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Role of multistability in the transition to chaotic phase synchronization
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and V. S. Anishchenko
Department of Physics, Saratov State University, Astrakhanskaya Street 83, Saratov, 410026, Russia

E. Mosekilde®
Department of Physics, The Technical University of Denmark, 2800 Lyngby, Denmark

(Received 19 May 1998; accepted for publication 22 September) 1998

In this paper we describe the transition to phase synchronization for systems of coupled nonlinear
oscillators that individually follow the Feigenbaum route to chaos. A nested structure of phase
synchronized regions of different attractor families is observed. With this structure, the transition to
nonsynchronous behavior is determined by the loss of stability for the most stable synchronous
mode. It is shown that the appearance of hyperchaos and the transition from lag synchronization to
phase synchronization are related to the merging of chaotic attractors from different families.
Numerical examples using Rsler systems and model maps are given.1999 American Institute

of Physics[S1054-15009)00201-3

The interaction between two or more chaotic oscillators ing different forms of the same basic phenomenon. However,
can produce a number of different synchronization phe- the transitions to and between these different types of syn-
nomena, depending on the degree to which the oscillators chronization are not understood in detail.
adjust their motion in accordance with one another. A It is well-known that transitions from regular to chaotic
variety of technical applications of such synchronization ~ ©scillations demonstrate various forms of scaling and univer-
phenomena are presently being considered, e.g., for se- sality properties? Transitions within chaos are associated
cure communication and for the surveillance and control \t’)‘”th kpombp]!ex E’_hegf”l?nat Sl:)Chbb"li,s cn%slsymbmetlry—
of systems that operate in a chaotic regime. Chaotic syn- reaking biiurcations, a r5ac or bubbling, and locabr glo-

L . bal) riddling phenomen& as well as chaos—chaos and
chronization may also play an essential role for the regu- . . 18

. . . o chaos-hyperchaos intermittent8!® Recently, there has

lation of many biological systems where an individual

) ) ) been a growing interest in a bifurcational interpretation of
functional unit displays complex dynamics. In the present the phenomena that take place at the boundary of chaotic

paper we investigate the bifurcations that can occur  gynchronization. Anishchenket al® have associated this
when chaotic SynChronization is established between two boundary with an accumulation of curves of tangent bifurca-
period-doubling systems with different basic periodici-  tions of saddle cycles, and a more recent study by Pikovsky
ties. We show how this synchronization gives rise to a et al!® suggests that attractor—repeller collisions take place
nested structure of phase synchronized regions. at the transition to chaotic synchronization, thus drawing on
the analogy with the tangent bifurcation of a limit cycle.
Most recently?® the transition to phase synchronization was
I. INTRODUCTION described as a boundary crisis mediated by unstable—
unstable pair bifurcations on a branched manifold.

Chaotic synchronization is a topic of fundamental inter-  pyltistability, i.e., the coexistence of a set of attractors
est in many areas of sciend@efs. 1-6, and references cited in the phase space of a dynamical system, is another typical
therein. It has also been suggested that chaotic SynChI’OﬂiZE‘phenomenon for nonlinear systems. The development of dif-
tion can be applied in connection, for instance, with the deferent families of regular and chaotic attractors for coupled
velopment of new methods for secure communication anascillators has been investigated by several autHofS$ As
for the monitoring of dynamical systerfis? A basic question shown by Astakhowt al,?* for instance, two dissipatively
in this area of research is the following: Given a system ofcoupled, identical oscillators following the period-doubling
interacting, slightly nonidentical chaotic oscillators with a route to chaos will exhibit a hierarchy of bifurcations in
certain distribution of their natural frequencies, to what de-Which different families of attractors emerge. For two

Y 22
gree will the oscillators adjust their motion in accordanceCOUPled Resler systems, Rasmussenal™ have found the

with one another so as to attain some kind of overall cohergmzci:?;r;;ggr?;)rTsag];;hetger'Sg;ijOgr?;'gigcif'fu;f:tfgscby
ence? Several aspects of this problem have been considerfed 9 q P Y, . 4

) . ) o . ocking, and the emergence of new nonsymmetric families of
in the literature, with full synchronizatioh,generalized g g y

