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In this paper we describe the transition to phase synchronization for systems of coupled nonlinear
oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase
synchronized regions of different attractor families is observed. With this structure, the transition to
nonsynchronous behavior is determined by the loss of stability for the most stable synchronous
mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to
phase synchronization are related to the merging of chaotic attractors from different families.
Numerical examples using Ro¨ssler systems and model maps are given. ©1999 American Institute
of Physics.@S1054-1500~99!00201-3#

The interaction between two or more chaotic oscillators
can produce a number of different synchronization phe-
nomena, depending on the degree to which the oscillators
adjust their motion in accordance with one another. A
variety of technical applications of such synchronization
phenomena are presently being considered, e.g., for se-
cure communication and for the surveillance and control
of systems that operate in a chaotic regime. Chaotic syn-
chronization may also play an essential role for the regu-
lation of many biological systems where an individual
functional unit displays complex dynamics. In the present
paper we investigate the bifurcations that can occur
when chaotic synchronization is established between two
period-doubling systems with different basic periodici-
ties. We show how this synchronization gives rise to a
nested structure of phase synchronized regions.

I. INTRODUCTION

Chaotic synchronization is a topic of fundamental inter-
est in many areas of science~Refs. 1–6, and references cited
therein!. It has also been suggested that chaotic synchroniza-
tion can be applied in connection, for instance, with the de-
velopment of new methods for secure communication and
for the monitoring of dynamical systems.4–6 A basic question
in this area of research is the following: Given a system of
interacting, slightly nonidentical chaotic oscillators with a
certain distribution of their natural frequencies, to what de-
gree will the oscillators adjust their motion in accordance
with one another so as to attain some kind of overall coher-
ence? Several aspects of this problem have been considered
in the literature, with full synchronization,7 generalized
synchronization,8,9 and phase synchronization,10,11 represent-

ing different forms of the same basic phenomenon. However,
the transitions to and between these different types of syn-
chronization are not understood in detail.

It is well-known that transitions from regular to chaotic
oscillations demonstrate various forms of scaling and univer-
sality properties.12 Transitions within chaos are associated
with complex phenomena such as crises,13 symmetry-
breaking bifurcations,14 attractor bubbling, and local~or glo-
bal! riddling phenomena,15 as well as chaos–chaos and
chaos-hyperchaos intermittency.16–18 Recently, there has
been a growing interest in a bifurcational interpretation of
the phenomena that take place at the boundary of chaotic
synchronization. Anishchenkoet al.3 have associated this
boundary with an accumulation of curves of tangent bifurca-
tions of saddle cycles, and a more recent study by Pikovsky
et al.19 suggests that attractor–repeller collisions take place
at the transition to chaotic synchronization, thus drawing on
the analogy with the tangent bifurcation of a limit cycle.
Most recently,20 the transition to phase synchronization was
described as a boundary crisis mediated by unstable–
unstable pair bifurcations on a branched manifold.

Multistability, i.e., the coexistence of a set of attractors
in the phase space of a dynamical system, is another typical
phenomenon for nonlinear systems. The development of dif-
ferent families of regular and chaotic attractors for coupled
oscillators has been investigated by several authors.21–23 As
shown by Astakhovet al.,21 for instance, two dissipatively
coupled, identical oscillators following the period-doubling
route to chaos will exhibit a hierarchy of bifurcations in
which different families of attractors emerge. For two
coupled Ro¨ssler systems, Rasmussenet al.22 have found the
replacement of some of the period-doubling bifurcations by
torus bifurcations leading to quasiperiodicity, frequency-
locking, and the emergence of new nonsymmetric families of
attractors. Anishchenkoet al.23 have shown that this multi-
stability is structurally stable with respect to a mismatch be-
tween the basic frequencies.

In the present paper we study the structure of the syn-a!Electronic mail: ellen@chaos.fys.dtu.dk
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chronization region for interacting oscillators whose spec-
trum contains subharmonicsf /2k (k51,2,...) of the basic fre-
quency. The paper is organized as follows. In Sec. II we
introduce two coupled Ro¨ssler systems and give survey of
the behavior observed in this model. Further, in Sec. III we
reduce the problem to a simple mapping. We start with for-
mulas that emulate multistable behavior to guide the search
for such phenomena in phase synchronized chaos. Based on
the analysis of a one-dimensional map modeling interacting
period-doubling systems and on results from numerical
simulations of coupled Ro¨ssler systems with a mismatch be-
tween the basic frequencies, we investigate the structure of
the boundary of the synchronization region. We summarize
our results in Sec. IV.

