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ABSTRACT 

 

The Role of the Ocean in the Atmospheric Budgets of Methyl Bromide, Methyl 

Chloride and Methane. (August 2012) 

Lei Hu, B. S., Ocean University of China 

Chair of Advisory Committee: Dr. Shari A. Yvon-Lewis 

   

The ocean is both a source and a sink for atmospheric methyl bromide (CH3Br) 

and methyl chloride (CH3Cl). It plays a significant role in their global biogeochemical 

cycling. In response to the Montreal Protocol, the atmospheric CH3Br is declining and 

the saturation state of CH3Br in the surface ocean is becoming more positive. Results 

from two large-scale transect studies in the eastern Pacific and the eastern Atlantic 

suggest that the ocean became near equilibrium with atmospheric CH3Br in 2010. 

Results from a “top-down” two-box model indicate that, if the remaining anthropogenic 

emissions are eliminated, atmospheric CH3Br is likely to drop to the pre-industrial level 

and the ocean would become a net source to atmospheric CH3Br.  

This study also represents an effort to improve current understanding of the 

oceanic and atmospheric budgets of CH3Cl. The global net sea-to-air flux of CH3Cl was 

estimated at 335 (210 – 480) Gg yr-1 with improved parameterizations on the solubility, 

seasonal saturation anomaly – (sea surface temperature, wind speed) relationships and 

the use of an updated parameterization on gas transfer velocity. For the first time, we 

estimated the gross oceanic emission and gross oceanic uptake rates of CH3Cl in the 
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surface ocean, which was 700 (490 to 920) Gg yr-1 and -370 (-440 to -280) Gg yr-1, 

respectively. The ocean accounts for 10 - 19 % in the global CH3Cl emission and 6 - 9 % 

in its global sinks.  

Methane (CH4) is a potent greenhouse gas, which has a warming potential 72 

times that of carbon dioxide over a 20 year time horizon. Gas hydrates are the largest 

CH4 reservoir in the planet. How much CH4 is transported from marine gas hydrates to 

the atmosphere is under debate. In this study, we investigated CH4 fluxes over three 

deepwater hydrocarbon seeps in the northern Gulf of Mexico using continuous air-sea 

flux measurements. Extrapolating the highest daily flux from this study to other 

deepwater seeps in the northern Gulf of Mexico suggests that CH4 fluxes to the 

atmosphere from the deepwater hydrocarbon seeps in this region are an insignificant 

source to atmospheric CH4 budget.  
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1. INTRODUCTION 

 

1.1. Background 

Global warming and stratospheric ozone depletion are two priority environmental 

problems, which are mainly caused by increased greenhouse and ozone depleting gases 

from human activities. Since the 1900s, the global surface air temperature (SAT) has 

increased by about 0.8 oC [Le Treut et al., 2007]. Multi-model results suggest that, for 

non-mitigation scenarios, the global mean SAT is likely to be further increased by 1.8 – 

3.4 oC by the end of the 21st century [Meehl et al., 2007]. Methane (CH4), a potent 

greenhouse gas, has the second largest radiative forcing after carbon dioxide in the 

Long-Lived Green-House Gases (LLGHG) [Ramaswamy et al., 2001]. The atmospheric 

abundance of CH4 has increased by about a factor of 2.5 since the pre-industrial era 

[Ehhalt et al., 2001]. CH4 is also involved in both tropospheric and stratospheric 

chemistry. Due to its important role in global radiative forcing and atmospheric 

chemistry, quantifying the sources and sinks of CH4 has been a major research focus 

over the past several decades. However, substantial uncertainties remain.  

Stratospheric ozone depletion has been observed since the late 1970s. 

Halogenated compounds are transported to the stratosphere and destroy ozone 

catalytically. In response to the Montreal Protocol and its amendments, most long-lived  
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halogenated compounds that originate from anthropogenic sources are declining in the 

atmosphere [World Meteorological Organization (WMO), 2011], resulting in an 

increasing in the relative importance of natural halocarbons in stratospheric ozone 

depletion. 

Methyl bromide (CH3Br) and methyl chloride (CH3Cl) are the most abundant 

brominated and chlorinated gases in the troposphere. They contributed about 34% of the 

total bromine and 17% of the total chlorine to the stratosphere in 2008 [WMO, 2011]. 

CH3Br and CH3Cl originate in large part from natural sources such as the ocean, biomass 

burning, tropical rainforests, salt marshes, wetlands and fungus. Despite tremendous 

efforts made in the past several decades to quantify the sources and sinks of CH3Br and 

CH3Cl, knowledge of their atmospheric budgets is limited. An imbalance between their 

total known sources and their total known sinks calls for further studies on their 

“missing sources”.  

1.2. Statement of problems 

1.2.1. Methyl bromide 

The total known sinks of atmospheric CH3Br exceed the total known sources by 

~35 Gg yr-1 in its pre-industrial, pre-phaseout and phaseout budgets [Montzka and 

Reimann et al., 2011; Saltzman et al., 2004; Yvon-Lewis et al., 2009]. Measurements in 

the firn air and ice core air bubbles from the Antarctic suggested that the atmospheric 

increase in the Southern Hemisphere during the 20th century could not be explained by 

the increase in anthropogenic emissions alone [Reeves 2003; Saltzman et al., 2004], 

suggesting emission rate of CH3Br from fumigation – agriculture uses might be 
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underestimated or there was an increase in natural emissions or a decrease in the 

atmospheric sinks during this period. Global atmospheric observations from 

NOAA/ESRL Global Monitoring Division indicate that the decline in the atmospheric 

CH3Br mixing ratio from the mid-1990s to the mid-2000s was larger than what was 

expected [Montzka et al., 2003], which also implies that there might be an underestimate 

of the anthropogenic emission, or an overestimate of the overall sinks. Yvon-Lewis et al. 

[2009] suggested that the enhanced decline of CH3Br from the end of 1990s to the 

beginning of the 2000s could be explained by elevated CH3Br mixing ratios in the 

atmosphere at 1998 due to decreased hydroxyl radical (OH) concentrations or enhanced 

biomass burning emissions. They also suggested that the anthropogenic emissions were 

slightly underestimated, and the emission fraction from the fumigation - non-Quarantine 

and Pre-Shipment (non-QPS) uses should be increased from 50% to 60%.  However, the 

increase in the anthropogenic emission cannot completely close the gap between the 

total emissions and total uptake rates in the CH3Br budget.  

The ocean, the largest source and the second largest sink of atmospheric CH3Br, 

plays a significant role in the global CH3Br cycling. In the early 1980s, the surface ocean 

was mis-interpreted to be highly supersaturated with respect to atmospheric CH3Br 

[Singh et al., 1983]. Improvements in the analytical technique and extended open ocean 

measurements allowed Lobert et al. [1995] to more accurately assess the CH3Br 

saturation anomaly in surface ocean. Their results suggested that the surface ocean was 

undersaturated with respect to atmospheric CH3Br and established a global net sea-to-air 

flux of -13 Gg yr-1. Observations in the surface ocean over the following several years 
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provided a more comprehensive picture of surface seawater CH3Br distribution in the 

global ocean [Groszko and Moore, 1998; King et al., 2000, 2002; Lobert et al., 1995, 

1996; Yvon-Lewis, 2002, 2004]. Due to the implementation of the Montreal Protocol and 

its amendments, atmospheric CH3Br is declining, which should lead to open-ocean 

surface seawater CH3Br becoming less undersaturated than that before the phaseout 

[Yvon-Lewis et al., 2009]. Results from ice core air bubble measurements [Saltzman et 

al., 2004] suggest that the ocean was a net small source to the atmospheric CH3Br in the 

pre-industrial era, which raises the question of whether or not it is possible that the ocean 

would become a net small source again if all the anthropogenic sources were eliminated.  

In contrast to the open ocean, the coastal ocean was observed to be highly 

supersaturated [Groszko and Moore, 1998; King  et al., 2000; Lobert et al., 1995; 

Sturrock et al., 2003]. Since the coastal ocean is highly influenced by human activities, 

river runoff and coastal terrestrial ecosystems, CH3Br emission rates could vary 

significantly among different coastal regions. It is necessary to make more coastal 

measurements in order to better characterize CH3Br emissions and uptake rates in the 

coastal ocean.  

1.2.2. Methyl chloride 

CH3Br and CH3Cl have similar chemical properties. It was reported that these 

two gases share a number of common sources, i.e., the ocean [Hu et al., 2010; Moore et 

al., 1996; Yvon-Lewis et al., 2009], biomass burning [Lobert et al., 1999; Yvon-Lewis et 

al., 2009], fungus [Lee-Taylor and Holland, 2000; Mead et al., 2008; Watling and 

Harper, 1998], salt marshes [Rhew et al., 2000], wetlands [Dimmer et al., 2001; Varner 
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et al., 1999], rice paddies [Lee-Taylor and Redeker, 2005], mangroves [Manley et al., 

2007] and tropical rainforest [Blei et al., 2010]. They also share common sinks, i.e. 

reaction with hydroxyl radicals [World Meteorological Organization (WMO), 2003, 

2007, 2011], uptake by the surface ocean [Moore, 2000; Moore et al., 1996], photolysis 

in the stratosphere [World Meteorological Organization (WMO), 2011] and uptake by 

soils [Keene et al., 1999; Keppler et al., 2005; Shorter et al., 1995]. Since atmospheric 

CH3Cl shares many common natural sources and sinks with atmospheric CH3Br, 

understanding the variability in atmospheric CH3Cl may provide insights into the natural 

emissions of CH3Br. 

The ocean is both a source and a sink to atmospheric CH3Cl. The global net 

efflux of CH3Cl from the warm waters to the atmosphere was estimated at 470 – 508 Gg 

yr-1 whereas the net influx from the atmosphere to the cold waters was estimated at 90 – 

150 Gg yr-1 [Moore, 2000; Yoshida et al., 2004]. Although the warm water is a net 

source to the atmospheric CH3Cl, it could also be a sink as well because the removal 

processes including hydrolysis and biological degradation may be ubiquitous in the 

surface ocean [Elliott and Rowland, 1995; Tokarczyk et al., 2003]. For cold waters, there 

is likely to be production of CH3Cl from the phytoplankton and thereby emissions from 

cold water to the atmosphere. To have a complete understanding on the role of the ocean 

in the atmospheric CH3Cl budget, it is necessary to provide separate estimations on the 

gross emission and gross uptake rates for the global surface ocean.  

One of the key parameters for determining the oceanic emission and oceanic 

uptake rates is the solubility coefficient. Elliott and Rowland [1993] first determined the 
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solubilities of CH3Cl in distilled water and seawater at 0 oC and 22 oC. Later, Moore et 

al. [1995] reported solubilities of CH3Cl at 0 – 6 oC in seawater. Moore [2000] improved 

the solubility parameterization by measuring the solubilities of CH3Cl in seawater for a 

temperature range from 5 – 25 oC. His results suggest that the solubility expressions 

from Elliott and Rowland [1993] and Moore et al. [1995] tend to overestimate the 

solubilities of CH3Cl. Although an improvement was made by Moore [2000], he did not 

include the salinity dependence in the solubility function. Applying the solubility 

expression from Moore [2000] in coastal areas could result in underestimation on the net 

sea-to-air fluxes. 

Emissions of CH3Cl from the coastal ocean to the atmosphere are poorly 

quantified. Since the coastal ocean is highly influenced by anthropogenic activities and 

river runoff from terrestrial ecosystems, the CH3Cl emissions from coastal ocean could 

be very different from those in the open ocean. 

1.2.3. Methane 

 CH4 originates from both natural and anthropogenic sources. The total 

atmospheric sources and sinks of CH4 were estimated at 580 Gg yr-1 [Denman et al., 

2007]. Methane clathrate hydrates, a crystalline solid consisting of water and mostly 

methane gas, are buried in the seafloor of continental margins and the Arctic permafrost. 

The total abundance of methane reserved in the form of gas hydrates is about 2 Χ 106 Tg 

in a global inventory [Boswell and Collett, 2011]. It is comparable to about 400 times the 

total mass of atmospheric methane [Ehhalt et al., 2001]. Although the methane clathrate 

hydrate is an enormous methane reservoir, little is known about methane emissions from 
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this reservoir to the atmosphere and how the emission rate responds to the climate 

change.  

The ocean is a small source of methane to the atmosphere, contributing about 1 – 

15 Tg yr-1 of methane to the atmosphere [Houweling et al., 2000; Rhee et al., 2009; 

Wuebbles and Hayhoe, 2002]. The interest in methane from marine environment is not 

due to the oceanic production of methane, but to understand the processes involving 

enormous methane additions from marine sediments to the water column and eventually 

to the atmosphere [Reeburgh 2007]. It is not clear how much methane reaches the 

atmosphere after it is emitted from the deep seafloor.   

1.3. Hypotheses 

The goal of this study is to improve the current understanding on the role of the 

ocean in the atmospheric budgets of methyl bromide, methyl chloride and methane. 

According to problems discussed above, we attempted to achieve our goal through the 

following aspects: 1) characterizing emissions of methyl halides from coastal ocean to 

the atmosphere; 2) quantifying the global net sea-to-air flux of methyl bromide after the 

fumigation – non-Quarantine and Pre-Shipment (non-QPS) phaseout; 3) including the 

salinity dependence into the solubility expression of methyl chloride and estimating its 

global oceanic emission and oceanic uptake rates; 4) finding out the origin of the 

“missing sources” of methyl halides and estimating the contribution of the ocean to their 

atmospheric budgets; and 5) improving our knowledge about deepwater gas hydrates as 

a source to the atmospheric methane budget. 
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Hypothesis I is that emissions of methyl bromide and methyl chloride from the 

coastal ocean to the atmosphere might be significant and they might contribute to the 

“missing sources” of atmospheric methyl bromide and methyl chloride. Emission rates 

or uptake rates of methyl bromide and methyl chloride in coastal ocean are different 

from those in the open ocean [Lobert et al., 1995; Moore et al., 1996; Tokarczyk et al., 

2001, 2003a, 2003b]. When estimating the global oceanic emission and uptake rates 

[King et al., 2002; Yvon-Lewis et al., 2009], the coastal-ocean area was not separated 

from the open-ocean area. Since methyl bromide is supersaturated in the coastal ocean 

[Lobert et al., 1995; Moore et al., 1996; Sturrock et al., 2003] whereas it is 

undersaturated in the open-ocean area, emission rates of methyl bromide in the coastal 

ocean could be higher than those in the open ocean. For methyl chloride, concentrations 

in the coastal ocean may be influenced by coastal salt marshes, which are a significant 

source for atmospheric methyl chloride [Rhew et al., 2000]. Thus, emissions of methyl 

chloride in coastal ocean may be higher than those in open ocean. However, the total 

global emissions of methyl bromide and methyl chloride from coastal area are not well 

quantified. It is possible that the coastal ocean may contribute to their “missing sources”.  

Hypothesis II is that saturation anomalies of methyl bromide are likely to become 

more positive at the end of the fumigation - non-QPS phaseout. In response of the 

fumigation - non-QPS phaseout, the atmospheric mixing ratio of CH3Br has been 

declining. This should lead to an increase in the saturation state of CH3Br in the surface 

ocean, assuming annual surface oceanic production rates, and biological, chemical and 

eddy degradation rate constants remain the same as they were before the phaseout 
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[Butler, 1994; Yvon-Lewis et al., 2009]. Since chemical and eddy degradation rate 

constants are a function of salinity, sea surface temperature (SST), thermocline 

temperature and mixed layer depth, it is easy to assume that they have not changed 

significantly since 1994. Annual production rates and biological degradation rate 

constants are unlikely to have changed since 1994, but this is less certain.   

Hypothesis III is that both warm waters and cold waters play dual roles in the 

atmospheric budget of CH3Cl. CH3Cl is consumed in aquatic environment via hydrolysis 

[Elliott and Rowland, 1995] and bacteria degradation [Tokarczyk et al., 2003a, 2003b]. It 

is also produced by phytoplankton [Sœmundsdόttir and Matrai, 1998; Scarratt and 

Moore, 1996, 1998]. Since production and consumption of CH3Cl are ubiquitous in the 

ocean, warm waters and cold waters should be both a source and a sink for atmospheric 

CH3Cl. However, there is no estimate about the gross emission and gross uptake rates of 

CH3Cl from warm and cold waters. 

Hypothesis IV is that the “missing sources” of CH3Br and CH3Cl are likely to be 

located in tropical terrestrial ecosystems. Warwick et al. [2006] evaluated the possible 

origins for the “missing sources” of CH3Br using a global three-dimensional chemical 

transport model. Based on their results, it suggests that the “missing sources” of CH3Br 

are likely either from tropical vegetation source or a double-strength biomass burning 

source. Blei et al. [2010] estimated a global net flux of CH3Br from tropical rainforests 

using their field measurements, which is about 20 Gg yr-1. Adding this source to the 

atmospheric budget of CH3Br will reduce the gap between its total sources and sinks. 

However, it cannot fully explain the imbalance in the CH3Br budget. It is possible that 
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the gross emissions of CH3Br from tropical rainforests are higher than the range they 

reported since the gross emission is equal to the sum of the net flux and the gross 

consumption rate. For CH3Cl, the gap between its total annual emission and its annual 

uptake rate was suggested to be closed by emissions from tropical plants and tropical 

leaf litter [Clerbaux and Cunnold et al., 2007; Xiao et al., 2007; Yoshida et al., 2004]. 

However, an imbalance in the atmospheric budget of CH3Cl was raised again due to a 

suggested higher soil uptake rate [Keppler et al., 2005]. It is possible that gross 

emissions of CH3Cl from terrestrial ecosystems are much higher than the prior estimates 

because of a higher uptake rate. Due to limited gross emission measurements from 

terrestrial ecosystems, there is no estimate on the total gross emission from terrestrial 

ecosystems currently.  

Fluxes of methane from deepwater hydrocarbon seeps are highly uncertain. They  

ranged from -6.6 to 10,500 μmol m-2 d-1 (e.g., Bange et al., 1994; Bange et al., 1996; 

Reeburgh et al., 2006; Schmale et al., 2005; Solomon et al., 2009). Fluxes reported in 

deepwater hydrocarbon plume area in the northern Gulf of Mexico [Solomon et al., 2009] 

were about three orders of magnitude higher than those reported from the previous 

studies from the Black sea [e.g., Reeburgh et al., 2006; Schmale et al., 2005]. Since 

Solomon et al. [2009] used a submersible to collect water-column samples adjacent to 

bubble plumes, this technique might be more capable to capture the hydrocarbon plumes 

compared to the traditional method - shipboard hydrocasts. Our hypothesis V is that 

using the traditional sampling technique (shipboard hydrocasts) may result in an 

underestimated methane fluxes from deepwater hydrocarbons seeps.  
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Sections 2 – 6 present our efforts to address those hypotheses and section 7 

summarizes the main findings of this dissertation. 
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2. COASTAL EMISSIONS OF METHYL BROMIDE AND METHYL 

CHLORIDE ALONG THE EASTERN GULF OF MEXICO AND THE EAST 

COAST OF THE UNITED STATES* 

 

2.1. Introduction 

 CH3Br and CH3Cl are the most abundant brominated and chlorinated gases in 

the troposphere [Khalil et al., 1999; Schauffler et al., 1993; Schauffler et al., 1999]. The 

global averaged mixing ratio of CH3Br is 7.9 ppt (parts per trillion) [World 

Meteorological Organization (WMO), 2007], representing > 50 % of total organic 

bromine in the troposphere [Schauffler et al., 1999], and the global averaged mixing 

ratio of CH3Cl in the troposphere is ~ 540 ppt, accounting for over 15 % of organic 

chlorine in the total tropospheric burden [Butler, 2000]. Both trace gases originate in 

large part from natural sources, and are transported to the stratosphere, releasing 

bromine and chlorine, which then destroy ozone catalytically. In the past twenty years, a 

lot of work has been done to quantify their sources and sinks. However, large 

uncertainties in their budgets remain. 

The ocean, as one of the major sources and one of the major sinks [Butler and 

 

__________________________ 

*Reproduced by permission of American Geophysical Union. Hu, L., S. A. Yvon-Lewis, Y. Liu, J. 
E. Salisbury, and J. E. O’Hern, Coastal emissions of methyl bromide and methyl chloride along 
the eastern Gulf of Mexico and the east coast of the United States, Global Biogeochem. Cycles, 
24, GB 1007, doi:10.1029/2009GB003514, 2009. Published [2009] American Geophysical 
Union. Not subject to U.S. copyright. 
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Rodriguez, 1996; Yvon-Lewis and Butler, 1997] for CH3Br, plays a significant role in its 

atmospheric budget. While the open ocean is a net sink for CH3Br with a net flux of -18 

(±4) Gg yr-1 [Groszko and Moore, 1998; King et al., 2002; King  et al., 2000; Lobert et 

al., 1995; Lobert et al., 1996; Moore et al., 1996; Yvon-Lewis et al., 2004], the coastal 

ocean exhibited significant supersaturations during previous studies [Groszko and Moore, 

1998; King  et al., 2000; Lobert et al., 1995; Low et al., 2003; Sturrock et al., 2003]. 

However, there were only a few samples collected in the coastal ocean during the 

previous investigations, resulting in a limitation of the data to represent the global 

coastal-ocean area. 

Until 1996 the largest source of CH3Cl to the atmosphere was thought to be the 

oceans [World Meteorological Organization (WMO), 2003]. However, most field studies 

and modeling work in recent years indicate that terrestrial plants in tropical regions are 

probably the largest source of CH3Cl and that the ocean source was overestimated [Li et 

al., 2001; World Meteorological Organization (WMO), 2007; Yoshida  et al., 2004] . 

The global net flux from the ocean to the atmosphere was estimated to be in the range of 

320 to 400 Gg yr-1 by Moore [2000]. Recalculation on the CH3Cl net sea-to-air flux was 

reported to be 350 Gg yr-1 by Yoshida  et al. [2004], using the empirical relationship 

between saturation anomaly and sea surface temperature and the Comprehensive Ocean-

Atmosphere Data Set (COADS) 2o × 2o grid of physical properties. The net sea-to-air 

flux of CH3Cl is higher in the tropics than in the mid-latitudes, and the ocean is a net 

sink in the cold waters beyond the latitude of 50o [Khalil et al., 1999; Moore, 2000; 

Yvon-Lewis et al., 2004]. In recent years, the coastal environment has received 



14 
 

increasing attention. Large sources of CH3Cl to the atmosphere were observed in coastal 

salt marshes and tropical coastal lands [Rhew et al., 2000; Yokouchi et al., 2002]. 

However, the coastal oceanic emission of CH3Cl has not been investigated.  

In this study, CH3Br and CH3Cl results are presented from continuous underway 

measurements in the atmosphere and surface seawater and from depth profile 

measurements along the eastern coast of Gulf of Mexico and the east coast of the U. S. 

during the period from July to August, 2007. The measurements are used to calculate the 

CH3Br and CH3Cl production rates in and subsequent emission from the coastal ocean, 

and to assess the contribution of the coastal region to the global atmospheric CH3Br and 

CH3Cl budgets. 

2.2. Methods 

 Measurements of CH3Br, CH3Cl and a suite of other halocarbons were made 

during the Gulf of Mexico and the East Coast Carbon (GOMECC) Cruise. The ship 

departed from Galveston, Texas on 10 July 2007, sailing east to Florida and then north 

along the east coast of U.S., arriving in Boston, Massachusetts on 4 August 2007. The 

cruise consisted of a series of 9 depth profile transects orthogonal to the coastline and a 

comprehensive set of underway measurements during the entire cruise (Figure 2.1). 

However, because of difficulties with the instruments, our measurements began five 

days after the departure of the ship. 

The analytical methods for CH3Br and CH3Cl were described in detail by King  

et al. [2000] and Yvon-Lewis et al. [2004] (Appendix A). Air samples were pumped  
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Figure 2.1. Cruise track of GOMECC cruise, 10 July – 4 August, 2007. Colored surface 

of the map indicates the elevation of the land and the bottom depth of the ocean. 

Contours with 200m, 1000m and 3000m water depths were labeled in the map. Region 

within 200m bottom depth was regarded as coastal ocean in our study; all the 

bathymetric data were downloaded from NOAA National Geophysical Data Center 

(http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html). Red dots mark Julian days 

along the cruise track and the numbers beside them are Julian days. Sampling stations on 

transects (T1-T9), are labeled with yellow dots.  
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continuously at ~ 6 L min-1 through 0.63cm ID Synflex tubing (Motion Industries, TX) 

mounted on the mast and running from the bow of the ship to the laboratory. Surface 

seawater was sampled by pumping it continuously through a Weiss-type equilibrator in 

which the recirculated headspace was periodically sampled. Both air and equilibrated 

headspace samples were dried through a Nafion dryer, then cryo-trapped, cryo-focused, 

and injected into a 60 m DB-VRX (J&W) column configured for back-flushing, 

followed by a mass spectrometer analysis. Air and equilibrator samples were analyzed 

alternately, ~ 40 min per sample. Calibration gas standards were analyzed after every 

fourth sample to calibrate the system. Calibration standards were whole air standards 

calibrated against standards from NOAA/ESRL Global Monitoring Division. 

