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Conjugated primary bile salts reduce permeability of endotoxin
through intestinal epithelial cells and synergize with
phosphatidylcholine in suppression of inflammatory cytokine
production

Alexandr Parlesak, PhD; Simone Schaeckeler, MSc; Lydia Moser, MSc; Christiane Bode, PhD

I nvasive treatment of patients
with obstructive jaundice is as-
sociated with an increased risk
of death and postoperative com-

plications, with morbidity rates of
about 30% (1, 2). A considerable num-
ber of these complications has a Gram-
negative septic origin and is paralleled
by an endotoxemia (3, 4). Persistent

systemic inflammatory complications
after surgical treatment of obstructive
jaundice are thought to result at least
in part from this endotoxemia (5), the
physiologic consequences of which are
mediated by inflammatory cytokines,
such as tumor necrosis factor (TNF)-�
and interleukin (IL)-6 (6). Ingestion of
bile salts or oral supplementation with
bile reduced endotoxemia in such pa-
tients (7). Furthermore, feeding of both
cirrhotic rats and rats with bile duct
ligation with conjugated bile salts re-
duced both bacterial translocation and
endotoxemia (8, 9).

Etiological factors considered to be
important for the development of endo-
toxemia are an impaired intestinal barrier
(10) with a consequently elevated trans-
location of bacteria and endotoxins from
the gut lumen (4, 11, 12). Furthermore,
the reduction of bile flow may lead to an
impaired ability of Kupffer cells to clear
portal blood from endotoxins, leading to

a spillover of these bacterial toxins into
the systemic circulation (13, 14).

Although endotoxemia and elevated
cytokine concentrations were demon-
strated in some studies with patients (4,
15), the main source of data on patho-
physiological consequences of obstruc-
tive jaundice is from animal experiments.
In these experiments, organs affected by
obstructive jaundice, namely the liver
and the intestine, interact closely; there-
fore, an impaired barrier function of the
gut might also result from liver dysfunc-
tion (13). Furthermore, the effects of ob-
structive jaundice differ between animals
and humans with respect to blood con-
centrations of both endotoxins and cyto-
kines (15).

The working hypothesis of the present
study was that bile components such as
conjugated primary bile salts (CPBS) and
phosphatidylcholine, per se, can reduce
the transmigration of endotoxins through a
layer of human intestinal epithelial cells
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Objective: Endotoxemia was shown to be integral in the
pathophysiology of obstructive jaundice. In the current study,
the role of conjugated primary bile salts (CPBS) and phosphati-
dylcholine on the permeability of endotoxin through a layer of
intestinal epithelial cells and the consequent activation of
basolaterally cocultured human mononuclear leukocytes were
measured.

Design: In a coculture model, a layer of differentiated, conflu-
ent Caco-2 cells was apically stimulated with growth-arrested,
nonpathogenic Escherichia coli.

Setting: Basic human cell culture laboratory.
Interventions: The effect of CPBS (0.5 mM and 1.5 mM), phos-

phatidylcholine (0.38 mM), and human bile (0.5% vol/vol) on the
barrier function was assessed by the measurement of transepi-
thelial electrical resistance, by endotoxin permeability through
the intestinal epithelial cell layer, and by basolateral cytokine
enzyme-linked immunosorbent assay measurement (tumor ne-
crosis factor-�, interleukins-6, -8, and -10). Micelles formed by

CPBS were detected by dynamic light scattering. The association
of endotoxin with CPBS micelles was tested by fluorescence
resonance energy transfer.

Measurements and Main Results: Apical addition of CPBS
suppressed the permeability of endotoxins through the intestinal
epithelial cell layer significantly. In parallel, apical supplementa-
tion of CPBS dose-dependently reduced the basolateral produc-
tion of all cytokines measured. Apical phosphatidylcholine sup-
plementation enhanced this effect significantly. CPBS formed
micelles (diameter, 134 � 7 nm), which were able to bind endo-
toxin to their surface.

