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Abstract 

This paper describes a technique for automatic recognition of off-line printed Arabic text 

using Hidden Markov Models. In this work different sizes of overlapping and non-overlapping 

hierarchical windows are used to generate 16 features from each vertical sliding strip. Eight 

different Arabic fonts were used for testing (viz. Arial, Tahoma, Akhbar, Thuluth, Naskh, 

Simplified Arabic, Andalus, and Traditional Arabic). It was experimentally proven that different 

fonts have their highest recognition rates at different numbers of states (5 or 7) and codebook 

sizes (128 or 256).  

Arabic text is cursive, and each character may have up to 4 different shapes based on its 

location in a word. This research work considered each shape as a different class resulting in a 

total of 126 classes (compared to 28 Arabic letters). The achieved average recognition rates were 

between 98.08% and 99.89% for the eight experimental fonts.  

The main contributions of this work are the novel hierarchical sliding window technique 

using only 16 features for each sliding window, considering each shape of Arabic characters as a 

separate class, bypassing the need for segmenting Arabic text, and its applicability to other 

languages. 
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1. Introduction 

Optical text (cursive) recognition, including handwritten text, is receiving renewed extensive 

research after the success in optical character recognition. Arabic text recognition, which was not 

researched as thoroughly as Latin, Japanese, or Chinese, is receiving a renewed interest not only 

from Arabic-speaking researchers but also from non-Arabic-speaking researchers. Samples of 

this research work are given in the references [1-10]. This has resulted in the improvement of the 

state of the art in Arabic text recognition in recent years. Higher recognition rates were reported 

and more practical data is being used for testing new techniques. In addition to the traditional 

applications like check verification in banks, office automation, and postal address reading, there 

is a large interest in searching scanned documents that are available on the internet and for 

searching handwritten manuscripts. 

 Reference may be made to [11-14] for surveys on Arabic Optical Text Recognition. Lorigo 

and Govindaraju addressed off-line Arabic handwriting recognition in [15]. Trenkle et al 

addressed advances in Arabic text recognition in [16] and Srihari and Ball presented an 

interesting and useful assessment of Arabic handwriting recognition technology [17]. They 

discussed the state of the art in off-line Arabic handwriting recognition, specified the most 

needed data, and discussed the technology gaps in Arabic handwriting recognition. 

Due to the advantages of Hidden Markov Models (HMM) many researchers have used them 

for Arabic text recognition [18-32]. HMM offer several advantages. To name a few, there is no 

need for segmenting the Arabic cursive text, they are resistant to noise, they can tolerate 

variations in writing, and the HMM tools are freely available. Some researchers used HMM for 

handwriting word recognition [18, 19, 27, 28, 31]. Other researchers used it for text recognition 

[22, 23, 30, 32]. HMM was used for off-line Arabic handwritten digit recognition [33, 34] and 

for character recognition in [30, 35]. The techniques used in [33-34] are based on extracting 

different types of features of each digit as a whole, not on the sliding window principles used by 

the majority of researchers using HMM. For their technique to be applicable to Arabic text 

recognition, it has to be preceded by a segmentation step which is error-prone. Bazzi et al 

presented a system for bilingual text recognition (English/Arabic) [22, 36] using the sliding 

window principles and extracting different types of features. Dehghani et al used it for online 
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handwritten Persian characters in [35] and for handwritten Farsi (Arabic) word recognition in 

[37].  

Other researchers addressed the different stages of an Arabic text recognition system. 

Examples include: a database for Arabic handwritten text recognition in [38], a database for 

Arabic handwritten checks in [39], preprocessing methods in [40], segmenting of Arabic text in 

[41], different types of features are used in [42-44], and multiple classifiers in [45, 46].  

It is worth mentioning that no generally accepted database for Arabic text recognition is 

freely available for researchers. Hence different researchers of Arabic text recognition use 

different data, and hence the recognition rates of the different techniques may not be comparable.  

This raises the need for researchers to make their data available for other researchers as a first 

step and to work on producing a comprehensive database for Arabic text recognition. In this 

respect we will make our data available for other interested researchers. 

