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Many studies have reported associations
between outdoor ozone concentrations and
morbidity and mortality. Hubbell et al. (2005)
systematically summarized this literature,
including associations between ozone and res-
piratory-related hospital admissions, lost
school days, restricted activity days, asthma-
related emergency department visits, and pre-
mature mortality. Additionally, ozone has been
associated with respiratory symptoms and the
use of asthma medication for asthmatic school
children using maintenance medication (Gent
et al. 2003), and long-term exposure to ozone
has been tentatively associated with the devel-
opment of asthma in adult males (McDonnell
et al. 1999). Since the submission of Hubbell
et al. (2005), three independent meta-analyses
have been published, indicating an increase of
0.87% in mortality per 10-ppb increase in daily
ozone (Bell et al. 2005), an increase of 0.39%
in mortality per 10-ppb increase in 1-hr daily
maximum ozone (Ito et al. 2005), and an
increase of 0.41% in mortality per 10-ppb
increase in 1-hr daily maximum ozone (Levy
et al. 2005); in most of the studies included in
the meta analyses, same-day effects were larger
than lagged effects. A study of 23 European
cities found an increase of 0.66% in mortality
per 10 ppb increase in 1-hr maximum ozone
during the summer (Gryparis et al. 2004); a
study in Genoa, Italy, found an increase of

4.0% in mortality per 25-ppb increase in
ozone (Parodi et al. 2005); and a study in
Shanghai found an increase of 0.45% in mor-
tality per 5-ppb increase in 2-day average
ozone (Zhang et al. 2006). Significantly, even
when Bell et al. (2006) used data that included
only days with average ozone levels lower than
15 ppb, outdoor ozone was significantly associ-
ated with premature mortality. For a more
extended review of these and other studies, see
the U.S. Environmental Protection Agency
ozone criteria document (U.S. EPA 2006).

An increase in the concentration of out-
door ozone concomitantly produces an
increase in the indoor concentrations of ozone
and its reaction products (Weschler 2000).
Thus, some of the associations between out-
door ozone and both morbidity and mortality
are likely due to outdoor ozone transported
into various indoor environments (e.g., resi-
dences, workplaces, schools, hospitals, motor
vehicles) where subsequent exposures occur.
Although indoor ozone concentrations tend to
be smaller than corresponding outdoor con-
centrations, this is somewhat counterbalanced
by the much larger fraction of time that most
people spend indoors. Moreover, excepting
nitrogen dioxide, total concentrations of
ozone reaction products are anticipated to be
larger indoors than outdoors (see “Products of
ozone-initiated indoor chemistry”).

My aim in this article is to present evidence
supporting the hypothesis that indoor expo-
sures to ozone and its oxidation products con-
tribute to ozone’s overall impact on public
health. Apportioning ozone’s health impact
among indoor and outdoor ozone, as well as
indoor and outdoor oxidation products, is
more than an academic exercise. If indoor
ozone and the products of its chemistry are
adversely affecting the public’s health, relatively
simple strategies can mitigate these effects.

Indoor Ozone: Exposures and
Intakes
Indoor ozone concentrations. Although there
are indoor sources of ozone, in most buildings
indoor ozone has been transported from out-
doors (Weschler 2000). Indoor ozone concen-
trations track outdoor concentrations with a
slight time lag that depends on the air
exchange rate. Ozone is removed by indoor
surfaces as well as by gas-phase reactions, and
hence, indoor concentrations tend to be
smaller than co-occurring outdoor levels.
Models have been presented that relate indoor
ozone concentrations to those outdoors
(Nazaroff and Cass 1986; Sabersky et al. 1973;
Shair and Heitner 1974). In the absence of
indoor sources, the ratio of indoor to outdoor
ozone concentrations (I:O) can be estimated
using a relatively simple expression (Weschler
et al. 1989):

I:O = λ/(λ + ksr), [1]

where λ is the air exchange rate and ksr is the
first-order rate constant for surface removal
(both in units of reciprocal time). This equa-
tion assumes that the penetration coefficient
for ozone is unity, an assumption that remains
largely untested, and ignores gas-phase
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OBJECTIVE: The associations between ozone concentrations measured outdoors and both morbidity
and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation prod-
ucts. In this article I examine the contributions of such indoor exposures to overall ozone-related
health effects by extensive review of the literature as well as further analyses of published data.

FINDINGS: Daily inhalation intakes of indoor ozone (micrograms per day) are estimated to be
between 25 and 60% of total daily ozone intake. This is especially noteworthy in light of recent
work indicating little, if any, threshold for ozone’s impact on mortality. Additionally, the present
study estimates that average daily indoor intakes of ozone oxidation products are roughly
one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products
are known or suspected to adversely affect human health (e.g., formaldehyde, acrolein, hydro-
peroxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/
mortality and exposures to indoor ozone and its oxidation products. For example, cities with
stronger associations between outdoor ozone and mortality tend to have residences that are older
and less likely to have central air conditioning, which implies greater transport of ozone from
outdoors to indoors.