II. DYNAMICS OF COUPLED RÖSSLER SYSTEMS

As an illustrative example let us consider the well-
known pair of coupled Ro¨ssler systems as described by
Rosenblumet al.:10

ẋ152v1y12z11c~x22x1!,

ẏ15v1x11ay1 ,

ż15b1z1~x12m!,
~1!

ẋ252v2y22z21c~x12x2!,

ẏ25v2x21ay2 ,

ż25b1z2~x22m!,

where the parametersa, b, and m govern the dynamics of
each subsystem.c is the coupling parameter,v15v01D
and v25v02D are the basic frequencies~we suppose
v051!, andD is the mismatch between the basic frequen-
cies.

Because synchronization between the two systems in-
volves phase relations it is useful to rewrite~1! in terms of
phases and amplitudes. Instant amplitudesA1,2 and phases
F1,2 are introduced by the substitution of variables:

x1,25A1,2cosF1,2,
~2!

y1,25A1,2sinF1,2.

This allows us to recast~1! into the form

Ȧ1,25aA1,21~cA2,1cosF2,12A1,2~a1c!cosF1,2

2z1,2!cosF1,2,

Ḟ1,25v1,22~cA2,1/A1,2cosF2,12~a1c!cosF1,2

2z1,2/A1,2)sinF1,2, ~3!

ż1,25b1z1,2~A1,2cosF1,22m!.

As before, m controls the bifurcations of the individual
Rössler systems, andD determines the detuning between the
two interacting systems. Hence, these two aspects can be
separately considered. By numerically integrating~3!, it is
easy to finddF(t)5F2(t)2F1(t) for any oscillating solu-
tion.

With m and D as active parameters we now perform a
detailed bifurcation analysis of the coupled Ro¨ssler systems
and follow the periodic and chaotic trajectories of different
attractor families. For each such family, a phase-locking re-
gion appears.

Figure 1 shows a segment of the bifurcation diagram for
a synchronous solution on the~D,m! parameter plane, while
c, a, and b are fixed. Because the number of synchronous
regimes depends on the period of oscillations, new synchro-
nous regimes appear above each line of period-doubling and
there exists an infinite but denumerable set of such regimes.
Hence, it is difficult to analyze and display all of them in the
diagram. Let us consider only attractors from two families:
‘‘in-phase’’ attractors when the phase difference ofx1(t) and
x2(t) is zero atD50, and ‘‘out-of-phase’’ attractors when
the phase difference is 2p at D50. These families have the
largest basins of attraction. Denote the attractors as 2iC0 and
2iC1 , respectively, wherei 51,2,3,..., and 2i is the cycle
period, normalized in terms of the period of cycleC0 .

For bifurcational curves of 2iC0,1 cycles we use the fol-
lowing denotation:l 21 is a curve of period-doubling bifur-
cation of cycles 2iC0,1; l 11 is a curve of tangent bifurcation
of cycles 2iC0,1; l cr

0 is a critical curve, corresponding to the
accumulation of period-doubling bifurcations of 2iC0 cycles;
and l cr

1 is a critical curve of family 2iC1 .
Above the critical curves there exists a set of chaotic

attractors 2iCA0 and 2iCA1 . Band-merging bifurcations of
these attractors take place. We omit the corresponding bifur-
cation curves and denote the regions of chaos asCA0 and
CA1 . CAS appears from a merging ofCA0 andCA1 . Inves-
tigations have shown that cycles 2iC1 are stable longer when
detuning is applied. Outside the synchronization region, qua-
siperiodic oscillations 4T2 and nonsynchronous chaosCAt

are found.

FIG. 1. Bifurcation diagram for two coupled Ro¨ssler systems~a50.15,
b50.2, c50.02!. The solid curves are bifurcation lines of ‘‘in-phase’’ at-
tractors. The dashed curves show bifurcations of ‘‘out-of-phase’’ attractors.
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The coexistence of a set of attractors characterized by
different phase shifts is a universal phenomenon for coupled
systems with period-doublings, and their main features are
often independent of particular properties of a model.

The number of coexisting attractors inside a synchroni-
zation region for weak coupling tends to infinity close to the
threshold of chaos. When the detuning parameterD is in-
creased, the synchronous chaotic regimes sequentially lose
their stability ~direction A in Fig. 1!. We can construct a
bifurcation diagram~Fig. 2! for the different families of cha-
otic attractorsCA0 andCA1 . It is easy to see that the num-
ber of possible synchronous chaotic solutions decreases at
D50.0097. Moreover, the chaotic attractorCA1 is stable in
a wider range of detuning parameters and its bifurcation
curve forms the boundary of the synchronization region.