Conclusions: CPBS can reduce the permeation of endotoxin
through intestinal epithelial cell layers by binding it to micelles.
Thereby, the inflammatory processes beyond the mucosal surface
are suppressed, an effect that is enhanced by phosphatidylcho-
line. (Crit Care Med 2007; 35:2367–2374)

KEY WORDS: conjugated primary bile salts; phosphatidylcholine;
bile; inflammation; intestinal epithelial cells; endotoxin
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(IEC), the functionality of which is not af-
fected by liver malfunction. For this pur-
pose, we used a coculture model that was
previously established in our department
(16, 17). In this model, a layer of differen-
tiated IEC (Caco-2 cells) separated an apical
compartment (luminal side) from a baso-
lateral one (blood side). As a standard stim-
ulus, nonpathogenic, Gram-negative bacte-
ria (Escherichia coli) were applied apically.
To reflect the detrimental interaction be-
tween 1) permeation of immunostimulat-
ing bacterial toxins, 2) stimulation of im-
munocompetent cells with the consequent
shedding of proinflammatory cytokines
(such as TNF-� and IL-8) (18), and 3) an
increased permeability being induced by
these cytokines, we added basolaterally
mononuclear leukocytes from peripheral
venous blood (peripheral blood mononu-
clear cells, PBMC).

MATERIALS AND METHODS

Human Intestinal Epithelial Cells. Cells of
the human intestinal cell line Caco-2 (1 � 106;
DSM Acc. No. 169, Deutsche Sammlung von
Mikroorganismen und Zellkulturen, Braun-
schweig, Germany) were sown on semiperme-
able inserts in tissue culture plates (both from
Becton Dickinson, Heidelberg, Germany) and
cultured for 14–16 days in Dulbecco modified
Eagle medium high glucose supplemented
with L-glutamine, nonessential amino acids
(PAA, Cölbe, Germany), and 17% pyrogen-free
fetal calf serum (Biochrom, Berlin, Germany).
Only Caco-2 layers with a transepithelial elec-
trical resistance (TEER; Millicell-ERS, Milli-
pore, Eschborn, Germany) higher than 380
�·cm2 were used for experiments. The study
was considered by the local ethics committee
to be exempt from approval.

Mononuclear Leukocytes/Bacteria Culti-
vation. Mononuclear cells (PBMC: �74% lym-
phocytes, �15% monocytes, �9% natural
killer cells, �2% neutrophils) (19) were iso-
lated from peripheral venous blood (Dr. Luz,
Institute of Blood Transfusion Medicine, Ka-
tharinenhospital, Stuttgart, Germany) of eight
healthy men (age, 44.0 � 2.6 yrs) by density
gradient centrifugation, as described previ-
ously (17). The nonpathogenic, commensal
strain E. coli K12 was cultured for two subse-
quent breeding periods (12 hrs and 24 hrs) in
liquid Luria broth (1% tryptone: Oxoid, Wesel,
Germany; 0.5% yeast extract: Difco, Heidel-
berg, Germany; 0.5% NaCl). Gentamicin (120
�g/mL; GIBCO BRL/Life Technologies, Grand
Island, NY) was added to all apical media to
arrest growth of E. coli.

Cocultivation of Enterocytes, Leukocytes,
and Bacteria. Cocultivation of differentiated,
polarized IEC (Caco-2 cells) and leukocytes
was performed as described previously (17).
Briefly, 4 � 106 PBMC in 2 mL of completed

Dulbecco modified Eagle medium with genta-
micin (20 �g/mL) were contained in the ba-
solateral compartment beneath the inserts
with the differentiated and confluent entero-
cyte layer. The apical compartment contained
either 2 mL of completed Dulbecco modified
Eagle medium (negative control) or it was
spiked with E. coli (2 � 107 colony-forming
units, positive control). In further experimen-
tal settings, CPBS (0.5 mM or 1.5 mM), CPBS
(1.5 mM) together with purified phosphatidyl-
choline (0.375 mM L-�-phosphatidylcholine)
from egg yolk (Sigma, Taufkirchen, Germany),
or human bile (0.5% vol/vol) were added api-
cally. Human bile was obtained from nine hu-
man volunteers receiving a cholecystectomy due
to bile stones in the bile duct. Patients gave
informed consent on offering their bile for the
experiments. The applied CPBS, glycocholic
acid, taurocholic acid, glycochenodeoxy-
cholic acid, and taurochenodeoxycholic
acid, were provided by Dr. Teuschel (Falk
Pharma, Freiburg, Germany). According to
the average composition of human bile (20,
21), the molar concentration ratio of the
glycine conjugates to those of taurine was
4:1, whereas that of cholic acid to chenode-
oxycholic acid was 1:1. All incubations
lasted for 24 hrs. Viability of both cell types
was determined to be �94% in the presence
of all compounds applied (trypan blue exclu-
sion test).