CONCLUSIONS: Indoor exposures to ozone and its oxidation products can be reduced by filtering
ozone from ventilation air and limiting the indoor use of products and materials whose emissions
react with ozone. Such steps might be especially valuable in schools, hospitals, and childcare cen-
ters in regions that routinely experience elevated outdoor ozone concentrations.

KEY WORDS: air exchange rates, aldehydes, indoor chemistry, inhalation intake, morbidity, mortality,
secondary organic aerosols, surface chemistry, ultrafine particles. Environ Health Perspect
114:1489–1496 (2006). doi:10.1289/ehp.9256 available via http://dx.doi.org/ [Online 8 June 2006]



reactions, which tend to be smaller sinks than
surface reactions. Numerous investigators have
measured surface removal rate constants for
ozone, as summarized in several reviews
(Grontoft and Raychaudhuri 2004; Nazaroff
et al. 1993; Weschler 2000). For example, Lee
et al. (1999) found a mean value of 2.8 ±
1.3 hr–1 in 43 Southern California homes. A
review of air exchange rates in residences and
nonresidences has recently appeared in a draft
U.S. EPA report (U.S. EPA 2005). Air
exchange rates vary with the region and the sea-
son. In general, mean residential values are
between 0.6 and 1.7 hr–1, and mean nonresi-
dential values are between 1.5 and 2.0 hr–1. If a
value of 3 hr–1 is used for ksr, Equation 1 pre-
dicts an I:O of 0.10 at an air exchange rate of
0.33 hr–1, an I:O of 0.33 at 1.5 hr–1 and an I:O
of 0.50 at 3 hr–1. These calculated estimates are
consistent with measured values, for example, a
mean I:O of 0.37 ± 0.25 at 126 Southern
California homes (Avol et al. 1998), and a
mean I:O of 0.20 ± 0.18 at 145 homes in
Mexico City and I:O values between 0.3 and
0.4 at three corresponding schools during class
hours (Romieu et al. 1998); see table 2 of
Weschler (2000) for a more extensive summary
of measured I:Os for ozone.

Residences with central air conditioning
(AC) have I:Os that are typically < 0.10 (Lee
et al. 1999, 2004; Stock et al. 1985). This
reflects the fact that outdoor air is not deliber-
ately introduced in air-conditioned residences
and that the outdoor air exchange due to
leakage is typically quite small. Additionally,
filters used in air conditioners remove some of
the ozone from the air that passes through
them (Bekö et al. 2006; Hyttinen et al. 2003,
2006).

Indoor versus outdoor exposures and
intakes. “Exposure” to an air contaminant in a
given microenvironment has been defined as
the concentration of a pollutant in that
microenvironment times the amount of time
an individual spends there (National Academy

of Sciences 1991). Early estimates (Weschler
et al. 1989) suggested that ozone exposures
occurring indoors are comparable to those
occurring outdoors, especially for individuals
such as the very young, very old, or chroni-
cally ill who spend very little time outdoors.
Based on indoor measurements made in six
New Jersey homes, Zhang and Lioy (1994)
estimated that indoor exposures accounted for
more than half the total exposure for the occu-
pants of these homes. In the intervening years,
several studies have used passive ozone moni-
tors to measure personal ozone concentra-
tions—ozone concentrations experienced by
an individual throughout a 24-hr period—and
have made comparisons between these meas-
urements and ozone concentrations measured
at outdoor fixed site monitors (Brauer and
Brook 1995; Geyh et al. 2000; Lee et al. 2004;
Linn et al. 1996; Liu et al. 1993; Sarnat et al.
2005). To a first approximation, the average
personal ozone concentration measured in
these studies is given by

Personal = f [O3,otdr] + (1 – f )[O3,indr], [2]

where f is the fraction of time outdoors,
[O3,otdr] is the average outdoor ozone concen-
tration while outdoors, 1 – f is the fraction of
time indoors, and [O3,indr] is the average
indoor ozone concentration while indoors.
Figure 1A shows average daily outdoor and
indoor ozone exposures, in units of parts per
billion per hour, estimated from the studies
cited above (each includes sufficient informa-
tion on the parameters in Equation 2 to
enable calculations of these estimates; time in
transit has been categorized as time indoors).
For the studies shown in Figure 1A, indoor
exposures are 43–76% of total daily ozone
exposure, with an average of just below 60%.

Figure 1A does not account for the fact
that breathing rates for both children and
adults vary with activity levels and, on average,
tend to be higher outdoors. An individual’s

daily ozone inhalation intake (micrograms per
day) is estimated by

Daily intake = 24 × f [O3,otdr](BRotdr) 

+ 24 × (1 –f )[O3,indr](BRindr),  [3]

where BRotdr and BRindr are the average
breathing rate while outdoors and indoors,
respectively. Figure 1B shows estimates of
daily outdoor and indoor ozone intakes
(micrograms per day) calculated using
Equation 3. In calculating these intakes,
breathing rates corresponding to light exercise
(0.95 m3/hr for children, 1.39 m3/hr for
adults) were used for BRotdr, and breathing
rates corresponding to sedentary activity
(0.47 m3/hr for children, 0.54 m3/hr for
adults) were used for BRindr (U.S. EPA 1997).
Total breathing rates were used rather than
fractional rates corresponding only to alveolar
ventilation, because most of the inhaled ozone
reacts with ascorbic acid, uric acid, glu-
tathione, and unsaturated fatty acids present
in the epithelial lining fluid in the conducting
airways (Postlethwait and Ultman 2001;
Rigas et al. 2000). Although outdoor ozone
intakes in Figure 1B tend to be larger, indoor
ozone intakes account for between 27 and
60% of total daily ozone intake and average
just over 40%. Given that even low levels of
ozone have been associated with increased risk
of premature mortality (Bell et al. 2006),
indoor intakes should not be ignored.