Discrete seawater samples at different depths in each transect were collected 

from Niskin bottles into ground glass syringes, and then loaded to the volume calibrated 

glass bulbs. They were measured by a Gas Chromatography and Mass Spectrometry 

(GC-MS) system similar to the one described above for the saturation anomaly 

measurements (Appendix D). This instrument has a custom-built purge system that 

attaches to a Nafion dryer, with the rest of the analysis occurring as described above. 

The difference between the sequences in the saturation anomaly measurements and those 

in the depth profile measurements are the blanks which were included after every third 

sample to monitor the system when measuring the discrete samples. 

 Continuous underway chlorophyll-a, chromophoric dissolved organic matter 

(CDOM) and dissolved oxygen (DO) measurements were made in a black 80-liter tank 

continuously flushed with the ship’s scientific seawater, in which the analytical 
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instruments were submerged. A Wetlabs “Ecopuck” instrument was used to measure 

stimulated fluorescence of chlorophyll-a (µg L-1; λex=470nm, λem =695nm) and CDOM 

as calibrated by quinine sulfate (QSU; λex=370 nm, λex = 460nm). The instrument was 

factory calibrated prior to the cruise. DO was measured by an Aanderaa Optode sensor. 

The “Optode” underwent a 4-point calibration prior to deployment using Winkler 

titrations. 

2.3. Results and Discussion 

2.3.1. Air mixing ratios and sea surface concentrations 

The mean atmospheric mixing ratio of CH3Br is 10.1 ppt with a range of 5.6 – 

37.3 ppt, and the mean CH3Cl mixing ratio is 517 ppt, with a range of 406 - 1211 ppt 

(Figures 2.2a and 2.2b). The background mixing ratios in northern hemisphere were 8.3 

ppt for CH3Br and 529 ppt for CH3Cl during July and August 2007 (Montzka et al. [2003] 

and updates in ftp://ftp.cmdl.noaa.gov/hats/methylhalides). The mean atmospheric 

CH3Br from GOMECC is 22% higher than the hemispheric mean, but for CH3Cl the 

atmospheric mean from GOMECC is 2% lower than hemispheric mean. This along with 

the fact that the wind direction was predominately oceanic, suggests that the coastal 

ocean may be a significant source for CH3Br but it does not have a great impact on 

CH3Cl concentrations in the overlying air. 

Surface seawater concentrations reported here are from the measured partial 

pressures of surface seawater flowing through the equilibrator and corrected for any 

warming. Concentrations of CH3Br fell within 0.8 - 5.0 pM, representing saturation 

anomalies of – 45 % to 236 %. Enhanced concentrations were located at 28o N - 29o N  
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Figure 2.2. Underway measurements of CH3Br and CH3Cl in the air ( ) and sea surface 

waters ( ) (a and b); (c) saturation anomalies of CH3Br ( ) and CH3Cl ( ); the 

dash dot line indicates the saturated state; (d) sea surface temperature (SST) ( ) and 

salinity ( ); (e) stimulated fluorescence of chlorophyll-a ( ) and chromophoric 

dissolved organic matter (CDOM) ( ); and (f) dissolved oxygen (%) in logarithmic 

scale for y-axis; dark shadows indicate the transects. 
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along the west coast of Florida, 31o N - 32o N along the Georgia coast, and along the 

coast of New Jersey, Massachusetts and Rhode Island (Figures 2.1 and 2.2a). King  et al. 

[2000] observed that the averaged saturation anomaly of CH3Br in the southern Gulf of 

Mexico and Caribbean Sea was – 31 %, suggesting a net sink in these waters. We also 

found undersaturation at the end of transect 3, which is close to the location of the King  

et al. [2000] study (Figure 2.2c). In contrast to the sink term in open ocean, the mean 

saturation anomaly along the eastern coast of the Gulf of Mexico is 31 %. This agrees 

with the conclusion of the previous study of Saemundsdottir and Matrai [1998] that 

species which are strictly coastal or more abundant in coastal areas appear to be stronger 

producers of CH3Br than species that are more abundant in the open ocean. 

During GOMECC, most regions with elevated CH3Br also displayed increased 

stimulated fluorescence of chlorophyll-a and CDOM (Figure 2.2e). CDOM in coastal 

waters is primarily terrestrial in origin [Blough and Del Vecchio, 2002] and may indicate 

a source of CH3Br associated with the transport from wetland or salt marshes. However, 

not all regions with elevated CDOM displayed elevated dissolved CH3Br concentrations, 

making it difficult to correlate CH3Br with the terrestrial transport. Only the regions 

where the elevated CDOM coincided with elevated stimulated fluorescence of 

chlorophyll-a exhibited elevated dissolved CH3Br concentrations. A linear correlation 

(R=0.71) between the stimulated fluorescence of chlorophyll-a and sea surface 

concentrations of CH3Br exists along the east coast of the U.S., suggesting that CH3Br in 

this region comes from in situ biological processes. During transect 5, there was a 

dramatic drop in DO, corresponding with the large spikes in the stimulated fluorescence 
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of chlorophyll-a and the CH3Br concentration (Figures 2.2a, 2.2e and 2.2f). This 

suggests that CH3Br might be produced and/or released as a phytoplankton bloom ages.  

  The CH3Cl concentrations in surface seawater ranged from 61.5 to 179 pM, with 

a mean of 88.4 pM. Elevated seawater concentrations of CH3Cl were observed in the 

regions with elevated CH3Br, except for the outer banks of North Carolina during year 

days 204 to 206 (Figures 2.1 and 2.2b). This suggests that CH3Cl and CH3Br share some 

common sources, but they may also have their own specific producers. Differences may 

also be due, in part, to the different lifetimes for the two gases in seawater. The 

corresponding lower salinity, lower temperature and elevated CDOM observed outside 

of outer banks of North Carolina suggest that the CH3Cl enhancement in this region 

might be due to the terrestrially influenced freshwater input and sea surface cooling 

(Figures 2.2b, 2.2d and 2.2e). The saturation anomalies of CH3Cl fluctuated around 

100% until year day 208. Then, as the seawater concentration decreased and the air 

mixing ratio slightly increased, the saturation anomaly declined. 

In terrestrially influenced regions where the stimulated fluorescence of 

chlorophyll-a is also high, dissolved CH3Br concentrations are elevated, while CH3Cl 

concentrations appear slightly to substantially elevated in all terrestrially influenced 

regions as indicated by elevated CDOM. While CH3Cl and CH3Br both have wetland 

and salt marsh sources [Rhew et al., 2000; Varner et al., 1999], the degradation rate for 

CH3Br is faster than that for CH3Cl which may explain the lack of corresponding 

elevation in CH3Br where only  CH3Cl and CDOM are elevated.  The elevated CH3Br is 

observed where the stimulated fluorescence of chlorophyll-a is also elevated suggesting 



21 
 

that in situ production of CH3Br occurred in these regions but not in the other 

terrestrially influenced regions.  This does not preclude in situ CH3Cl production from 

occurring in the same regions, but we cannot separate the terrestrial influence from the 

possible in situ production for CH3Cl with the available data. 

2.3.2. Water column distribution 

         The calculated mixed layer depths using the method of Brainerd and Gregg [1995] 

were less than 50 meters in this cruise. Vertical distributions of CH3Br and CH3Cl show 

that the highest concentrations were in the subsurface water just below the mixed layer 

in transects 4, 5, 6 and 8 (Figures 2.3 and 2.4). This may result from enhanced chemical 

degradation and lower solubility due to the higher temperatures near the surface. The 

SST decreased from ~ 30o C to ~ 20o C from transect 4 to transect 9, reducing the 

degradation rate, increasing the solubility and allowing for higher dissolved 

concentrations to persist at the surface during transect 9 (Figures 2.2d, 2.3 and 2.4). The 

intensity and width of near surface maxima varies with different transects, depending on 

their localized sources and mixing conditions. 

The vertical distributions of CH3Br show higher concentrations in the coastal 

ocean than in the open ocean, except for transect 6, where elevated concentrations are 

present in both (Figure 2.3). This observation further supports the conclusion that 

production rates are higher in the coastal ocean than in the open ocean. For CH3Cl, it is 

elevated in open ocean regions (Figures 2.4a, 2.4b and 2.4c), which raises the question 

of whether phytoplankton communities in the open ocean might be more efficient at 

producing CH3Cl, compared to those of coastal waters. 
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Figure 2.3. Vertical distributions of CH3Br in transects 4, 5, 6, 8 and 9. 
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Figure 2.4.  Vertical distributions of CH3Cl in transects 4, 5, 6, 8 and 9. 
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2.3.3. Flux and production 

The net sea-to-air flux (F, nmol m-2 d-1) was calculated by the following equation: 

                                        )(
H

p

H

p
kF aw

w                                                     (2.1) 

where kw is gas transfer velocity, H is solubility (m3 atm mol-1), pw and pa are the partial 

pressures (atm) in the surface water and atmosphere. Wind speeds were measured with 

an anemometer at a height of 19m above the sea level, then normalized to a height of 

10m using the equation of Large and Pond [1982] and Erickson [1993] to calculate the 

gas transfer velocity [Wanninkhof, 1992]. The solubilities of CH3Br and CH3Cl were 

calculated following the method of De Bruyn and Saltzman [1997] and Moore [2000]. 

The net fluxes of CH3Br and CH3Cl are in the range of -3.5 to 10.8 nmol m-2 d-1 and -5.9 

to 348 nmol m-2 d-1. The CH3Br flux is controlled by the saturation state of the seawater, 

while the variation in the flux of CH3Cl appears to be driven mainly by variations of 

wind speeds (Figures 2.2c, 2.5a and 2.5b). 

           Assuming the ocean is at a steady state, the production rate should be equal to the 

rate needed to balance the sum of the degradation rate and the net flux. However, the 

ocean does not achieve thermal equilibrium in most situations. Surface cooling or 

warming would affect the saturation anomaly and the production calculation. Therefore, 

the saturation anomaly of CFC-11 was used to correct the thermal effect Yvon-Lewis et 

al. [2004] and the net production rate was calculated by the corrected net flux and 

degradation rate, as shown below: 
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where P is production rate (mol m-3 d-1); Δ is saturation anomaly of CH3Br or CH3Cl; 

ΔCFC-11 is saturation anomaly of CFC-11; z is mixed layer depth (m); Cw is surface 

seawater concentration; kchem and kbio are the chemical and biological degradation 

constants (d-1). The rest of the parameters are defined above. Chemical degradation of 

CH3Br and CH3Cl, varying from 0.03 to 0.53 d-1and 0 to 0.05 d-1 in this study, were 

calculated using the equations from King and Saltzman [1997] and Mabey and Mill 

[1978]. Biological degradation constant of CH3Br was from King and Saltzman [1997], 

0.11 d-1 off the coast of Florida during the summer. For CH3Cl, the biological 

degradation constant, 0.085 d-1, was from the averaged biological degradation rate 

constant in July in the study of [Tokarczyk  et al., 2003], which is the only study on the 

biological degradation off the coast. 

The distributions of calculated CH3Br and CH3Cl production rates appear similar 

except for the spike in CH3Cl production before transect 6 (Figure 2.5c), where 

terrestrial transport, as discussed earlier, may have influenced the CH3Cl concentrations. 

A linear regression analysis of the production rates shows a linear fit through the data 

with correlation coefficient of 0.47 (n=287) indicating correlation within 95% 

confidence levels [Emery and Thomson, 2001]. This correlation coefficient increases to 

0.75 after we removed the spike in CH3Cl production extending from year day 202.8 to 

204.9. Scarratt and Moore [1998] tested nine phytoplankton species, most of which are 

common in the open ocean, and found that CH3Cl and CH3Br were produced in all 

cultures, except CH3Br was absent in cultures of Tetraselmis sp. and Isochrysis sp. This 

good correlation between the calculated production rates of CH3Br and CH3Cl in our 
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Figure 2.5. (a) 24-h averaged wind speed at 10m before sampling; (b) calculated sea-to-

air fluxes of CH3Br ( ) and CH3Cl (x); (c) calculated production rates of CH3Br in the 

coastal ocean ( ) and the open ocean (  ), and calculated production rates of CH3Cl in 

the coastal ocean ( ) and the open ocean ( ); (d) calculated emissions for CH3Br in the 

coastal ocean ( ) and the open ocean ( ), and calculated emissions for CH3Cl in the 

coastal ocean ( ) and the open ocean( ). 
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study suggests that CH3Br and CH3Cl also have some common sources in the coastal 

ocean. 

2.3.4 Estimating total coastal emissions 

  The area of the coastal ocean, defined as the area with bottom depth less than 

200m, was determined from bathymetric data from the NOAA National Geophysical 

Data Center (http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html). The mean value of 

the calculated production rates of CH3Br for the coastal oceans in this study is 0.76 nmol 

m-3 d-1, which is much higher than the global open ocean production rate, 0.15 nmol m-3 

d-1 [Yvon-Lewis and Butler, 2002]. The calculated coastal CH3Cl production rate ranges 

from 4.5 to 67nmol m-3 d-1 with a mean value of 18 nmol m-3 d-1. 

           Emission is defined as the amount of gas which is produced in the ocean and 

emitted to the atmosphere. It is calculated from the following equation: 

                   zRPE uncorr )1(                                                        (2.3) 

where E is emission from the ocean (mol m-2 d-1); Puncorr is uncorrected production rate, 

which is calculated from equation (2.2) using the uncorrected saturation anomaly; and R 

is the fraction of gas entering the water that is destroyed before exiting to the atmosphere 

[Butler, 1994].  

The entire cruise track was divided into four regions, each spanning five degrees of 

latitude, to capture the regional variations. Regionally averaged emissions were 

enhanced within the 30o N - 35o N area (Table 2.1). The calculated emission from the 

entire GOMECC coastal region ranged from 0.01 to 0.06 Gg yr-1 for CH3Br and 0.3 to 

1.6 Gg yr-1 for CH3Cl (Table 2.1). The global coastal-ocean area is approximately 
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27.123 x 106 km2, accounting for 7.4 % of global ocean area [Menard and Smith, 1966]. 

Assuming that the GOMECC area is representative of the global coastal-ocean region, 

the extrapolated global coastal-oceanic emissions range from 0.5 to 3.6 Gg yr-1 for 

CH3Br and from 19 to 98 Gg yr-1 for CH3Cl.  Using the same method, the extrapolated 

global coastal-ocean fluxes are estimated to be in the range of -0.9 to 3.4 Gg yr-1 and 12 

to 94 Gg yr-1 for CH3Br and CH3Cl.  For CH3Cl, the global open-oceanic emission 

ranges from 1284 to 1364 Gg yr-1 as calculated from the global net flux of 320 to 400 Gg 

yr-1 [Moore, 2000], the partial atmospheric lifetime with respect to oceanic loss of 4.1 

years [Tokarczyk et al., 2003] and its averaged global atmospheric mixing ratio, 536 ppt, 

from NOAA/ESRL Global Monitoring Division 

(ftp://ftp.cmdl.noaa.gov/hats/methylhalides).  For CH3Br, it is more complicated.  With 

the decline in atmospheric concentrations since the implementation of the Montreal 

Protocol, the global net flux of CH3Br has likely changed since the previous global 

estimates of net flux were determined [Yvon-Lewis et al., 2009]. Comparing the 

extrapolated coastal-ocean net fluxes determined in this study to the pre-phaseout global 

ocean net fluxes is not a valid comparison. However, the oceanic production rate and 

emission are not functions of the atmospheric concentration and should not have 

changed. Therefore, the global oceanic emission of 42 Gg yr-1 determined by Yvon-

Lewis et al. [2009] remains the best estimate.  Including the coastal-oceanic emissions of 

CH3Br and CH3Cl will increase the global oceanic emissions by 1% - 9% and 1% - 8%, 

respectively.  
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Table 2.1. Estimated coastal emissions of CH3Br and CH3Cl. 

Region Area (km2) 
 CH3Br  CH3Cl 

 
Emission 

(nmol m-2 d-1) 
Annual Emission 

(Gg yr-1)  
Emission 

(nmol m-2 d-1) 
Annual Emission 

(Gg yr-1) 

I (Latitude <30oN) 1.82 x 105  1.5 (0.9-2.8) 0.01 (0.004-0.02)  119 (52-192) 0.4 (0.2 - 0.6) 

II (Latitude 30~35oN) 8.50 x 104  3.7 (0.9-12) 0.01 (0.003-0.04)  202 (63-349) 0.3 (1.0-5.4) 

III (Latitude 35~40oN) 6.58 x 104  1.4 (0.6-2.5) 0.003 (0.001-
0.006)  95 (38-351) 0.1 (0.04-0.4) 

IV (Latitude > 40oN) 1.18 x 105  0.2 (0-0.5) 0.001 (0-0.002)  8.3 (1.1-28) 0.02 (0-0.06) 

GOMECC coastal total 4.52 x 105  - 0.02 (0.01-0.06)  - 0.8 (0.3-1.6) 

Global coastal ocean 27.123 x 106   - 1.4 (0.5-3.6)  - 50 (19-98) 
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          The GOMECC data represent a much larger coastal area than the few previous 

coastal studies covered [Baker et al., 1998; Sturrock et al., 2003]. For CH3Br, the results 

presented here fall within the range of data reported in the other studies (Table 2.2). 

However, the saturation anomalies of CH3Br off the coast of Tasmania [Sturrock et al., 

2003] were substantially higher than those in our study which suggests that coastal 

emissions may have significant regional variability and limit the ability to extrapolate 

the emission from any one region. In addition, there has been no investigation of the 

coastal-ocean emissions from high latitudes. Our knowledge of the seasonality of CH3Br 

and CH3Cl emissions from the coastal ocean is limited. Baker et al. [1999] observed a 

seasonal cycle in coastal waters of the southern North Sea for CH3Br but no seasonal 

pattern was observed in the Tasmanian data of Sturrock et al. [2003]. Khalil and 

Rasmussen [1999] found seasonal variation at various latitudes in the atmosphere for 

CH3Cl, but there was no seasonal study of CH3Cl in seawater. Therefore, large 

uncertainties in these estimated global coastal emissions arise from the limited spatial 

and temporal coverage of our dataset and are difficult to quantify using the current data. 

2.4. Conclusions 

The coastal ocean is a highly productive region for CH3Br, and it may also be 

highly productive for CH3Cl based on its large range of calculated production rates. 

Elevated concentrations of CH3Br might be due to enhanced biological processes, and 

elevated CH3Cl in seawater might be associated with biological processes and terrestrial 

transport. The vertical distributions showed that the waters with elevated CH3Br and 

CH3Cl in the investigated transects were located in the subsurface, just below the mixed
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Table 2.2. Comparison of CH3Br measurements in different coastal regions. 

Region Time 
Atmospheric 
Mixing Ratio 

(ppt) 

Seawater 
Concentration 

(pM) 

Saturation 
Anomaly (%) Reference 

GOMECC (Coastal) 10 Jul- 4 Aug, 
2007 10.5 (5.6-37.3) 1.9 (0.8-5.0) 30 (-45-236) This study 

Coastal Nova Scotia Oct-Nov, 1995 11.4-13.0 1.5-2.5 9 Groszko and 
Moore, 1998 

Coastal Water of the 
North Sea 

Feb, 1996 – 
Feb,1997 9.5-25.5 2-8.7 -60-200 Baker et al., 

1999 

Subtropical/ temperate 
NE Pacific (coastal) 

7 May -7 Jul, 
2000 12.16 2.66 30 King et al., 2000 

Coastal waters off 
Tasmania 

Mar, 2000 -Sep, 
2002 6-24 0-26 -50-1200 Sturrock et al., 

2003 
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layer, which may be due to more rapid degradation in the surface layer. Evidence from 

the correlation of calculated production rates indicates that some common sources for 

CH3Br and CH3Cl exist in the coastal ocean. Including the emissions of CH3Br and 

CH3Cl from the coastal area of the ocean may increase the estimates for global oceanic 

emissions of these gases by 1% - 9% and 1% - 8%. Although there are substantial 

uncertainties in the global coastal estimates due to the limited amount of data 

representing global coastal regimes and a lack of information on seasonal variation, 

these results provide an initial approximation of the contribution of the coastal ocean to 

the budgets of these gases. More investigations in coastal ocean regions including 

seasonal variations for CH3Br and CH3Cl are needed in order to obtain a more accurate 

assessment of their coastal emissions. 
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3. THE OCEAN IN NEAR EQUILIBRIUM WITH ATMOSPHERIC METHYL 

BROMIDE* 

 

3.1. Introduction 

CH3Br, an important ozone-depleting substance (ODS), contributes about 34% of 

the total stratospheric bromine [Montzka and Reimann, 2011]. As the abundances and 

emissions of most ODSs decrease, the total tropospheric burden of organic chlorine and 

organic bromine are declining. Unlike other ODSs controlled by the Montreal Protocol, 

CH3Br has both anthropogenic and natural sources. Since a significant portion of CH3Br 

is emitted from natural sources [Montzka and Reimann, 2011; Yvon-Lewis et al., 2009], 

the relative importance of natural CH3Br in stratospheric ozone depletion will increase 

with the declining anthropogenic chlorine and bromine sources. 

The ocean is the largest source and second largest sink for atmospheric CH3Br 

[World Meteorological Organization (WMO), 2003; Yvon-Lewis et al., 2009]. The 

current best estimate for the pre-phaseout global emission of CH3Br from the ocean is 42 

Gg yr-1 [Yvon-Lewis et al., 2009]. Phytoplankton are thought to be the primary source of 

CH3Br in the surface ocean [Saemundsdottir and Matrai, 1998; Scarratt and Moore, 

1996, 1998]. CH3Br is also removed chemically and biologically in the ocean.  The 

 

_________________________ 

*Reproduced by permission of American Geophysical Union. Hu, L., S. A. Yvon-Lewis, Y. Liu, 
and T. S. Bianchi, The ocean in near equilibrium with atmospheric methyl bromide (submitted), 
Global Biogeochem. Cycles. Not subject to U.S. copyright. 
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chemical degradation of CH3Br includes hydrolysis and chloride substitution, 

whichdepend on the in-situ temperature and salinity [King and Saltzman, 1997]. 

Biological degradation rate constants measured in the coastal and open ocean generally 

range from 0 to 0.26 d-1 [King and Saltzman, 1997; Tokarczyk and Saltzman, 2001; 

Tokarczyk et al., 2001; Tokarczyk  et al., 2003]. It was widely observed that CH3Br was 

undersaturated in the open ocean [Groszko and Moore, 1998; King et al., 2002;  Lobert 

et al., 1996; Yvon-Lewis et al., 2004], in contrast to the coastal ocean which is 

supersaturated with respect to CH3Br [Hu et al., 2010; Lobert et al., 1995; Sturrock et 

al., 2003]. The global net sea-to-air flux, including both the open ocean and the coastal 

ocean, was estimated at -20 Gg yr-1 to -10 Gg yr-1 before 1998 [Groszko and Moore, 

1998; King et al., 2002; King  et al., 2000; Lobert et al., 1995; Yvon-Lewis et al., 2009].  

Because of the implementation of the Montreal Protocol and its amendments 

which called for the phaseout of fumigation - non-Quarantine and Pre-Shipment (non-

QPS) uses of CH3Br, the atmospheric mixing ratio of CH3Br has been declining 

[Montzka and Reimann, 2011]. This should lead to an increase in the saturation state of 

CH3Br in the surface ocean, assuming surface ocean annual production rates, and 

biological, chemical and eddy degradation rate constants remain the same as they were 

before the phaseout [Butler, 1994; Yvon-Lewis et al., 2009]. Since chemical and eddy 

degradation rate constants are a function of salinity, sea surface temperature (SST), 

thermocline temperature and mixed layer depth, it is easy to assume that they have not 

changed significantly since 1994. Annual production rates and biological degradation 

rate constants are unlikely to have changed since 1994, but this is less certain.   
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In this study, we selected the cruise tracks similar to those covered during the 

Bromine Latitudinal Air-Sea Transect I and II (BLAST I and II) cruises (Figure 3.1) to 

determine the current global saturation state of CH3Br in the surface ocean near the end 

of its fumigation-non-QPS phaseout. Another goal of this study was to assess the 

validity of the assumption in the prior modeling studies [Butler, 1994; Yvon-Lewis et al., 

2009] that annual production rates and biological degradation rate constants remain 

constant over time.  

3. 2. Methods 

The Halocarbon Air-Sea Transect - Pacific/Atlantic (HalocAST - P/A) cruises 

were conducted aboard R/V Thomas G. Thompson and the FS Polarstern, respectively. 