In this work, we followed the sliding window principle used by many researcher to extract 

the features to be used with the HMM [18, 20, 21, 23, 25, 47]. In our work we employed the 

sliding window technique used with HMM in speech recognition.  Researchers, using the sliding 

window principle, differ in the number of features, type of features, window sizes, window 

overlapping, and HMM parameters.  

Arabic text is cursive and is written from right to left. The Arabic alphabet has 28 basic 

letters, as shown in Figure 1. An Arabic letter may have up to four basic different shapes 

depending on the position of the letter in the word: whether it is a standalone, initial, terminal, or 

medial form. Letters of a word may overlap vertically with or without touching. Different Arabic 

letters have different sizes (height and width). Letters in a word can have short vowels 

(diacritics). These diacritics are written as strokes, placed either on top of, or below, the letters. 

A different diacritic on a letter may change the meaning of a word. Each diacritic has its own 

code as a separate letter when it is considered in a digital text. Readers of Arabic are accustomed 

to reading un-vocalized text by deducing the meaning from context. Figure 2 shows some of the 

characteristics of Arabic text related to character recognition. It shows a base line, overlapping 

letters, diacritics, and three shapes of the Lam character (terminal, medial, and initial). 
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Figure 1: basic letters of Arabic. 

 

 

Figure 2. An example of an Arabic sentence indicating some characteristics of Arabic text.  

 

In this paper we addressed the automatic recognition of off-line printed Arabic text. We used 

Arab Standardization and Metrology Organization (ASMO) character sets ASMO-449, ASMO-

708 and ISO 8859-6 which define 36 Arabic letters. We also added four forms of Lam-Alef ( ) 

which is a sequence of two letters written as one set (hence resulting in 40 letters). Most of the 

letters can take four different shapes (from 1 to 4) but one letter has only one shape while others 

have two. Hence, the total number of shapes is 126.  

Table 1 shows the basic Arabic letters with their categories. We group them into 3 different 

classes according to the number of shapes each letter takes. Class 1 consists of a single shape of 

the Hamza which comes in stand-alone state (Number 1 in Table 1). Hamza does not connect 

with any other letter. The second class (medial category) presents the letters that can come either 

standalone or connected only from the right (Numbers 2-5, 7, 9, 15-18, and 35-39 in Table 1). 

The third class (Class 4) consists of the letters that can be connected from either side or both 

sides, and can also appear as standalone (Numbers 6, 8, 10-14, 19-33, and 40 in Table 1).   
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no 
Stand-

alone 
Terminal Medial Initial Shapes Class 

1         1 1 

2           2 2 

3           2 2 

4           2 2 

5           2 2 

6             4 3 

7           2 2 

8             4 3 

9           2 2 

10             4 3 

11             4 3 

12             4 3 

13             4 3 

14             4 3 

15           2 2 

16           2 2 

17           2 2 

18           2 2 

19             4 3 

20             4 3 

21             4 3 

22             4 3 

23             4 3 

24             4 3 

25             4 3 

26             4 3 

27             4 3 

28             4 3 

29             4 3 

30             4 3 

31             4 3 

32             4 3 

33             4 3 

34           2 2 

35          2 2 

36          2 2 

37          2 2 

38          2 2 

39           2 2 

40             4 3 

 
 

Table 1. Shapes of Arabic alphabets 

Although an Arabic letter can have up to 4 different shapes, each letter is saved using only 

one code. A computer built-in driver uses contextual analysis to decide the right shape to display, 

depending on the previous and next characters. Presenting each Arabic letter with a single unique 
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code irrespective of its shape and position is an international standard that helps a lot in 

searching, sorting, communications, and information retrieval. 

Several aspects of our technique resulted in the high recognition rates. Our technique is based 

on a novel hierarchical sliding window technique which is reported for the first time in the 

literature. We represent each sliding strip by 16 features from one type of simple features for 

each sliding window, while in [22, 36] 80 features of four types of features are used. Our 

technique considers each shape of an Arabic character as a separate class (not combining 

multiple shapes in one class as is done by other researchers). The number of classes thus 

becomes 126 compared with 40 classes if all the shapes of a character are considered as separate 

classes. Our technique bypasses the need for segmentation of Arabic text, which is error-prone, 

and is applicable to other languages. 