- atiof o tihil attractors. Anishchenket al*® have shown that this multi-
synchronization,” and phase synchronization; represent-  geapijity is structurally stable with respect to a mismatch be-

tween the basic frequencies.
dElectronic mail: ellen@chaos.fys.dtu.dk In the present paper we study the structure of the syn-
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chronization region for interacting oscillators whose spec- 15 F
trum contains subharmonié¢£ (k=1,2,...) of the basic fre-
guency. The paper is organized as follows. In Sec. Il we
introduce two coupled Rssler systems and give survey of
the behavior observed in this model. Further, in Sec. lll we
reduce the problem to a simple mapping. We start with for-
mulas that emulate multistable behavior to guide the search
for such phenomena in phase synchronized chaos. Based on
the analysis of a one-dimensional map modeling interacting
period-doubling systems and on results from numerical
simulations of coupled Rssler systems with a mismatch be-
tween the basic frequencies, we investigate the structure of
the boundary of the synchronization region. We summarize
our results in Sec. IV.

Il. DYNAMICS OF COUPLED ROSSLER SYSTEMS

As an illustrative example let us consider the well-
known pair of coupled Resler systems as described by
Rosenblunet al:*°

FIG. 1. Bifurcation diagram for two coupled ‘Bsler systemga=0.15,
B=0.2,¢=0.02. The solid curves are bifurcation lines of “in-phase” at-
tractors. The dashed curves show bifurcations of “out-of-phase” attractors.

X1=—w1Y1— 21+ C(Xp—Xyp),
Y1= 01X+ ayq,

2n=praa-p), With 4 and A as active parameters we now perform a

Xo=—wyYr—Zo+C(X;—X5), (1) detailed bifurcation analysis of the coupledRler systems

) and follow the periodic and chaotic trajectories of different
Y2= waXot ays, attractor families. For each such family, a phase-locking re-
Z,= B+ Zy(Xo— ), gion appears.

Figure 1 shows a segment of the bifurcation diagram for
where the parameters, B, and u govern the dynamics of 5 synchronous solution on ti{a,x) parameter plane, while
each subsystent is the coupling parametew;=wo+A ¢ 4 andg are fixed. Because the number of synchronous
and w,=wo—A are the basic frequencieGve suppose regimes depends on the period of oscillations, new synchro-
wo=1), andA is the mismatch between the basic frequen-noys regimes appear above each line of period-doubling and
cies. there exists an infinite but denumerable set of such regimes.

Because synchronization between the two systems ingence, it is difficult to analyze and display all of them in the
volves phase relations it is useful to rewritd in terms of  gjagram. Let us consider only attractors from two families:
phases and amplitudes. Instant amplitudgs and phases «jn-phase” attractors when the phase differencexgft) and
®, , are introduced by the substitution of variables: X,(t) is zero atA=0, and “out-of-phase” attractors when

X1 = A1 ,€05D 5, the phase difference isn2at A=0. These families have the
) largest basins of attraction. Denote the attractors @g and

Y12=A128INPy 5. 2'C,, respectively, wheré=1,2,3,..., and 2is the cycle

This allows us to recagtl) into the form period, normalized in terms of the period of cy€g.
) For bifurcational curves of '€ ; cycles we use the fol-
Aj,=ah 1+ (CAy 008D, 1— Ap a+c)cosd, , lowing denotationl _; is a curve of period-doubling bifur-

cation of cycles 'Ztoll; | ., is a curve of tangent bifurcation

~21€05Py 5, of cycles 2Cy 4; 1, is a critical curve, corresponding to the
By 5= w1 5~ (CAy1/A, ,C08D, 1 (a+C)cosd , accuTl_JIann_qf perlod—doublmg bifurcations 0 cycles;
’ ' ' ’ ' ’ andl, is a critical curve of family 2C, .
—Z12/A19)SINPy 5, 3 Above the critical curves there exists a set of chaotic

. attractors 2CA, and 2CA,. Band-merging bifurcations of
2127 B 214 A12C08P 1 2~ ). these attract(f.r; take place. We omit the corresponding bifur-

As before, u controls the bifurcations of the individual cation curves and denote the regions of chao€ Ag and