Release of Cytokines. To assess stimulation
of leukocytes, the basolateral concentrations
of TNF-� and IL-6 were measured after 12 and
24 hrs, respectively. IL-8 and IL-10 were de-
termined after 24 hrs (17). All cytokine con-
centrations were measured with OptEIA en-
zyme-linked immunosorbent assay sets (BD
Pharmingen, Heidelberg, Germany) following
the instruction of the manufacturer.

Concentration and Permeability of Endo-
toxin. The concentration of endotoxin was
measured with a chromogenic limulus ame-
bocyte lysate test (Endochrome-K, Charles
River, Charleston, SC) using isolated endo-
toxin from E. coli K12 (22). Purity of the
extracted endotoxins was verified by electro-
phoresis (23). As also shown previously (24),
CPBS at concentrations applied in the current
study did not interact with the limulus ame-
bocyte lysate test (data not shown).

Permeability of Polar Macromolecules. To
investigate whether the treatment of IEC was
associated with changes in paracellular per-
meability for polar soluble macromolecules,
we applied a FITC-labeled dextran (Mr 4400, 1
mg/mL, Sigma) to the apical compartment.
The relative permeability of this macromole-
cule was calculated from the concentration in
the basolateral compartment after 24 hrs (Flu-
orstar, SLT, Freiburg, Germany).

High-Performance Liquid Chromatogra-
phy Analysis of CPBS. CPBS were analyzed by
applying slightly modified methods previously
described (25, 26). Before extraction of CPBS,
60 �L of an internal standard solution
[4-(1,1,3,3-teramethyl-butyl)-phenol (Sigma-

Aldrich, Steinheim, Germany), and 0.5 mM in
isopropanol-H2O (70:30)] was added to the
samples (800 �L each). CPBS were extracted
from the medium by adding 200 �L of isopro-
panol-H2O (70:30) for 1 hr at 4°C and evapo-
rated. The residue was redissolved in 60 �L of
isopropanol-H2O (70:30). For each sample, 10
�L was separated on a reversed-phase column
(LiChrosphere 100RP18 EC-5 �M, 125 � 3
mm, 0.5 mL/min) with a gradient system: 0
min: 100% solvent A (methanol/10 mM aque-
ous ammonium formate, 40:60); to 6 mins:
100% solvent B (methanol/10 mM aqueous
ammonium formate [pH 5.0], 80:20; Merck,
Darmstadt, Germany); to 14 mins: 100% sol-
vent A (15 mins) to the end of the run (22
mins). CPBS were detected at 202 nm, and the
area under the curve was calculated from stan-
dard serial dilution sequences of all CPBS of
interest regarding the recovery of the internal
standard [4-(1,1,3,3-teramethyl-butyl)-phe-
nol] (Chromeleon software package, Dionex,
Idstein, Germany).

Detection of Micelles Formed by CPBS.
The (hydrodynamic) diameter of micelles was
measured by dynamic light scattering with the
particle size analyzer HPPS 3.1 from Malvern
Instruments (Worcestershire, UK) (n � 8) and
calculated by algorithms included in the soft-
ware package ALV-NIBS/HPPS V.3.0.0.13, which
are based on the Stokes-Einstein relation.