Products of Ozone-Initiated
Indoor Chemistry: Exposures
and Intakes
Indoor sources of ozone-reactive chemicals.
Indoor exposure to ozone is accompanied by
exposure to the products of ozone-initiated
indoor chemistry (Weschler 2004). In general,
these products are a consequence of ozone
reacting with many commonly found organic
chemicals that contain unsaturated carbon–
carbon bonds (e.g., isoprene, styrene, terpenes,

Weschler
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Figure 1. (A) Calculated indoor and outdoor ozone exposures. (B) Calculated indoor and outdoor ozone intakes (see text for details). Data from Boston,
Massachusetts: Sarnat et al. (2005); Upland and Mt. Towns, California: Geyh et al. (2000); Nashville, Tennessee: Lee et al. (2004); State College, Pennsylvania: Liu
et al. (1993); Fraser Valley, British Columbia, Canada: Brauer and Brook (1995); Southern California: Linn et al. (1996).
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sesquiterpenes, squalene, and unsaturated fatty
acids and their esters) because such compounds
react with ozone much faster than do saturated
organic compounds. Table 1 is a summary
common indoor sources of ozone-reactive
chemicals, including the occupants themselves,
soft woods, carpets, linoleum, certain paints,
polishes, cleaning products and air fresheners,
soiled fabrics, and soiled ventilation filters.
These ubiquitous sources result in substantial
quantities of indoor chemicals that can react
with ozone whenever outdoor concentrations
are elevated.

Products of ozone-initiated indoor chemis-
try. There are several reasons why products of
ozone-initiated chemistry tend to have higher
concentrations indoors than outdoors. First,
there are more ozone-reactive chemicals indoors
than outdoors because of the presence of con-
sumer products, architectural coatings, furnish-
ings, and building materials; indeed, some
sources occur almost exclusively indoors (e.g.,
carpets, linoleum, air fresheners). Second, the

concentrations of ozone-reactive compounds
tend to be higher indoors than outdoors
(Brown et al. 1994; Hodgson and Levin 2003;
Wolkoff 1995), reflecting more sources and
larger emission rates per volumetric flow rate.
Third, surface-to-volume ratios (S:V) are
roughly two orders of magnitude larger indoors
than outdoors based on characteristic mixing
heights outdoors (Nazaroff et al. 2003). This is
partially counterbalanced by higher deposition
velocities, vd, outdoors (Finlayson-Pitts and
Pitts 2000) compared with indoors (Weschler
2000). On average, the first-order rate constant
that describes surface removal (the product of
S:V and vd) is about 30 times larger indoors
than outdoors. Indoor surface reactions are
major sources of oxidation products (Destaillats
et al. 2006b; Fick et al. 2004; Morrison and
Nazaroff 2002; Weschler et al. 1992b;
Wisthaler et al. 2005). Additionally, unlike gas-
phase reactions (Weschler and Shields 2000),
surface chemistry can include reactions whose
rates are slower than air exchange rates.

Table 1 is a summary of the major stable
reaction products anticipated from indoor
ozone chemistry. Evidence from field studies
suggests that indoor concentrations of some of
these stable products (e.g., organic acids and
carbonyls) correlate with ozone concentrations
(Bako-Biro et al. 2005; Reiss et al. 1995b;
Zhang et al. 1994). In addition to stable prod-
ucts, ozone chemistry produces relatively short-
lived products. Examples include primary and
secondary ozonides, peroxyhemiacetals,
α-hydroxy ketones, α-hydroxy hydroperox-
ides, and peroxyacyl nitrates (Atkinson and
Arey 2003; Docherty et al. 2005; Finlayson-
Pitts and Pitts 2000; Norgaard et al. 2006;
Ziemann 2003). Although short-lived, many
of these products exist long enough to be
inhaled and transported into the respiratory
tract. Indoor ozone also reacts with alkenes to
produce hydroxyl radicals (Destaillats et al.
2006a; Fan et al. 2003; Sarwar et al. 2002;
Weschler and Shields, 1996, 1997) and with
nitrogen dioxide to produce nitrate radicals

Exposure to indoor ozone and its reaction products
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Table 1. Indoor sources of ozone-reactive chemicals and common stable oxidation products resulting from ozone-initiated reactions with the specified emissions. 

Source Reactive emissions Major stable products References

Abbreviations: 4-AMC, 4-acetyl-1-methyl-cyclohexene; 6MHO, 6-methyl-5-heptene-2-one; 4OPA, 4-oxopentanal.