This paper is organized as follows. Section 2 addresses data preparation. Feature extraction is 

addressed in Section 3, where the details of the feature extraction phase are reported. Hidden 

Markov Models is addressed in Section 4. Training, recognition, and experimental results are 

addressed in Section 5. Finally the conclusions are presented in Section 6.  

2.  Data preparation 

The data used in this work was extracted from the books of Saheh Al-Bukhari and Saheh 

Muslem [48, 49]. The text of the books represents samples of Standard Arabic.  The extracted 

data consists of 2766 lines of text, consisting of 46062 words totaling 224109 characters 

including spaces. The average word length of the text is 3.93 characters. The length of the 

smallest line is 43 characters. The longest line has 89 characters.  

Eight files with the same text were created, each with one of the eight used fonts (viz. Arial, 

Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, Andalus, and Traditional Arabic). We 

considered each shape as a separate class for recognition, as each shape of the same character is 

different from the other shapes of the same character.  Out of the 2766 lines, the first 2500 lines 

were used for training, and the remaining 266 were used for testing, in order to have enough 

samples of each class for training. Table 2 shows a sample for each font. 
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Font Name Sample 

Arial 
 

Tahoma  
Akhbar  
Thuluth 

 
Naskh 

 
Simplified Arabic  
Traditional Arabic  

Andalus  
Table 2. Samples of all fonts used.  

For each file the text was formatted to appear as a white font color in a black background. 

Moreover, each image in the „tif‟ file has been side-reversed through a mirroring tool to speed up 

the training and recognition testing processes as shown in Figure (3). The same effect can be 

done by changing the index so that the window will slide from right to left. However, what we 

are suggesting is more efficient. The images of the text lines were all normalized to have a height 

of 80 pixels. 

 
Figure 3 An example of a side reversed line using a mirroring tool. 

Fifteen more lines of text were added to assure the inclusion of a sufficient number of all 

shapes of Arabic letters. These lines consist of 5 copies of the minimal Arabic script that has 

been prepared by the authors for preparing databases and benchmarks for Arabic text recognition 

research [50].  

We prepared two dictionary books for each font. The first one represents the dictionary to be 

used in training and testing, where we coded each shape of a letter by its unique code. The 

second one includes coded Arabic characters, using English characters as the Hidden Markov 

Model Tool does not accept Arabic text as a dictionary.   
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3. Feature Extraction 

 A technique based on the sliding window principle was implemented to extract text features. 

A window with variable width and height was used. Horizontal and vertical overlapping 

windows were experimented with. In many experiments we tried different values for the window 

width and height, vertical and horizontal overlapping. Then different types of windows were 

utilized to get more features of each vertical segment and to decide on the most proper window 

size and the number of overlapping cells vertically and horizontally. The direction of the text line 

is considered as the feature extraction axis. Figure 4 shows the sliding window technique used in 

this research.  

 

Figure 4 Areas used for feature extraction and sliding windows. 

Starting from the first pixel of the text line image, a vertical segment of 3 pixels width and a 

text line of height (TLH) is taken. A window of 3 pixels width and TLH/8 height was used to 

estimate the number of black pixels in the windows of the first level of the hierarchical structure. 