Along the directionB ~Fig. 1! the number of possible
synchronous solutions also decreases, but in a rather differ-
ent way. Asm is increased within the chaotic region, a se-
quence of crises of chaotic attractors takes place. Each crisis
reduces the number of possible synchronous regimes by two.
Finally, a single chaotic attractor is formed by the merging of
chaotic trajectories of all families. The last phenomenon
leads to new properties of the chaotic solution and can be
diagnosed in different ways.

Let us consider the distribution of phase differencesp
for chaotic attractors of the various families. Figure 3~a!

shows the corresponding plots for the coexisting chaotic at-
tractorsCA0 andCA1 ~curves 1 and 2, respectively! and for
the attractor that arises as a result of the merging of these
attractors~curve 3!. It is easy to see that the phase structure
of the resulting chaos is rather different from the structure of
the chaotic regimes before merging. The observed Gaussian-
like phase distribution can not be found for chaos which
appears via the period-doubling scenario.

Further investigation shows that the merging of chaotic
attractors leads to hyperchaos. Each attractor~CA0 or CA1!
is characterized by only one positive Lyapunov exponent.
But when the transition to merged chaos occurs, a second
direction of exponential instability and, hence, a second posi-
tive Lyapunov exponent appear. Figure 3~b! shows the two
largest Lyapunov exponents for the attractors of two differ-
ent families as a function of the parameterm. The dark points
corresponds toCA0 , and the open circles toCA1 . For
D50.0093 atm56.97, a crisis ofCA0 andCA1 takes place
that leads to the appearance of a new chaotic attractorCAS .
The attractorCAS contains the trajectories ofCA0 andCA1

and is characterized by two positive Lyapunov exponents.
Hence, the emergence of hyperchaos is observed.

Increasing of the coupling coefficient leads to the de-
struction of multistability because the ‘‘out-of-phase’’ solu-
tions die out.21,22Thus, when coupling is stronger, there exist
only attractors corresponding to the zero difference of the
phase for the partial oscillations~i.e., 2iC0 , 2iCA0!. Follow-
ing the variation of the Lyapunov exponents when the cou-
pling is increased, it is easy to find the transition from hy-
perchaos to chaosCA0 with one positive Lyapunov
exponent. In Ref. 11 this phenomena was called ‘‘lag syn-
chronization.’’

III. MAPPING APPROACH TO MULTISTABILITY

To construct a model of the emergence of chaotic syn-
chronization let us start by considering the following expres-
sion:

x~ t !5A~f~ t !!sin~vt !. ~4!

Here, f5vt is a phase of oscillations, andA(f)
5P i 51

N

(12s i sin@vt/2i1 i (p/2)#) represents momentary amplitude,
v is the natural frequency of oscillation,N defines the period
of the considered signalT52N(2p/v), ands i specifies the
amplitude of each of the subharmonic components. The term

FIG. 2. One-parameter bifurcation diagram for two coupled Ro¨ssler systems
~a50.15,b50.2, c50.02,m56.7!.

FIG. 3. Two coupled Ro¨ssler systems
~a50.15, b50.2, c50.02, D
50.0093!: ~a! The distribution of mo-
mentary phase differences for the syn-
chronous chaotic attractorsCA0 and
CA1 ~curve 1 and 2, respectively! at
m56.6 and for merged chaosCAS

~curve 3! at m57.2; ~b! the largest
Lyapunov exponents vs the parameter
m for the synchronous regimes of two
families ~dark points correspond to
CA0 and open circles toCA1!.
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i (p/2) is introduced to obtain a more obvious phase portrait
of each period-doubling in our model~in general, any phase
shift may be used!. The temporal variation described by~4!
is illustrated in Fig. 4~a!. As N increases,x(t) provides a
qualitative representation of a sequence of high-periodic
cycles leading in the limit to the birth of chaos via a cascade
of period-doublings.

For two synchronized oscillators, each described by an
expression like~4!, the phase difference can attain 2N differ-
ent values, i.e.,Q5f12f252pm, m50,1,2,...,2N21.
Hence, the coexistence of a large number of periodic attrac-
tors will occur. When approaching the boundary of the syn-
chronization region, these attractors disappear one by one,
except for a single family whose bifurcations determine the
transition to the nonsynchronous regime. In order to under-
stand the structure of this boundary in more detail we shall
investigate a sequence of model maps.