Occupants (exhaled breath,
skin oils, personal care
products)

Soft woods; wood flooring
including cypress, cedar,
and silver fir boards;
houseplants

Carpets and carpet backing

Linoleum and paints/
polishes containing
linseed oil

Latex paint
Certain cleaning products,

polishes, waxes, air
fresheners

Natural rubber adhesive
Photocopier toner, printed

paper, styrene polymers
Environmental tobacco

smoke
Soiled clothing, fabrics,

bedding 

Soiled particle filters

Ventilation ducts and duct
liners

“Urban grime”
Perfumes, colognes, essen-

tial oils (e.g. lavender,
eucalyptus, tea tree)

Overall home emissions

Isoprene, nitric oxide, squalene,
unsaturated sterols, oleic acid
and other unsaturated fatty acids,
unsaturated oxidation products 

Isoprene, limonene, α-pinene, other
terpenes and sesquiterpenes

4-Phenylcyclohexene, 4-vinylcyclo-
hexene, styrene, 2-ethylhexyl
acrylate, unsaturated fatty acids
and esters

Linoleic acid, linolenic acid

Residual monomers
Limonene, α-pinene, terpinolene,

α-terpinene and other terpenes,
α-terpineol, linalool, linalyl ace-
tate and other terpenoids, longi-
folene and other sesquiterpenes

Isoprene, terpenes
Styrene

Styrene, acrolein, nicotine

Squalene, unsaturated sterols,
oleic acid and other unsaturated
fatty acids

Unsaturated fatty acids from plant
waxes, leaf litter, and other
vegetative debris; soot; diesel
particles

Unsaturated fatty acids and esters,
unsaturated oils, neoprene

Polycyclic aromatic hydrocarbons
Limonene, α-pinene, linalool,

linalyl acetate, terpinene-4-ol,
γ-terpinene

Limonene, α-pinene, styrene

Methacrolein, methyl vinyl ketone, nitrogen dioxide,
acetone, 6MHO, geranyl acetone, 4OPA, formalde-
hyde, nonanal, decanal, 9-oxo-nonanoic acid,
azelaic acid, nonanoic acid

Formaldehyde, 4-AMC, pinonaldehyde, pinic acid,
pinonic acid, formic acid, methacrolein, methyl vinyl
ketone, SOAs including ultrafine particles

Formaldehyde, acetaldehyde, benzaldehyde, hexanal,
nonanal, 2-nonenal

Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal,
2-decenal, 1-pentene-3-one, propionic acid,
n-butyric acid

Formaldehyde
Formaldehyde, acetaldehyde, glycoaldehyde, formic

acid, acetic acid, hydrogen and organic peroxides,
acetone, benzaldehyde, 4-hydroxy-4-methyl-5-
hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-
furanone, 4-AMC, SOAs including ultrafine particles

Formaldehdye, methacrolein, methyl vinyl ketone
Formaldehyde, benzaldehyde

Formaldehyde, benzaldehyde, hexanal, glyoxal, 
N-methylformamide, nicotinaldehyde, cotinine

Acetone, geranyl acetone, 6MHO, 4OPA, formalde-
hyde, nonanal, decanal, 9-oxo-nonanoic acid,
azelaic acid, nonanoic acid

Formaldehyde, nonanal, and other aldehydes; azelaic
acid; nonanoic acid; 9-oxo-nonanoic acid and other
oxo-acids; compounds with mixed functional groups
(== O, –OH, and –COOH)

C5 to C10 aldehydes 

Oxidized polycyclic aromatic hydrocarbons
Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-

5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)
furanone, SOAs including ultrafine particles

Formaldehyde, 4-AMC, pinonaldehdye, acetone, pinic
acid, pinonic acid, formic acid, benzaldehyde, SOAs
including ultrafine particles

Finlayson-Pitts and Pitts (2000), Fruekilde et al.
(1998), Thornberry and Abbatt (2004), Taucher
et al. (1997), Wisthaler et al. (2005)

Aoki et al. (2005), Hodgson et al. (2000), Iwashita
(2005), Kagi et al. (2005), Atkinson and Arey
(2003), SOA references in text

Hodgson et al. (1993), Morrison and Nazaroff
(2000, 2002), Weschler et al. (1992a)

Andersson et al. (1996), Clausen et al. (2005),
Wolkoff (1995)

Reiss et al. (1995a)
Aoki et al. (2005), Destaillats et al. (2006a),

Englund et al. (1996), Liu et al. (2004), Nazaroff
and Weschler (2004), Shu et al. (1997), Singer
et al. (2006), Wolkoff et al. (1998), SOA refer-
ences in text

Aoki et al. (2005), Atkinson and Arey (2003)
Aoki et al. (2005), Wolkoff et al. (1993), Wolkoff

(1999)
Destaillats et al. (2006b), Shaughnessy et al. (2001)

Fruekilde et al. (1998), Thornberry and Abbatt
(2004), Wisthaler et al. (2005)

Bekö  et al. (2006), Hyttinen et al. (2003, 2006),
Thornberry and Abbatt (2004)

Morrison et al. (1998)

Kahan et al. (2006)
Chao et al. (2005), Karamalegos et al. (2005), Shu

et al. (1997), SOA references in text

Hodgson et al. (2000), Park and Ikeda (2006),
Atkinson and Arey (2003), SOA references in text



(Weschler et al. 1992a). These are highly reac-
tive oxidants in their own right. Indeed, at
typically anticipated indoor concentrations,
ozone-derived nitrate radicals react much faster
with alkenes and polycyclic aromatic hydro-
carbons (PAHs) than with ozone alone [see
table 8 of Nazaroff and Weschler (2004)].