Eight vertically non-overlapping windows are used to estimate the first 8 features (features 1 to 

 
Figure 7a. The main eight areas used for feature extraction visualized on an image line 

 

 
Figure 7 Sliding window. 
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8). Four additional features (features 9 to 12) are estimated from four vertically non-overlapping 

windows of 3 pixels width and TLH/4 height (windows of the second level of the hierarchical 

structure). Then an overlapping window with 3 pixels width and TLH/2 height (windows of the 

third level of the hierarchical structure) with an overlapping of TLH/4 is used to calculate three 

features (features 13 to 15). The last feature (feature 16) is found by estimating the number of 

black pixels in the whole vertical segment (the window of the fourth level of the hierarchical 

structure). Hence, 16 features were extracted for each horizontal slide. To calculate the following 

features, the vertical window is moved horizontally, keeping an overlap of one pixel. Sixteen 

features were extracted from each vertical strip and served as a feature vector in the training 

and/or testing processes. It has to be noted that the window size and vertical and horizontal 

overlapping are made settable, and hence different features may be extracted using different 

window sizes and vertical and horizontal overlapping. The advantages of our technique are: 

extracting a small number of one type of features; implementing different sizes of windows; 

using a hierarchical structure of windows for the same vertical strip; bypassing the need for 

segmentation of Arabic text; and applicability to other languages. These sixteen features have 

been chosen after extensive experimental testing. Table 3 illustrates features and windows used 

in the feature extraction phase.   

Features 

F16 

Features 

F15 

Features 

F3 to F4 

Features 

F9 to F12 

Features 

F1 to F8 

F16 =  

F13 + F14 

 F14 =  

F11 + F12 

F12 =  

F7 + F8 

F8 (sum of black pixels in 

8
th

 vertical rectangle) 

F7 (sum of black pixels in 

7
th

 vertical rectangle) 

F15 =  

F10 + F11 

F11 =  

F5 + F6 

F6 (sum of black pixels in 

6
th

 vertical rectangle) 

F5 (sum of black pixels in 

5
th

 vertical rectangle) 

F13 =  

F9 + F10 

F10 =  

F3 + F4 

F4 (sum of black pixels in 

4
th

 vertical rectangle) 

F3 (sum of black pixels in 

3
rd

 vertical rectangle) 

 F9 =  

F1 + F2 

F2 (sum of black pixels in 

2
nd

 vertical rectangle) 

F1 (sum of black pixels in 

1
st
 vertical rectangle) 

Table 3 illustrates features and windows used in the feature extraction phase.   
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4. Hidden Markov Model (HMM) 

Several research papers have been published using HMM for text recognition [18, 22, 30, 32, 

51-53]. In order to use HMM several researchers computed the feature vectors as a function of 

an independent variable. This simulates the use of HMM in speech recognition where sliding 

frames/windows are used. The same technique is utilized in off-line text recognition where the 

independent variable is in the direction of the line length [22, 36]. In this paper we extract the 

features of an Arabic text by using the sliding windows principle to calculate the features based 

on sliding vertical strip which covers parts of the character. However, our technique differs from 

the general trend by implementing a hierarchical window structure with different window sizes 

and horizontal and vertical overlapping. In addition, we extract only 16 simple features (of one 

type) per vertical strip compared to 80 features (four types of features) used in [22, 36]. As was 

done in [22, 36] we bypass the need for segmenting Arabic text, and our technique is applicable 

to other languages. We use the same HMM classifier without modification as implemented in 

HTK [54]. However, we implement our own parameters of the HMM. We allowed transition to 

the current, the next, and the following states only. This structure allows nonlinear variations in 

the horizontal position. HTK models the feature vector with mixture of Gaussians. It uses the 

Viterbi algorithm in the recognition phase which searches for the most likely sequence of a 

character given the input feature vector. 

In this paper a left-to-right HMM for our Arabic handwritten text recognition is implemented. 

Figure 5 displays the case of a 7-state HMM, showing that we allowed transition to the current, 

the next, and the following states only. This is in line with several research studies using HMM 

[22, 36]. This model allows relatively large variations in the horizontal position of the Arabic 

text. The sequence of state transition in the training and testing of the model is related to each 

text segment feature observations. In this work we have experimented with using different 

numbers of states and dictionary sizes, and selected the best performing ones. Although each 

character model could have a different number of states, we decided to adopt the same number of 

states for all characters in a font. However, the number of states and dictionary sizes for each 

font, in relation to the best recognition rates for each font, are different for each font. 