The HalocAST - P cruise, which had an almost identical cruise track to BLAST I (1/26 – 

2/28, 1994), started from Punta Arenas, Chile, on 30 March, 2010 and ended in Seattle, 

Washington, US, on 27 April, 2010 (Figure 3.1). The HalocAST-A cruise, which 

covered a similar latitudinal range as BLAST II (10/18 – 11/21, 1994) but in the eastern 

Atlantic, departed from Bremerhaven, Germany, on 25 October, 2010 and arrived in 

Cape Town, South Africa, on 26 November, 2010 (Figure 3.1).    

Continuous underway salinity, sea surface temperature (SST), wind speed, wind 

direction, air temperature and relative humidity data were collected for both cruises. 

Additional measurements include halocarbon air-sea measurements (including CH3Br 

and other 19 halocarbon compounds), CH3Br degradation rate constant measurements 

and plant pigment measurements. 
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Figure 3.1. Cruise tracks of BLAST I ( ), BLAST II ( ), HalocAST-P ( ) and 

HalocAST-A ( ). Horizontal black lines along the cruise track indicate the edges of 

specified oceanic regions: (1) open ocean, (2) coastal and nearshore, (3) upwelling, and 

(4) inland passage. The division on the oceanic regions is from Lobert et al. [1995, 

1996].  
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CH3Br and a suite of other halocarbons were measured continuously in air and 

surface seawater using gas chromatograph with a mass spectrometer (GC-MS), equipped 

with a Weiss-type equilibrator. The details of the analytical system were described in Hu 

et al. [2010] (Appendices A and C). The only difference from the old analytical system 

[Hu et al., 2010] is that the GC column was changed from a DB-VRX (I.D. 0.25 mm; 

Length 60 m; Film 1.4 μm) to a narrow bore DB-VRX (I.D. 0.18 mm; Length 40 m; 

Film 1.0 μm) column prior to the HalocAST - P/A cruises. The new column allowed for 

better separation and shorter chromatograms. The instrument was calibrated using two 

whole-air standards which were calibrated against a whole air standard from 

NOAA/ESRL Global Monitoring Division using the NOAA-03 scale 

(http://www.esrl.noaa.gov/gmd/ccl/scales.html). The reported concentrations in the air or 

surface seawater are expressed as dry air mole fractions (parts-per-trillion, ppt) and 

equilibrated dry gas mole fractions (ppt). The instrumental precision for CH3Br was 

4.7% (1σ) during HalocAST-P and 0.8% (1σ) during HalocAST-A.  A better precision 

during HalocAST-A was because we changed a new filament in the mass spectrometer 

during this cruise.  

 Measurements of CH3Br degradation rates were conducted in the eastern Atlantic 

during HalocAST-A. Samples were collected daily between 1200 and 1300 (local time) 

using the flow-through system on the ship. The inlet was located 4 m below the sea 

surface. The flow-through system was flushed with seawater continuously. Each sample 

was divided into 2 to 4 aliquots. One was filtered through 0.2 μm MediaKap Hollow 

Fiber Media Filter and used to determine the chemical degradation rate. Another one to 
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three aliquots were passed through 63 μm pore size mesh to remove the big particles and 

used to measure the total degradation rate. The biological degradation rate was 

determined by the difference between the total degradation rate and the chemical 

degradation rate. The degradation rate constants were measured by a stable isotope 

incubation technique which was described by King and Saltzman [1997], Tokarczyk and 

Saltzman [2001] and Tokarczyk et al. [2001]. The isotopic fractionation factor of 

12k/13k=1.074 from King and Saltzman [1997] was used to correct the measured 13C rate 

constants to 12C rate constants. The uncertainty of the measurement was < 0.01 d-1 and 

the precision between aliquots was 0.01 - 0.06 (mean: 0.03) d-1. 

All plant pigment samples were filtered through GF/F filters (nominal pore size = 

0.7 m), stored in a -80 oC freezer on-board ship and brought back to the laboratory for 

analysis. Pigments were extracted according to the methods of Wright et al. [1991]. The 

extracted pigments were analyzed using a Waters HPLC (high-performance liquid 

chromatograph) with a 996 Photodiode array detector and a Shimadzu RF 535 

Fluorescence detector (excitation set at 440 nm and emission set at 660 nm). The 

pigments were separated on a reverse phase Alltech Adsorbosphere C18 column (5 µm, 

250 mm x 4.6 mm i.d.) using the gradient flow described by Chen et al. [2003].  A total 

of 18 dominant pigments, including total chlorophyll a (chlorophyll a+ 

divinylchlorophyll a), chlorophyll b, c2 and c3, total carotene (α + β), peridinin, 19-

butanoyloxyfucoxanthin, fucoxanthin, 19-hexanoyloxyfucoxanthin, prasinoxanthin, 

pheophorbide a, violaxanthin, diadinoxanthin, alloxanthin, diatoxanthin, lutein, 
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pheophytin a, and zeaxanthin, was measured with a detection limit ≤ 1.0 nmol L-1 and an 

average precision of 4.0 % (1σ). 

3.3. Results and discussion 

3.3.1. Air and water concentrations and saturation anomalies 

Atmospheric mixing ratios of CH3Br ranged from 5.36 to 11.2 ppt (mean 7.49; 

sd. 0.85) for HalocAST-P (Figure 3.2a) and 6.28 to 9.04 ppt (mean 7.38; sd. 0.60) for 

HalocAST-A (Figure 3.3a). It is evident that the CH3Br mixing ratios in the air have 

decreased more in the Northern Hemisphere (NH) than those in the Southern 

Hemisphere (SH) when compared to the pre-phaseout (BLAST I and II) values (Figures 

3.2a and 3.3a; Table 3.1). The interhemispheric ratio of CH3Br (NH/SH) was also lower 

than it was during the pre-phaseout BLAST cruises (Table 3.1). These are consistent 

with the atmospheric CH3Br observations from NOAA/ESRL Global Monitoring 

Division (see ftp://ftp.cmdl.noaa.gov/hats/methylhalides/ch3br/) and the decreasing 

anthropogenic emission. A larger decline of CH3Br mixing ratios in the NH than that in 

the SH is due to a larger reduction in the anthropogenic emissions in the NH compared 

to that in the SH (http://ozone.unep.org/Data_Reporting/Data_Access/).  

Saturation anomaly (Δ%) is defined as the percent difference between the partial 

pressure of a trace gas in surface seawater (pw) and air (pa): 

                                       100(%) 



a

aw

p

pp .                                               (3.1) 

 where, partial pressures in the air or surface seawater were calculated by equations (3.2 

– 3.3). 
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Figure 3.2. (a) CH3Br atmospheric mixing ratios; (b) equilibrated dry gas mole fractions 

of CH3Br in surface seawater and (c) saturation anomalies of CH3Br in surface ocean for 

BLAST I (■) and HalocAST-P (●). The numbers between the dashed vertical lines 

indicate different oceanic regions with 1 = open ocean, 2 = coastal and coastal influential 

region, 3 = upwelling and 4 = inland passage. 
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Figure 3.3. (a) CH3Br atmospheric mixing ratios; (b) equilibrated dry gas mole fractions 

of CH3Br in surface seawater and (c) saturation anomalies of CH3Br in surface ocean for 

BLAST II (x) and HalocAST-A (■). The numbers between the dashed vertical lines 

indicate different oceanic regions with 1 = open ocean, 2 = coastal and coastal influential 

region and 3 = upwelling region. 
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Table 3.1. Hemispheric and global mean atmospheric mixing ratios of CH3Br and the 

interhemispheric ratios (IHR) during BLAST I, BLAST II, HalocAST-P and HalocAST-

A. 

Cruises Time Period NH (ppt) SH 
(ppt) 

Global 
(ppt) 

IHR 
(NH/SH) 

BLAST I Jan-Feb, 1994 11.1 8.55 9.62 1.29 

HalocAST-P Mar-Apr, 2010 7.85 7.31 7.52 1.07 

BLAST II Oct-Nov, 1994 11.5 9.79 10.5 1.18 

HalocAST-A Oct-Nov, 2010 8.02 7.00 7.50 1.15 
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)
100

( vptaa p
RH

pp                                                    (3.2) 

)
100

( vptww p
RH

pp                                                   (3.3) 

where, χa stands for dry air mole fractions or atmospheric mixing ratios, χw stands for 

equilibrated dry gas mole fractions for surface seawater, pt stands for surface 

atmospheric pressure, pvp is water vapor pressure calculated by the formula given by 

Weiss and Price [1980], and RH stands for the relative humidity. To compare the CH3Br 

surface seawater concentrations and the saturation anomalies from this study to previous 

studies, we used the same water mass designations of open-ocean, coastal and coastal-

influential region, upwelling and inland passage as Lobert et al. [1995, 1996]. In most 

regions, the equilibrated dry gas mole fractions of CH3Br in surface seawater observed 

during the current study were not significantly different than those observed during 

BLAST I and II (Figures 3.2b and 3.3b; Table 3.2). However, the data showed an 

increase over the last 16 years in the saturation anomalies in the open ocean for both 

cruises (Figures 3.2 and 3.3) and  in upwelling region of HalocAST-A (Figure 3.3) but 

little change in the inland passage, overlapped coastal and coastal influential regions and 

upwelling regions of HalocAST-P (Figure 3.2). The reason that the mean saturation 

anomaly in the coastal and coastal influential regions during HalocAST-P was about 

10% lower than that during BLAST I (Table 3.2) is because saturation anomalies of 

CH3Br in the coastal areas above 35 oN during HalocAST-P are much lower than those 

during BLAST I because of different locations (Figure 3.1). The most noticeable 

increase for saturation anomalies was observed in the open ocean region with a 24.7% 
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Table 3.2. Mean equilibrated dry gas mole fractions of CH3Br in surface seawater, mean 

saturation anomalies (ΔCH3Br) and mean corrected saturation anomalies (ΔCH3Br -ΔCFC-11) 

in open ocean, coastal ocean and upwelling areas during BLAST I/II and HalocAST-

P/A. 

 BLAST I HalocAST-P BLAST II a HalocAST-Aa 

Open Ocean     
Water (ppt) 7.73 7.70 8.64 7.66 
ΔCH3Br (%) -21.8 2.9 -23.5 -2.3 

ΔCH3Br -ΔCFC-11 (%) -24.6 0.7 -25.0 - 6.0 
Coastal     

Water (ppt) 12.1 10.3 10.6 n.a.b 
ΔCH3Br (%) 40.3 29.5 11.2 n.a.b 

ΔCH3Br -ΔCFC-11 (%) 37.1 27.3 7.3 n.a.b 
Upwelling     
Water (ppt) 9.80 7.66 8.67 7.61 
ΔCH3Br (%) 1.4 0.4 -12.0 3.7 

ΔCH3Br -ΔCFC-11 (%) 2.6 1.3 -12.6 -1.3 

aExclude the data between 13o - 30o S, where elevated CH3Br was observed during HalocAST-A; 
bNot applicable. 
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increase between BLAST I and HalocAST-P and a 21.2% increase between BLAST II 

and HalocAST-A (Table 3.2).  

The change of the saturation anomalies is not only controlled by the change of 

atmospheric mixing ratios, it is also affected by other physical processes, i.e. surface 

cooling or warming, mixing of water masses and injection of air bubbles [Butler et al., 

1991]. The physical effect on saturation anomalies could be corrected by conservative 

tracers (i.e. cholorofluorocarbon-11, CFC-11) when the molecular diffusivity, the 

solubility and the response of the solubility to the temperature change are similar 

between the trace gas and the conservative tracer [Butler et al., 1991]. The previous 

studies [Hu et al., 2010; Lobert et al., 1995, 1996; Yvon-Lewis et al., 2004] use 

saturation anomalies of CFC-11 to correct saturation anomalies of CH3Br. Although the 

atmospheric CFC-11 is declining, the declining rate, ~2 ppt/yr [Montzka and Reimann, 

2011], is relatively slow compare to the time needed to reach equilibrium with surface 

ocean (Warner and Weiss [1985] reported that, at temperatures from 0 to 40 oC, seawater 

or freshwater needs less than 16 hours to reach equilibrium with headspace CFC-11, 

which had concentrations ten times the ambient), indicating that the surface ocean 

should be in near equilibrium with atmospheric CFC-11 in 2010. Therefore, it can still 

be used to correct the effect of physical processes on the saturation anomalies of CH3Br 

in 2010. Corrected saturation anomalies show similar magnitude of increase in the open 

ocean and upwelling areas as the uncorrected saturation anomalies (Table 3.2). Although 

the diffusivity and the response of the solubility to the temperature change are similar 

between CH3Br and CFC-11 [De Bruyn and Saltzman, 1997a, b; Hayduk and Laudie, 
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1974; Warner and Weiss, 1985], the CFC-11 correction on the saturation anomalies 

cannot completely compensate the effect of the physical processes on the CH3Br 

saturation anomalies since the absolute solubility of CH3Br is two orders higher than the 

solubility of CFC-11. Therefore, it is worth noting that the errors of corrected saturation 

anomalies during HalocAST could be larger than those during BLAST since the 

magnitude of saturation anomalies between CH3Br and CFC-11 were close in the open 

ocean and upwelling areas in the HalocAST studies.       

During HalocAST-A, a large increase in surface seawater CH3Br was observed 

between 13o S and 30o S in the eastern Atlantic. The equilibrated dry gas mole fraction of 

CH3Br in surface seawater reached 106 ppt with 1040% of supersaturation. Correlation 

of surface seawater CH3Br with chlorophyll c2, c3, fucoxanthin, 19-

hexanoyloxyfucoxanthin, 19-butanoyloxyfucoxantin, diadinoxanthin, peridinin, 

pheophorbide a and pheophytin a (r > 0.58; p = 0.00; n=25) at a 95% confidence level 

and no correlation with other pigments (r < 0.32; p > 0.12; n=25) (Figure 3.4) suggest 

that elevated CH3Br was associated with two main algal groups, prymnesiophytes and 

dinoflagellates [Jeffrey et al., 1997]. Laboratory culture studies [Saemundsdottir and 

Matrai, 1998; Scarratt and Moore, 1996, 1998] suggest that CH3Br is produced in both 

coastal and open ocean areas and that the ubiquitous species, Emiliania huxleyi and 

Phaeocystis sp., can produce CH3Br at significant rates. The presence of the signature 

pigments of these two species, 19-hexanoyloxyfucoxanthin, chlorophyll c3, fucoxanthin, 

19-butanoyloxyfucoxantin, and their accessory pigments, chlorophyll c2 and 

diadinoxanthin [Antajan et al., 2004; Garrido and Zapata, 1998; Llewellyn and Gibb,  
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Figure 3.4. Latitudinal distributions of plant pigment concentrations in the surface of the 

eastern Atlantic; a) pigments which were correlated with surface seawater CH3Br: 

chorophyll c2 ( ), chlorophyll c3 ( ), fucoxanthin ( ), peridinin 

( ), 19-butanoyloxyfucoxanthin ( ), 19-hexanoyloxyfucoxanthin ( ), 

diadinoxanthin ( ), pheophorbide a ( ) and pheophytin a ( ); b) 

pigments which were not correlated with surface seawater CH3Br: total chlorophyll 

( ), chlorophyll a ( ), chlorophyll b ( ), total carotene ( ), 

zeaxanthin ( ), diatoxanthin ( ), violaxanthin ( ), alloxanthin 

( ) and lutein ( ). 
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2000; Schoemann et al., 2005], suggest these two species were likely contributors to the 

high concentrations of CH3Br. However, we could not exclude the possibility of other 

prymnesiophytes and dinoflagellates species, which could also contribute to the elevated 

seawater CH3Br. The most abundant pigment at this location, pheophorbide a, is a 

chlorophyll degradation product, which can be produced by macrocrustaceans grazing 

on Phaeocystis c.f. puchetii [Vernet et al., 1996], conversion from ingested chlorophyll a 

by macrozooplankton and microzooplankton [Goericke et al., 2000; Welschmeyer and 

Lorenzen, 1985], Phaeocystis autolysis, and senescent diatoms or Phaeocystis [Head et 

al., 1994]. High correlation between pheophorbide a and surface seawater CH3Br (r = 

0.75; p = 0.00; n=25), along with the presence of the signature pigments of Phaeocystis 

sp., suggests that elevated CH3Br was at least partly associated with Phaeocystis sp., 

some of which were grazed by zooplankton, or at the senescent stage or underwent 

autolysis.   

3.3.2. Loss rate constants 

CH3Br loss rate constants were measured in the eastern Atlantic during 

HalocAST-A. Chemical loss rate constants, determined using filtered seawater samples, 

were normalized to a salinity of 35 and compared with the calculated values from the 

rate expression of King and Saltzman [1997]. Ninety percent of the measured chemical 

loss rate constants lay within ± 0.03 d-1 (or ± 20%) of the calculated rate constants. 

Biological loss rate constants, determined by subtracting the chemical loss rate 

constants from the total loss rate constants, were in the range of 0 to 0.24 (mean 0.09; sd. 

0.06) d-1. They contributed 0 to 73% of the total loss rate. Tokarczyk and Saltzman 
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[2001] measured biological loss rate constants in some of the same areas as the current 

study during the Gas Exchange Experiment (GasEx 98) (Figure 3.5). Although these two 

studies were 12 years apart and they were conducted in different months, no significant 

discrepancy was observed in the measured biological degradation rate constants from the 

overlapped areas, suggesting that temporal variability of CH3Br biological loss rate 

constants may be small. Geographically, CH3Br biological loss rate constants in the 

eastern Atlantic are similar to those in the northern Pacific (30o – 60o N) and the 

Southern Ocean, but higher than the biological loss rate constants observed in the 

Caribbean Sea, the eastern and central Pacific (10o – 30o N) (Figure 3.5). There is not 

enough information at this time available to explain the spatial differences. Including 

results from all of the previous biological loss rate constant measurements (Figure 3.5) 

[Tokarczyk and Saltzman, 2001; Tokarczyk et al., 2001, 2003] with the data from this 

study yields a global mean biological loss rate constant of 0.05 ± 0.01 d-1 (at a 95% 

confidence level) for the open ocean.  

3.3.3 Extrapolated global net sea-to-air flux and global annual production rate of 

CH3Br  

The net sea-to-air flux, F (nmol m-2 d-1), was determined from the following 

equation: 

                                                                 aw
w pp

H

k
F                                              (3.4) 

where, H is Henry’s Law constant of CH3Br from De Bruyn and Saltzman 

[1997b] (m3 atm mol-1); kw is gas transfer velocity (m d-1); pw and pa are defined above  
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Figure 3.5. Biological degradation rate constants from this study ( ), the Gas Exchange 

experiment (GasEx 98, ) [Tokarczyk and Saltzman, 2001], the Bromine Air-sea Cruise 

Pacific (BACPAC 99, ) [Tokarczyk et al., 2001] and the Climate Variability SR3 

(CLIVAR 01, ) [Tokarczyk  et al., 2003]. 
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(atm). To make a direct comparison with calculated fluxes from BLAST I and II, we 

used the parameterization of kw from Wanninkhof [1992] (Equation 3.5). 

  2/12 660/31.0 
 Scuk                                                (3.5) 

where u stands for wind speed and Sc is the Schmidt number of CH3Br.  

According to the water mass designations from Lobert et al. [1995, 1996], we 

divided calculated fluxes into four regions: open ocean, coastal and coastal influential 

region, upwelling region and inland passage. Fluxes in open ocean, coastal and coastal 

influential region and upwelling region were used to estimate the global net sea-to-air 

flux from the surface ocean [Lobert et al., 1995]. Estimated net sea-to-air fluxes for the 

open ocean, coastal and coastal influential region and upwelling areas in 2010 were 0.05 

Gg yr-1, 2.3 Gg yr-1 and 0.1 Gg yr-1 (Table 3.3), respectively. The global net sea-to-air 

flux was 2.5 Gg yr-1 in 2010, which was a 15 Gg yr-1 increase over that observed during 

the BLAST cruises in 1994 [Lobert et al., 1995].  

An assumed constant annual production rate of CH3Br in surface ocean was used in 

time-dependent models to predict atmospheric CH3Br concentration when removing 

anthropogenic emissions [Butler, 1994] or simulate atmospheric CH3Br concentration 

during the atmospheric CH3Br phase-down [Yvon-Lewis et al., 2009]. However, whether 

this assumption is true is not clear. Data from BLAST and HalocAST studies provide 

observational evidences for this assumption. The CH3Br production rate in the surface 

ocean, P (Gg yr-1), was calculated with the equation given byYvon-Lewis et al. [2002] 

and Hu et al. [2010]:  
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Table 3.3. The global CH3Br saturation anomaly, the global net sea-to-air flux, and the 

global oceanic production rate of CH3Br. The global ocean area, 361 Χ 1012 m2, and the 

area weight are from Kossina [1921] and Lobert et al. [1995]. The calculated saturation 

anomaly, flux and production rates in open ocean excludes the data from 13o – 20o S 

during HalocAST-A. 

  Area Weight Wind Speed   
(m s-1) ΔCH3Br (%) Flux (Gg yr-

1) 
Production       
(Gg yr-1) 

Open 
Ocean 0.8 6.97 0.3 0.05 1.3 Χ 102 

Coastal 0.1 7.72 29.5 2.3 9.4 

Upwelling 0.1 6.28 2.4 0.1 23 

Global   3.4 2.5 1.6 Χ 102 
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where, Δ and ΔCFC-11 are saturation anomalies of CH3Br and CFC-11; kchem, kbio and 

z

kD zz  are chemical, biological and eddy degradation rate constants [e.g., Butler, 

1994]; Dz is the thermocline diffusivity (1 ± 0.4 cm2 s-1[Feely et al., 2002]); z is mixed 

layer depth (m); kz is chemical degradation rate constant in the thermocline; both kz and 

kchem are functions of temperature and salinity [King and Saltzman, 1997]; Cw is CH3Br 

mass concentration in the surface seawater; A stands for the surface area of open ocean, 

coastal ocean or upwelling regions; and all other variables are defined above. For 

HalocAST-A, we used measured biological degradation rate constants in the calculation 

of production rates whereas a global mean biological degradation rate constant (0.05 (± 

0.06, 1 sd.) d-1) was used to calculate the production rate during HalocAST-P. The 

global oceanic production rate for CH3Br was estimated at 1.6 (1.4 – 1.8) Χ 102 Gg yr-1 

in 2010. Lobert et al. [1995] did not include the biological loss when they estimated the 

production rate in 1994. If considering the biological degradation (0.05 (± 0.06, 1 sd.) d-

1), the annual production rate would be 1.6 (1.3 – 1.9) Χ 102 Gg yr-1in 1994, suggesting 

that the annual production rate of CH3Br in surface ocean may have remained relatively 

constant over the past 16 years.  
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3.3.4 Estimating global oceanic emission, global oceanic uptake rate and global net 

sea-to-air flux of CH3Br using 1o x 1o gridded model 

 Extrapolated annual net sea-to-air flux of CH3Br from HalocAST data, 2.5 Gg yr-

1, suggests that the ocean became a net small source to atmospheric CH3Br in 2010. 

Since the extrapolated flux could be biased by regional in-situ wind speeds or regional 

in-situ saturation anomalies from two cruises, a better approach is needed to evaluate 

how the spatial and temporal variability of wind speeds or surface seawater properties 

may affect the estimate of global fluxes. The global CH3Br net sea-to-air flux before the 

phaseout was estimated with the global gridded climatological wind speeds and global 

gridded saturation anomalies derived from an empirical relationship observed between 

saturation anomaly and sea surface temperature (∆% - SST) [King et al., 2002; WMO, 

2003; Yvon-Lewis and Butler, 1997]. However, an increase in saturation anomalies of 

CH3Br observed during this study results in an invalidation of this relationship (Figure 

3.6). Simply moving the curve upward by the offset between the global mean open-

ocean saturation anomaly in 2010 and that before the phaseout [King et al., 2002], 15 %, 

can well represent the saturation anomalies from HalocAST-A, but not for those from 

HalocAST-P (Figure 3.6). It is not possible to build a new meaningful ∆% - SST 

relationship until atmospheric CH3Br reaches a new steady state.  