Fluorescence Resonance Energy Trans-
mission. To investigate whether endotoxin
(FITC-labeled) incorporates into micelles
formed by CPBS, a probe for fluorescence res-
onance energy transfer (octadecyl rhodamine
B chloride, Invitrogen, Karlsruhe, Germany)
was applied. This compound showed its suit-
ability to identify colocalization with fluores-
cein-labeled constructs in previous experi-
ments (27). Florescence spectra (excitation,
492 nm [excitation maximum of FITC endo-
toxin]; emission, 500–640 nm) were recorded
for solutions of FITC-labeled endotoxin of E.
coli O55:B5 (3 �g/mL, 3 �g FITC/mg endo-
toxin; Sigma) in phosphate-buffered saline
alone, together with octadecyl rhodamine B
(8.5 �g/mL in dimethyl sulfoxide), and after
addition of 0.5 mol/L and 1.5 mmol/L CPBS.
Neither dimethyl sulfoxide nor CPBS affected
the fluorescence spectra (excitation, 554 nm)
of octadecyl rhodamine B solutions in the ab-
sence of FITC-labeled endotoxin (data not
shown).

Immunomodulating Effect of CPBS and
Phosphatidylcholine on Lipopolysaccharide-
Stimulated PBMC. In microtiter plates with
96 wells, 1.0 � 105 PBMC (n � 8) were stim-
ulated directly with 200 pg/mL lipopolysac-
charide isolated from E. coli K12 (as described
above) in a total of 240 �L of completed me-
dium. Final total concentrations between 2.1
and 1500 �mol/L CPBS were added to the
medium. In separate experiments, the addi-
tion of phosphatidylcholine (2.5–600 �mol/L)
on the release of TNF-� was investigated. The
TNF-� concentration after 12 hrs was mea-
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sured by an enzyme-linked immunosorbent
assay method as described above.

Statistics. All values are given as mean �
SEM. One-way analyses of variance with the
consequent post hoc test of Tukey were ap-
plied for the determination significance levels.
Progressively, the differences were considered
as significant if the p value was �.05. Coeffi-
cients and significance of correlations between
the concentrations of endotoxin and cytokines
were calculated with the nonparametric test of
Spearman.

RESULTS

Permeability of Endotoxin and Dex-
tran Mr 4400 Through the IEC Layer.
After 6 hrs, about 0.007% (0.14% at 24 hrs)
of the endotoxin content in the apical me-
dium (1.4 � 0.4 �g/mL) permeated
through the enterocyte layer. Addition of
CPBS to the apical medium pronouncedly
reduced the permeability of endotoxin
through the enterocyte layer both after 6
hrs and 24 hrs (Fig. 1). Although moder-
ately lower, the permeability of endotoxin
after 24 hrs was not further reduced by
phosphatidylcholine addition compared with
experiments with the addition of CPBA only.
Human bile also reduced significantly the
transmigration of endotoxin through the
IEC layer, comparable with the effect of 0.5
mM CPBS. In contrast to endotoxin, the
permeability of dextran was not affected by
the addition of CPBS, phosphatidylcholine,
or bile. After 24 hrs, the relative permeabil-
ity ranged between 0.9% � 0.3% (positive
control) and 1.3% � 0.4% (1.5 mmol/L
CPBS). With respect to dextran Mr 4400
permeability, analysis of variance revealed
no significant differences among the sin-
gle-treatment groups.

Release of Cytokines in the Basolat-
eral Compartment of the Coculture. The
addition of E. coli K12 to the apical com-
partment of the coculture model resulted
in a pronounced and highly significant
increase of all cytokines measured. The
average concentration of TNF-� and IL-6
increased about 100-fold, that of IL-8 in-
creased about 13-fold, and that of IL-10
was about 50-fold higher (Table 1).

Supplementation of the apical medium
with CPBS induced a dose-dependent and
significant reduction of concentration of
TNF-� (12 hrs) and IL-10 (24 hrs) (Fig. 2).
At a concentration of 1.5 mmol/L, the ba-
solateral production of IL-6 (12 hrs) and
IL-8 (24 hrs) was also reduced by apical
CPBS addition, but to a lesser extent. Phos-
phatidylcholine supplementation to the
apical medium containing 1.5 mM CPBS
reduced the TNF-� concentration (Fig. 2)

nearly to the level of the nonstimulated
control (Table 1). A significant but less pro-
nounced reduction in cytokine production
in experiments with phosphatidylcholine
was also measured for IL-8, IL-10, and IL-6
(Fig. 2). Human bile (0.5%) also signifi-
cantly reduced the production of TNF-�
and IL-10 to an extent comparable with the
0.5 mM CPBS supplementation (Fig. 2).
The basolateral concentration of permeated
endotoxin correlated closely with the
amount of produced TNF-� (Fig. 3) and
other cytokines (data not shown).