Rassler systems, antl determines the detuning between the CA;. CAs appears from a merging @A, andCA; . Inves-

two interacting systems. Hence, these two aspects can higations have shown that cycle§2 are stable longer when

separately considered. By numerically integrati®y, it is  detuning is applied. Outside the synchronization region, qua-

easy to findsd (t)=d,(t)— d,(t) for any oscillating solu-  siperiodic oscillations #? and nonsynchronous cha@sA,

tion. are found.
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2 f R shows the corresponding plots for the coexisting chaotic at-
. ..' i, . tractorsCA, and CAl. (curves 1 and 2, respectivelgnd for
AR " the attractor that arises as a result of the merging of these

attractors(curve 3. It is easy to see that the phase structure
of the resulting chaos is rather different from the structure of
the chaotic regimes before merging. The observed Gaussian-
like phase distribution can not be found for chaos which
appears via the period-doubling scenario.

Further investigation shows that the merging of chaotic
attractors leads to hyperchaos. Each attra@@ok, or CA,)
is characterized by only one positive Lyapunov exponent.
But when the transition to merged chaos occurs, a second
0.0093 0.0095 0.0097 0.0099 direction of exponential instability and, hence, a second posi-

A tive Lyapunov exponent appear. FigurbBshows the two
largest Lyapunov exponents for the attractors of two differ-
FIG. 2. One-parameter bifurcation diagram for two couplédsar systems ~ ent families as a function of the parameterThe dark points
(¢=0.15,8=0.2,¢=0.02, u=6.7). corresponds toCA,, and the open circles t€A,. For
A=0.0093 atu=6.97, a crisis ofCA; andCA; takes place
that leads to the appearance of a new chaotic attraAgr.

The coexistence of a set of attractors characterized byne attractoC As contains the trajectories @A, andCA,
different phase shifts is a universal phenomenon for couplednd is characterized by two positive Lyapunov exponents.
systems with period-doublings, and their main features ar¢yence, the emergence of hyperchaos is observed.
often independent of particular properties of a model. Increasing of the coupling coefficient leads to the de-

The number of coexisting attractors inside a synchronistrction of multistability because the “out-of-phase” solu-
zation region for weak coupling tends to infinity close to thetjgns die ou>22Thus, when coupling is stronger, there exist
threshold of chaos. When the detuning paramétds in-  nly attractors corresponding to the zero difference of the
creased, the synchronous chaotic regimes sequentially |0§5?1ase for the partial oscillatiorfse., 2Cy, 2'CA,). Follow-
their stability (direction A in Fig. 1). We can construct a jng the variation of the Lyapunov exponents when the cou-
bifurcation diagrantFig. 2) for the different families of cha-  pjing is increased, it is easy to find the transition from hy-
otic attractoraCA, andCA;. It is easy to see that the num- perchaos to chaosCA, with one positive Lyapunov

ber of possible synchronous chaotic solutions decreases éf(ponent. In Ref. 11 this phenomena was called “lag syn-
A=0.0097. Moreover, the chaotic attractoA, is stable in  :hronization.”

a wider range of detuning parameters and its bifurcation
curve forms the boundary of the synchronization region.  Ill. MAPPING APPROACH TO MULTISTABILITY
Along the directionB (Fig. 1) the number of possible To construct a model of the emergence of chaotic syn-
synchronous solutions also decreases, but in a rather diffechronization let us start by considering the following expres-
ent way. Asu is increased within the chaotic region, a se-sion:
guence of crises of chaotic attractors takes place. Each crisis .
reduces the number of possible synchronous regimes by two. X =A($(1)sin(wt). “)
Finally, a single chaotic attractor is formed by the merging ofHere, ¢=wt is a phase of oscillations, and\(¢)
chaotic trajectories of all families. The last phenomenon=TI} ;
leads to new properties of the chaotic solution and can bél— o sifwt/2'+i(/2)]) represents momentary amplitude,
diagnosed in different ways. w is the natural frequency of oscillatioN,defines the period
Let us consider the distribution of phase differenpes of the considered signdl=2N(2#/w), ando; specifies the
for chaotic attractors of the various families. Figuré3 amplitude of each of the subharmonic components. The term