Another approach to determine global net sea-to-air flux is to calculate the 

difference between global oceanic emission and global oceanic uptake rate [e.g., Yvon-

Lewis et al., 2009]. The oceanic emission (E, Gg yr-1) can be determined by the 

production rate multiplying the fraction that is emitted to the atmosphere (Equation 3.7)  
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Figure 3.6. Observed CH3Br saturation anomalies (∆%) as a function of sea surface 

temperature (SST) in the spring/summer (a) and the fall/winter (b) during the 

HalocAST-P (●) and HalocAST-A ( ). The solid black line represents the calculated 

saturation anomalies using the ∆(%) - SST relationship from King et al. [2002]. The 

black dash line stands for the derived ∆(%) from SA-SST relationship plus 15 %, which 

is the offset between the current global mean open-ocean saturation anomaly (Table 3) 

and the one before the phaseout (before 1998) [King et al., 2002]. 
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[Lobert et al., 1996; Yvon-Lewis and Butler, 2002] whereas the oceanic uptake rate (U, 

Gg yr-1) can be computed by the oceanic uptake rate constant times the atmospheric 

CH3Br abundance (Equation 3.8) [Yvon-Lewis and Butler, 2002]. 
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where, kocn is the global oceanic uptake rate constant (yr-1), χa is atmospheric CH3Br 

mixing ratio; natm is the mass of the atmosphere (mol) and patm is the atmospheric 

pressure at the surface (1 atm). As mentioned above, chemical and eddy degradation rate 

constants are functions of temperature and salinity, which are not likely to have a 

significant change since 1994. The annual production rate and biological degradation 

rate constant of CH3Br in surface ocean are likely to have remained constant over the 

past 16 years, as shown in our results (Sections 3.4.2 and 3.4.3). Therefore, the annual 

emission rate of CH3Br is not likely to change significantly before and during the 

fumigation – non-QPS phaseout since it is a function of production rate, chemical, 

biological and eddy degradation rate constants (Equation 3.7). By substituting 

production rate (P) in equation (3.7) with equation (3.6), equation (3.7) can then be 

expressed as follows: 
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              (3.9) 

Because saturation anomaly (Δ%) of CH3Br in surface ocean was a function of sea 

surface temperature before the atmospheric CH3Br phase-down, we can use this 

empirical relationship to calculate saturation anomalies of CH3Br and its global oceanic 

emission during the pre-phaseout, and then apply it to 2010.  

To account for spatial and monthly variation of surface ocean properties and 

surface wind speeds, equations (3.8) and (3.9) are applied to a 1o x 1o gridded dataset, 

DS279 (NOAA/GFDL Global Oceanographic Data Set Atlas, downloaded from 

http://dss.ucar.edu/datasets/ds279.0/), which contains monthly gridded sea surface 

temperature, salinity, wind speed, and mixed layer depth. The monthly global oceanic 

emission and monthly global oceanic uptake rate are then expressed by: 
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where,
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 ; i and j stand for the indices of latitude and 

longitude of each grid cell; m stands for the index of month; χa,1996-1998,m and χa,year,m are 

monthly mean atmospheric mixing ratios of CH3Br during 1996 – 1998 (before the 
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CH3Br phase-down)  and monthly CH3Br mixing ratio in the year of interest (e.g. 2010). 

We use the northern hemispheric or southern hemispheric mean mixing ratios for 

gridded cells in the NH or the SH. The monthly hemispheric CH3Br mixing ratios are 

from NOAA/ESRL Global Monitoring Division, Boulder, CO 

(ftp://ftp.cmdl.noaa.gov/hats/methylhalides/ch3br/flasks/CH3BR_GCMS_flask.txt).  

 Equations (3.10 – 3.11) present an approach used in prior studies [Yvon-Lewis 

and Butler, 1997; Yvon-Lewis et al., 2009] to calculate the global oceanic emission and 

global oceanic uptake rate before and during the atmospheric CH3Br phase-down. 

However, they did not consider the difference between the coastal ocean and the open 

ocean. This may result in an underestimate on the global net sea-to-air flux since the 

coastal ocean is more supersaturated with CH3Br [e.g., Hu et al., 2010; Sturrock et al., 

2003] compared to the open ocean [e.g., Lobert et al., 1995]. Therefore, we improved 

equations (3.10 – 3.11) by separating the open-oceanic and coastal-oceanic areas and 

used a different approach to calculate the coastal oceanic emission because the ∆% - 

SST relationship was only applicable in the open ocean. Here, we define the areas with 

water depths less than 200 m as coastal ocean. Coastal oceanic area in each gridded cell 

was calculated based on the bathymetric data from the 1’ Χ 1’ global relief database, 

ETOPO (http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html). Improved global 

oceanic emission and global oceanic uptake rate were calculated by equations (12 – 13). 
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where, Ao and Ac stand for the open-oceanic and coastal-oceanic areas in gridded cells; 

and Pc represents CH3Br production rate in the coastal ocean (nmol m-3 yr-1).  

 Five scenarios were run to evaluate the effect of our improvement (Equations 

3.12 – 3.13) on the estimate of global oceanic emission, global oceanic uptake rate and 

global net sea-to-air fluxes. We also examined the sensitivities of the model on the 

production rates of CH3Br in the coastal ocean because the production rate in coastal 

ocean may be highly variable from one location to another [Hu et al., 2010; Sturrock et 

al., 2003], depending on the biological productivity, phytoplankton groups, influence 

from terrestrial transport and human impact. In scenarios (1 – 2), we used the old 

gridded ocean model (Equations 3.10 – 3.11) [Yvon-Lewis and Butler, 1997; Yvon-Lewis 

et al., 2009] and looked at the effect of an updated parameterization of gas transfer 

velocity on the estimated oceanic budget of CH3Br. Results suggest that the use of an 

updated parameterization from Sweeney et al. [2007] would yield a lower global oceanic 

emission, a less negative oceanic uptake rate and a more positive net sea-to-air flux 
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(Table 3.4), compared to using an old parameterization from Wanninkhof [1992]. In 

contrast to the first two scenarios, we separated the coastal-oceanic areas from the open-

oceanic areas in scenarios (3 – 5) (Equations 3.12 – 3.13). In scenario 3, we assigned a 

uniform production rate of 0.61 nmol m-3 d-1 (the mean production rate of CH3Br from 

coastal areas of HalocAST and GOMECC [Hu et al., 2010])  and a biological 

degradation rate constant of 0.09 d-1 (the mean biological degradation rate constant 

observed off the coast of Florida [King and Saltzman, 1997]) to all coastal-oceanic areas 

and used a global mean biological degradation rate constant of 0.05 d-1 in open-oceanic 

areas. This yields a global net sea-to-air flux of -7 Gg yr-1 during 1996 – 1998 and 2 Gg 

yr-1 for 2010, which are 3 Gg yr-1 higher than the estimated fluxes from scenarios (1 – 2) 

for both the pre-phaseout and the end of phaseout (Table 3.4), suggesting it is important 

to consider the difference between coastal ocean and open ocean. Although the spatial 

distribution of biological degradation rate constants and production rates may affect our 

estimate on the oceanic emission, oceanic uptake rates and net sea-to-air fluxes, it is 

difficult to find a spatial pattern or seasonal variation in the surface ocean for these two 

parameters (Figure 3.5 and Hu et al. [2010]), which can be applied to our model. 

Scenarios 4 and 5 test the sensitivity of our model on the production rate of CH3Br in the 

coastal ocean. The mean production rate of CH3Br in the coastal areas of GOMECC, 

0.76 nmol m-3 d-1 [Hu et al., 2010], is significantly higher than that from the coastal 

areas of HalocAST, 0.25 nmol m-3 d-1. Since both studies were conducted in different 

regions and different seasons, it is difficult to argue either one is more representative 

than the other. Therefore, we ran the model (Equations 3.12 – 3.13) by using a coastal  
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Table 3.4. Estimated global oceanic emissions, global oceanic uptake rates and global 

net sea-to-air fluxes of CH3Br before the atmospheric CH3Br phase-down (1996 – 1998) 

and at the end of its phase-down (2010) with the 1o x 1o gridded model described in 

Section 3.4.4. Scenarios (1 – 2) use the old gridded ocean model (Equations 3.10 – 3.11) 

[Yvon-Lewis and Butler, 1997] with higher spatial resolution. Scenario (1) uses the 

parameterization of gas transfer velocity from Wanninkhof [1992] whereas scenario (2) 

uses an updated parameterization from Sweeney et al. [2007]. Scenarios (3 – 5) use the 

improved gridded ocean model (Equations 3.12 – 3.13) with different production rates of 

CH3Br in the coastal ocean, which are 0.61 nmol m-3 d-1, 0.76 nmol m-3 d-1 and 0.25 

nmol m-3 d-1, respectively. 

Scenarios 

1996 - 1998 or 2010 1996 - 1998 2010 

Oceanic Emission 
(Gg yr-1) 

Oceanic 
Uptake 

Rate (Gg 
yr-1) 

Net Sea-
to-Air 
Fluxes 

(Gg yr-1) 

Oceanic 
Uptake 

Rate (Gg 
yr-1) 

Net Sea-
to-Air 
Fluxes 

(Gg yr-1) 

1 40 -54 -14 -41 -1 

2 31 -41 -10 -32 -1 

3 34 -41 -7 -32 2 

4 35 -41 -6 -32 3 

5 32 -41 -9 -32 0 
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production rate of 0.76 nmol m-3 d-1 and 0.25 nmol m-3 d-1 in scenarios 4 and 5, resulting 

in a global net sea-to-air flux of 3 and 0 Gg yr-1, respectively. Considering this as one of 

the uncertainties for the model, along with the uncertainties from the mean biological 

degradation rate constants (±0.01 d-1 in open ocean and ±0.02 d-1 in coastal ocean), gas 

transfer velocity (± 32 %, Sweeney et al., 2007), the solubility (± 4 %, De Bruyn and 

Saltzman, 1997b), the mixed layer depth (± 30 % [Yvon-Lewis and Butler, 2002]), the 

global net sea-to-air flux of CH3Br in 2010 was estimated at 2 (-0.5 – 3) Gg yr-1. 

3.3.5. An improved estimate of the oceanic lifetime of atmospheric CH3Br 

 The current best estimate of the partial atmospheric lifetime of CH3Br with 

respect to the oceanic loss, 1.8 – 1.9 (a full range: 1.1 - 3.9) years [Yvon-Lewis and 

Butler, 1997], was based on a 2o Χ 2o grid of physical properties in and over the global 

ocean. Biological loss rate constants used in their study were based on the measurements 

conducted on samples from the coast of Florida [King and Saltzman, 1997]. Here, we 

revised the partial atmospheric lifetime using the numerical model described in Yvon-

Lewis and Butler [2002] with modifications to address the coastal and open ocean areas 

separately and with a better understanding of the biological loss rate constant.  

The partial atmospheric lifetime (τocn, years) was calculated by the reciprocal of 

the global oceanic uptake rate constant (kocn). It is expressed as follows: 
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where, all the variables are defined above. The best estimate of the partial atmospheric 

lifetime of CH3Br with respect to oceanic uptake is now estimated at 3.1 (2.3 – 5.0) 

years, which is about 1.3 years longer than the prior best estimate.  

The total atmospheric lifetime, τ, was determined from the sum of the reciprocal 

of each loss process: 

                                           
strocnsoilOH 

11111
                                  (3.15) 

where, τOH, τsoil, τocn, and τstr are partial atmospheric lifetimes due to reaction with OH 

radicals (1.7 years with a range of 1.5 -1.9 years [Montzka and Reimann, 2011; Yvon and 

Butler, 1996]), loss to soils (3.3 – 3.4 years [Montzka and Reimann, 2011), uptake by the 

ocean (3.1 years with a range of 2.3 – 5.0 years), and loss to stratospheric photolysis (35 

years [WMO, 1994, 2011]). The overall atmospheric lifetime of CH3Br was estimated at 

0.8 (0.7 – 0.9) years, which is comparable with the best prior estimate on the 

atmospheric lifetime [Montzka and Reimann, 2011; Yvon-Lewis et al., 2009].  

3.4. Summary and conclusions 

Saturation anomalies of CH3Br observed during this 2010 study in the eastern 

Pacific and the eastern Atlantic, near the end of the phase-out of fumigation-non-QPS 

uses of CH3Br, were less negative than those observed 16 years prior in similar regions. 

The global mean saturation anomalies of CH3Br in the open ocean, coastal ocean and 

upwelling region were positive with values of 0.3 %, 29.5 %, and 2.6 % in 2010. 

Measured CH3Br biological loss rate constants in the eastern Atlantic ranged 

from 0 to 0.24 d-1, with little difference from results from the same regions examined in 
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previous studies. When considering all previous biological loss rate constant 

measurements and those from this study, the mean biological loss rate constant for the 

open ocean is 0.05 (± 0.01) d-1. Using the calculated chemical and eddy loss rate 

constants and the modified global mean biological loss rate constant, the estimated 

partial atmospheric lifetime of CH3Br is 3.1 (2.3 – 5.0) years, yielding an overall 

atmospheric lifetime for CH3Br of 0.8 (0.7 – 0.9) years. 

The global net sea-to-air flux ranged from -0.5 Gg yr-1 to 3 Gg yr-1 in 2010 based 

on both simple global extrapolation and a 1o Χ 1o grid model. Given the uncertainties, 

this suggests that CH3Br in the surface ocean has reached, on average, a near-

equilibrium with CH3Br in the atmosphere, owing to the declining in atmospheric burden 

following anthropogenic emission reductions. If anthropogenic CH3Br emissions 

continue to decline, the atmospheric CH3Br mixing ratio will continue to decrease and 

the CH3Br saturation anomaly in the surface ocean should become more positive. This 

would result in a positive net sea-to-air flux for CH3Br.  

Calculated annual production rates of CH3Br in surface ocean are comparable 

between 1994 and 2010, suggesting that annual production rate of CH3Br in surface 

ocean may have remained constant over the past 16 years. Since the oceanic production 

rates and biological, chemical and eddy loss rate constants are relatively constant, the 

oceanic emission rate and the oceanic uptake rate constant will remain the same. 

Therefore, for those compounds with oceanic sources and sinks and changing 

atmospheric abundances, it is better to link their atmospheric budgets to the oceanic 

production rates and the uptake rate constants rather than their net fluxes.  
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4. AN IMPROVED OCEANIC BUDGET OF METHYL CHLORIDE*  

 

4.1 Introduction 

Chlorine-containing gases catalytically destroy ozone in the stratosphere. CH3Cl 

is the most abundant natural chlorine contributor to the stratospheric chlorine. Although 

the atmospheric mixing ratio of CH3Cl has remained relatively constant over the past 

decades, its relative importance in stratospheric ozone depletion is increasing as 

anthropogenic chlorine decreases in the atmosphere. Nevertheless, sources and sinks of 

atmospheric CH3Cl remain poorly quantified [Montzka and Reimann et al., 2011].  

The ocean, both a source and a sink for atmospheric CH3Cl, plays a significant 

role in the global biogeochemical cycling of CH3Cl. The net sea-to-air flux of CH3Cl is a 

function of the gas transfer velocity, the solubility and the saturation anomaly. In turn, 

all of these are fundamentally a function of temperature, salinity and wind speed, each of 

which is anticipated to change in the future with changing climate. The parameterization 

for gas transfer velocity was recently revised by Sweeney et al. [2007], reducing the gap 

between parameterizations based on field measurements [Liss and Merlivat, 1986; 

Nightingale et al., 2000] and those based on radiocarbon estimates [Tans et al., 1990; 

Wanninkhof, 1992].  

 

__________________________ 

*Reproduced by permission of American Geophysical Union. Hu, L., S. A. Yvon-Lewis, J. H. 
Butler, J. M. Lobert, and D. B. King, An improved oceanic budget of methyl chloride 
(submitted), J. Geophys. Res. Not subject to U.S. copyright. 
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The solubility of CH3Cl in seawater was measured by Elliott and Rowland 

[1993], Moore et al. [1995] and Moore [2000] and expressed as only a temperature-

dependent function. Variation in salinity can change the solubility from one place to 

another [e.g., De Bruyn and Saltzman, 1997; Weiss and Price, 1980]. It is necessary to 

include the salinity dependence into the solubility function of CH3Cl so that we can have 

a better estimate on its global net sea-to-air flux. 

The saturation anomaly (∆%) is defined here as the percent difference between 

the partial pressure in air and that in surface seawater. A relationship between the 

saturation anomaly of CH3Cl and sea surface temperature (SST) has been used in the 

past to assess the global air-sea flux of CH3Cl [Khalil et al., 1999; Yoshida et al., 2004]. 

However, there are two limitations to the old CH3Cl ∆% - SST relationship. First, it does 

not include the seasonality of CH3Cl in surface seawater. Second, it may not be 

applicable to coastal environments since there were few coastal measurements included 

at the time when the ∆% - SST relationship was developed. Results from field 

campaigns over the past two decades provide an extensive database from the oceans 

around the world [Butler et al., 2007; Hu et al., 2010; Khalil et al., 1999; King et al., 

2002; Lobert et al., 1996; Moore et al., 1996; Yvon-Lewis et al., 2004], allowing a better 

quantification of spatial distribution and temporal variability of CH3Cl saturation 

anomalies in surface ocean.  

Here, we present the results of CH3Cl solubility measurements made over the 

range of temperatures and salinities applicable to the global surface ocean. We also 

develop a more robust relationship between CH3Cl saturation anomaly and SST and 
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wind speed. We then use the new solubility function, the new ∆% - (SST, wind speed) 

relationship and the revised gas exchange coefficient from Sweeney et al. [2007] to 

examine the global oceanic emission and oceanic uptake of CH3Cl using a 1o x 1o grid 

model [e.g., Butler, 1994; Hu et al., submitted; Yvon-Lewis and Butler, 2002]. Results of 

this study provide a substantial improvement on the current knowledge of CH3Cl in the 

surface ocean. 

4.2 Methods 

4.2.1 Solubility experiment 

To determine the solubility of CH3Cl, a gas mixture of CH3Cl and 

chlorofluorocarbons 11 and 12 (CFC-11 and CFC-12) was equilibrated with pure water 

and seawater at temperatures from 0 to 40 oC. The solubilities of CFC-11 and CFC-12 

were well quantified by Warner and Weiss [1985] and were used as reference gases to 

determine the reliability of our experimental setup.  

Our equilibrium apparatus was a modified version of the one used by Warner 

and Weiss [1985] (Figure 4.1). A 1-L cylindrical glass equilibration chamber (~ 0.6 L of 

water and ~ 0.4 L of headspace) was placed inside a jacket filled with 30% ethylene 

glycol solution that circulates in a temperature-controlled water bath. The temperature of 

the equilibrium chamber varied within < ±0.04 oC during the equilibration time (about 

32 hours, which was determined at the most soluble condition studied in the lab, 0.5 oC 

in MilliQ water). The gas mixture with concentrations 6 - 14 times above ambient 

flowed through a humidifier into the headspace of the chamber at 25 ml min-1. The gas 
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Figure 4.1. Schematic diagram of the equilibration apparatus. Gas mixtures of CH3Cl, 

CFC-11 and CFC-12 flow through a humidifier to the equilibrator headspace at 25 ml 

min-1. Gases in the headspace are constantly equilibrating with the well-mixed seawater 

or fresh water at a controlled temperature. The gas outlet that comes out of the 

equilibrator chamber is submerged into a beaker filled with water by 2 - 4 cm to avoid 

backflow of outside air. A digital temperature sensor is inserted into the water to 

constantly monitor and log the temperature of the water. 
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outlet from the chamber headspace was then submerged into a beaker filled with water 

by 2 - 4 cm to avoid backflow of outside air. The pure water used in the experiment was 

MilliQ water with a resistance of 18 Ω. The seawater (salinity = 31.84) used in the 

experiment was filtered through a 0.2 μm nylon membrane with glass microfiber 

prefilter. Filtered seawater with salinity of 16.08 was used to validate the derived 

solubility function. The aliquants of equilibrated water containing CH3Cl, CFC-11 and 

CFC-12 were analyzed using purge-and-trap gas chromatography and mass spectrometry 

(GC-MS). Headspace concentrations were also quantified by GC-MS. Both the 

headspace concentrations and the water concentrations were calibrated by a whole air 

standard that was calibrated against a gravimetric standard from NOAA/ESRL Global 

Monitoring Division, in Boulder, Colorado.  

When the total pressure is close to 1 atm and the dry mole air fraction of a trace 

gas, x, is much less than 1, as it is for these gases, the equilibrium concentration, C (mol 

L-1), can then be expressed by: 

                                           )(
2OHppHxC                                                    (4.1) 

where, H is the solubility coefficient (mol L-1 atm-1); p is the total pressure (atm), and 

OHp
2

is the partial pressure of water vapor (atm), which can be calculated using equation 

(4.2) [Weiss and Price, 1980]. 

                STTp OH 000544.0)100/ln(8489.4)/100(4509.674543.24ln
2

        (4.2) 

where, T is temperature (Kelvin) and S is salinity. Therefore, if the equilibrium 

concentration (C), dry mole air fraction (x), temperature (T) and salinity (S) are known, 

the solubility coefficient (H) can then be calculated with equations (4.1 – 4.2). 
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 The solubility coefficient can also be formulated as a function of temperature and 

salinity [e.g., Weiss, 1970], which is expressed as: 

          ])100/()100/([)100/ln()/100(ln 2
321321 TbTbbSTaTaaH             (4.3) 

where, ai and bi (i =1, 2, and 3) are constants, which can be obtained by fitting H with T 

and S.  

4.2.2. Saturation anomaly measurements 

CH3Cl and a suite of other halocarbons were measured during the Halocarbon 

Air-Sea Transect cruises in the eastern Pacific and the eastern Atlantic (HalocAST-P/A) 

in 2010 (Figure 4.2). Concentrations of CH3Cl in the air and sea surface were 

continuously measured with a GC-MS equipped with a Weiss-type equilibrator [Butler 

et al., 1988; Johnson, 1999] (Appendix C). The details of the method are described in 

Hu et al. [submitted]. The precision for the measurement of CH3Cl was 7.0 % during 

HalocAST-P and 0.3 % during HalocAST-A. The reason that signals during HalocAST-

P were much noisier than those during HalocAST-A is because we changed a new 

filament during HalocAST-A. 

4.3. Results and discussion 

4.3.1. Solubilities 

Measured solubilities of CFC-11 and CFC-12 (Table 4.1; Figure 4.3) agree with 

calculated solubilities using the functions from Warner and Weiss [1985] within a 

difference of 1.8 (± 3.1, 1σ) % and 0.8 (± 4.4, 1σ) %. The consistency between results 
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Figure 4.2. Cruise tracks of BLAST  I ( , 1/28 - 2/17, 1994) [Lobert et al., 1995], 

BLAST II ( , 10/18 - 11/21, 1994) [Lobert et al., 1996], BLAST III ( , 2/22 - 4/7, 

1996) [Lobert et al., 1997], GasEx 98 ( , 5/7 - 7/27, 1998) [King et al., 2000], 

BACPAC 99 ( , 9/14 - 10/23, 1999) [King et al., 2002], CLIVAR 01( ,10/29 - 12/13, 

2001) [Yvon-Lewis et al., 2004], PHASE I 04 ( , 5/22 - 7/2, 2004) [Butler et al., 2007], 

GOMECC ( , 7/10 – 8/4, 2007) [Hu et al., 2010], HalocAST – P ( , 3/30/10 – 

4/27/10) [Hu et al., submitted] and HalocAST - A ( , 10/25 – 11/26，2010).  
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Figure 4.3. Solubility of CFC-11, CFC-12 and CH3Cl in pure water and seawater 

(Salinity = 31.84) as a function of temperature. Open diamonds and solid circles stand 

for measured solubilities in pure water and seawater from this study. Dashed and solid 

lines in panels (a – b) represent calculated solubilities based on solubility functions from 

Warner and Weiss [1985] for pure water and seawater. Dashed and solid lines in panel 

(c) are the fit of equation (3) to the measured solubilities of CH3Cl in pure water and 

seawater from this study. 
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Table 4.1. Solubilities of CH3Cl, CFC-11 and CFC-12 in pure water and seawater at 

different temperatures. The standard deviation and the number of replicates are listed in 

parentheses.   

Temperature 
Solubilities 

CH3Cl  
(mol L-1 atm-1) 

CFC-11  
(10-2 mol L-1 atm-1) 

CFC-12  
(10-3 mol L-1 atm-1) 

Pure Water 

0.594 0.2706 (±0.0014, 4) 3.630 (±0.051, 5) 8.688 (±0.247, 5) 

5.283 0.2083 (±0.0020, 5) 2.682 (±0.016, 5) 6.976 (±0.136, 5) 

10.1 0.1687 (±0.0022, 4) 2.061 (±0.035, 4) 5.510 (±0.154, 4) 

19.82 0.1211 (±0.0025, 4) 1.272 (±0.012, 4) 3.572 (±0.082, 4) 

29.8 0.0858 (±0.0020, 5) 0.8261 (±0.0109, 5) 2.495 (±0.065, 4) 

39.64 0.0632 (±0.0014, 5) 0.5799 (±0.0133, 4) 1.821 (±0.027, 3) 

Seawater (S=31.84) 

0.5198 0.2457 (±0.0030, 4) 2.706 (±0.062, 5) 5.609 (±0.062, 4) 

5.255 0.1851 (±0.0035, 4) 2.016 (±0.042, 4) 5.074 (±0.157, 3) 

10.12 0.1504 (±0.0018 5) 1.575 (±0.028 5) 4.049 (±0.127 5) 

19.8 0.0991 (±0.0017, 5) 0.9438 (±0.0104, 5) 2.669 (±0.010, 5) 

29.57 0.0741 (±0.0014, 5) 0.6439 (±0.0167, 5) 1.931 (±0.132, 5) 

39.33 0.0577 (±0.0015, 5) 0.4777 (±0.0067, 5) 1.524 (±0.274, 4) 

Seawater (S=16.08) 

14.94 0.1326 (±0.0018, 5) 1.369 (±0.024, 5) 3.861 (±0.109, 5) 

27.61 0.0858 (±0.0007, 4) 0.7835 (±0.0207, 5) 2.362 (±0.112, 5) 
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from this study and the previous study provides assurance that our approach is not 

biasing results and that solubilities determined for this investigation are reliable. 