In this work, each Arabic text segment is represented by a 16-dimensional feature vector as 

described earlier.   
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Figure 5 Seven-state Hidden Markov Model (HMM) 

5. Training and Recognition 

In order to have enough samples of each class for each font, in the training phase, 2500 lines 

were used for training and the remaining 266 lines in testing. There is no overlap between 

training and testing samples. A file that contains the feature vectors of each line was prepared. 

The feature vector contains the sixteen features extracted for each vertical strip of the image of 

the text line by the method described previously. All feature vectors of the vertical strips of the 

line are concatenated to give the feature vectors of the text line. The group of the feature files of 

the first 2500 lines represents the observation list for training. The group of the remaining 266 

feature files represents the observation list for testing. 

5.1 Training 

A large number of trials were conducted to find the most suitable combinations of the number 

of suitable states and codebook sizes. Different combinations of the number of states and size of 

codebook were tested. The states that were experimented with range from 3 to 15. The sizes of 

codebook that were experimented with are 32, 64, 128, 192, 256, 320, 384, and 512. Table 4 

shows the best combinations we experimentally found to give the best recognition rates for each 

font. 

Font Name Number of Sates Codebook size 

Arial 5 256 

Tahoma 7 128 

Akhbar 5 256 

Thuluth 7 128 

Naskh 7 128 

Simplified Arabic 7 128 

Traditional Arabic 7 256 

Andalus 7 256 

Table 4 combinations of number of states and size of codebook used for different fonts. 
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5.2 Classification 

The results of testing 266 lines are summarized in Table 5. The table also shows the effect of 

having a unique code for each shape of each character in the classification phase (Columns 2 & 

3) and then combining the shapes of the same character into one code (Columns 4 & 5). In all 

cases there are improvements in both correctness and accuracy in combining the different shapes 

of the character after recognition into one code. The following two equations were used to 

calculate correctness and accuracy. 

 

 

 

Table 6 summarizes the classification results for the Arial font. The results of all other fonts 

are summarized in Table 7. As the resultant confusion matrices are too large to display in row 

format (at least 126 rows X 126 columns are needed), we summarize the confusion matrix in a 

more informative way by collapsing all different shapes of the same character into one entry and 

by listing error details for each character. This will actually be the result after converting the 

recognized text from the unique coding of each shape to the unique coding of each character 

(which is done by the contextual analysis module, a tool we built for this purpose). 

The following subsections discuss the classification results for the Arial font and a summary 

of the results for all other fonts are summarized in Table 7 which shows the average correctness 

and accuracy for all fonts (viz. Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, 

Andalus, and Traditional Arabic). 

Table 5 Summary of Results per font type with and without shape expansion 

 With Expanded shapes With Collapsed shapes 

Text font 
% of 

Correctness 
% of 

Accuracy 
% of 

Correctness 
% of 

Accuracy 
Arial 99.89 99.85 99.94 99.90 

Tahoma 99.80 99.57 99.92 99.68 
Akhbar 99.33 99.25 99.43 99.34 
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Thulth 98.08 98.02 98.85 98.78 
Naskh 98.12 98.02 98.19 98.09 

Simplified Arabic 99.69 99.55 99.84 99.70 
Traditional Arabic 98.85 98.81 98.87 98.83 

Andalus 98.92 96.83 99.99 97.86 

 

a. Arial font Classification 

Table 6 shows the classifications results for the Arial font. The correctness percentage was 

99.94 and the accuracy percentage was 99.90. Only four letters out of 43 had some errors. The 

letter   has been substituted by the letter   four times out of 234 instances. The only difference 

between the two characters is the dot in the body of the letter  . The second error consists of two 

replacements of the letter   by the letter   out of 665 instances. The third error was substituting 

the ligature   by a blank four times out of 40. The fourth error was substituting the ligature لله 

once by   out of 491 times. Other than the substitutions, 10 insertions were added (two of them 

were blanks). The blank problems were reported by several researchers including [22]. 

Table 6 Classification Results for Arial Font. 