Transepithelial Electrical Resistance.
After 24 hrs, apical challenge of IEC with
E. coli (positive control) resulted in a
significant decrease of the TEER (530 �
30 vs. 659 � 44 �·cm2, p � .010 vs.
positive control). None of the TEER val-
ues of the other treatments, which
ranged after 24 hrs between 487 � 54
�·cm2 (0.5 mM CPBS, p � .945 vs. pos-
itive control) and 637 � 42 �·cm2 (0.5%
bile, p � .169), differed significantly.

Transport of CPBS Through the IEC
Layer. In experiments in which CPBS were
supplemented to the apical medium, the
basal concentrations of glycine conjugates
(glycocholic acid and glycochenodeoxy-
cholic acid) were about four-fold higher
than those of the taurine conjugates (tau-
rocholic acid and taurochenodeoxycholic
acid), which paralleled the apically applied
ratio of these compounds (Fig. 4). After 6
hrs of incubation, the concentration of
CPBS in the basolateral compartment was
below the detection limit (�5 �mol/L). Af-
ter 24 hrs, about 20% of the apically applied
CPBS were detected in the basolateral me-
dium. The relative transport of the CPBS did
not differ significantly either with respect to
the absolute apical concentration or with re-
spect to their chemical composition.

As measured with high-performance liq-
uid chromatography, the pooled human
bile contained 7.2 mM taurocholic acid (fi-
nal concentration in the apical medium,
0.036 mM), 8.7 mM (0.044 mM) tauroche-
nodeoxycholic acid, 15.6 mM (0.078 mM)

Figure 1. Concentration of endotoxin (lipopolysaccharide, LPS; mean � SEM) in the basolateral
compartment of the coculture model (6 hrs and 24 hrs) after the apical addition of conjugated primary
bile salts (CPBS), phosphatidylcholine, and pooled human bile. Enterocytes were stimulated apically
by Escherichia coli. Different letters above the columns assign statistically different values. Levels of
significance (p values) range from .014 (control–bile 0.5%) to �.001. CPBS 0.5/CPBS 1.5, CPBS at an
apical concentration of 0.5/1.5 mM; PC, phosphatidylcholine at an apical concentration of 0.375 mM.
Columns without a common letter differ significantly (Tukey’s post hoc test, p � .05).

Table 1. Effect of apical challenge of enterocytes that were cocultured with human leukocytes with
2.0 � 107 colony-forming units of Escherichia coli on concentrations of tumor necrosis factor
(TNF)-�, interleukin (IL)-6, IL-8, and IL-10 after 12 or 24 hrs, respectively, in the basolateral medium
of the coculture model

TNF-� (pg/mL)
12 Hrs

IL-6 (ng/mL)
12 Hrs

IL-8 (ng/mL)
24 Hrs

IL-10 (pg/mL)
24 Hrs

E. coli — � 	 � 	 � 	 �
45 � 15 5538 � 799a 0.4 � 0.1 33 � 3.0a 30 � 7 379 � 56a 14 � 3 747 � 108a

	/�, with/without E. coli.
ap � .001.
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glycocholic acid, and 15.8 mM (0.079 mM)
glycochenodeoxycholic acid. Hence, the
sum concentration of CPBS in the apical
medium supplemented with bile was 0.24
mM. The relative transport of the single
CPBS through the layer of IEC did not
differ significantly from that measured in
experiments with 0.5 mM and 1.5 mM
CPBS or the pooled bile (Fig. 4).

CPBS Micelles: Formation in Aqueous
Solution and Adsorption of Endotoxin.
Already at concentrations as low as 50
�mol/L, CPBS formed micelles with an av-

erage diameter of 134 � 6.8 nm (n � 8)
(Fig. 5A). The diameter of these micelles
did not change significantly with increas-
ing concentrations of CPBS (125 � 8.5 nm
at 1.5 mM, n � 8).