Solubilities of CH3Cl at various temperatures in pure water and seawater are listed in 

Table 4.1. The precision (1σ) of our measurements (N = 3 – 5) was ≤ 2%. The constants 

in equation (4.3) were determined with measured solubilities and corresponding 

temperatures in pure water and seawater (Figure 4.3). The resulting fit to the T and S 

dependent solubility function is expressed as follows: 

])100/(03629.0)100/(2150.03137.0[
)100/ln(49.44)/100(9.1609.104ln

2TTS

TTH




                        (4.4) 

The standard error for the estimated solubility from equation (4.4) is ±0.0032 mol L-1 

atm-1, which is equivalent to an uncertainty of ±3 (±1, 1σ) %. Validation of equation 

(4.4) was conducted by comparing the measured solubilities to the estimated solubilities 

using equation (4.4) for salt water (S = 16.08) at 14.94 ± 0.03 oC and 27.61 ± 0.03 oC. 

The observed discrepancy between the measured and calculated solubilities was within 

the uncertainty of our experiment, ±3%, suggesting that the derived solubility expression 

can represent CH3Cl solubility well.  

Solubilities of CH3Cl in seawater (S = 35) from 0 oC to 40 oC were calculated 

based on expressions from this study, Elliott and Rowland [1993], Moore et al. [1995] 

and Moore [2000] (Figure 4.4). Results using the solubility expressions from Elliott and 

Rowland [1993] and Moore et al. [1995] are 16 (± 6, 1σ) % and 9 (± 7, 1σ) % higher 

than those from the current study. Although the mean difference between results  
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Figure 4.4. Calculated solubilities of CH3Cl in seawater (Salinity = 35) with solubility 

functions from this study (Equation 4.4) (black line), Elliott and Rowland [1993] (blue 

dashed line), Moore et al. [1995] (red dotted dash line) and Moore [2000] (green dashed 

line).  
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calculated from Moore [2000] and the current study is small (3%), the discrepancy in the 

calculated solubilities from these two studies could become more pronounced at 

temperatures ≤ 0 oC or ≥ 40 oC or between 10 oC to 30 oC. In addition, a 10 – 18 % salt 

effect was observed between pure water and seawater (S = 31.84) over a temperature 

range of 0 – 40 oC in the present study (Figure 4.3c). Since the solubility function from 

Moore [2000] is only applicable in seawater, an observed 10 – 18 % salt-out effect 

suggests that using the solubility expression determined by Moore [2000] would result in 

a 10 – 18 % underestimation of CH3Cl solubility in pure water. Elliott and Rowland 

[1993] reported a 6 % salt effect between pure water and seawater (S = 33.34). However, 

Elliott and Rowland [1993] only measured the solubilities at two different temperatures, 

which could result in a bias or larger errors than the present study. The higher salt effect 

reported in this study reinforces the importance of including the salinity dependence in 

the solubility function. 

4.3.2. HalocAST data 

Observed atmospheric mixing ratios of CH3Cl from the HalocAST and the 

Bromine Latitudinal Air Sea Transect (BLAST) cruises [Khalil et al., 1999; Lobert et 

al., 1996] conducted 16 years prior (Figures 4.5 and 4.6) are comparable in most regions. 

Saturation anomalies of CH3Cl are corrected using CFC-11 to remove the effect of 

physical processes, i.e., surface warming or cooling, air bubble injection, etc. [Butler et 

al., 1991; Yvon-Lewis et al., 2004]. The equilibrium partial pressures in the surface 

seawater and corrected saturation anomalies from HalocAST are similar to those from 

BLAST (Figures 4.5 and 4.6) except the regions between 0o – 15o N and 28o – 35o N in  
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Figure 4.5. (a) Atmospheric CH3Cl mixing ratios, (b) CH3Cl moisture air mole fractions 

in the surface seawater and (c) corrected CH3Cl saturation anomalies using saturation 

anomalies of CFC-11 during BLAST I (circles) and HalocAST-P (crosses), both 

coursing the eastern Pacific Ocean.  
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Figure 4.6. (a) Atmospheric CH3Cl mixing ratios, (b) CH3Cl moisture air mole fractions 

in the surface seawater and (c) corrected CH3Cl saturation anomalies using saturation 

anomalies of CFC-11 during BLAST II (circles) and HalocAST-A (crosses), both 

coursing the Atlantic Ocean.  
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the Atlantic (Figure 4.6). Since HalocAST-A in the northern Atlantic was more 

influenced by the eastern Atlantic boundary currents while BLAST II cruise passed 

through the North Atlantic Gyre, the difference in concentrations observed between 

BLAST II and HalocAST-A at 0o – 15o N and 28o – 35o N in the Atlantic were likely 

because HalocAST ran closer to coastal waters and captured a different water mass than 

BLAST.  

4.3.3. Saturation anomaly as a function of sea surface temperature and wind speed   

Because CH3Cl saturation anomalies in the surface ocean were relatively 

consistent over the past sixteen years (Figures 4.5 and 4.6), the HalocAST data, along 

with additional data from seven major long-transit cruises from NOAA/ESRL Global 

Monitoring Division during 1994 to 2004 (ftp://ftp.cmdl.noaa.gov/hats/ocean/) and one 

coastal study from Hu et al. [2010], are used to construct seasonal saturation anomaly 

functions for open-ocean areas and a separate saturation anomaly function for coastal-

ocean areas. The additional cruises include the Bromine Latitudinal Air Sea Transect I, 

II and III (BLAST I, II and III) [Khalil et al., 1999; Lobert et al., 1997; Lobert et al., 

1996], the first Gas Exchange experiment (GasEx 98) [King et al., 2000], the Bromine 

Air-sea Cruise Pacific (BACPAC 99) [King et al., 2002], the Project Halocarbon Air Sea 

Exchange (PHASE-1) [Dahl et al., 2005], the Climate Variability SR3 (CLIVAR 01) 

[Yvon-Lewis et al., 2004], and the Gulf of Mexico and the East Coast Carbon 

(GOMECC) cruises [Hu et al., 2010] (Figure 4.2).  

Here, we define the regions with water depth > 200 m as open-ocean areas, and 

the regions with water depths ≤ 200 m as coastal-ocean areas. The whole dataset was 
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divided into three sub-datasets, open-ocean spring/summer, open-ocean fall/winter and 

coastal-ocean. Because data from coastal ocean were limited as to their coverage, we 

cannot examine the seasonality in the coastal region. All three datasets show strong 

correlation between ∆% and SST: r = 0.82 (N = 1874) for open-ocean spring/summer, r 

= 0.91 (N=1398) for open-ocean fall/winter and r = 0.83 (N= 349) for coastal ocean. 

Since it was suggested that a quadratic relationship exists between saturation anomalies 

and SST [Khalil et al., 1999], all three datasets were fitted with quadratic equations 

using the least-squares method (Figure 4.7). The derived quadratic equations are 

expressed as follows. 

Open Ocean      

Spring/Summer:        2960.145183.01257.0(%) 2  tt      (-2 oC < t < 31 oC)      (4.5)  

Fall/Winter:              5360.255642.01442.0(%) 2  tt      (-2 oC < t < 31 oC)      (4.6) 

Coastal Ocean 

Annual:                     5752.563574.40598.0(%) 2  tt       (7 oC < t < 31 oC)       (4.7) 

where t stands for SST (oC). The standard errors for the saturation anomalies estimated 

by equations (5 – 7) are ±23.0%, ±18.5% and ±35.2%. The new ∆% - SST relationships 

substantially improve our ability to calculate CH3Cl saturation anomalies in surface 

ocean compared to the old ∆% - SST relationship [Khalil et al., 1999], especially in 

coastal areas and regions in the middle and high latitudes of the open ocean (Table 4.2). 

Saturation anomalies of CH3Cl in the surface ocean are mainly controlled by 

CH3Cl partial pressures in the surface seawater versus those in the atmosphere (Figures 

4.8a and 4.8c). Their latitudinal distributions are similar to that of SST (Figure 4.8d).  



81 
 

 

Table 4.2. Measured and calculated mean CH3Cl saturation anomalies (%)a according to 

cruise data from BLAST I, II, III, GasEx 98, BACPAC 99, PHASE I 04, CLIVAR01, 

HalocAST-P/A, and GOMECC. 

 Measured Annualb Seasonalc Seasonal + Wind 
Speedd 

Open Ocean - Spring/Summer 58.5 ± 43.3 (1874) 53.9 ± 42.1 (1874) 58.3 ± 36.8 (1874) 58.5 ± 37.0 (1874) 

High Latitudes (60o - 90o) -15.8 ± 12.3 (49) -23.9 ± 0.1 (49) -14.7 ± 0.1 (49) -12.8 ± 7.0 (49) 

Middle Latitudes (30o - 60o) 31.8 ± 28.2 (910) 22.3 ± 21.0 (910) 31.1 ± 18.6 (910) 31.7 ± 19.5 (910) 

Low Latitudes (0o - 30o) 89.0 ± 33.3 (915) 89.5 ± 24.7 (915) 89.3 ± 21.1 (915) 88.9 ± 22.4 (915) 

Open Ocean - Fall/Winter 21.6 ± 53.5 (1398) 19.8 ± 48.2 (1398) 21.1 ± 49.9 (1398) 21.6 ± 50.2 (1398) 

High Latitudes (60o - 90o) -25.8 ± 7.3 (512) -23.7 ± 0.5 (512) -25.5 ± 1.2 (512) -25.6 ± 2.7 (512) 

Middle Latitudes(30o - 60o) 15.7 ± 32.2 (483) 10.7 ± 25.7 (483) 13.9 ± 26.1 (483) 14.7 ± 26.4 (483) 

Low Latitudes (0o - 30o) 89.0 ± 19.2 (403) 86.0 ± 18.9 (403) 89.1 ± 18.1 (403) 89.9 ± 18.1 (403) 

Coastal Ocean 83.2 ± 60.5 (349) 73.0 ± 47.3 (349) 83.0 ± 49.0 (349) 83.1 ± 49.3 (349) 

aUncertainties are given as standard deviation, and the number of samples is given in 
parentheses. bCalculated saturation anomalies using the annual ∆% - SST relationship from 
Khalil et al. [1999]. cCalculated saturation anomalies using the seasonal ∆% - SST relationships 
(Equations 4.5 – 4.7). dCalculated saturation anomalies using the seasonal ∆% - (SST, wind 
speed) relationships (Equations 4.8 – 4.10). 
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Figure 4.7. Saturation anomaly of CH3Cl as a function of sea surface temperature in 

open ocean (a: spring/summer; b: fall/winter) and coastal ocean (c). Colored points stand 

for observed saturation anomalies of CH3Cl from BLAST I ( ), BLAST II ( ), BLAST 

III ( ), GasEx 98 ( ), BACPAC 99 ( ), PHASE I 04 ( ), CLIVAR 01 ( ), 

GOMECC ( ), HalocAST–P ( ) and HalocAST-A ( ). Black lines are quadratic 

regressions between saturation anomaly of CH3Cl and SST.  
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Figure 4.8. Latitudinal distributions of CH3Cl moisture air mole fractions (a), CH3Cl 

mass concentrations (b), CH3Cl saturation anomalies (c) in surface ocean. Colored points 

in panels (a – c) stand for data from BLAST I ( ), BLAST II ( ), BLAST III ( ), 

GasEx 98 ( ), BACPAC 99 ( ), PHASE I 04 ( ), CLIVAR 01 ( ), GOMECC ( ), 

HalocAST – P ( ) and HalocAST-A ( ). Black lines represent longitudinal average 

CH3Cl partial pressures (a), longitudinal average CH3Cl mass concentrations (b) and 

longitudinal average CH3Cl saturation anomalies (c) at different latitudes of surface 

ocean. (d) Latitudinal distributions of longitudinal average saturation anomalies of 

CH3Cl ( ) in surface ocean, longitudinal average sea surface temperature ( ), 

longitudinal average wind speed ( ), and longitudinal average chlorophyll-a 

concentrations ( ).  
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Converting partial pressures of CH3Cl in the surface seawater to mass concentrations can 

remove the dominant trend of CH3Cl partial pressures in surface seawater (Figures 4.8a 

and 4.8b), suggesting that the strong relationship between CH3Cl saturation anomalies or 

CH3Cl partial pressures in surface seawater and SST is likely due to the dependence of 

CH3Cl solubility on the temperature. We also examined the correlation between 

saturation anomaly and wind speed. Results suggest that saturation anomalies of CH3Cl 

in surface ocean are inversely correlated with wind speed at a 99% confidence level (r = 

-0.43, p=0.00). The correlation between saturation anomalies of CH3Cl and sea surface 

temperature or wind speed explains high super-saturation of CH3Cl in warm waters. In 

warm waters, the released gas cannot escape the surface water fast enough to keep the 

concentrations from building up owing to both physical warming and relatively low 

wind speed (Figure 4.8d), resulting in CH3Cl being highly super-saturated in the tropical 

ocean (Figure 4.8c). Therefore, with the sea surface temperature as the primary 

controlling factor for saturation anomalies of CH3Cl and wind speed as a secondary 

influence, we rebuilt the saturation anomaly equations as a function of both sea surface 

temperature and wind speed using the least-squares method: 

Open Ocean      

Spring/Summer: 5436.13687.10340.01344.0(%) 2  utt   (-2 oC < t < 31 oC) (4.8)  

Fall/Winter:       2661.196198.06927.01369.0(%) 2  utt (-2 oC < t < 31 oC) (4.9) 

Coastal Ocean 

Annual:           9970.863955.18104.6036.0(%) 2  utt   (7 oC < t < 31 oC)   (4.10) 
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where u is the wind speed (m s-1). The standard errors using equations (4.8 – 4.10) were 

calculated at ±22.6%, ±18.4% and ±35.0%, which are slightly lower than those using 

equations (4.5 – 4.7). Compare to calculated saturation anomalies from equations (4.5 – 

4.7), results computed from the ∆% - (SST, wind speed) relationships (Equations 4.8 – 

4.10) can explain more observed variability for CH3Cl saturation anomalies in high 

latitudinal regions (Table 4.2), and they are more representative for the mean CH3Cl 

saturation anomalies in various zonal regions (Table 4.2).  

Variability of latitudinal mean mass concentrations of CH3Cl in the global 

surface ocean is relatively small between 60oS to 60oN when compared to latitudinal 

mole fractions of CH3Cl in the surface ocean. This might be due to a combination of 

relatively long lifetime of CH3Cl in surface ocean and a ubiquitous production 

mechanism among various types of marine algae, i.e. methyl transferase [Itoh et al., 

1997; Wuosmaa and Hager, 1990]. Elevated CH3Cl concentrations between 60o – 80o S 

coincide with increased chlorophyll-a, whereas no significant increase in CH3Cl mass 

concentrations was observed above 40oN, where chlorophyll-a concentrations are 

significantly higher (Figures 4.8b and 4.8d). The contradiction in high latitudinal waters 

between the northern and southern hemispheres might associate with different 

phytoplankton assemblages in these two regions [Alvain et al., 2005; Alvain et al., 

2008]. In the Southern Ocean, there are large blooms of diatoms and phaeocystis-like 

during the spring and summer [Alvain et al., 2008], whereas in the high latitudes of the 

North Atlantic or the North Pacific, nanoeucaryotes dominate the populations of 

phytoplankton all year around, except small areas of diatom blooms during the summer 
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[Alvain et al., 2008]. The group of phaeocystis-like organisms was identified as the one 

with high production rate of CH3Cl [Scarratt and Moore, 1996; 1998]. This could 

explain the high mass concentrations of CH3Cl observed in the Southern Ocean. 

4.3.4. Estimating the global net sea-to-air flux of CH3Cl 

Regional net sea-to-air flux, F (nmol m-1 d-1), can be calculated by the gas 

transfer velocity (kw, m d-1), CH3Cl solubility (H, mol L-1 atm-1), saturation anomaly (Δ, 

%) and CH3Cl partial pressure in the air (pa, patm atm-1). The formula is expressed as 

follows [Yvon-Lewis et al., 2004]:  

aw pHkF
100


  .              (4.11) 

If we divide the global ocean into 1o x 1o grids, the global net sea-to-air flux, Fg (Gg yr-

1), can then be estimated by the sum of the net sea-to-air fluxes from gridded cells: 
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where, natm is the mass of the atmosphere (mol); M is the molecular weight of CH3Cl (g 

mol-1); tm stands for one month period; Patm is the atmospheric pressure at the surface 

ocean (1 atm); Ai,j,m is the oceanic area in each grid cell; m is the month index; i and j are 

the latitude and longitude indices; and the other variables are defined above. Here, we 

use the parameterization from Sweeney et al. [2007] to calculate kw. 

5.02
2 )660/(6.14  Scu

u
k

avg

w                                            (4.13) 

where, uavg is the global average climatological wind speed; u is the average 

climatological wind speed in each grid cell; and Sc is the Schmidt number of CH3Cl 
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calculated from the kinematic viscosity [Millero, 1974] and the diffusivity [Hayduk and 

Laudie, 1974]. We obtained monthly 1o x 1o gridded wind speed, SST and sea surface 

salinity from the DS279 database (http://dss.ucar.edu/datasets/ds279.0/). In addition, we 

calculated the fractions of land area, open-ocean area and coastal-ocean area in each grid 

based on bathymetric data from the 1’ Χ 1’ global relief database, ETOPO 

(http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html). For grids with only open-

ocean or coastal-ocean area, Δ% was calculated based on either seasonal open-ocean Δ% 

- (SST, wind speed) relation or coastal Δ% - (SST, wind speed) relation. For grids 

containing both coastal-ocean and open-ocean areas, Δ% is the area-weighted mean 

saturation anomaly. Monthly hemispheric CH3Cl partial pressures are the monthly 

average from 1995 to 2010 (Flask data from NOAA/ESRL GMD: 

ftp://ftp.cmdl.noaa.gov/hats/methylhalides/ch3cl/flasks/).  

To determine the effect of the new solubility function and the new seasonal Δ% - 

(SST, wind speed) relationships on the estimate of the global net sea-to-air flux of 

CH3Cl, we computed the global net sea-to-air flux in four different scenarios using the 

same gas transfer velocity parameterization [Wanninkhof, 1992] as the prior studies 

[Khalil et al., 1999; Moore, 2000; Moore et al., 1996; Yoshida et al., 2004] and 

compared our results with the prior estimates. The base scenario uses the old solubility 

function from Moore [2000] and the old Δ% - SST relationship [Khalil et al., 1999], 

which yields a best global annual net sea-to-air flux of 460 Gg yr-1. The second scenario 

examines the impact of the new solubility parameterization on the global net flux. By 

replacing the old solubility function [Moore, 2000] with equation (4.4), it yields a best 
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global net flux of 420 Gg yr-1, which is about 10% lower than the estimate using the 

solubility expression from Moore [2000]. This is because Moore [2000] tends to 

overestimate CH3Cl solubility in waters with SST from 6 – 35oC and underestimate the 

solubility in waters with SST ≥ 35oC or SST ≤ 6oC (Figure 4.4) relative to this study, 

thus yielding higher effluxes in warm waters with SST between 12oC (12oC is the 

critical temperature to control the direction of the net flux [Moore et al., 1996]) and 35oC 

and lower influxes in waters with SST ≤ 6oC. In scenario three, we ran the model using 

the old solubility function but replacing the old Δ% - SST relationship [Khalil et al., 

1999] with equations (4.8 – 4.10). The model produces a best global net flux of 550 Gg 

yr-1, suggesting the old Δ% - SST relationship tends to underestimate the global net sea-

to-air flux by 16%. When using the new parameterizations of the solubility and the 

saturation anomalies (scenario four), part of the differences resulted from both 

parameterizations are canceled out, yielding a best annual global net sea-to-air flux of 

500 Gg yr-1, which is about 40 Gg yr-1 higher than the result from the base scenario. The 

range of the prior estimates on the global CH3Cl net flux is from 300 to 650 Gg yr-1 

[Khalil et al., 1999; Moore, 2000; Moore et al., 1996; Yoshida et al., 2004]. Our estimate 

using the parameterization of the gas transfer velocity from Wanninkhof [1992], 500 Gg 

yr-1, is in the middle of this range. 

Parameterization of the gas transfer velocity from Sweeney et al. [2007] is an 

improvement on that from Wanninkhof [1992] because Sweeney et al. [2007] considered 

the spatial variation in solubility as a function of temperature and salinity and partial 

pressures of 14CO2 in the atmosphere and the surface ocean, along with the effect of an  
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Figure 4.9. (a) Annual mean net sea-to-air fluxes of CH3Cl, (b) annual mean sea surface 

temperature and (c) annual mean wind speed in 1o x 1o grids. 
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improved ocean inventory of bomb-produced dissolved inorganic 14C. Therefore, we 

updated our estimate using the new parameterization from Sweeney et al. [2007], 

yielding a best global net flux of 335 Gg yr-1. The global distribution of annual net sea-

to-air fluxes show similar spatial trends but different magnitudes than those from Khalil 

et al. [1999] (Figure 4.9a). Regions with elevated annual net sea-to-air fluxes include the 

tropical western Atlantic, the eastern and central Pacific, and the central and 

northwestern Indian Ocean, which coincide with areas with elevated annual sea surface 

temperature (Figure 4.9b) and increased wind speed (Figure 4.9c).  

Although atmospheric CH3Cl has an apparent seasonality [Khalil and 

Rasmussen, 1999], only small seasonality is shown in the average net fluxes in the 

regions studied here (Figure 4.10). Overall, the polar region (latitude ≥ 60o) is a net sink 

for atmospheric CH3Cl all year around (Figure 4.10); temperate seawater (30o ≤ latitude 

< 60o) is a net source during the spring, summer and fall but a net sink in some months 

during the winter (Figure 4.10); the tropical region (latitude < 30o) is always a net source 

to atmospheric CH3Cl (Figure 4.10).  

The uncertainty of the calculated global net sea-to-air fluxes mainly arises from 

the errors on the gas transfer velocity (kw), the saturation anomaly (Δ) and the solubility 

(H). The possible error given by the gas transfer velocity is ± 32% [Sweeney et al., 

2007]. The standard error for the solubility is ± 3% (see Section 3.1). Because saturation 

anomaly in each gridded cell is the mean saturation anomaly in that gridded area, we 

estimated the standard errors of the mean saturation anomalies calculated from equations 

(8 - 10), which are 1.3%, 1.0% and 3.7% at a 95% confidence level for the open-ocean  
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Figure 4.10. Monthly mean net sea-to-air fluxes of CH3Cl in the NH tropical ( ), 

SH tropical ( ), NH temperate ( ), SH temperate ( ), NH polar 

( ) and SH polar ( ) regions. 
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spring/summer, the open-ocean fall/winter, and the coastal ocean. Therefore, the 

possible range of our estimated global net sea-to-air flux of CH3Cl is revised at 210 - 

480 Gg yr-1.  

4.3.5. Estimating the global oceanic emission and oceanic uptake rate 

A net sea-to-air flux cannot fully represent the role of the ocean (both a source 

and a sink to atmospheric CH3Cl) in the atmospheric CH3Cl budget. Therefore, it is 

important to break down the net flux into unidirectional oceanic emission and 

unidirectional oceanic uptake [Butler and Rodriguez, 1996; Lobert et al., 1996; Yvon-

Lewis and Butler, 2002]. In the studies from Butler and Rodriguez [1996] and Lobert et 

al. [1996], they define the portion that is produced in the ocean and emitted to the 

atmosphere as the oceanic emission and the portion that enters from the atmosphere to 

the ocean and gets destroyed in the ocean as the oceanic uptake. This definition has been 

used for the CH3Br oceanic budget [Butler, 1994; Hu et al., 2010; Lobert et al., 1995; 

Lobert et al., 1996; Montzka and Reimann et al., 2011; Montzka et al., 2003; Yvon-Lewis 

and Butler, 1997; Yvon-Lewis and Butler, 2002; Yvon and Butler, 1996]. The strengths 

of this approach are: (1) it implicitly contains the information about the partial 

atmospheric lifetime, which could be estimated by the total mass in the atmosphere 

divided by the oceanic uptake rate; and (2) the annual oceanic emission remains 

relatively constant over time unless there are significant changes in oceanic production 

rate, biological degradation rate constant, wind speed, temperature and salinity [Hu et 

al., submitted]. Estimated oceanic emissions can be used in the time-dependent models 

for CH3Cl source and sink studies.  
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Previously, the net flux from the ocean to the atmosphere in warm waters is used 

as a source term whereas the net flux from the atmosphere to the ocean in cold waters is 

used as a sink term in the atmospheric budget of CH3Cl [Clerbaux and Cunnold et al., 

2007; Montzka and Fraser et al, 2003]. The net fluxes incorporate both oceanic emission 

and uptake. In this study, we estimated the unidirectional oceanic emission and uptake 

based on the definitions above. The oceanic uptake rate constant, kocn (yr-1), can be 

estimated using equation (4.14) [Yvon-Lewis and Butler, 2002]: 
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
 ; kchem, kbio and keddy are the chemical, biological and 

eddy loss rate constant (d-1); Ig is the inter-hemispheric ratio of CH3Cl; the other 

variables are defined above. Hydrolysis is the dominant pathway for the chemical 

degradation. The chemical loss rate constant (kchem) or the hydrolysis rate constant is 

from Elliott and Rowland [1995]. Calculated global annual mean chemical loss rate 

constant is about 0.0015 d-1. The eddy degradation loss rate constant, keddy, is the loss 

due to downward mixing into the thermocline, which can be calculated by diffusion 

coefficient, chemical loss rate constant and mixed layer depth [e.g., Yvon-Lewis and 

Butler, 2002]. The calculated global annual mean eddy degradation rate constant is 

0.0015 d-1. The biological loss rate constant (kbio) measurements were limited to 

measurements only in the Southern Ocean and the coast off Nova Scotia [Tokarczyk et 

al., 2003a, 2003b]. The observed mean biological degradation rate constant was 0.07 (± 
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0.01) d-1 in the surface seawater of the Southern Ocean, which was higher than what was 

required, 0.02 d-1, to maintain a steady state in the mixed layer [Tokarczyk et al., 2003a]. 

