states of a Morse oscillator. The
position and momentum variables were carefully chosen so
as to facilitate a comparison with the corresponding har-
monic oscillator functions, thereby clearly demonstrating
the effects of the anharmonic parts of the Morse potential.
The analytical expressions for the position-space wave func-
tions and the Wigner functions are given in terms of La-

guerre polynomials with rapidly decreasing argument. We
have paid attention to the problem of losing significant fig-
ures in calculating the resulting alternating series, and we
have given algorithms by means of which the functions may
be evaluated such that this problem may be circumvented.
The algorithms may also be applied for other problems
where Laguerre polynomials are to be calculated. Since ex-
perience has shown that the Morse potential offers good ap-
proximations to the energy levels of a large class of systems
in chemical physics, we believe that our analysis will be use-
ful for the solution of a variety of problems.

APPENDIX

In this Appendix we shall discuss the numerical evalua-
tion of the modified Bessel function K, (R, of positive argu-
ment and complex order. This is the function which appears
in the expression (74) for the Morse oscillator Wigner func-
tions, but to emphasize that the argument of the function is
supposed to be real and positive, we write R instead of &.

The integral representation of K, (R), as given in Eq.
(75),is

K, (R)= -l—fw r"exp[ - 5(1' + i)]ﬂ (A1)
2 J 2 T T

v may vary over the entire complex plane, but it is readily
seen that

K_,(R)=K,(R)
and
K.(R)=K,(R)* (A3)

The computational problem is thus reduced to the quadrant
Re(v)>0A Im(v)>O0.

Standard computer programs for the calculation of
K, (R) exist when v is a positive integer or zero, but for the
general values of v needed in this work no programs seem
available. One might consider using the relation*

(A2)

K, (2) = i% exp(imv/2){J, (iz) +iY,(iz)},  (A4)
where J, (iz) and Y, (iz) are Bessel functions of the first and
second kind, respectively. Computer programs are available
for these functions, but the relation (A4) implies a serious
loss of significant figures in our case, and is thus numerically
unstable.

For considerable (v,R) regions, including the transition
region described below, a straightforward numerical inte-
gration is a good procedure for the evaluation of K, (R), in
particular if we introduce the new integration variable

u=Inr, (AS)
and write, instead of Eq. (Al):
K, (R)= %J‘ exp(vu — R cosh u)du, (A6)

or
e®*K,(R) =%fw exp[vu — R(coshu — 1)]du. (A7)

For sufficiently large values of Im(v) the integrand in
Eq. (A7) becomes a strongly oscillating function of u, and
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numerical integration is no longer feasible. In this case, as
well as in many cases where a numerical integration is in fact
possible, the proper procedure is to calculate K, (R) from its
asymptotic expansions. Such asymptotic expansions have, in
particular, been studied by Olver,*® but the expressions pre-
sented by him exclude the important part of the v plane
about the imaginary axis and have to be generalized for our
purpose. This generalization is described below. It leads to a
fast and reliable procedure for the evaluation of K, (R) in
the pertinent (v,R) regions.

The starting point for Olver’s discussion is the differen-
tial equation

d*f(z) | _df(z) _
7 2 T (2 +V)f(z) =0,
which the modified Bessel functions 7, (z) and K, (z) must
satisfy.>* By a suitable transformation of this equation he
derived two independent asymptotic solutions for the func-
tion f(vz), which we write as

(A8)

T e %
0=\ 3 TaAT
x{1+ i(~1)k—(—]ﬂ] (49)
K= vk
J

Uy (r) = —;-(3 —5t2)/3,

4545

and
T e”t = U (2) ]
T,(v2)=_ |2 —¢ 14 .
M=\ T +z2>”4[ T2 T
(A10)

Here

(=VT+Z+h—2 (A11)

141422

and

t= 11+ 2. (A12)
U, (t) is a polynomial in ¢, of order k.

In particular, Olver showed that

K, (vz)~S,(vz) (A13)
and

L(v2)~LT,(v2). (A14)

mT

These expansions are uniformly valid with respect to z when
|v| is large, with z confined to the half-plane |arg z| <7/2,
and v to the half-plane |arg v| < 7/2.