SP12m

0

0.10 ' ' !
(a) FIG. 3. Two coupled Rssler systems
0.08" (e=0.15, B=0.2, c=0.02, A
=0.0093: (a) The distribution of mo-
mentary phase differences for the syn-
0.06| i chronous chaotic attractoirSA, and
p CA; (curve 1 and 2, respectivelyat
0.04 g n=6.6 and for merged chao€As
(curve 3 at u=7.2; (b) the largest
Lyapunov exponents vs the parameter
0.021 i w for the synchronous regimes of two
Y families (dark points correspond to
0.00 0027 T ' T T T " 1 CA, and open circles t€A,).
0.0 04 6.6 6.8 7.0 72
1)
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FIG. 4. (a) Time serie(t) for the periodic orbits with period %, simulated from the expressidd). (b) The model mag10) for the case oN=2.

i(7/2) is introduced to obtain a more obvious phase portraijuency of partial systerfw,, for examplé. To use a discrete

of each period-doubling in our modéh general, any phase model, Eq.(5) should be integrated over the characteristic

shift may be used The temporal variation described )  time T of the system. Then we get

is illustrated in Fig. 4a). As N increasesx(t) provides a

qualitative representation of a sequence of high-periodic  ©n11=0O)+Q—kF¥(@®)mod 227 )

cycles leading in the limit to the birth of chaos via a cascade N AN N _

of periOd'dOUblingS. Here, n+l_® (t0+ nT) a.nd E[O,Z\IZ’F], O=TA, .
For two synchronized oscillators, each described by a@"dK is a parameter which is related to the strength of in-

expression likg4), the phase difference can attaill differ-  (€raction. It seems to be difficult to determine functish

ent values, i.e.,0=d,—¢,=27m, m=0,12,.,2—1. analytically. We suppose that the intensity of interaction de-

Hence, the coexistence of a large number of periodic attrad?€Mds on the phase differences in the same way as the am-
tors will occur. When approaching the boundary of the syn-Plitude of subsystem vs its phase. As a simple approach we
chronization region, these attractors disappear one by ondnall assume an expression of the form

except for a single family whose bifurcations determine the N

transition to the nonsynchronous regime. In order to under- FN(E)ZSW@?)H (1_ 5 sin
stand the structure of this boundary in more detail we shall i=1

investigate a sequence of model maps. . ) L
For quasiperiodic oscillators, the phase difference devel- Equations(7) and(8) may be viewed as a generalization

N

n .7 )
Er+I§ . (8)

ops according to the following well-known equatigh: of the well-known circle map for simple oscillatotVary-
ing N=1,2,3,..., we obtain a family of maps, each being a
O=A—yf(A;,A,)SiNO. (57 model of synchronization for"2periodic cycles. The case of

) _ ) ) N=2 is illustrated in Fig. &). The above equations are not
Here, f(-) is a function of the amplituded; andA; which  ormalized on the same scale because they are taken to the
is defined by the type of interaction represents the mis- oqylus 2'27 which is changed with each period doubling.
match between the basic frequencies, and the coupling  This allows us to preserve the values @fand K and to

strength. compare the results for differetN. A similar approach to

In our case the oscillators have different momentary;onsiruct a model map in the nonautonomous case was sug-
phases¢,; and ¢, while their amplitudes depend on the gested by Pikovskgt al?®

phases in the following way: With these preliminaries let us now investigate the struc-
N ture of the boundary of the synchronization region for the
(T : o 1- - i
A=A(¢)=]] | 1—0o;sinl =7 +i= main resonance 0:(or 1:1 for continuous-time systemsn
=1 2 2 terms of the map, the transition at that boundary corresponds

(6)  to atangent bifurcation. The condition for such a bifurcation

N
A=A(¢;-0)=]1 (1—0i sin(%l—g-ﬂg)). to occur is
=
oN+a-kKFN M =06,
It is not possible to obtain an explicit relation for the (9)
phase difference of two chaotic oscillators. However, quali-  d(@N+Q - KFN(@N))‘
tatively we can consider the oscillators as high-periodic deN | N=1,
cycles of periodsT=2N27/w where w is the natural fre- oN=0,
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Q
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i FIG. 6. One-parameter bifurcation diagram for the model rfi&p-0.5,