Let Samples Correct  Errors 
% 

Recognition 
% 

Error  
Del Ins Correctness Accuracy Error Details 

Sil 532 532 0 100.0 0.0 0 0 100.0 100.0   

   100.0 100.0 0 0 0.0 100.0 0 83 83 ء

   80.0 80.0 0 0 20.0 80.0 2 8 10 آ

   100.0 100.0 0 0 0.0 100.0 0 484 484 أ

   100.0 100.0 0 0 0.0 100.0 0 14 14 ؤ

   100.0 100.0 0 0 0.0 100.0 0 157 157 إ

   100.0 100.0 0 0 0.0 100.0 0 43 43 ئ

   100.0 100.0 1 0 0.0 100.0 0 2114 2114 ا

   100.0 100.0 0 0 0.0 100.0 0 409 409 ب

   100.0 100.0 0 0 0.0 100.0 0 234 234 ة

   100.0 100.0 0 0 0.0 100.0 0 420 420 ت

   100.0 100.0 0 0 0.0 100.0 0 124 124 ث

   100.0 100.0 0 0 0.0 100.0 0 170 170 ج

    4 98.3 98.3 0 0 1.7 98.3 4 230 234 ح

   100.0 100.0 0 0 0.0 100.0 0 113 113 خ

   99.7 100.0 1 0 0.0 100.0 0 344 344 د

   100.0 100.0 0 0 0.0 100.0 0 97 97 ذ

   100.0 100.0 0 0 0.0 100.0 0 702 702 ر

   100.0 100.0 0 0 0.0 100.0 0 46 46 ز

   100.0 100.0 0 0 0.0 100.0 0 640 640 س

   100.0 100.0 0 0 0.0 100.0 0 119 119 ش

   100.0 100.0 0 0 0.0 100.0 0 415 415 ص
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Let Samples Correct  Errors 
% 

Recognition 

% 

Error  
Del Ins Correctness Accuracy Error Details 

   100.0 100.0 0 0 0.0 100.0 0 93 93 ض

   100.0 100.0 0 0 0.0 100.0 0 68 68 ط

   100.0 100.0 0 0 0.0 100.0 0 15 15 ظ

   100.0 100.0 0 0 0.0 100.0 0 818 818 ع

   100.0 100.0 0 0 0.0 100.0 0 44 44 غ

   100.0 100.0 0 0 0.0 100.0 0 495 495 ف

   100.0 100.0 0 0 0.0 100.0 0 467 467 ق

   100.0 100.0 0 0 0.0 100.0 0 288 288 ك

   99.9 100.0 2 0 0.0 100.0 0 2136 2136 ل

   100.0 100.0 0 0 0.0 100.0 0 1005 1005 م

   100.0 100.0 0 0 0.0 100.0 0 1023 1023 ن

    2 99.7 99.7 0 0 0.3 99.7 2 663 665 ه

   100.0 100.0 0 0 0.0 100.0 0 937 937 و

   100.0 100.0 0 0 0.0 100.0 0 5 5 لآ

  Blnk 4 90.0 90.0 0 0 10.0 90.0 4 36 40 لأ

   100.0 100.0 0 0 0.0 100.0 0 14 14 لإ

   98.1 100.0 4 0 0.0 100.0 0 207 207 لا

   100.0 100.0 0 0 0.0 100.0 0 413 413 ى

   100.0 100.0 0 0 0.0 100.0 0 1159 1159 ي

Blnk 4637 4637 0 100.0 0.0 0 2 100.0 100.0   

    1 99.8 99.8 0 0     1 490 491 لله

Ins   10          
1   1   2   4   

2 Blnk  
Total 22524 22511 13 99.94 0.06 0 10 99.94 99.90  

b. Classification of other fonts 

Table 7 summarizes the results of Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified 

Arabic, Andalus, and Traditional Arabic fonts. Arial font was included for comparison purposes. 