Secondary organic aerosols (SOAs), con-
sisting of primarily fine and ultrafine particles,
are an important subgroup of stable products
resulting from ozone-initiated chemistry.
They are formed from low-vapor pressure–
oxidation products that partition between the
gas phase and the surface of preexisting parti-
cles or nucleate to form new aerosols. The
reaction of ozone with various terpenoids in
indoor settings has been shown to contribute
tens of micrograms per cubic meter to the
indoor concentration of submicrometer parti-
cles under appropriate conditions (Destaillats
et al. 2006a; Fan et al. 2003, 2005; Long
et al. 2000; Rohr et al. 2003b; Sarwar et al.
2003, 2004; Wainman et al. 2000; Weschler
and Shields 1999).

Studies indicating indoor exposure to SOAs
from ozone-initiated chemistry. Particulate
organic carbon was analyzed in samples of
indoor and outdoor fine particles collected at
173 homes in Houston, Texas; Los Angeles,
California; and Elizabeth, New Jersey. At least
40%, but more likely 70–75%, of the particu-
late organic carbon associated with indoor par-
ticles was generated indoors (Polidori et al.
2006). The authors speculated that a portion
of this may have been contributions from
SOAs generated by indoor ozone chemistry.
Table 2 presents data from Sarnat et al. (2005)
that support the concept that SOAs generated
indoors can make meaningful contributions to
personal exposures to particles < 2.5 µm in
diameter (PM2.5). The table shows personal
(P) and corresponding outdoor (O) concen-
trations of PM2.5 and fine-mode sulfate
(SO4

2–) for senior citizens living in Boston,
Massachusetts, during five monitoring peri-
ods. The fine-mode sulfate concentrations are
derived from analyses of the PM2.5 filters and
serve as markers for personal exposure to
PM2.5 of outdoor origin because fine-mode

sulfate has few indoor sources (Sarnat et al.
2002). Table 2 also shows personal-to-out-
door ratios (P:O) for PM2.5 and SO4 

2–, as
well as differences between these ratios [P:O
(PM2.5) – P:O (SO4

2–)]. During winter 1 and
winter 2, the difference between P:O (PM2.5)
and P:O (SO4

2–) was approximately 0.35
(Table 2, next to last row). In contrast, during
winter 3, summer 1, and summer 2, this dif-
ference was much larger, ranging from 0.75 to
1.55. The larger difference indicates that
indoor sources were making a larger contribu-
tion to personal PM2.5 concentrations during
these final three monitoring periods than 
during the first two monitoring periods. It is
unlikely that this was due to recognized
(Wallace et al. 2006) indoor sources of PM2.5
such as cooking, cleaning, and personal care
because these sources should not be signifi-
cantly stronger during milder weather. Nor is
the larger difference due to more time indoors
during the final three periods; the seniors were
indoors 97% of the time in the winter and
93% of the time in the summer (time in tran-
sit included). Instead, the larger difference may
be due to greater amounts of indoor ozone–
generated SOAs during winter 3, summer 1,
and summer 2 than during winter 1 and win-
ter 2 [personal ozone concentrations (Table 2,
last row) were 2.5, 5.1, and 4.8 ppb during the
former periods and 0.1 and 0.8 ppb during the
latter periods].

Additional data in Sarnat et al. (2005)
lend further support to this interpretation.
Regression results for measurements made
during the summer months indicate a slope of
0.35 (0.22–0.47) for personal sulfate regressed
on personal ozone, compared with a slope of
0.72 (0.42–1.01) for personal PM2.5 regressed
personal ozone [see table 3 of Sarnat et al.
(2005)]. The much larger slope for the latter
pairing is consistent with contributions to per-
sonal PM2.5 from SOAs generated by ozone-
initiated indoor chemistry.