Tokarczyk et al. [2003a] suggest that 0.02 d-1 averaged out the whole mixed layer and 

0.07 d-1 only represented for the biological loss rate constant for the surface layer. The 

annual mean biological degradation rate constant off Nova Scotia was observed at 0.07 

(± 0.08, 1σ) d-1 [Tokarczyk et al., 2003b]. No calculation was provided to evaluate 

whether using a biological degradation rate constant of 0.07 d-1 can maintain a steady 

state for CH3Cl in the coast off Nova Scotia in the study of Tokarczyk et al. [2003b]. 

Since the biological loss rate constant measurements of CH3Cl were conducted in a 

limited temporal and spatial scale, we made the following assumptions for the estimate 

of the global oceanic uptake rate constant: (1) the annual mean biological loss rate 

constant, 0.07 d-1, measured in the coast off Nova Scotia is representative for the annual 

mean biological loss rate constant in other coastal regions in the world; and (2) the 

biological loss rate constant, 0.02 d-1, in the Southern Ocean is representative for the 

biological loss rate constant in the other open-ocean areas. Based on these assumptions, 

the global oceanic uptake rate constant was estimated at 0.088 yr-1 and the partial 

atmospheric lifetime with respect to the oceanic loss is 11 years. Including uncertainties 

on the biological loss rate constant measurements [Tokarczyk et al., 2003a; Tokarczyk et 

al., 2003b] and those from gas transfer velocity, solubility and chemical degradation rate 

constants, the possible range for the global oceanic uptake rate constant and the partial 

atmospheric lifetime are 0.067 – 0.10 yr-1 and 9.6 - 15 years. Yvon-Lewis and Butler 

[2002] estimated the partial atmospheric lifetime with respect to the oceanic loss without 
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considering the biological loss rate constant. This yielded a partial atmospheric lifetime 

of 70 (50 -104) years. It is evident that with and without the biological loss rate constant, 

the partial atmospheric lifetime is significantly different. Further research is needed to 

quantify the spatial and temporal variations of the biological loss rate constant of CH3Cl 

in the surface ocean in order to better estimate its partial atmospheric lifetime. Using the 

new estimated partial atmospheric lifetime with respect to the oceanic loss would change 

the overall atmospheric lifetime of CH3Cl from 1.0 year [Montzka and Reimann, et al., 

2011] to 0.9 year. 

The annual global oceanic uptake rate was estimated by multiplying the global 

oceanic uptake rate constant by the global atmospheric abundance of CH3Cl, yielding an 

uptake rate of -370 (-440 to -280) Gg yr-1. The oceanic emission, 700 (490 – 920) Gg yr-

1, was calculated as the difference between the net sea-to-air flux and the uptake rate. 

4.4. Summary and conclusions 

We re-examined the empirical ∆% - SST relationship using more extensive 

datasets. The strong observed relationship between saturation anomalies and SST is 

likely due to the dependence of the CH3Cl solubility on the temperature. In addition, we 

found a dependence of the saturation anomaly of CH3Cl in surface ocean on wind speed 

although the correlation was weaker than that between ∆% and SST. Derived seasonal 

∆% - (SST, wind speed) relationships substantially improved our ability to calculate the 

distribution of saturation anomalies of CH3Cl in the surface ocean.  

To determine how the new solubility function and the new ∆% - (SST, wind 

speed) parameterizations affect the global net sea-to-air flux of CH3Cl, we estimated the 
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fluxes under four different scenarios by replacing the old parameterizations with the new 

ones. Results suggest that part of the differences resulting from the new solubility 

function and the new ∆% - (SST, wind speed) relations are canceled out when 

calculating the global net sea-to-air flux. Using the improved solubility function, the new 

seasonal ∆% - (SST, wind speed) relationships and an updated gas transfer velocity 

[Sweeney et al., 2007], the global net sea-to-air flux of CH3Cl is estimated at 335 (210 to 

480) Gg yr-1.  

The gross emission and uptake rates of CH3Cl in the surface ocean were 

estimated at 700 (490 to 920) Gg yr-1 and -370 (-440 to -280) Gg yr-1. The corresponding 

best estimate of the partial atmospheric lifetime with respect to irreversible oceanic 

uptake is 11 (9.6 - 15) years.  Since the biological uptake rates of CH3Cl in the surface 

ocean are only based on data from two regional studies, they might not be representative 

of the global biological degradation rate constants. Until more biological loss rate 

constant measurements are made, the estimates given above are the best estimates 

according to our current knowledge. With the revised partial atmospheric lifetime of 

CH3Cl regarding the oceanic loss, the overall atmospheric lifetime of CH3Cl becomes 

0.9 year. 
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5. USING “TOP-DOWN” APPROACH TO EXAMINE ATMOSPHERIC 

BUDGETS OF METHYL CHLORIDE AND METHYL BROMIDE* 

 

5.1. Introduction 

CH3Cl and CH3Br are the most abundant natural sources of stratospheric chlorine 

and bromine, and contributed about 17% of the total chlorine and 30% of the total 

bromine to the stratosphere in 2008 [Fahey and Hegglin, 2011]. About one quarter of 

total stratospheric ozone loss is attributed to the release of chlorine and bromine from 

CH3Cl and CH3Br [Butler, 2000]. In response to the Montreal Protocol and its 

amendments, most long-lived halogenated compounds that originate from anthropogenic 

sources are declining in the atmosphere. The relative importance of natural halogenated 

compounds is increasing. Quantifying the natural emissions of CH3Cl and CH3Br has 

become one focus of current active research [e.g. Blei et al., 2010; Gebhardt et al., 2008; 

Manley et al., 2007; Mead et al., 2008; Mead  et al., 2008; Moore et al., 2005; Rhew et 

al., 2007; Saito and Yokouchi, 2006; 2008; Saito et al., 2008; Yokouchi et al., 2007]. 

However, large uncertainties remain in individual sources and sinks.  

Atmospheric CH3Cl and CH3Br have common natural sources and sinks. The 

common identified natural sources include the ocean [e.g. Hu et al., 2010; Moore et al., 

1996], biomass burning [e.g. Lobert et al., 1999; Yvon-Lewis et al., 2009], fungi [Lee- 

 

__________________________ 

*This section is to be submitted to the journal of Atmospheric Physics and Chemistry.  
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Taylor and Holland, 2000; Mead  et al., 2008; Watling and Harper, 1998], salt marshes 

[e.g.Rhew et al., 2000], wetlands [Dimmer et al., 2001; Varner et al., 1999a], rice 

paddies [Lee-Taylor and Redeker, 2005], mangroves [Manley et al., 2007] and tropical 

rainforests [Blei et al., 2010; Gebhardt et al., 2008]. The common identified sinks 

include reaction with hydroxyl radicals [Clerbaux and Cunnold et al., 2007; Montzka 

and Reimann et al., 2011], uptake by soils [Keene et al., 1999; Keppler et al., 2005; 

Shorter et al., 1995], aquatic degradation in the ocean [e.g. Tokarczyk et al., 2003a; 

Yvon-Lewis and Butler, 2002] and photolysis in the stratosphere [Clerbaux and Cunnold 

et al., 2007; Montzka and Reimann et al., 2011]. The best estimate of the total known 

sinks exceeds the best estimate of the total known sources by ~35 Gg yr-1 for CH3Br in 

its pre-industrial, pre-phaseout and phaseout budgets [Montzka and Reimann et al., 2011; 

Saltzman et al., 2004; Yvon-Lewis et al., 2009]. For CH3Cl, the gap between the best 

estimate of its total annual emission and that of its annual uptake rate was closed by 

utilizing emissions from tropical plants and tropical leaf litter [Clerbaux and Cunnold et 

al., 2007; Xiao et al., 2007; Yoshida et al., 2004]. However, the question of an imbalance 

in the atmospheric budget of CH3Cl was raised again in recent years due to a suggested 

higher soil uptake rate, > 1000 Gg yr-1, by Keppler et al. [2005]. 

About 42 (± 15) Gg yr-1 of CH3Br (about 30% of the total known emission) 

[Montzka and Reimann et al., 2011] was released from fumigated soils during pre-

planting applications before 1998. The use of CH3Br for soil fumigation started to be 

phased out at the beginning of 1998, and the atmospheric mixing ratio of CH3Br has 

been declining since then. Given that atmospheric CH3Cl is not being phased-out and it 
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shares many natural sources and sinks with CH3Br, observed variability of atmospheric 

CH3Cl may provide insights into the variability of natural emissions of CH3Br. 

In this study, we used the observed atmospheric CH3Cl and CH3Br, along with 

the strength and the temporal variability of their well-characterized sources and sinks, to 

examine the poorly-quantified emissions. The objective of this study is to improve the 

current understanding on the “missing sources” of methyl halides and predict the 

atmospheric CH3Br burden at its new steady state. 

5.2. Model description 

The model we used divides the atmosphere into two boxes by the equator, the 

Northern Hemisphere (NH) and the Southern Hemisphere (SH). The change in the 

hemispheric abundance of CH3Cl or CH3Br can be expressed as follows [Montzka et al., 

2000; Montzka et al., 2011]: 
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where, N and S stand for the hemispheric abundances of trace gases in the NH and SH; 

En and Es are the hemispheric emissions in the time period of dt; kn and ks are the total 

loss rate constants in the NH and SH, which include the oceanic loss rate constant, the 

soil uptake rate constant, the pseudo-first order reaction rate constant for the reaction 

with hydroxyl radicals and the loss rate constant for stratospheric photolysis; and kex is 

the interhemispheric exchange rate constant, which is 1.1 ± 0.3 years [Montzka et al., 

2000].  
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 Dividing the total emission into the known emission (Ek) and the unknown 

emission (including both poorly quantified sources and unidentified sources; Eu), the 

unknown emissions in both hemispheres can be calculated by the following equations: 
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where, En,u and En,k are the total unknown and known emissions in the Northern 

Hemisphere (NH); Es,u and Es,k are the total unknown and known emissions in the 

Southern Hemisphere (SH); χo,n and χt,n are the mixing ratios at time zero and time t in 

the NH;  χo,s and χt,s are the mixing ratios at time zero and time t in the SH; Mhem  is the 

total hemispheric air mass. The hemispheric mixing ratios for CH3Cl and CH3Br during 

1995 – 2011 are from the flask network at NOAA/ESRL Global Monitoring Division 

(GMD) (ftp://ftp.cmdl.noaa.gov/hats/).  

5.3. Sources  

5.3.1. Anthropogenic sources 

 Anthropogenic emissions of CH3Cl, including coal combustion, waste 

incineration, and other industrial activities, account for 4% in the total known emissions 

[McCulloch et al., 1999] (Table 5.1). In contrast to CH3Cl, anthropogenic emissions of 

CH3Br are more important in its atmospheric budget. The primary anthropogenic 

emission of CH3Br before the pre-phaseout was from soil fumigation, which accounts 

for 27% of its total known emissions (Table 5.1). In accordance with the Montreal  
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Table 5.1. Sources and sinks for atmospheric CH3Cl and CH3Br in Gg yr-1. The best 

values are shown with their possible ranges in parentheses. 

  
CH3Cl (Gg yr-1) 

CH3Br (Gg yr-1) 

  1995 - 1998 2009 

SOURCES       

Anthropogenic Source 275 (85 - 464) 57 (39 - 80) 21 (17 - 25) 

Leaded Gasoline n.q. 3 (0.6 - 6)16-19 <3 

Coal Combustion; Waste Incineration; 
Industrial Activity 162 (29 - 295)1 n.q. n.q. 

Fumigation - QPS a n.q. 8.1 (7.5 - 8.7) 9.5 (8.8 - 10) 

Fumigation – non-QPS b n.q. 39.9 (28.2 - 55.9) 2.4 (1.7 - 3.4) 

Biomass Burning - Indoor Biofuel Use c  113 (56 - 169)  6 (3 - 9) 6 (3 - 9)  

Biomass Burning - Open Field Burning d 355 (142 - 569)  23 (9 - 37) 12 (5 - 19) 

Ocean 700 (490 - 920)2 32 (22 - 44)20 32 (22 - 44)20 

Terrestrial source 2780 (2354 – 3275) 36 (24 – 51) 36 (24 – 51) 

Tropical and Subtropical Plants; Tropical 
Leaf Litters  2492 (2197 - 2900) 3-5 *19 (0 - 20)25,26 *19 (0 - 20) 25,26 

Mangroves 12 (11 - 12)6 1.3 (1.2 - 1.3)6 1.3 (1.2 - 1.3)6 

Rapeseed n.q. 4.9 (3.8 - 5.8)21 5.1 (4.0 - 6.1)21 

Fungus 145 (128 - 162)7-8 2.2 (1 - 5.7)7,22 2.2 (1 - 5.7)7,22 

*Salt Marshes 85 (1.1 - 170)10,11 7 (0.6 -14)23 7 (0.6 -14)23 

*Wetland  27 (5.5 - 48)12,13 0.6 (-0.1 - 1.3)22 0.6 (-0.1 - 1.3)22 

*Rice Paddies 3.7 (2.7 - 4.9)14 0.7 (0.1- 1.7)22 0.7 (0.1- 1.7)22 

*Shrublands 15 (9 - 21)15 0.7 (0.5 - 0.9)15 0.7 (0.5 - 0.9)15 

Subtotal (Sources) 4110 (3071 – 5228) 148 (77 - 212) 102 (51 - 139) 

SINKS       

Reaction with OH f 3302 (2543 - 4062) 86 (66 - 106) 66 (51 - 81) 
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Table 5.1. Continued. 
   

Soil f 970 (180 - 1600) 49 (42 – 56) 37 (32 – 43) 

Ocean 370 (280 - 440)2 41 (29 - 50)20 32 (23 - 39)20 

Loss to Stratosphere 200 (100 - 300)9 424 324 

Subtotal (Sinks) 4842 (3103 - 6402) 178 (142 – 214) 137 (110 – 165) 

Notes: all asterisked items are showing net fluxes; n.q. stands for not quantified. 
 
a. Data for fumigation - QPS consumptions of CH3Br were downloaded from UNEP 
(http://ozone.unep.org/Data_Reporting/Data_Access) and the emission ratio is 84 % (78 %  - 90 
%) from UNEP [2007]. 
b. Data for fumigation - non-QPS consumptions of CH3Br were downloaded from UNEP 
(http://ozone.unep.org/Data_Reporting/Data_Access) and the emission ratio is 65 % (46 % – 91 
%) from UNEP [2007]. 
c. Emissions of indoor biofuel use was estimated based on the total dry matter burned for indoor 
biofuel use in 1995 [Yevich and Logan, 2003] and emission factors from [Andreae and Merlet, 
2001]. 
d. Calculations of biomass burning emissions from open field fire are described in section 5.4. 
 f. Calculations on the loss to the reaction with hydroxyl radicals and soil uptake rates are 
described in section 5.5. 
1McCulloch et al. [1999], 2Hu et al. [in prep], 3Xiao et al. [2007], 4Yoshida et al. [2004], 5Lee-

Taylor et al. [2001], 6Manley et al. [2007], 7Lee-Taylor et al. [2001], 8Watling and Harper 
[1998],9Clerbaux and Cunnold et al. [2007], 10Rhew et al. [2000], 11Cox et al. [2004], 12Varner et 

al. [1999a], 13Dimmer et al. [2001], 14Lee-Taylor and Redeker [2005], 15Rhew et al. [2001], 
16Thomas et al. [1997], 17Chen et al. [1999], 18Baker et al. [1998], 19Bertram and Kolowich 
[2000],20Hu et al. [submitted], 21Mead et al. [2008], 22 Lee-Taylor and Holland [2000], 
23Montzka and Reimann et al. [2011], 24Penkett et al. [1994], 25Blei et al. [2010], 26Gebhardt et 

al. [2008]. 
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Protocol, CH3Br consumption for use in soil fumigation decreased by 50 Gg yr-1 in the 

NH and 5 Gg yr-1 in the SH, and the corresponding emission dropped by 32 (23 – 46) Gg 

yr-1 and 3 (2 – 5) Gg yr-1 in the NH and SH (Figure 5.1). Uncertainty in the emission 

from soil fumigation mainly results from uncertainty in the emission rate which is 

dependent on soil moisture, organic content, acidity and injection depth of the treated 

area [Yagi et al., 1995]. The estimated average emission rate given by United Nations 

Environment Programme (UNEP) [2007] ranges from 46% to 91%. In this study, we 

used their best estimate, 65%, in the initial scenario. CH3Br consumption for fumigation 

– Quarantine and Pre-Shipment (QPS) uses was about 7.6 – 12.4 Gg yr-1 during 1995 – 

2009 (http://ozone.unep.org/Data_Reporting/Data_Access/). The emission rate for QPS 

uses is 84% (78% – 90%) [UNEP, 2007]. Calculated emission rates from fumigation 

during 1995 – 2009 are shown in Figure 5.1.  

Leaded gasoline is another anthropogenic source for atmospheric CH3Br. It 

contributes 0.6 – 6 Gg yr-1 of CH3Br to the atmosphere [Baker et al., 1998; Bertram and 

Kolowich, 2000; Chen et al., 1999; Thomas et al., 1997]. According to the previous 

studies, the average of the best estimates on the CH3Br emission from leaded gasoline is 

3 Gg yr-1 (Table 5.1), of which 80% is from the NH and 20% is from the SH [Thomas et 

al., 1997].  

5.3.2. Biomass burning 

 Biomass burning emission is one of the largest sources for atmospheric CH3Cl 

and CH3Br. It includes emissions from open field fires and indoor biofuel combustion. 

Emissions of CH3Cl and CH3Br in open field fires were calculated using the version 3 of  
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Figure 5.1. Emissions of CH3Br from fumigation - Quarantine and Pre-Shipment (QPS) 

and fumigation - non-QPS uses. (  ) and ( ) stand for fumigation – non-QPS 

emissions from the Northern Hemisphere (NH) and Southern Hemisphere (SH). ( )  

and ( ) represent fumigation – QPS emissions in the NH and SH.  Annual 

consumption rates are from the United Nations Environment Programme 

(http://ozone.unep.org/Data_Reporting/Data_Access/) and the emission ratio of CH3Br is 

65% [UNEP, 2007] 
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the Global Fire Emissions Database (GFED3) (http://www.falw.vu/~gwerf/GFED/). The 

GFED3 is based on satellite-derived estimates of burned area, fire activity and plant 

productivity during the period of 1997 – 2009 on a 0.5o spatial resolution with a monthly 

time step [van der Werf et al., 2010]. We estimated the biomass burning emissions using 

two approaches: (1) using CO emissions times emission ratios of CH3Cl or CH3Br 

relative to CO; and (2) multiplying burned dry matter with emission factors of CH3Cl or 

CH3Br. Uncertainties in calculated biomass burning emission rates originate from the 

estimates of the burned area, combustion completeness, burning depth and emission 

factors [Andreae and Merlet, 2001; van der Werf et al., 2010]. The uncertainty using 

approach (1) (about ± 90 %) is larger than that using approach (2) (about ± 60 %) since it 

incorporates extra uncertainty on the emission factor of CO. The calculated annual mean 

biomass burning emission rates for CH3Cl and CH3Br were 353 (± 318) Gg yr-1 and 16 

(± 14) Gg yr-1 using approach (1), and they were estimated at 355 (± 213) Gg yr-1 and 17 

(± 10) Gg yr-1 using approach (2) (Figure 5.2). Although the discrepancy is small 

between the annual mean biomass burning emission rates determined from these two 

approaches, significant differences exist over the course of the time series of interest (i.e. 

a 420 Gg yr-1 difference for CH3Cl and an 11 Gg yr-1 difference for CH3Br during 

August to September of 1997 in the SH). Using approach (1) will result in strong 

negative emission in the derived unknown sources in the SH during the spring of 1997. 

In the model, approach (2) will be used for our calculation of biomass burning emissions. 

CH3Cl and CH3Br emission rates from indoor biofuel use were estimated at 113 

Gg yr-1 (CH3Cl) and 6.1 Gg yr-1 (CH3Br) (Table 5.1) based on the total burned dry  
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Figure 5.2. Open field biomass burning emission rates for (a) CH3Cl and (b) CH3Br in 

the NH ( ) and in the SH ( ). Burned dry matters are from Global Fire Emissions 

Database (GFED3) (http://www.falw.vu/~gwerf/GFED/) and emission factors are from 

Andreae and Merlet [2001]. 
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matter during indoor biofuel use in 1995 [Yevich and Logan, 2003] and their emission 

factors from Andreae and Merlet [2001]. The uncertainties of the indoor biofuel 

emission rates for CH3Cl and CH3Br are ± 50% [Andreae and Merlet, 2001; Yevich and 

Logan, 2003]. 

The total annual biomass burning emissions of CH3Cl and CH3Br from open 

field burning and in-door biofuel use are 468 (± 270) Gg yr-1 and 23 (± 13) Gg yr-1. The 

biomass burning emission rate for CH3Br is in good agreement with previous estimates 

[Montzka and Reimann et al., 2011], whereas the best biomass burning emission rate for 

CH3Cl from this study is 143 – 182 Gg yr-1 lower than the prior best estimates [Andreae 

and Merlet, 2001; Yoshida et al., 2004]. Although discrepancy of 143 – 182 Gg yr-1 is 

within the uncertainty of our estimate, it is worth noting that the global dry matter 

emission used in Andreae and Merlet [2001] is 40% higher than the total dry matter 

emissions from open-field fire and indoor biofuel combustion in this study. 

5.3.3. Oceanic emissions 

The ocean was considered as the largest source for atmospheric CH3Cl and 

CH3Br until the middle 1990s [Lobert et al., 1995; Moore et al., 1996]. As more air-sea 

flux measurements of CH3Cl and CH3Br were made around the world, empirical 

relationships between the saturation anomalies of CH3Cl and CH3Br and sea surface 

temperature and wind speed were developed [Hu et al., in prep; Khalil et al., 1999; King 

et al., 2002], which allows better quantification on their global net sea-to-air fluxes. The 

unidirectional oceanic emission is defined as the portion which is produced in the ocean 

and emitted to the atmosphere [Butler and Rodriguez, 1996]. It was estimated at 700  
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Figure 5.3. Monthly oceanic emissions of CH3Cl and CH3Br in both hemispheres. 

( ) and ( ) represent monthly oceanic emissions of CH3Cl in the NH and SH, 

whereas ( ) and ( ) stand for monthly oceanic emissions of CH3Br in the NH 

and SH. 
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(490 – 920) Gg yr-1 for CH3Cl [Hu et al., in prep] and 31 (24 – 39) Gg yr-1 for CH3Br 

[Hu et al., submitted]. The seasonality of hemispheric oceanic emission rates for CH3Cl 

and CH3Br is shown in Figure 5.3. 

5.3.4. Terrestrial emissions 

 Terrestrial emissions of CH3Cl and CH3Br are poorly quantified. The identified 

terrestrial sources include tropical plants, tropical leaf litter, wetlands, coastal salt 

marshes, fungus, shrublands, mangroves, rice paddies and rapeseed, in which tropical 

terrestrial ecosystems are the largest source for atmospheric CH3Cl and CH3Br (Table 

5.1). Estimated terrestrial emissions from prior studies are listed in Table 5.1. Due to the 

substantial uncertainties and the unknown hemispheric distributions of terrestrial 

emissions, the terrestrial emissions along with the imbalance between the known sources 

and sinks are considered as the “unknown emissions” in the model. 