In the absence of CPBS, solubilized
FITC-labeled endotoxin and octadecyl
rhodamine B did not colocalize. There-
fore, no fluorescence resonance energy
transfer from FITC-labeled endotoxin
(and therefore no emission of octadecyl
rhodamine B at 584 nm) occurred (Fig.
5B). First after the addition of micelle-

forming CPBS, a colocalization of the
FITC-labeled endotoxin and octadecyl
rhodamine B took place, enabling fluo-
rescence resonance energy transfer from
endotoxin-bound fluorescein to octadecyl
rhodamine B. This resulted in an increase
in fluorescence of octadecyl rhodamine B
(emission maximum at 584 nm), which is
dose-dependent on the concentration of
CPBS (Fig. 5B).

Inhibition of TNF-� Release in PBMC by
Exposition to CPBS and Phosphatidylcho-
line. Basal production of TNF-� by PBMC
after lipopolysaccharide stimulation was
1220 � 72 pg/mL (unstimulated cells,
29.5 � 2.7 pg/mL; both values corrected for
DNA of vital cells). An increasing concen-
tration of CPBS in the incubation medium
resulted in a dose-dependent decrease of
TNF-� production by PBMC through lipo-
polysaccharide stimulation (Fig. 6). The
half-maximum inhibitory dose was calcu-
lated to be 169 �M. Phosphatidylcholine in
the incubation medium did not affect the
production of TNF-� significantly (data not
shown).

DISCUSSION

In the applied model, Caco-2 cells formed
a confluent, differentiated, and polarized cell
layer with tight junctions, desmosomes, and
microvilli (28), the suitability of which for
permeability studies was demonstrated pre-
viously (29). As found in former experi-
ments (16, 17), apical stimulation of Caco-2
cells by nonpathogenic bacteria leads to an
enhanced production of cytokines in the
basolateral compartment of the coculture
model. In parallel with conditions in the
intestine, bacteria and leukocytes are sepa-
rated from leukocytes by a layer of IEC. The
leukocytes in this model act as a bioindica-
tor, proving that the permeating amounts
of bacterial toxins are sufficient to evoke an
activation of human immunocompetent
cells. Due to the different phenotypes of
mononuclear leukocytes found in the lam-
ina propria and the peripheral blood, the
profile of cytokines might rather corre-
spond to that which occurs during sepsis
than that occurring during inflammation
of the intestine.

For the first time, we conclusively
demonstrate in the current study a re-
duction in permeability of endotoxin
through an IEC layer of human origin by
CPBS, without the collateral influence of
other organs, such as the liver. The pri-
mary bile salts of cholic acid and che-
nodeoxycholic acid are formed in the
liver and are conjugated to either gly-

Figure 2. Influence of apically added conjugated primary bile salts (CPBS), phosphatidylcholine (PC), and
pooled human bile on the concentration (mean � SEM) of tumor necrosis factor (TNF)-� (12 hrs),
interleukin (IL)-8 (24 hrs), IL-6 (12 hrs), and IL-10 (24 hrs) in the basolateral compartment of the coculture
model. Enterocytes were stimulated apically with Escherichia coli. Columns without a common letter differ
significantly (Tukey’s post hoc test, p � .05).
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cocholic acid, glycochenodeoxycholic
acid, taurocholic acid, or tauroche-
nodeoxycholic acid. In healthy subjects,
these four CPBS comprise between 75
and 90 molar percentage of the bile
salts in bile from the gallbladder, mak-
ing them dominant components of the

bile acid fraction in this organ (30, 31).
Both the absolute concentrations and
the concentration ratios of the single
CPBS applied in the current study can
be presumed to correspond to those
occurring in the jejunum and ileum of
humans (32–34).