Health effects of ozone reaction products.
Certain ozone reaction products are known to
have adverse health effects. For example,
formaldehyde has been designated a Group 1
carcinogen in a 2004 International Agency for

Research on Cancer evaluation (Cogliano et al.
2005). Acrolein is listed by California as an
irritant and carcinogen (California Office of
Environmental Health Hazard Assessment
2006). Peroxyactyl nitrate is a known eye irri-
tant (Vyskocil et al. 1998), as are some of the
products of ozone/terpene and ozone/isoprene
chemistry (Kleno and Wolkoff 2004; Nojgaard
et al. 2005). Hydroperoxides formed via the
oxidation of terpenes and terpenoids can be
potent contact allergens (Gafvert et al. 1994;
Karlberg and DoomsGoossens 1997; Matura
et al. 2003, 2005; Skold et al. 2002). Leikauf
(2002) has listed formaldehyde, acetaldehyde,
and acrolein as compounds anticipated to
induce or exacerbate asthma. Using a mouse
model, Wolkoff and colleagues have demon-
strated that ozone/terpene reactions produce
strong airway irritants (Clausen et al. 2001;
Rohr et al. 2002, 2003a; Wilkins et al. 2001;
Wolkoff et al. 1999, 2000). However, an acute
exposure study of healthy women exposed 
for 2 hr to a mixture of volatile organic com-
pounds and ozone (40 ppb) did not result in
significant subjective or objective symptoms
(Fiedler et al. 2005; Laumbach et al. 2005),
suggesting that longer exposures may be neces-
sary to produce a measurable effect.

For some indoor oxidation products, the
connection with adverse health effects is more
tentative. For example, there is accumulating
evidence that outdoor PM2.5 adversely affects
morbidity and mortality (Dominici et al.
2006; Pope et al. 2002), and SOAs are major
constituents of outdoor PM2.5. However,
SOAs from ozone/terpenoid reactions differ 
in composition from SOAs generated by out-
door photochemical activity. It is not known
how the toxicities of these SOAs compare. An
additional consideration is the fact that ozone/
terpenoid reactions lead to the co-occurrence 
of peroxides and submicrometer particles
(Docherty et al. 2005; Fan et al. 2005; Li et al.
2002), and this may provide a mechanism to
transport some of the peroxides deep into the
respiratory tract (Friedlander and Yeh 1998).
The consequences of inhaling such oxidation
products, some of which are known contact
allergens (see above), remain to be evaluated.

Hydroxyl and nitrate radicals, derived from
ozone reactions, further react to produce still
other oxidation products. Toxic products
formed in this manner include malaoxon from
the OH oxidation of malathion (Brown et al.
1993) and nitrosoamines and nitro-PAHs
from reactions involving nitrate radicals
(Gupta et al. 1996; Pitts et al. 1985).

Average daily indoor intakes of ozone reac-
tion products. Ignoring gas-phase reactions, the
ratio of the indoor concentration of ozone oxi-
dation products to the indoor concentration of
ozone, [Prod]:[O3,indr], is roughly estimated by

[Prod]:[O3,indr] = (F )(ksr)/λ, [4]
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Table 2. Personal and outdoor concentrations (µg/m3) of PM2.5 and sulfate for senior citizens in Boston, as
well as P:O ratios for each, the difference between these [P:O (PM2.5) – P:O (SO4

2–)], and the corresponding
personal ozone concentrations (pbb).a

Winter 1 Winter 2 Winter 3 Summer 1 Summer 2 
(5 subjects) (4 subjects) (5 subjects) (9 subjects) (5 subjects) 

Personal PM2.5 10.8 (n = 40) 15.4 (n = 41) 16.2 (n = 51) 17.8 (n = 106) 20.5 (n = 59)
Outdoor PM2.5 13.1 (n = 13) 15.5 (n = 12) 6.5 (n = 15) 11.9 (n = 11) 13.3 (n = 13)
P:O (PM2.5) 0.82 0.99 2.49 1.50 1.54
Personal SO4

2–) 1.6 (n = 51) 2.6 (n = 42) 1.6 (n = 56) 2.7 (n = 104) 3.3 (n = 59)
Outdoor SO4

2–) 3.4 (n = 13) 4.2 (n = 12) 1.7 (n = 13) 3.6 (n = 8) 4.2 (n = 12)
P:O (SO4

2–) 0.47 0.62 0.94 0.75 0.79
P:O (PM2.5) – P:O (SO4

2–) 0.35 0.37 1.55 0.75 0.75
Personal O3 0.1 (n = 50) 0.8 (n = 43) 2.5 (n = 57) 5.1 (n = 106) 4.8 (n = 50)

Data from Sarnat et al. (2000, table 2).
aPM2.5, SO4

2–, and O3 concentrations are based on 24-hr samples. n = total number of measurements for each condition.