5.4. Sinks 

Hydroxyl radicals (OH) are the primary oxidant in the atmosphere. Reaction with 

OH is the largest sink for atmospheric CH3Cl and CH3Br. Since OH has a variety of 

formation and loss pathways, spatial variability of OH could be large and local OH 

measurements cannot represent the global or hemispheric OH concentrations. Thus, 

observations for OH-oxidized trace gases, especially methyl chloroform (CH3CCl3), 

were commonly used to characterize the global or hemispheric OH concentrations 

[Montzka et al., 2011 and reference therein; Prinn et al., 2005 and reference therein; 

Spivakovsky et al., 2000]. In this study, we use monthly three-dimensional OH 

distributions from Spivakovsky et al. [2000] and reaction rate constants from Sander et 
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al. [2006] to calculate the pseudo-first reaction rate constant with OH for CH3Cl and 

CH3Br. Then hemispheric pseudo-first reaction rate constants were calculated based on 

air-mass weighted averages in both hemispheres. Since there was small inter-annual 

variability (2.3 ± 1.5 %) for the global atmospheric OH from 1998 to 2007 [Montzka et 

al., 2011], we assume no inter-annual variation for the hemispheric OH in the model 

during 1995 – 2011. For the reason that the atmospheric abundances and the temporal 

variation of CH3Cl and CH3Br are sensitive to the change of the atmospheric OH, we 

tested the rationality of our assumption by simulating hemispheric CH3CCl3 

concentrations using our calculated hemispheric OH concentrations without inter-annual 

variation. Simulated CH3CCl3 mixing ratios agree with the observations (Figure 5.4). 

 Soil uptake is another major sink for atmospheric CH3Cl and CH3Br. Soil uptake 

rate constants for CH3Br were calculated based on the observed uptake rates from six 

different biomes (tropical forest and savanna; temperature forest, woodland and 

shrubland; temperature grassland; boreal forest; cultivated land; and tundra) [Rhew and 

Abel, 2007; Shorter et al., 1995; Varner et al., 1999b] multiplying the corresponding 

biome areas from Matthews [1983], then divided by their atmospheric abundances 

(Table 5.2). For CH3Cl, the strength of the microbial soil sink is less certain. The global 

extrapolation based on observations in a Brazilian forest and Arctic grasslands and 

tundra yielded an estimate of 180 Gg yr-1 [Khalil and Rasmussen, 2000; Montzka and 

Fraser et al, 2003]. Evidences from stable carbon isotope ratios [Keppler et al., 2005] 

and cultures on the isolated CH3Cl-degrading microorganisms [McAnulla et al., 2001]  
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Figure 5.4. Simulated CH3CCl3 mixing ratios in the NH ( ) and SH ( ) using 

equations (3-4). Annual emissions of CH3CCl3 are from Prinn et al. [2005]. Hemispheric 

distributions are from Midgley and McCulloch [1995]. Pseudo-first reaction rates of 

CH3CCl3with OH were calculated with OH concentrations from Spivakovsky et al. [2000] 

and reaction rate constants from Sander et al. [2006]. Oceanic uptake rate constant and 

stratospheric photolysis loss rate constant of CH3CCl3 are from Yvon-Lewis and Butler 

[2002] and Montzka and Reimann et al. [2011], respectively. Blue rectangles and red 

circles are observed mixing ratios in the NH and SH from the Advanced Global 

Atmospheric Gases Experiment (AGAGE) 

(http://agage.eas.gatech.edu/data_archive/agage/). 
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Table 5.2. Hemispheric soil uptake rate constants for CH3Br and CH3Cl (yr-1). 

a Biome ksoil[CH3Cl] / 
ksoil[CH3Br] 

NH  Uptake Rate Constant (yr-1) SH  Uptake Rate Constant (yr-1) 

CH3Brg CH3Clh CH3Brg CH3Clh 

Tropical forest and savanna 0.7b 0.065 (± 0.002) 0.045 (± 0.001) 0.062 (± 0.001) 0.042 (± 0.001) 
Temperate forest, woodland 
and shrubland 0.6c 0.32 (± 0.18) 0.19 (± 0.11) 0.11 (± 0.06) 0.069 (± 0.04) 

Temperate grassland 0.8d 0.037 (± 0.006) 0.029 (± 0.005) 0.025 (± 0.004) 0.020 (± 0.003) 

Boreal forest 0.8e 0.017 (± 0.004) 0.014 (± 0.003) 0.0007 (± 0.00002) 0.0006 (± 
0.002) 

Cultivated land 0.7b 0.088 (± 0.008) 0.061 (± 0.006) 0.012 (± 0.001) 0.008 (± 0.001) 

Tundra 1.3f 0.0045 (± 0.0009) 0.0058 (± 0.0012) - - 

Total - 0.53 (± 0.20)  0.34 (± 0.13)  0.20 (± 0.07) 0.14 (± 0.05)  
a Areas of various biomes are from Matthews [1983].  
b The average ratio of uptake rate constants between CH3Cl and CH3Br among those from temperate forest, woodland, and shrubland, 
temperature grassland, and boreal forest. 
c Calculated ratio of uptake rate constants between CH3Cl and CH3Br based on measurements from Rhew et al. [2010]. 
d Calculated ratio of uptake rate constants between CH3Cl and CH3Br based on measurements from Rhew and Abel [2007] and Rhew 
[2011]. 
e Calculated ratio of uptake rate constants between CH3Cl and CH3Br based on measurements from Rhew et al. [2003]. 
f Calculated ratio of uptake rate constants between CH3Cl and CH3Br based on measurements from Rhew et al. [2007]. 
g Calculated based on reported uptake rates from Shorter et al. [1995], Rhew et al. [2007] and Rhew and Abel (2007), divided by the 
atmospheric abundance, then multiplied with the biome area in each hemisphere. Uncertainties were from the measured uptake rates by 
the previous studies. 
h Calculated based on uptake rate constants of CH3Br multiplying the ratio of uptake rate constants between CH3Cl and CH3Br.
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suggest a much higher soil uptake rate for CH3Cl that may be > 1000 Gg yr-1. In this 

study, we calculated the ratios of soil uptake rate constants between CH3Cl and CH3Br 

based on the measured uptake rates in temperate grasslands, oak-savanna woodland, 

boreal forests and Alaskan tundra [Rhew, 2011; Rhew and Abel, 2007; Rhew et al., 2003; 

Rhew et al., 2007; Rhew et al., 2010] and scaled the soil uptake rate constants of CH3Br 

to those of CH3Cl using the calculated ratios (Table 5.2).  

Unidirectional oceanic uptake rate constants for CH3Cl and CH3Br are 

determined using 1o Χ 1o grid model [Hu et al., submitted; Yvon-Lewis and Butler, 

2002]. The strength of the annual oceanic uptake rate was estimated at 360 (250 – 470) 

Gg yr-1 for CH3Cl, 41 (29 – 50) Gg yr-1 (years from 1995 – 1998) for CH3Br (Table 5.1). 

Monthly variability for all the loss rate constants is plotted in Figure 5.5. Any 

uncertainty on the seasonality or inter-annual variability of various losses and known 

emissions will be incorporated into the calculated total “unknown emissions” (En,u and 

Es,u) (see Eqs. 5.3 – 5.4).  

5.5. Results and Discussion 

5.5.1. Derived “unknown emissions” of CH3Cl and CH3Br 

The imbalance between the best estimates on the sources and those on the sinks 

is 732 Gg yr-1 for CH3Cl and 35 Gg yr-1 for CH3Br (average of the imbalances between 

the pre-phaseout and the phaseout budgets) (Table 5.1). Although the strength of the 

imbalance for atmospheric CH3Br budget is comparable to that from Montzka and 

Reimann et al. [2011], there are some readjustments on biomass burning emission, 

oceanic emission and uptake, soil uptake and loss due to reaction with OH (Table 5.1).  
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Figure 5.5. Monthly uptake rate constants for various losses (yr-1). The pseudo-first loss 

rate constants for reaction with OH in the NH ( ) and SH ( ), uptake by the soil 

in the NH ( ) and SH ( ), uptake by the ocean in the NH ( ) and SH ( ), 

and loss to the stratosphere in both hemispheres ( ). 
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In our two-box model, we assume the imbalances in the atmospheric CH3Cl and 

CH3Br budgets, along with their total terrestrial emissions, as the “unknown emissions”. 

Derived “unknown emissions” of CH3Cl and CH3Br during 1995 to 2011 using the “top-

down” two-box model are 3515 (1476 - 5340) Gg yr-1 and 72 (38 – 105) Gg yr-1 (Table 

5.3 and Figure 5.6). Negative “unknown emissions” of CH3Br were produced during 

July to September in the SH in some years (Figure 5.6), which could be due to an 

underestimate of the loss rate constants, or overestimate of the known emissions or a 

combination of both. Derived “unknown emissions” of CH3Cl and CH3Br display the 

same seasonality and the same inter-annual variability in both hemispheres (Figure 5.6) 

and their correlation coefficients are as high as to 0.79 in the NH and 0.87 in the SH, 

suggesting they may share the same origin.  

The “missing sources” of atmospheric CH3Cl were suggested to be from tropical 

plants and tropical leaf litter [Hamilton et al., 2003; Yokouchi et al., 2002]. According to 

results from the previous three-dimensional model studies [Lee-Taylor et al., 2001; Xiao 

et al., 2007; Yoshida et al., 2004], the total CH3Cl emission from tropical terrestrial 

ecosystems was estimated to range from 2197 to 2900 Gg yr-1 (mean: 2492 Gg yr-1). 

Their results were based on the soil uptake rate of CH3Cl from Khalil and Rasmussen 

[2000], 256 Gg yr-1, which is at the lower limit of the possible range (Table 5.1). 

Increasing their soil uptake rate to the best value we applied to the model will increase 

their derived tropical terrestrial emission by 714 Gg yr-1, thereby yielding a total 

terrestrial emission of 3493 (3044 – 4031) Gg yr-1 when combined with other terrestrial 

emissions. This is comparable to our derived total “unknown emission” of CH3Cl, 3515 
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Table 5.3. Derived emissions using equations 5.3 – 5.4 (Unit: Gg yr-1). Emissions of CH3Cl are the annual mean during 1995 - 

2011. Emissions of CH3Br were the annual emissions in 2009. 

  CH3Cl CH3Br 

  NH SH Global NH SH Global 

Total Emissions 2656 (1723 - 3467) 2178 (1630 - 2665) 4834 (3353 - 6132) 87 (79 - 95) 50 (47 - 53) 137 (126 - 148) 

Total Known 713 (378 - 1058) 606 (413 - 819) 1319 (791 - 1877) 37 (25 - 50) 28 (18 - 38) 65 (43 - 88) 

Total Unknown 1943 (665 - 3088) 1572 (811 - 2252) 3515 (1476 - 5340) 50 (29 - 70) 22 (9 - 35) 72 (38 - 105) 

Total Natural 2409 (1306 - 3392) 2150 (1585 - 2654) 4559 (2891 - 6046) 69 (54 - 82) 47 (42 - 51) 106 (96 - 133) 

Total Anthropogenic 246 (75 - 417) 28 (10 - 45) 274 (85 - 462) 18 (13 - 24) 3 (2 - 4) 21 (15 - 28) 

Total Uptake  2624 (1691 - 3435) 2220 (1672 - 2706) 4844 (3363 - 6141) 80 (72 - 88) 58 (55 - 61) 138 (127 - 149) 
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Figure 5.6. Derived hemispheric “unknown emissions” (Gg yr-1) for CH3Br and CH3Cl 

using equations (5.3 – 5.4) and the best estimates on their known sources and sinks 

(Table 5.1). 
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Gg yr-1 (Table 5.3), suggesting the “missing source” of atmospheric CH3Cl may be 

attributable to underestimation on tropical terrestrial emissions. However, we cannot 

exclude the possibility that part of the “missing source” could result from our 

overestimation on the sinks. Since the “unknown emissions” of CH3Cl and CH3Br may 

share the same origin, it is likely that a significant portion of the “missing source” of 

CH3Br is located in the tropical terrestrial ecosystems. The best estimate for tropical 

terrestrial emission of CH3Br in this study (Table 5.1) is from Blei et al. [2010] and 

Gebhardt et al. [2008]. Both of these studies report the net flux of CH3Br from tropical 

rainforest rather than the gross emission. Since the tropical soil is also a sink for CH3Br 

(Table 5.2) [Shorter et al., 1995], the gross emission of CH3Br should be higher than the 

net flux, 20 Gg yr-1 (Table 5.1). This is consistent with results from Warwick et al. 

[2006], which presents additional evidence that the “missing source” of CH3Br, or at 

least part of it, should be from tropical terrestrial ecosystems. 

Tropical rainforests are the dominant source in the total terrestrial emissions of 

CH3Cl. Destruction of the tropical forests (i.e. deforestation and biomass burning) may 

cause a reduction on CH3Cl emission from the tropical terrestrial ecosystems, and 

therefore a decline in its total terrestrial emissions. Based on a report from the Food and 

Agriculture Organization of the United Nations (FAO) [2010], the carbon stock in 

tropical living forests has decreased by 0.3 % yr-1 and 0.8 % yr-1 in the tropical NH and 

tropical SH over the past two decades. However, no apparent declining trend is 

displayed in the derived “unknown emission” of CH3Cl that is predominated by tropical 

terrestrial sources. This could arise from several reasons. For example, emission rates of 
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CH3Cl from tropical terrestrial ecosystems are not only related with carbon stock, they 

are also associated with plant species and plant growth stage. It is also possible that the 

amount of dominant CH3Cl-emitting plants has not significantly decreased since 1995 or 

the average emission rate from tropical living forests has increased slightly because of 

their growing since 1995. Another possibility is slightly increasing emissions from other 

terrestrial sources which counteract the declining emission from tropical forests.  

Since “unknown emissions” of CH3Br and those of CH3Cl are likely to share the 

same origin, it indicates that the “total unknown emission” of CH3Br should have the 

same trend as that of CH3Cl. This helps us to constrain the soil fumigation (fumigation - 

non-QPS) emissions of CH3Br because if the emission ratio was estimated too high, it 

would result in an overestimate on the fumigation - non-QPS emissions, which could 

lead to an increasing trend in the derived “total unknown emissions” (Eqs. 5.3 – 5.4); 

and vice visa. Therefore, we tested various emission ratios for fumigation - non-QPS 

uses of CH3Br. Results suggest that, considering the uncertainties of the known sources 

and sinks (Table 5.1), the emission ratio is likely to be in a range of 65 % to 80 %. The 

best estimate is 70%, which is higher than the best estimate given by the United Nations 

Environment Programme (UNEP) [2007] and Yvon-Lewis et al. [2009], 65 %.  

5.5.2. Verification on derived emissions  

To verify the derived emissions for CH3Cl and CH3Br and the CH3Br emission 

ratio of fumigation - non-QPS uses, we ran the coupled 1o x 1o ocean-atmosphere model 

[Butler, 1994; Montzka et al., 2003; Saltzman et al., 2004; Yvon-Lewis et al., 2009] using 

the derived parameters, along with known emission and uptake rates. Simulated 
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hemispheric mixing ratios are in good agreement with the observed flask data from 

NOAA/ESRL GMD (Figure 5.7), suggesting that the derived emissions and the emission 

ratio of CH3Br are reliable. 

5.5.3. Predicting the new steady-state of atmospheric CH3Br 

As the anthropogenic emission of CH3Br decreases, the atmospheric CH3Br has 

been declining and it will continue to decline until it reaches its new steady state. It is 

important to examine when the atmospheric CH3Br reaches its new steady state, what 

the new steady-state concentration is and how much the tropospheric bromine would 

drop by removing the remaining anthropogenic uses of CH3Br. Using the derived 

“unknown emissions”, along with the known emission and uptake rates, we can project 

the atmospheric mixing ratio using equations (5.3 – 5.4). We ran the two-box model 

from 1995 to 2020 for three different scenarios. Scenario one assumes only fumigation - 

non-QPS uses of CH3Br are phased out. Scenarios two and three assume that fumigation 

- QPS uses of CH3Br and all the remaining anthropogenic emissions are eliminated after 

the phase-out of non-QPS uses, respectively. We also assume that the implementation of 

the elimination process is one year. For years from 1995 to 2011, we used the 

derived“unknown emissions”, including their strength, seasonality and inter-annual 

variability, and ran the model forward with known sources and sinks. Calculated 

seasonality of the total “unknown emissions” during 1995 – 2011, along with the 

seasonality of known emission and uptake rates, were used in the model for years from 

2012 – 2020. Inter-annual variability of the total unknown emissions for CH3Cl and 

CH3Br during 1995 – 2011 only accounts for less than 5% of their total natural  
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Figure 5.7. Simulated mixing ratios of CH3Cl (a) and CH3Br (b) in the NH ( ) and SH 

( ) using the coupled 1o x 1o coupled ocean-atmosphere model from Yvon-Lewis et al. 

[2009] along with the calculated total “unknown emissions” and the emission ratio of 

fumigation – non-QPS uses, and other known emission and uptake rates. The observed 

mixing ratios in the NH ( ) and SH ( ) during 1995 to 2011 are from 

NOAA/ESRL GMD (ftp://ftp.cmdl.noaa.gov/hats/methylhalides/). 
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emissions. Therefore, we assume that there is no inter-annual variability for the natural 

emissions of CH3Br and CH3Cl for years from 2012 – 2020.  

In the first scenario, atmospheric CH3Br will reach its new steady state in 2013 

with hemispheric mixing ratios of 7.4 ppt (parts per trillion) in the NH and 6.5 ppt in the 

SH (Figure 5.8a). The total tropospheric bromine was measured at 15.7 ± 0.2 ppt in 2008 

[Montzka and Reimann et al., 2011]. Assuming the tropospheric bromine drops 0.1 ppt 

yr-1 (average declining rate during 1998 – 2008), the tropospheric bromine would be 15.2 

ppt in 2013. The atmospheric CH3Br will contribute to 50 % of the total tropospheric 

bromine. If the fumigation - QPS uses of CH3Br are eliminated in 2013 (scenario two), 

the atmospheric mixing ratio would be further reduced by ~0.5 ppt (NH=6.7 ppt; SH=6.1 

ppt) (Figure 5.8b), which only accounts for 3 % of the total tropospheric bromine. If all 

the anthropogenic emissions are eliminated (scenario 3) (Figure 5.8c), the steady-state 

CH3Br concentrations will drop to 6.3 (5.6 – 6.7) ppt in the NH and 5.8 (5.4 – 6.1) ppt in 

the SH, which is comparable to the mean CH3Br mixing ratio in the pre-industrial era 

from the Antarctic ice core measurements, 5.8 ± 0.3 ppt [Saltzman et al., 2004]. 

Different from CH3Cl, the SH mixing ratio of CH3Br is lower than that in the NH at its 

steady-state. This is likely due to an uneven distribution of natural emission and uptake 

rates for CH3Br in both hemispheres (Figure 5.5; Table 5.3). It is also possible that the 

uneven distribution of CH3Br at its steady state from the scenario three may result from 

uncertainties on the known emission and uptake rates. 

The ocean acts as both a source and a sink in the atmospheric budgets of CH3Br 

and CH3Cl. It plays an important role in their global biogeochemical cycling. The ocean  
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Figure 5.8. Predicted atmospheric CH3Br mixing ratios in the NH ( ) and SH ( ). 

(a) Scenario one assuming that only fumigation - non-QPS emissions were phased out. 

(b) Scenario two assuming that the fumigation - QPS emissions of CH3Br were removed 

following the end of the fumigation- non-QPS phase-out. (c) Scenario three assuming 

that all the remaining anthropogenic emissions of CH3Br were eliminated at the end of 

fumigation non-QPS phase-out. For scenarios one to three, the elimination process was 

assumed to be one year. The observed mixing ratios in the NH ( ) and SH ( ) 

during 1995 to 2011 are from NOAA/ESRL GMD 

(ftp://ftp.cmdl.noaa.gov/hats/methylhalides/). 
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was estimated to be near equilibrium with atmospheric CH3Br at the end of its 

fumigation - non-QPS phase-out [Hu et al., submitted]. If the anthropogenic emission 

continues to decline, the saturation state of CH3Br in the surface ocean is expected to 

become more positive. Here, we calculated the net sea-to-air flux of CH3Br for three 

scenarios described above. The global net sea-to-air flux of CH3Br for scenarios one to 

three was estimated at 2, 4 and 6 Gg yr-1, respectively, suggesting that the ocean will 

become a net small source if the remaining anthropogenic emissions are eliminated. This 

result is consistent with the estimated net flux in the pre-industrial budget of CH3Br 

[Saltzman et al., 2004]. 

5.5.4. Atmospheric lifetimes of CH3Cl and CH3Br 

The total atmospheric lifetime, τ, is determined from the sum of the reciprocal of 

various loss process: 

        
strocnsoilOH 

11111
                                         (5.5) 

where, τOH, τsoil, τocn, and τstr are partial atmospheric lifetimes due to reaction with OH 

radicals, loss to soils, uptake by the ocean, and loss to stratospheric photolysis. The 

partial atmospheric lifetimes with respect to the reaction with OH were estimated at 1.3 

(1.1 – 1.5) years and 1.5 (1.3 – 1.8) years for CH3Cl and CH3Br, which are 0.2 years and 

0.4 years shorter than the estimates given by Montzka and Reimann et al. [2011]. This 

difference is mainly due to the discrepancy in the use of OH concentrations. Partial 

atmospheric lifetimes regarding loss to soils were calculated at 4.2 (3.0 – 6.7) years for 

CH3Cl and 2.7 (2.0 – 4.3) years for CH3Br. Since field measurements on CH3Cl uptake 
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rate constants by soils are limited, uncertainties on the corresponding partial atmospheric 

lifetime could be much larger than the range given above. Partial atmospheric lifetimes 

with respect to the oceanic uptake and stratospheric photolysis are all from prior 

estimates for CH3Br and CH3Cl [Hu et al., submitted; Montzka and Reimann et al., 

2011]. The overall atmospheric lifetimes for CH3Cl and CH3Br were estimated at 0.9 

(0.7 – 1.1) years and 0.7 (0.6 – 1.0) years. The best estimates are 0.1 year shorter than 

those from Montzka and Reimann et al. [2011], which mainly results from shorter partial 

atmospheric lifetimes regarding to reaction with OH and loss to the soils. 

5.6. Summary and conclusions 

Significant imbalances in atmospheric CH3Br and CH3Cl budgets remain despite 

substantial efforts made to quantify their sources and sinks over the past two decades. 

Although it was suggested that the “missing sources” of these two gases are likely to be 

located in the tropical terrestrial ecosystems [Hamilton et al., 2003; Warwick et al., 2006; 

Yokouchi et al., 2002], there was no study that examined the linkage of the “missing 

sources” between these two trace gases. In this study, we investigated the total terrestrial 

emissions of CH3Br and CH3Cl along with the imbalances in their atmospheric budgets 

using a “top-down” approach. Results indicate that the total terrestrial emissions of 

CH3Br and CH3Cl along with the imbalances in their atmospheric budgets are highly 

correlated, suggesting that significant portions of these emissions, including emissions 

from their “missing sources”, are likely to share the same origin. Combining these 

results with those from previous studies suggests that it is possible that part of the 

“missing sources” is from the underestimation on the gross emission from the tropical 
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terrestrial ecosystems. However, since uncertainties in the derived “unknown emissions” 

are associated with those of known emissions and known uptake rates (Eqs. 3 - 4), we 

cannot exclude the possibility that the imbalances in their budgets may be partially due 

to the overestimation on the strengths of various sinks. In order to target the location of 

the “missing sources” and test our hypotheses, gross emission and consumption rate 

measurements in the tropical terrestrial ecosystems are needed.  

Atmospheric CH3Br mixing ratios after the phase-out of agricultural fumigation 

are estimated at 7.4 ppt in the NH and 6.5 ppt in the SH at its new steady state. 

Compared to the peak global mixing ratios during 1996 – 1998, 10.4 ppt in the NH and 

8.1 ppt in the SH, they decreased by 3.0 ppt in the NH and 1.6 ppt in the SH, which 

corresponds to a reduction of 36 – 45 Gg yr-1 and 3 – 4 Gg yr-1 in the NH and SH 

emissions. Additional reduction of the fumigation emissions (i.e. eliminating the 

fumigation-QPS emissions) will not result in a significant further decline in the 

atmospheric CH3Br mixing ratios. If all of the remaining anthropogenic emissions were 

removed, the atmospheric CH3Br may drop to the pre-industrial level and the ocean will 

become a small source to the atmospheric CH3Br.  
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6. METHANE FLUXES TO THE ATMOSPHERE FROM DEEPWATER 

HYDROCARBON SEEPS IN THE NORTHERN GULF OF MEXICO* 

 

6.1. Introduction 

Methane (CH4), one of the most important greenhouse gases, has a warming 

potential 23 times that of carbon dioxide over a 100 year time horizon [Ramaswamy et 

al., 2001]. It is also actively involved in tropospheric ozone production and stratospheric 

ozone destruction. The total amount of methane reserved in the form of gas hydrate is 

about 2 Χ 106 Tg in a global inventory [Boswell and Collett, 2011]. It is comparable to 

about 400 times the total mass of the global atmospheric methane, 4850 (±242) Tg 

[IPCC, 2001]. Although the gas hydrate is an enormous methane reservoir, the 

contribution of the gas hydrate from the seafloor to the atmospheric methane budget is 

poorly characterized. It is estimated that marine seeps emit 18 – 48 Tg yr-1 of methane 

from the continental shelves to the overlying water column [Hornafius et al., 1999]. 