The table shows the average correctness and accuracy of all these fonts. 
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 Arial Tahoma Akhbar Thuluth Naskh 
Simplified 

Arabic 

Traditional 

Arabic 
Andalus 

Le

t 

Correctn

ess 

Accura

cy 

Correctn

ess 

Accura

cy 

Correctn

ess 

Accura

cy 

Correctn

ess 

Accura

cy 

Correctn

ess 

Accura

cy 

Correctn

ess 

Accura

cy 

Correctn

ess 

Accura

cy 

Correctne

ss 

Accura

cy 

S 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 100 98.8 96.3 96.3 100 97.4 100 100 100 100 100 100 100 100 

  80 80 100 100 60 60 100 100 100 100 40 40 100 100 100 100 

  100 100 100 100 99.6 99.6 99.8 99.8 100 100 96.3 96.3 98.5 98.5 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 100 100 100 100 100 100 97.7 97.7 100 100 100 100 100 100 

  100 100 100 99.9 99.1 99 100 100 98.5 98.4 100 99.8 98.7 98.5 100 100 

  100 100 100 100 99.3 99.3 93.9 93.9 89.3 88.4 100 100 92.5 92.5 100 99.8 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 99.8 99.8 100 100 97.8 97.6 98.8 98.8 99.8 99.8 99.1 99.1 100 100 

  100 100 100 100 98.4 92.6 100 100 95.1 95.1 100 100 99.2 99.2 100 100 

  100 100 99.4 99.4 100 100 97.1 97.1 96.5 96.5 100 100 91.8 91.8 100 100 

  98.3 98.3 94.4 94.4 100 100 82 82 87.6 87.6 100 100 84.2 84.2 100 100 

  100 100 100 100 100 100 98.2 98.2 90.3 89.4 100 100 98.2 97.4 100 100 

  100 99.7 100 99.1 100 99.7 99.1 98.8 100 100 100 99.7 99.7 99.4 100 99.7 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 100 100 100 100 94.9 94.9 98.6 98.6 100 100 99.9 99.9 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 100 100 99.8 98.9 99.8 99.8 99.2 99.2 100 100 99.7 99.7 100 100 

  100 100 100 100 99.2 99.2 99.2 99.2 100 100 100 100 100 100 100 100 

  100 100 100 100 100 100 99.8 99.8 98.8 98.8 100 100 98.8 98.8 100 100 

  100 100 100 100 100 100 98.9 98.9 100 100 100 100 100 100 100 100 

  100 100 98.5 97.1 100 100 97.1 97.1 97.1 97.1 100 100 100 100 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 100 100 100 99.8 99.8 99.5 99.5 98.7 98.7 100 100 99.9 99.9 100 100 

  100 100 100 100 97.7 97.7 97.7 97.7 100 100 100 100 100 100 100 100 

  100 100 100 100 99.6 99.6 100 99.2 99.6 99.6 100 100 100 100 100 100 

  100 100 100 100 98.9 98.9 100 100 99.1 99.1 99.8 99.8 100 100 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 99.9 100 97.9 98.1 97.9 99.8 99.7 98.2 98.1 100 99.7 99.6 99.6 100 77.7 

  100 100 100 100 99.9 99.9 98.2 98.1 90 89 100 100 94.1 94 100 100 

  100 100 100 100 99.4 99.3 99.1 99.1 96.7 96.5 99.9 99.9 98.1 98 100 100 

  99.7 99.7 100 100 99.7 99.7 99.1 99.1 99.7 99.7 100 100 99.1 99.1 100 100 

  100 100 100 100 100 100 99.8 99.8 99.9 99.9 100 100 100 100 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  90 90 100 100 100 100 100 100 97.5 97.5 100 100 100 100 100 100 

  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

  100 98.1 100 100 100 100 100 100 99 99 100 100 100 100 100 100 

  100 100 100 100 100 100 89.1 89.1 99.5 99.5 98.6 98.6 98.6 98.6 100 100 

  100 100 100 100 98.4 98.4 99.7 99.7 97.7 97.7 100 100 98.4 98.4 100 100 

B 100 100 100 100 100 100 99.3 99.2 99.4 99.4 100 99.6 99.9 99.9 99.9 99.9 

 100 100 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 لله

T 99.9 99.9 99.9 99.7 99.4 99.3 98.9 98.8 98.2 98.1 99.8 99.7 98.9 98.8 100 97.9 

Table 7 summarizes the results of Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, 

Andalus, and Traditional Arabic fonts. 
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c. Do the suggested features work for English? 