Animals with bile duct ligation de-
velop both an endotoxemia and high lev-
els of circulating TNF-� and IL-6 (6, 13).
Inactivation of endotoxin with bactericidal–
permeability-increasing protein (35) or
with polymyxin B (36) improved mortal-
ity and morbidity in bile duct–ligated
rats. Hence, from animal models of ob-
structive jaundice, a causative role of en-
dotoxin in postoperative complications
can be concluded. This hypothesis is con-
firmed by experiments with bile-deprived
rats with a chronic cannulation of their
common bile duct, showing a consider-
able intestinal endotoxin translocation
(37), which was reversible by oral supple-
mentation with both conjugated and
nonconjugated bile salts (38, 39).

Although some authors suggest that
the presence of bile or (nonconjugated)
bile salts, per se, avoids transmigration of
endotoxins through the epithelium (4,
40, 41), others believe that the filter func-
tion of Kupffer cells is the crucial factor
in the prevention of systemic endotox-
emia (13). However, in the current study,
a significant reduction of both the per-
meability of endotoxin through IEC and
the production of proinflammatory cyto-
kines by leukocytes after addition of bile
and its components became evident.
Therefore, an alleviation of endotoxemia
and modulation of endotoxemia-associ-
ated inflammation by luminal presence of
compounds from bile seems likely. This
effect can be enhanced by prevention of
intestinal overgrowth with Gram-nega-
tive bacteria (42). Hence, the supplemen-
tation of bile components seems useful also
in other stages of clinical care that are
prone to an elevated translocation of bac-
teria or endotoxins, namely, total paren-
teral nutrition (43), postoperative state of
heart surgery (44), alcohol-induced liver
disease (45), or endotoxemia itself (46).

From the current data, the mecha-
nism underlying the permeability inhibi-
tion for endotoxin by bile salts is due to
the incorporation of endotoxin into the
CPBS micelles. The anchoring of the li-
popolysaccharides on the micelle surface
seems to parallel the noncovalent an-
choring of the endotoxin molecule in the
lipid bilayer membrane of the outer bac-
terial cell wall, which is sufficient to en-
able the biological functions of endotoxin
for Gram-negative bacteria (47). This in-
corporation is likely to reduce the con-
centration of free endotoxins, thereby
preventing their permeation through the
barrier of IEC. According to the results of
the current study, and comparable with

Figure 3. Correlation between the endotoxin (lipopolysaccharide, LPS) content and the concentration (c) of
tumor necrosis factor (TNF)-� (12 hrs) in the basolateral medium of the coculture model. Correlation coefficient
and significance of correlation were calculated with Spearman’s test. Squares, control; open circles, 0.5
mmol/L conjugated primary bile salts; filled circles, 1.5 mmol/L conjugated primary bile salts; �, 1.5
mmol/L conjugated primary bile salts � 0.38 mmol/L phosphatidylcholine.

Figure 4. Absolute (left) and relative (right) concentrations of single conjugated primary bile salts
(CPBS) in the basolateral medium of the coculture model after 24 hrs. Open bars, taurocholic acid;
filled bars, taurochenodeoxycholic acid; dotted bars, glycocholic acid; hatched bars, glycochenode-
oxycholic acid. PC, phosphatidylcholine. Relative concentrations are expressed as percentage of initial
apical concentration of the corresponding CPBS.
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other endotoxin-binding molecules such
as polymyxin B (36), CPBS micelles “cap-
ture” endotoxin molecules, thereby pre-
venting their permeation.

The bile acid–sensitive farnesoid X recep-
tor regulates a number of genes involved in
enteroprotection, thereby preventing muco-
sal injury in ileum and bacterial transloca-
tion caused by bile duct ligation (48). Al-
though the applied bile salts might have
evoked activation of this receptor with the
consequent regulation of farnesoid X recep-
tor–dependent proteins, neither paracellu-
lar permeability of nonamphiphilic macro-
molecules (dextran Mr 4400) nor TEER
were affected by CPBS, phosphatidylcho-
line, or bile. Therefore, an altered expres-
sion of proteins maintaining the intestinal
barrier, such as tight junction proteins,
might contribute only little to the observed
effects of bile components, at least during
the first few hours after stimulation in co-
cultures of human IEC and leukocytes.
Nevertheless, some long-term farnesoid X
receptor–mediated effects might be of im-
portance for intestinal integrity (48).