The lowest order polynomials U, (¢) are®*

Uy(t) = ‘é‘ *(81 — 46267 + 385¢%)/18,
Uy() = % (30375 — 3 69603t + 7 65765t — 4 25425¢%) /810,
Uyt = % (44 65125 — 941 2167617 + 3499 22430t * — 4461 85740t + 1859 10725¢%)/9720),
Ug(t) = —;- " (15190 35525 — 4 92869 48607¢2 + 28 44997 695541 *
— 6141358 72350t + 56 60981 57625¢° — 18 86993 85875¢ ') /2 04120,
Ug(t) = % ° (27570494 77875 — 12757 72983 54750¢% + 105076 07744 57901¢* — 3 36903 20682 61860¢

+ 510469 67162 44125¢% — 3 68529 90061 38750z 104+ 102369 41683 71875¢'%)/183 70800.

The domain of validity for the expressions (A13) and
(A14) does not include the important points on and close to
the imaginary v axis. In addition, we have also noted that the
expressions are surprisingly inaccurate in certain regions
where they might be expected to work well. For our purpose,
we must of course choose z such that

vz=R.

(Al6)

We have found, that a modification of Olver’s results
leads to a satisfactory procedure for the computation of
K, (R), apart from a “transition” region in which
Re(v* + R ?) is numerically small. The procedure may be
described as follows.

For a given value of R, the transition region divides the
first quadrant of the complex v plane into three domains, A,

(AlS)

B, and C. B is the transition region itself, and in this domain
all asymptotic expansions are useless.

A is the domain in which Re(+? + R 2) > 0. It includes,
in particular, the positive real axis. As discussed below we
put in this domain

K, (vz)~S,(vz), vz=R. (A17)

Cis the domain in which Re(v* 4+ R 2) <0, and here we put

K, (vz)~S,(vz) +ie""T,(vz), vz=R. (A18)

On the imaginary axis the two contributions to K, (R) be-
come the complex conjugates of each other, and the modifi-
cation is therefore both substantial and essential.

‘We can justify the above modification by a set of heuris-
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tic arguments tied to the method of steepest descent and the
integral representation (A6), which we rewrite as

K, (v2) =%f exp[v(u — z cosh ) ]du, vz=R.

(A19)
Let
F(u) =u —zcoshu. (A20)
Then
F'(u) =1—zsinhu, (A21)

where a prime denotes differentiation with respect to u. This
equals zero when

sinhu = 1/z. (A22)
The saddle points of F(u) are accordingly defined by
1'1=———————1+“1+ , uy=Inr,
z
(A23)
7-2 = L—', uz - ln 7-2.
z
We note that
W= —1, u+u,=in. (A24)
Furthermore
FII J— 1 :
(uy) v +z (A25)
F‘"(u2)='\11'+‘E ’
and
F(ul) = lnH— “1_*_ _ ,'1 -+ ?’
z
(A26)
—J1+Z
F(u,) =1n1——-z+—+,/1 -
Thus,
F(ul) = — ;»
A27
F(u,) =& + im. (A27)

To estimate the value of the integral (A19) the contour
of integration is deformed such that it passes through the
maximum number of saddle points in the  plane. Further-
more, it must cross a saddle point along a path where
Re{vF(u)} varies as steeply as possible and goes through a
maximum. With these restrictions, it is possible to take the
contour of integration through both saddle points when
veC, but only through #, when veA. The domain B is the
domain where the saddle regions are quite flat. It is only
vaguely defined.

By standard methods (see, e.g., Ref. 42) we find

1
K, (v2)~ = ST revrs JUML T A28
(v2) \’ v (1+2)7° (A28)
K, (vz)~ I_____l_evr(u,)+ievp(uz)
v 2 (1+22)1/4 ’
veC. (A29)

By introducing £ via Eq. (24) we rediscover the factors in
front of the parentheses in Eqs. (3) and (4), and we are thus

J. P. Dahl and M. Springborg: Morse oscillator

led to take the expressions (12) and (13) as the appropriate
approximate solutions of Eq. (1) in the domains A and C,
respectively.

These expressions are, of course, not asymptotic expres-
sions because we have not assumed v to be large. It is, how-
ever, easy to see that if Re(v) < 7/2 then the contribution
from e""T,, (vz) becomes vanishingly small for |v| becoming
very large. In this sense there is complete agreement with
Olver’s results.

When summing the series (A9) and (A10) it must be
remembered that they are asymptotic series. Hence, a series
should be terminated with the numerically smallest term.
The absolute magnitude of that term is a measure of the
accuracy obtained. With the domain B taken sufficiently
large, an arbitrarily high degree of accuracy is obtained by
using the asymptotic expansions in the domains A and C.
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