Q 0=0.45,B=1.2, N=3). The figure shows how the coexisting noise in-

. . . " flicted periodic orbits one by one lose their synchronization. Compare with
FIG. 5. Phase-locking regions for different families of attractors(&ithe Fig. 2, showing a similar phenomenon for the coupléddter systems.
model map(10) with §=0.45. The solid lines correspond t=1 (two '

cycles of period-two coexist The dashed lines correspond N=2 (four
cycles of period-four coexist
coupled period-doubling system@} There are ¥ coexisting

synchronous solutions which differ from one another by

where@i‘ is the fixed point. Equatiofd) immediately gives phase shifts; andii) the boundary of synchronization for
these solutions consists of a set of tongues inserted one into

KFNO})=Q, the other.

dEN(ON) (10 The que_stion is now how the resulf[s listed h_ere m_anifest

oV =0. themselves in the case of two interacting chaotic oscillators.
oN=oN We restrict our considerations to highly dissipative systems.

H - hat luead , th Such systems can reasonably be characterized by a few spe-
ence, itis easy to see that for any valu » the set — qidic time scales. The first of these is the return time to a

of p.Oir?t‘cl’. cor_resr?ondirllg to the tangelnt biflfrrﬁation fgrms fasurface of sectiofiquasi-period of oscillationsand the sec-
straight line in t e_(l, ) parameter plane. The NUMDEr o 5,y is the time constant characterizing the transient approach
roots of Eq.(10) defines the number of possible synchronoustO some attractor. Thus, highly dissipative dynamical sys-

regimgs. For the case of.small, Eq. (10) can b.e SOIVe,d tems cannot distinguish an extremely high-periodic regime
analytically. For largeN, this can be done nume.r|cally. FI9 from a weakly-chaotic one if the envelops of their Fourier
ure 5 shows the results fdi=1 (fully drawn lines and spectra are assumed to coincide. From another point of view,

N.:Z (QOtted lines. Each ".”e corn_esponds to the tangent;q type of chaotic motion may be considered as a regular
bifurcation for one of the fixed points of the map. Under behavior with an applied random excitation

variation of (), a pair of stable and unstable fixed points .\ "ic'\vell-known that for the period-doubling route to
arises at each line. For largé, the stable fixed point can chaos the chaotic attractor has &hband structure N
subse_quently I.Ose its stability thro_ugh a period-doubling bi-_ 1,2,4,...) within a range of control parameters. This struc-
furcation. To find the corresponding parameter values ONG e is geometrically similar to the structure for the

only has to replace the zero on the right side of B4) by N-periodic cycles. Thus, let us simulate &kband chaotic

2/K. Hovyever, n the present work we ;hall nqt consider theattractor using the model mdf@) with an added noise term.
further bifurcations of the stable periodic solutions.

The logistic map seems to be an appropriable source of such
Thus, for small enougtk there are 2 stable(and a g P PpRrop

similar number of unstab)efixed points near the center of random forcing:
the synchronization region. In terms of continuous-time dy- O}, ;=0N+Q—KFN(®})+Bx, mod 22,
namical systems, a set of stable fixed points corresponds to a
set of possible synchronization regimes for the coupled os-
cillators. A two-dimensional torus exists both outs{ghere  where the value ok is fixed at 3.99. Note that we introduce
it is ergodig and inside(where it is resonafthe synchroni- the source of noise in the above wapt the Gaussian noise,
zation region. Entering into the synchronization region cor-for example to keep the multi-band structure of a chaotic
responds to the birth of a pair of stable and saddle cyclesttractor.
both lying on the torus surface. In these terms, the appear- Within some range of noise amplitud® the attractors
ance and coexistence of other fixed points of the map reprggroduced by this equation become irregular but they still
sent the birth of additional pairs of stable and saddle cyclesoexist in the phase space of the system and their basins of
on the torus surface which do not intersect each other. attraction differ. WherB is further increased, the merging of

In this way we can draw the following conclusions con- attractors becomes possiBte.
cerning synchronization of high-periodic oscillations in Figure 6 shows a one-parameter bifurcation diagram for

11
Xn+1=AXp(1—Xp), (D
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the case of an 8-band chaotic attractor. There are eight ditan be generalized to systems demonstrating other routes to

ferent synchronous chaotic regimes which coexist at smalthaos.

Q. When() increases the coexisting chaotic attractors one by

one disappear at the edges of their respective synchronizatigftct KNOWLEDGMENTS
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