where ksr and λ are as defined for Equation 1,
and F is the ratio of the molar emission rate of
oxidation products to ozone’s surface removal
rate (sometimes called the “formation factor”).
Wisthaler et al. (2005) found that for every
molecule of ozone removed by surfaces in a
simulated aircraft cabin, between 0.2 and
0.25 molecules of oxidized products entered
the air. For different types of carpets,
Morrison and Nazaroff (2002, figure 5) report
that for each ozone molecule removed,
0.1–0.7 aldehyde molecules entered the air.
For four different types of surfaces in four dif-
ferent homes, Wang and Morrison (2006)
report that for each ozone molecule removed,
0.1–0.4 aldehyde molecules entered the air. In
the latter two studies, the total number of oxi-
dized molecules that entered the air is presum-
ably larger than that reported for aldehydes
alone because common oxidation products
such as formic acid, acetic acid, and acetone
were not included in the aldehyde numbers.
Although more measurements of F are needed
in residences and nonresidences, these studies
are a beginning. Using a middle estimate of
0.33 for F and combining it with a value of
3 hr–1 for ksr and a range of values from 0.5 to
3 hr–1 for λ, a conservative estimate for
[Prod]:[O3,indr] is 0.33–2. This estimate is
termed “conservative” because it considers
only airborne products derived from surface
chemistry; additional oxidation products
derived from gas-phase chemistry (e.g., ozone
reacting with terpenes) would result in a larger
ratio. Hence, it is reasonable to anticipate that
ozone oxidation products are present indoors
at concentrations that, on a molar basis, are
roughly one-third to twice those of ozone
alone. This means that average daily indoor
intakes of ozone oxidation products are
roughly one-third to twice that of ozone
(Figure 1B). Because the products of ozone-
initiated chemistry tend to have higher con-
centrations indoors than outdoors (see above)
and that greater time spent indoors over-
whelms larger breathing rates outdoors, indoor
inhalation intakes of oxidation products tend
to be much larger than outdoor intakes of
oxidation products.

In a region with moderate outdoor ozone
levels, persons doing their own day-to-day
house cleaning are estimated to inhale an aver-
age of 20 µg/day of formaldehyde and
35 µg/day of SOAs (a large fraction of which
are ultrafine particles) as a consequence of
ozone-initiated reactions with constituents of
cleaning agents and air fresheners [table 5.3 of
Nazaroff et al. (2006)]. These values are con-
sistent with intakes of oxidation products esti-
mated in the previous paragraph. Such
inhalation intakes add to already existing
and often significant intakes of formaldehyde
and SOAs from other sources. Furthermore,
reactions between ozone and constituents of

personal-use products (e.g., perfumes,
colognes, hair treatments) emit oxidation
products in the vicinity of the breathing zone,
resulting in inhalation intakes larger than
those predicted if the products were evenly
distributed throughout a room (Karamalegos
et al. 2005).

Connections Between Ill Health
and Exposure to Indoor Ozone
and Its Oxidation Products
Recent epidemiologic study of mortality in
95 U.S. urban communities. Bell et al. (2004)
have used databases from the National
Morbidity, Mortality and Air Pollution Study
to calculate the average relative rate of mortal-
ity associated with short-term ozone concentra-
tions measured at outdoor monitoring stations
for 95 U.S. cities between 1987 and 2000.
Table 3 presents the 10 cities with the highest
percent change in daily mortality per 10-ppb
increase in daily ozone and the 10 cities with
the lowest percent change. For each of the
listed cities, Table 3 also presents the percent-
age of population growth for the period
1990–2000 and the percentage of residences
with central AC. The data were obtained from
the U.S. Census Bureau (2006); for selected
cities where specific information on central AC
was not available, the value is simply listed as
being greater than or less than 70% on the
basis of comparisons with cities that have
similar seasonal dew points and temperatures.

Cities with recent population growth have
a larger fraction of new homes and apartments
than cities with less growth, and such newer

residences tend to have lower air exchange
rates (Weisel et al. 2005). Use of central AC is
also associated with low air exchange rates
(see “Indoor ozone concentrations” above).
Conversely, without AC, residents are more
likely to open their windows during periods
when temperatures are elevated. Hence, com-
pared with older cities that have fewer homes
with central AC, newer cities with a higher
prevalence of central AC are anticipated to
have less outdoor-to-indoor transport and
smaller occupant exposures to indoor ozone
and the products of ozone-initiated chemistry.
Consistent with a connection between such
indoor exposures and mortality, 8 of the
10 cities that had the highest percent increase
in mortality per 10-ppb increase in ozone had
population growth since 1990 < 10% and 8 of
the 10 had central AC in  < 70% of the struc-
tures, whereas 7 of the 10 cities that had the
lowest percent increase in mortality per 10-ppb
increase in ozone had population growth since
1990 > 10% and 7 of the 10 had central AC in
> 70% of its structures (Table 3).

Other suggestive studies. Levy et al. (2005)
conducted an empiric Bayes meta regression to
examine the relationship between outdoor
ozone concentrations and premature mortality
based on 48 estimates from 28 time-series
studies. The authors deliberately omitted data
from the National Morbidity, Mortality and
Air Pollution Study (2006) because other
investigators were analyzing these data. In
other words, their database was independent of
data that are the basis for Table 3. One of the
conclusions from their meta regression was
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Table 3. Cities with highest and lowest percent change in daily mortality per 10-ppb increase in daily
ozonea, percentage of population growthb, and percentage of housing units with central ACb.