Phosphatidylcholine synergized with
CPBS in the reduction of inflammatory
cytokine production. Phosphatidylcho-
line was shown to be effective in the
treatment of both ulcerative colitis (49)
and alcohol-induced liver disease (50),
the development of which has been asso-
ciated with an increased intestinal per-
meability of endotoxins (45). However,
this effect is mediated by direct phos-
phatidylcholine-leukocyte interaction, as
evident from the experiments with leuko-
cytes challenged directly with endotoxin

in the presence of phosphatidylcholine.
How phosphatidylcholine mediates this
effect needs attention in future studies.

The presence of proinflammatory cy-
tokines such as TNF-� and IL-8 is detri-
mental to the integrity of the intestinal
epithelium (18). The production of these
cytokines in the present model might
therefore be, at least in part, responsible
for the significant decrease in TEER after
bacterial challenge of the IEC, which in-
dicates a loss in epithelial integrity. On
the other hand, even in experimental
conditions in which the shedding of these
cytokines is abolished or at least strongly
reduced (1.5 mM CPBS � phosphatidyl-
choline), both the TEER and the perme-
ability of dextran Mr 4400 fail to improve
compared with the control experiments.
Therefore, the integrity of the IEC layer,
which has been suggested to play an in-
tegral role in the development of endo-
toxemia in obstructive jaundice (40),
seems not to be a major regulating factor
for the transmigration of endotoxins in
the current model.

In parallel with previous studies (51),
the Caco-2 cell layer in the actual study
transported conjugated bile salts from the
apical into the basolateral compartment,
leading to a direct contact of the CPBS with
the leukocytes. A reduced production of
inflammatory cytokines (IL-6, TNF-�) by
monocytes after addition of non-CPBS to
endotoxin-stimulated monocytes was re-
ported (24). Evidently, CPBS can also effec-
tively reduce activation of PBMC, which
were directly stimulated with endotoxin.
However, endotoxin-induced activation of
leukocytes in the coculture model occurs
during a time period when only very low
concentrations of CPBS are present in the
basolateral compartment (�5 �M CPBS at
6 hrs). Therefore, only a minor part of the
reduction in TNF-� production after 12 hrs
can be explained by a direct immunosup-
pressive effect of the CPBS. The very close
correlation between basolateral concentra-
tions of endotoxin and cytokines supports
the assumption that the reduction of endo-
toxin permeability through the IEC layer is
the most important regulating factor of in-
flammatory cytokine production beyond
the intestinal barrier.

CONCLUSION

Both CPBS and lecithin synergize in
suppression of inflammation in the intes-
tine, an effect that is at least in part due
to capturing bacterial toxins and thereby

Figure 5. Micelle formation by conjugated primary
bile salts (CPBS) and endotoxin binding by these mi-
celles. A, particle size distribution of a 0.05 mM solu-
tion of a CPBS mixture. The average radius based
on the thermodynamic motility of the micelles was
62.4 � 4.3 nm (n � 8). B, fluorescence emission
spectra of fluorescein-isothiocyanate (FITC)–labeled
endotoxin from Escherichia coli (0.2 mg/mL with 3
�g FITC/mg endotoxin; solid line; emission maxi-
mum at 515 nm) in the presence of 0.5 mM CPBS
(dashed line) and 1.5 mM CPBS (dashed and dotted
lines). Only in the presence of CPBS micelles, the
lipophilic micelle-bound rhodamine conjugate Rho-
C18 received energy by fluorescence resonance energy
transfer from FITC, which is bound to endotoxin and
starts to emit light at a maximum wavelength of 584
nm. Excitation wavelength, 492 nm (excitation max-
imum of FITC endotoxin). Rel., relative.

Figure 6. Production of tumor necrosis factor (TNF)-� by peripheral blood mononuclear cells (PBMC)
that were directly stimulated with endotoxin (200 pg/mL) is plotted against the concentration of
conjugated primary bile salts in the incubation medium. ID50, half-maximum inhibitory dose.
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preventing their permeation through the
intestinal barrier.
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