For quasiperiodic oscillators, the phase difference devel-
ops according to the following well-known equation:24

Q̇5D2g f ~A1 ,A2!sinQ. ~5!

Here, f (•) is a function of the amplitudesA1 andA2 which
is defined by the type of interaction,D represents the mis-
match between the basic frequencies, andg is the coupling
strength.

In our case the oscillators have different momentary
phasesf1 and f2 while their amplitudes depend on the
phases in the following way:

A15A~f1!5)
i 51

N S 12s i sinS f1

2i 1 i
p

2 D D
~6!

A25A~f12Q!5)
i 51

N S 12s i sinS f1

2i 2
Q

2i 1 i
p

2 D D .

It is not possible to obtain an explicit relation for the
phase difference of two chaotic oscillators. However, quali-
tatively we can consider the oscillators as high-periodic
cycles of periodsT52N2p/v where v is the natural fre-

quency of partial system~v1 , for example!. To use a discrete
model, Eq.~5! should be integrated over the characteristic
time T of the system. Then we get

Qn11
N 5Qn

N1V2kFN~Qn
N!mod 2N2p. ~7!

Here, Qn11
N 5QN(t01nT) and QNP@0,2N2p#, V5TD,

and K is a parameter which is related to the strength of in-
teraction. It seems to be difficult to determine functionFN

analytically. We suppose that the intensity of interaction de-
pends on the phase differences in the same way as the am-
plitude of subsystem vs its phase. As a simple approach we
shall assume an expression of the form

FN~Qn
N!5sin~Qn

N!)
i 51

N S 12d i sinS Qn
N

2i 1 i
p

2 D D . ~8!

Equations~7! and~8! may be viewed as a generalization
of the well-known circle map for simple oscillators.25 Vary-
ing N51,2,3,..., we obtain a family of maps, each being a
model of synchronization for 2N-periodic cycles. The case of
N52 is illustrated in Fig. 4~b!. The above equations are not
normalized on the same scale because they are taken to the
modulus 2N2p which is changed with each period doubling.
This allows us to preserve the values ofV and K and to
compare the results for differentN. A similar approach to
construct a model map in the nonautonomous case was sug-
gested by Pikovskyet al.26

With these preliminaries let us now investigate the struc-
ture of the boundary of the synchronization region for the
main resonance 0:1~or 1:1 for continuous-time systems!. In
terms of the map, the transition at that boundary corresponds
to a tangent bifurcation. The condition for such a bifurcation
to occur is

Q
*
N1V2KFN~Q

*
N !5Q

*
N ,

~9!
d~QN1V2KFN~QN!!

dQN U
QN5Q

*
N
51,

FIG. 4. ~a! Time seriesx(t) for the periodic orbits with period 4T0 simulated from the expression~4!. ~b! The model map~10! for the case ofN52.
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whereQ
*
N is the fixed point. Equation~9! immediately gives

KFN~Q
*
N !5V,

~10!
dFN~QN!

dQN U
QN5Q

*
N
50.

Hence, it is easy to see that for any value ofQ
*
N , the set

of points corresponding to the tangent bifurcation forms a
straight line in the (V,K) parameter plane. The number of
roots of Eq.~10! defines the number of possible synchronous
regimes. For the case of smallN, Eq. ~10! can be solved
analytically. For largerN, this can be done numerically. Fig-
ure 5 shows the results forN51 ~fully drawn lines! and
N52 ~dotted lines!. Each line corresponds to the tangent
bifurcation for one of the fixed points of the map. Under
variation of V, a pair of stable and unstable fixed points
arises at each line. For largerK, the stable fixed point can
subsequently lose its stability through a period-doubling bi-
furcation. To find the corresponding parameter values one
only has to replace the zero on the right side of Eq.~10! by
2/K. However, in the present work we shall not consider the
further bifurcations of the stable periodic solutions.

Thus, for small enoughK there are 2N stable ~and a
similar number of unstable! fixed points near the center of
the synchronization region. In terms of continuous-time dy-
namical systems, a set of stable fixed points corresponds to a
set of possible synchronization regimes for the coupled os-
cillators. A two-dimensional torus exists both outside~where
it is ergodic! and inside~where it is resonant! the synchroni-
zation region. Entering into the synchronization region cor-
responds to the birth of a pair of stable and saddle cycles,
both lying on the torus surface. In these terms, the appear-
ance and coexistence of other fixed points of the map repre-
sent the birth of additional pairs of stable and saddle cycles
on the torus surface which do not intersect each other.