Change in Population growth,  
daily mortality (%) 1990–2000 (%) Central AC (%)

Ten cities with highest percent change (of 95 cities)
New York City 1.7 9.4 16
Newark, NY 1.3 –0.6 47
Philadelphia, PA 1.3 –4.3 50
Cincinnati, OH 1.2 –9.0 66
Dallas/Ft. Worth, TX 1.1 18.5 91
Shreveport, LA 1.0 0.8 > 70
Chicago, IL 0.9 4.0 62
Syracuse, NY 0.9 –10.1 < 70
Colorado Springs, CO 0.9 28.4 < 70
Worcester, MA 0.9 1.7 < 70

Average 1.1 3.9 —
Ten cities with lowest percent change (of 95 cities)

Orlando, FL –0.2 12.9 > 70
Denver, CO 0.0 18.6 50
San Antonio, TX 0.1 22.3 78
Las Vegas, NV 0.1 85.2 > 70
Little Rock, AR 0.1 4.2 > 70
Lexington, KY 0.2 15.6 > 70
Birmingham, AL 0.2 –8.7 77
San Diego, CA 0.2 10.2 34
St. Petersburg, FL 0.2 4.0 87
Lafayette, IN 0.3 28.9 < 70

Average 0.1 20.0 —

–, negative value.
aData from Bell et al. (2004). bData from U.S. Census Bureau (2006).



that AC prevalence was among the strongest
predictors of between-study variability. They
go on to state that their results suggest “that
the ambient ozone-mortality relationship
might be lower in cities with greater prevalence
of residential central air conditioning (and
therefore lower personal exposure to zone).”

Time-series epidemiologic studies often
show seasonal differences in the relative risk
from ozone (Ito et al. 2005; Levy et al. 2005;
Wong et al. 2001; Zhang et al. 2006). Ozone
risk estimates are larger for summer than for
winter in New York City; Detroit, Michigan;
and Cook County, Illinois (Ito et al. 2005).
Conversely, ozone risk estimates are larger for
winter than for summer in Houston (Ito et al.
2005), Hong Kong (Wong et al. 2001), and
Shanghai (Zhang et al. 2006). In New York,
Detroit, and Cook County, there is less out-
door-to-indoor transport during the cold win-
ter, when windows tend to be closed, compared
with the warmer summer. Indeed, in Boston, a
climatically similar urban area, the association
between outdoor ozone and personal ozone has
been shown to be weaker in winter than in
summer (Sarnat et al. 2005). However, in a
southern city such as Houston or a subtropical
Asian city such as Hong Kong or Shanghai,
there is less outdoor-to-indoor transport during
the hot, humid summer, when air conditioners
are used extensively and buildings tend to be
sealed, compared with the cooler winter when
buildings tend to be more open.

Conclusions

Indoor ozone and products of ozone-initiated
indoor chemistry correlate with ozone meas-
ured at fixed outdoor sites. I have cited stud-
ies indicating that a) indoor ozone levels 
are typically 10–50% of outdoor values,
b) indoor ozone exposures are typically
45–75% of total exposures, c) indoor ozone
inhalation intakes are typically 25–60% of
total intakes, d) indoor sources of chemicals
that react with ozone are ubiquitous, e) cer-
tain oxidation products are known to be toxic
and others are anticipated to be toxic, and
f ) indoor inhalation intakes of these oxidation
products are roughly one-third to twice the
indoor intakes of ozone and much greater
than outdoor intakes of oxidation products.
Smaller indoor intakes of ozone are antici-
pated for people who spend a large fraction of
their indoor time in air-conditioned rooms or
in rooms with small air exchange rates during
periods when outdoor ozone levels are ele-
vated. Smaller indoor intakes of oxidation
products are anticipated for people who live
in indoor settings with relatively low concen-
trations of ozone-reactive chemicals, both in
the gas phase and associated with surfaces;
smaller indoor intakes of oxidation products
also result from higher air exchange rates
(Equation 4).

By their nature the cited epidemiologic
studies include the indoor exposures discussed
in this article. Findings from several epidemio-
logic studies hint at associations between mor-
bidity and mortality and indoor ozone and 
its oxidation products. However, these studies
were not designed to test this hypothesis.
Specific studies can be envisioned to evaluate
the contribution of indoor ozone and its oxida-
tion products to ill health (Weschler 2004).

Apportioning risk between outdoor and
indoor intakes bears on the strategies used to
protect public health. Outdoor ozone is harm-
ful to health; outdoor ozone transported
indoors is harmful to health; indoor ozone
reacts to form products that are also harmful to
health, some perhaps more so than ozone.
Contrary to popular wisdom, being indoors
does not offer clear protection from ozone-
related adverse health effects, but it would if
ozone were deliberately removed from ventila-
tion air.

Although it has proven difficult and very
costly to reduce outdoor ozone concentrations,
relatively simple steps can reduce the concen-
tration of indoor ozone and its oxidation prod-
ucts. For example, charcoal filters (Shair 1981;
Shields et al. 1999) or chemically impregnated
filters (Kelly and Kinkead 1993) could remove
a large fraction of ozone in buildings with
mechanical ventilation systems. In naturally
ventilated buildings, strategies could be
employed that reduce ventilation for the por-
tion of the day when ozone is elevated and
increase ventilation when ozone levels are
lower. The use of products with ozone-reacting
constituents could be limited during periods
when indoor ozone levels are elevated. Such
steps might be especially valuable interventions
in schools, hospitals, and childcare centers in
regions that continue to experience elevated
outdoor ozone concentrations.
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