Although features presented in this work were designed for Arabic script, the question of 

whether the same features would work for English arises. To validate this matter, an English text 

of 1230 lines was prepared using Microsoft Sans Serifs font as an example. The text file is 

converted into an array of image lines. The same features used for Arabic text images were 

extracted for the English text. The first 1100 lines of the English text images were used for 

training, and the remaining 130 lines were used for testing. The classification results were 

98.92% for the correctness and 98.90% for the accuracy. Out of 4921 characters there were two 

deletions, 51 substitutions, and one insertion. This shows the applicability of our features for 

English text as well. All these errors are summarized in Table 8. The table contains the letters 

that had classification errors. All other letters were correctly classified. It is to be noted that we 

applied the same model for Arabic text recognition without change or enhancement for a proof 

of concept. 

 m n o Blank Capital i Del 

Small L 0 0 0 0 0 2 

n 16  0 0 0 0 

r 2 3 0 0 0 0 

t 0 0 0 13 0 0 

/ 0 0 0 0 1 0 

c 0 0 16 0 0 0 

Ins 0 0 0 1 0  

Table 8. All errors appeared in the English test. 

6. Conclusions 

This paper presents a technique for automatic recognition of off-line Arabic text recognition 

based on estimating simple and effective features that are suitable for use with the HMM (which 

is normally employed for speech recognition). We analyzed the performance of the HMM with 

different numbers of features, different sizes of sliding windows, different numbers of states and 

different dictionary sizes. We applied the technique for eight Arabic fonts (viz. Arial, Tahoma, 

Akhbar, Thuluth, Naskh, Simplified Arabic, Andalus, and Traditional Arabic). After a large 
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number of experiments, we selected the number of features, the number of states and the 

dictionary size for each font according to each font's highest recognition rate. The technique is 

scale- and translation-invariant. The experimental results indicate the effectiveness of the 

proposed technique in the automatic recognition of off-line Arabic text with different types of 

fonts. 

A database of 2766 lines was used in the training and testing phase. 2500 lines were used in 

training and the remaining 266 in testing. The experimental results, discussed earlier, show the 

effectives of our features. We used a small number of simple and effective features that can be 

computed quickly. This was repeated for all vertical strips with an overlap of one pixel. Only 

sixteen features were extracted from each vertical strip of the text line image. We applied our 

technique to eight different Arabic fonts. They all gave acceptable recognition rates (accuracy 

percentages were: Arial 99.9, Tahoma 99.68, Akhbar 99.34, Thuluth 98.78, Naskh 98.09, 

Simplified Arabic 99.7, Traditional Arabic 98.83, Andalus 97.86).  

Several aspects of our technique resulted in the high recognition rates. Our technique is based 

on a novel hierarchical sliding window technique with overlapping and nonoverlapping windows 

which is reported for the first time in the literature. We represent each sliding strip by 16 features 

from one type of simple features for each sliding window, while other researchers used 80 

features of four types of features (viz. intensity, vertical and horizontal derivative, and local 

scope and correlation) [22,36]. To the knowledge of the researchers, no other researchers have 

included the following letters/ligatures in their classifications: ( ,  ,  ,  ,  ,  , and لله). We 

considered each shape of an Arabic character as a separate class, not combining multiple shapes 

in one class as is done by other researchers. The number of classes became 126 compared with 

40 classes if all the shapes of a character are considered as separate classes. This technique does 

not require segmentation of Arabic cursive text which is known to be problematic where an error 

in segmentation results in more errors in recognitions. Hence, using this technique, segmentation 

was a by-product of our technique. Finally, the presented technique is language independent. 

 

The researchers are currently exploring the use of more elaborate data and testing the system 

on Omni font. In addition, they are exploring post-processing techniques to enhance the 
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recognition rates further as they feel that the extracted features and the classifier have done an 

excellent job in the classification phase.  
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