In this way we can draw the following conclusions con-
cerning synchronization of high-periodic oscillations in

coupled period-doubling systems:~i! There are 2N coexisting
synchronous solutions which differ from one another by
phase shifts; and~ii ! the boundary of synchronization for
these solutions consists of a set of tongues inserted one into
the other.

The question is now how the results listed here manifest
themselves in the case of two interacting chaotic oscillators.
We restrict our considerations to highly dissipative systems.
Such systems can reasonably be characterized by a few spe-
cific time scales. The first of these is the return time to a
surface of section~quasi-period of oscillations!, and the sec-
ond is the time constant characterizing the transient approach
to some attractor. Thus, highly dissipative dynamical sys-
tems cannot distinguish an extremely high-periodic regime
from a weakly-chaotic one if the envelops of their Fourier
spectra are assumed to coincide. From another point of view,
this type of chaotic motion may be considered as a regular
behavior with an applied random excitation.

It is well-known that for the period-doubling route to
chaos the chaotic attractor has anN-band structure (N
51,2,4,...) within a range of control parameters. This struc-
ture is geometrically similar to the structure for the
N-periodic cycles. Thus, let us simulate anN-band chaotic
attractor using the model map~7! with an added noise term.
The logistic map seems to be an appropriable source of such
random forcing:

Qn11
N 5Qn

N1V2KFN~Qn
N!1Bxn mod 2N2p,

~11!
xn115lxn~12xn!,

where the value ofl is fixed at 3.99. Note that we introduce
the source of noise in the above way~not the Gaussian noise,
for example! to keep the multi-band structure of a chaotic
attractor.

Within some range of noise amplitudeB, the attractors
produced by this equation become irregular but they still
coexist in the phase space of the system and their basins of
attraction differ. WhenB is further increased, the merging of
attractors becomes possible.27

Figure 6 shows a one-parameter bifurcation diagram for

FIG. 5. Phase-locking regions for different families of attractors for~a! the
model map~10! with d50.45. The solid lines correspond toN51 ~two
cycles of period-two coexist!. The dashed lines correspond toN52 ~four
cycles of period-four coexist!.

FIG. 6. One-parameter bifurcation diagram for the model map~K50.5,
s50.45, B51.2, N53!. The figure shows how the coexisting noise in-
flicted periodic orbits one by one lose their synchronization. Compare with
Fig. 2, showing a similar phenomenon for the coupled Ro¨ssler systems.
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the case of an 8-band chaotic attractor. There are eight dif-
ferent synchronous chaotic regimes which coexist at small
V. WhenV increases the coexisting chaotic attractors one by
one disappear at the edges of their respective synchronization
regions. AtV>0.535 a single synchronous solution is still
stable. Note, how the ‘‘ghosts’’ of all eight synchronous so-
lutions are still distinguishable inside the region of merged
chaos atV.0.6. The number of possible synchronous re-
gimes decreases in the same way as for coupled Ro¨ssler sys-
tems~Fig. 2!.

Hence, our conclusions with respect to synchronization
of high-periodic regimes also apply for weakly-chaotic solu-
tions. Moreover, we may conclude that~iii ! the nested struc-
ture of synchronization tongues should be preserved in the
case of anN-band chaotic attractor and remain similar to the
structure for anN-periodic cycle.

IV. CONCLUSIONS

During the last few years a significant number of results
have been obtained within the field of chaotic synchroniza-
tion. However, many questions still remain open: What types
of bifurcation can one observe at the transition from synchro-
nous chaotic solutions to nonsynchronous solutions? What
are the characteristic features of the synchronization of chaos
with a different origin: chaos that appears via torus destruc-
tion, via intermittency, or via the merging of several attrac-
tors?

Based on a set of fairly general assumptions we have
demonstrated the nested structure of phase synchronized re-
gions for two dynamical systems with period-doublings and
a weak diffusive coupling. These regions form the complex
multisheet structure of the synchronization region for a set of
coexisting synchronous solutions. Inside the region of cha-
otic oscillations multistability is extended up to the complete
merging of multi-band chaotic attractors with various mean
phase differences. The sequence of bifurcations associated
with the merging of chaotic attractors from different families
finally leads to the appearance of hyperchaos and to the de-
struction of phase locking.

We conclude our study by listing several important is-
sues left for future investigation. First, the process of the loss
of lag synchronization inside the region of phase synchroni-
zation would have to be studied. Second, phase-locking re-
gions for each family of chaotic attractors should be investi-
gated in terms of periodic orbits embedded in the chaos.
Finally, the role of multistability in phase synchronization

can be generalized to systems demonstrating other routes to
chaos.
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