However, the global emission from gas hydrates to the atmosphere is less than 5 Tg yr -1 

[Reeburgh, 2007]. 

Methane released from the seafloor or produced in microenvironments in the 

water column [e.g. Cynar and Yayanos, 1991; de Angelis and Lee, 1994] can reach the 

 

__________________________ 

*Reproduced by permission of American Geophysical Union. Hu, L., S. A. Yvon-Lewis, J. D. 
Kessler, I. R. MacDonald, Methane fluxes to the atmosphere from deepwater hydrocarbon seeps 
in the northern Gulf of Mexico, J. Geophys. Res., 2011. Published [2011] American Geophysical 
Union. Not subject to U.S. copyright. 
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atmosphere through turbulent diffusion or rising bubbles. In shallow water, rising 

bubbles are the predominant pathway for delivering methane from seeps to the 

atmosphere, while the net sea-to-air fluxes via diffusion are also considerable [Mau et 

al., 2007; Schmale et al., 2005]. In deep water systems, turbulent diffusion is a 

commonly cited pathway to deliver methane to the atmosphere, whereas it is still 

debatable whether or not bubbles are capable of surviving from the seafloor to the 

surface and, if so, how much methane would be displaced by other gases (i.e. oxygen, 

nitrogen etc.) as they are stripped out of the water as the bubble moves to the surface 

[McGinnis et al., 2006; Rehder et al., 2002, 2009]. Methane transport via rising bubbles 

from the deepwater seeps to the atmosphere depends on a variety of geological and 

physical parameters, including intensity and composition of the seepages, bubble initial 

size, release depth, bubble path, and dissolution rate [Leifer and MacDonald, 2003]. 

Most previous studies reported that the diffusive net sea-to-air fluxes of methane from 

deepwater seep systems (water depth > 200 m) are insignificant [e.g. Kessler et al., 

2006; Reeburgh et al., 1991; Schmale et al., 2005; Yvon-Lewis et al., 2011]. However, 

one recent study suggests that the diffusive net sea-to-air flux of methane from the 

deepwater hydrocarbon seeps to the atmosphere could be considerable [Solomon et al., 

2009].   

To better understand and quantify the diffusive net sea-to-air fluxes of methane 

from deepwater hydrocarbon seeps, we investigated three deepwater seeps featuring 

near-seafloor gas hydrate in the northern Gulf of Mexico. High spatial and temporal 
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resolution measurements were made to determine the net sea-to-air fluxes of methane 

over these hydrocarbon seeps. 

6.2. Method 

6.2.1. Location and measurements 

The HYFLUX cruise took place in the northern Gulf of Mexico during July of 

2009 (4 July – 19 July, 2009) aboard the R/V Brooks McCall. Intensive surface surveys 

were conducted above three active seeps, MC118 (Rudyville, 28.8522o N, 88.4928o W, 

900 meters below sea level, mbsl), GC600 (Oil Mountain, 27.3652o N, 90.5642o W, 

1250 mbsl), and GC185 (Bush Hill, 27.7823o N, 91.5080o W, 550 mbsl) (Figure 6.1), 

which were characterized by seafloor gas hydrate deposits that were partly exposed to 

seawater. Active oil and gas venting was confirmed by a remotely operated vehicle 

(ROV) at fixed locations within all three sampling sites. Air and surface seawater 

samples were analyzed continuously (except for brief maintenance intervals) during 

occupation of the sites and transits. The air-sea sampling plan had two modes: 1) a 

coarse regular grid, where samples were spaced at a kilometer scale, and 2) a fine 

sampling scale that occurred as the ship loitered above the ROV, where samples were 

spaced ≤ 10 m. The ship speed was kept below 4 knots over most of the seep areas 

(Figure 6.2e). 

To measure the diffusive net sea-to-air fluxes of methane and infer its origin, 

atmospheric and surface seawater dissolved C1 - C3 hydrocarbons were measured 

continuously with an automated sampling system coupled to a Weiss-type equilibrator  
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Figure 6.1. Cruise track (red line) of HYFLUX cruise in July of 2009. Colored surface 

of the map indicates the water depths and land surface elevations. The bathymetric data 

are from the NOAA National Geophysical Data Center 

(http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html). White circles denote the 

locations of the three seep sites; black circles mark the year days (YD) along the cruise 

track; red stars stand for the ports where the ship departed or arrived.  
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Figure 6.2. (a) Atmospheric mixing ratios (blue) and surface seawater concentrations 

(red) of methane; the scales for surface seawater methane in ranges of 0 – 30 nmol L-1 

and 30 – 200 nmol L-1 are different. (b - c) Atmospheric mixing ratios (blue) and surface 

seawater concentrations (red) of ethane (b) and propane (c). (d) Sea surface salinity 

(blue) and temperature (red); (e) 24 hour averaged wind speeds at 10 m above sea level 

prior to sampling (blue) and ship speeds along the cruise track (red). (f) Saturation  
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Figure 6.2. Continued 

anomalies (blue) and net sea-to-air fluxes (red) of methane; different scales for 

saturation anomalies in ranges of -40 – 2000 % and 2000 – 10000 % and fluxes in ranges 

of -20 – 100 μmol m-2 d-1 and 100 - 400 μmol m-2 d-1; dash line marks zero saturation 

anomaly and zero flux. Concentrations of zeros for panels a – c indicate concentrations 

below the instrument detection limit. Grey shadows mark the time periods over three 

seep sites. X-axis is the year day of 2009 and the corresponding month/day is labeled in 

the brackets. 

 

 

and a Gas Chromatograph / Flame Ionization Detector (GC/FID, Agilent 6850) system 

(Appendix B).  This technique only quantifies the diffusive net sea-to-air flux of 

dissolved methane and not the direct bubble injection of methane to the atmosphere; 

however, direct bubble injection to the atmosphere could be manifested in the data as 

enhanced atmospheric concentrations relative to surface seawater.  

Air samples were pumped continuously at ~ 6 L min-1 through 0.63 cm ID 

Synflex tubing (Motion Industries, TX) mounted on the railing on the top of flying 

bridge and running to the laboratory. Surface seawater (about 4 m below the sea surface) 

was pumped into the Weiss-type equilibrator at 15 L min-1. Equilibrator headspace and 

ambient air were alternately sampled every 6 minutes using a stream select valve. The 

sample stream passed through a 20 μL sampling loop after being dehumidified by a 

Nafion dryer (Permapure Inc). The Nafion dryer and the 20 μL sampling loop were 
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flushed with the sample air at a rate of 25 mL min-1 for 90 seconds before injection into 

the GC/FID, which was equipped with a 15 m long, 32 μm ID GS-GasPro column (1 m 

pre-column and 14 m main-column) with nitrogen carrier gas. Prior to the cruise, a series 

of standard mixtures (C1 - C3) ranging from 0 – 1000 ppm (parts per million) were made 

using two known concentration standards (15 ppm and 1000 ppm) from Scott Specialty 

Gases. Standards with methane concentrations at 0.09 (± 0.01) ppm, 1.09 (± 0.02) ppm, 

1.69 (± 0.02) ppm and 2.88 (± 0.06) ppm were also calibrated against a whole air tank, 

which was calibrated to the NOAA-04 methane scale. The standards with methane 

concentrations at 0.09 – 2.88 ppm were used to create a standard curve to calibrate the 

instrument. Higher concentration standards 15 (± 1.5) ppm, 503 (± 25) ppm, 1000 (± 50) 

ppm were also run and used as an alternate calibration curve when the measured 

concentration exceeded the lower calibration range. The precision of the system was 

determined from five standard injections. The precision for concentrations ≤ 3 ppm was 

3 % for methane, 2 % for ethane and 3 % for propane. The precision for concentrations > 

3 ppm was less than 1 % for methane, ethane and propane.  

The sea surface temperature and salinity were continuously measured by a 

Conductivity Temperature Depth (CTD) sensor from Sea-Bird Electronics (SBE 19 plus) 

at the outflow of the equilibrator. Wind speeds and directions were continuously 

measured by an anemometer at a height of ~ 9 m above the sea level. 

6.2.2. Equilibrator concentration correction 

The equilibrator headspace technique has been used for the determination of the 

net sea-to-air fluxes of many dissolved gases including but not limited to halocarbons 
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[Butler et al., 2007 and references therein; Hu et al., 2010 and references therein], CO2 

[Takahashi et al., 2009 and references therein] and methane [Amouroux et al., 2002; 

Bange et al., 1994, 1996, 1998; Kourtidis et al., 2006; Rhee et al., 2009] over the past 20 

years.  

 Due to the different solubilities for different gases, the time needed for the trace 

gas concentration in the headspace to reach equilibrium with the incoming seawater is 

different for each trace gas. The headspace mass concentration, Ce, at a time, t, can be 

expressed with the following equation when the equilibrator vent flow, Qv , is zero 

[Johnson, 1999].  
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is typically about 0.3 - 0.4 [Johnson, 1999]; α is the Oswald solubility coefficient; Ci is 

the initial mass concentration in the headspace and Cw is the mass concentration of the 

trace gas in the incoming seawater. 

When the equilibrator vent flow, Qv , is not zero, the air in the headspace is 

removed and replaced by the ambient air at a rate of Qv. The trace gas concentration in 

the headspace can then be expressed by the following equation [Johnson, 1999]. 
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where, 
v

e
v

Q

v
  and 

v

111

12

 ; Ca is the mass concentration of the trace gas in the 

ambient air.  

 Under normal operating conditions, the equilibrator vent flow is zero except the 

duration when the instrument is flushing the dryer and sample loop (i.e. collecting the 

headspace air sample). Assuming the equilibrator vent flow is off for a period of t1 (min) 

and on for a period of t2 (min) at a rate of Qv (ml min-1), the trace gas concentration in 

the headspace at t1 + t2 can be expressed as:   
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Since the trace gas concentrations in the ambient air and in the equilibrator headspace 

were measured, Ca, Ci, and Ce are known. The trace gas concentration in seawater can be 

expressed as a function of Ca, Ci, and Ce (Equation 6.4). 
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In this study, the vent flow, 25 ml min-1, was only on for 2.5 min between two seawater 

measurements, resulting in only 1 % of difference in the Cw compared to the case 

without the vent flow. Given such a small effect, we can simplify equation (6.4) by 

assuming the vent flow is 0 during t1 to t2. Then τv is equal to 0, and τ1 is equal to τ2. 

Equation (6.4) can be expressed as:  
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In equations (6.1 – 6.5), it is assumed that the trace gas concentration in the seawater is 

constant during t1 and t2. However, in reality, this assumption may not be true especially 

when the ship speed is fast. Therefore, assuming the seawater concentration is constant 

during a very short time period (Δt) (i.e. < 1 second) and the seawater concentrations are 

nn wwww CCCC ,,...,,
121 

for each Δt (nΔt = t1+t2), the trace gas concentration in the 

headspace can be expressed by: 
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By substituting the Ce in equation (6.5) with equation (6.6), Cw can be expressed by:   

     )...(
1
1

1

1

1

3

1

2

1

11

1
1321

/

/

nn w

t

w

t
n

w

t
n

w

t
n

wtn

t

w CeCeCeCeC
e

e
C 





























         (6.7)                 

Assuming ),...,3,2,1(
1
1

1

1

1

/

/

nie
e

e
a

t
in

tn

t

i 



















 , Cw can be rewritten as:  
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Therefore, the fractional contributions of the true seawater concentrations, 

nn wwww CCCC ,,...,,
121 

, to the corrected seawater concentration (Cw) are nn aaaa ,,...,, 121  . 

For the very soluble gases (i.e. CO2, N2O), nn aaaa ,,...,, 121  exponentially increase from 0 

to 1 as a1 goes to an, and Cw is more representative of an instantaneous incoming 
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seawater concentration.  For the less soluble gases (i.e. CH4, CO), nn aaaa ,,...,, 121  are 

close to 1/n and Cw is more representative of an average seawater concentration during 

the last nΔt min. In this study, the seawater concentrations were calculated using 

equation (2.4), and they represent average seawater concentrations over a period of 12 

min. As the ship speed was in a range of 0 – 4 knots when sampling, 12 min represents a 

distance of 0 – 1480 m. 

6.2.3. Net sea-to-air flux calculation 

The net sea-to-air flux (F) is calculated by:  

                                  )( aww CCkF                                                  (6.9)   

where, kw is the gas transfer velocity (m d-1) [Sweeney et al., 2007], and Cw, Ca and α are 

defined above. The gas transfer velocity parameterization from Sweeney et al. [2007] is 

an improvement over the typical Wanninkhof [1992] parameterization since they closed 

the previous gap between field measurements [Liss and Merlivat, 1986; Nightingale et 

al., 2000] and radiocarbon estimates [Tans et al., 1990; Wannninkhof, 1992] on this 

parameter.  

The gas transfer velocity (kw) from Sweeney et al. [2007] is expressed as: 

                                              5.02
10 )

660
(27.0 

Sc
ukw                                         (6.10) 

where, Sc is the Schmidt Number of methane in seawater from Wanninkhof [1992] and 

u10 is the 10 m normalized wind speed (m s-1) determined using the equation given by 

Large and Pond [1982].  
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6.3. Results 

Atmospheric methane during this cruise ranged from 1.70 ppm to 4.01 ppm with 

a mean of 2.03 ppm (Figure 6.2a). The atmospheric methane fluctuated around a 

background concentration of 1.92 ppm during the occupation of the sites and transits 

except at the end of GC600 and the transit to GC185 (Figure 6.2a). The surface seawater 

methane concentrations ranged from 1.76 to 23.5 nmol L-1 at MC118, 1.76 to 11.9 nmol 

L-1 at GC600, and 1.72 to 4.48 nmol L-1 at GC185 (Table 6.1). The presence of ethane 

(Figure 6.2b) and propane (Figure 6.2c) in the surface seawater over the seep area 

(mainly at MC118 and GC 600) indicates a thermogenic contribution from the 

deepwater hydrocarbon seeps. The maximum methane concentration observed in surface 

seawater during this study, 156 nmol L-1, was observed on year day (YD) 191 (10 July, 

2009) on the continental shelf offshore from Louisiana (Figures 6.1 and 6.2a). The 

corresponding atmospheric methane concentrations reached 2.10 ppm due to the net sea-

to-air flux (Figure 6.2a). Increased ethane and propane along with elevated salinity and 

decreased temperature (Figures 6.2b, c and d) suggest that the elevated methane in the 

surface seawater may be associated with upwelling of hydrocarbon enriched waters. A 

similar feature in the surface seawater was observed in the same region in June of 2010 

during the Persistent Localized Underwater Methane Emission Study (PLUMES) [Yvon-

Lewis et al., 2011]. 

The methane saturation anomaly is defined as the percent difference between the 

partial pressures of methane in surface seawater and air. They ranged from -51.8 % to 
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Table 6.1. Mean atmospheric methane mixing ratios, seawater methane concentrations, saturation anomalies and net sea-to-air 

fluxes of methane at the three seep sites (ranges of values in parentheses).  

Sites Atmospheric CH4 
mixing ratio (ppm) 

Seawater CH4 
concentration 

(nmol L-1) 

Saturation anomaly 
(%) 

Averaged 
wind speed (m 

s-1) 

Flux (μmol m-2 d-1) 

W92a S07b 

MC118 1.93 (1.71-2.62) 5.85 (1.76-23.5) 207 (-6.42-1196) 5.6 15.4 (-0.52-86.1) 12.8 (-0.45-75.0) 

GC600 2.13 (1.72-3.83) 3.61 (1.76-11.9) 90.5 (-46.0-598) 5.3 5.41 (-4.19-34.9) 4.67 (-3.65-30.4) 

GC185 1.81 (1.71-1.98) 2.41 (1.72-4.48) 39.6 (2.33-156) 4.0 1.25 (0.08-4.13) 1.07 (0.07-3.60) 

a W92 refers to the flux calculated using the Wanninkhof [1992] gas transfer velocity parameterization; 

b S07 refers to the flux calculated using the Sweeney et al. [2007] gas transfer velocity parameterization
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7.43 Χ 103 % (Figure 6.2f). The calculated net sea-to-air fluxes ranged from -4.68 to 416 

μmol m-2 d-1 (Figure 6.2f). The mean net sea-to-air flux at each of the three seep areas 

was 12.8 μmol m-2 d-1 (MC118), 4.67 μmol m-2 d-1 (GC600) and 1.07 μmol m-2 d-1 

(GC185) (Table 6.1). To compare the results from this study to those from previous 

studies, we calculated the flux using the gas transfer velocity from Wanninkhof [1992] in 

addition to using the Sweeney et al. [2007] relationship described earlier. The calculated 

net sea-to-air methane fluxes from the deepwater hydrocarbon plume areas are one to 

two orders of magnitude lower than those from shallow water seep plume areas (Table 

6.2; Mau et al., 2007; Schmale et al., 2005). For the deep water environment, the 

calculated fluxes from this study are in the same range as those determined from most 

previous studies (Table 6.2; Reeburgh et al., 1991; Schmale et al., 2005; Yoshida et al., 

2004; Yvon-Lewis et al., 2011). However, they are three orders of magnitude lower than 

those reported by Solomon et al. [2009] who investigated the same region as the current 

study including one of the same identified seep sites. 

6.4. Discussion 

Based on the results above, four main issues will be addressed in the following 

discussion: 1) the source for the elevated atmospheric methane during the transit from 

GC600 to GC185; 2) the diffusive net sea-to-air fluxes of methane over three seep sites 

and the extrapolated total fluxes of methane over the deepwater seep area in the northern 

Gulf of Mexico; 3) potential causes for the large discrepancy between the results from 

this study and those reported by Solomon et al. [2009]; and 4) the impact of small areas 

of high methane concentration hotspots on our regional air-sea flux estimate if extremely  
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Table 6.2. Diffusive net sea-to-air fluxes of methane from different marine environments.  

Location Water Depth (m) Flux (μmol m-2 d-1) a Reference 

Deep water environments (> 200 m)       

Deepwater hydrocarbon plume area in the northern Gulf of Mexico  550 – 1250 -4.19 - 86.1 This study 

Deepwater hydrocarbon plume area in the northern Gulf of Mexico 500 - 600 200 - 10,500 Solomon et al., 2009 

Plume area during the Deepwater Horizon oil spill  1500 -0.055 - 1.83 
Yvon-Lewis et al., 2011 

Sorokin Trough and Dnepr Area in Black Sea >200 40.6 - 49.2 Schmale et al., 2005 

Central Black Sea >200 27 Reeburgh et al., 2006 

Sea of Okhotsk >200 0.36 - 88 Yoshida et al., 2004 

Baltic and North Seas >200 -6.6 - 13.89 Bange et al., 1994 

Aegean Sea >200 1.81 Bange et al., 1996 

Northwestern Levantine Basin >200 3.02 Bange et al., 1996 

Open Ocean in the Atlantic >200 0.3 Rhee et al., 2009 

Open Ocean in the Pacific >1000 0.9 - 3.5 Tilbrook and Karl, 1995 

    
Shallow water environments (≤ 200 m)    
Coal Oil Point <70 195 Mau et al., 2007 

Northwest Black Sea <200 53 Amouroux et al., 2002 

Northwestern continental shelf of the Sea of Okhotsk <200 0.47 - 11 Yoshida et al., 2004 

Shelf waters of Dnepr Area <200 67 Schmale et al., 2005 

Coastal region of the Atlantic <200 3.2 Rhee et al., 2009 

a Fluxes were calculated using the gas transfer velocity parameterization of Wanninkhof [1992].
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high concentrations existed in the surface seawater over a deepwater hydrocarbon plume 

area and were missed in this study.  

6.4.1. Elevated atmospheric methane 

An area of elevated atmospheric methane with a maximum concentration of 4.01 

ppm was observed on YD 197 (16 July) at GC600 (Figure 6.2a). The elevated 

atmospheric methane persisted for 19 hours and extended over 50 kilometers to the 

northwest of GC600 during the transit to GC185 (Figure 6.2a). Coincident elevated 

ethane and propane in the atmosphere suggest a thermogenic gas contribution (Figures 

2.2b and 2.2c). The 24 h air-mass back-trajectories obtained from the NOAA Air 

Resources Laboratory (http://www.ready.noaa.gov/ready/open/hysplit4.html) show that 

the air masses with increased atmospheric methane came from the same region as those 

with background concentrations of 1.81 ppm (Figure 6.3), suggesting a localized source 

rather than long-range transport. Since the methane concentrations in the underlying 

seawater were close to a seawater background concentration of 2.40 nmol L-1 (Figure 

6.2a), methane transport via diffusive sea-to-air gas exchange is not the source of these 

high atmospheric concentrations.  

Although bubbles traveling over 1000 m from a deepwater seep site have been 

observed [Greinert et al., 2006], whether or not they can reach the surface is still 

debated [McGinnis et al., 2006; Rehder et al., 2009]. In this study, to increase the 

atmospheric methane concentration to 4.01 ppm (3.25 ppm averaged over the area with 

elevated methane concentrations), there would need to be 3 Χ 105 mol d-1 of methane 

released to the atmosphere assuming a marine boundary layer height of 700 m (data  
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Figure 6.3. 24 hour back-trajectories of air masses (dot lines) and locations of oil 

platforms (black dots) in  the northern Gulf of Mexico. Back-trajectories were 

downloaded from NOAA Air Resources Laboratory 

(http://www.ready.noaa.gov/ready/open/hysplit4.html) and platform locations are from 

MMS Gulf of Mexico regional database 

(http://www.gomr.mms.gov/homepg/pubinfo/repcat/arcinfo/index.html). White circles 

denote the locations of three seep sites. Red stars stand for the ports where the ship 

departed or arrived. 
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Figure 6.4. Vertical profiles of density at MC118 (a), GC600 (b) and GC185 (c). Red 

and blue lines stand for two randomly selected CTD casts from each site. 
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from http://ready.arl.noaa.gov/READYamet.php) and assuming that the elevated 

methane only spread out in a circle 100 m in diameter centered on the ship as it moved 

along the cruise track. It is not likely for direct methane transport via gas bubbles at 

GC600 to contribute such a large amount of methane to the atmosphere due to the strong 

pycnocline during the summer (Figure 6.4) and the 1200 m water depth at this site. 

While slicks were observed from the ship at this site along with intermittent oil droplets 

rising to the surface, surface water concentrations were 2.85 ± 0.73 (1 σ) nmol L-1, 

suggesting that these droplets were not carrying high concentrations of methane. Since 

the observation of the elevated atmospheric methane to the northwest of GC600 does 

coincide with satellite data from 20 July showing very extensive oil slicks over this 

broad region of the Gulf, we could not completely exclude the possibility that methane 

could be transported inside of the oily bubbles to the atmosphere. However, we cannot 

provide an appropriate mechanism for this possibility. 

Fugitive release to the atmosphere directly from oil platforms around GC600 is 

possible (Figure 6.3). Given the fact that no significantly elevated atmospheric methane 

concentrations were observed near the recovery ships during the Deepwater Horizon oil 

spill, which were flaring tremendous amounts of gas [Yvon-Lewis et al., 2011], flaring 

itself is an unlikely source of methane to the atmosphere. Not flaring or accidentally 

releasing gas from the drilling oil platform during this time is not likely to be the 

explanation either based on the drilling records from the Drilling Rig OCEAN 

MONARCH (the rig close to GC600). A likely explanation could be an undetected leak 

from one or more of the nearby oil platforms.  
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Figure 6.5. Methane concentrations in surface seawater at MC118 (a - b), GC600 (c - d) 

and GC185 (e - f). Grey rectangles in the lefthand panels indicate the blown-up regions, 

which are plotted in the righthand panels. Red stars indicate the locations of the seeps.   
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Figure 6.6. Contour plots of methane net sea-to-air fluxes at the three seep sites using 

natural neighbor. Red stars indicate the locations of the seeps. Black circles stand for the 

locations of the flux measurements.  
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6.4.2. Methane net sea-to-air fluxes over the seep area in the northern Gulf of 

Mexico  

High spatial variability was observed in sea surface methane and net sea-to-air 

fluxes over the three seep areas (Figures 6.5 and 6.6). Overall, MC118 had higher sea 

surface methane concentrations and higher net sea-to-air fluxes than either GC600 or 

GC185 (Tables 6.1 and 6.3; Figures 6.5 and 6.6). GC600 is the oiliest site surveyed 

during this study. Although surfactants can inhibit bubble dissolution and enhance the 

methane transport, lower surface seawater methane concentrations and lower diffusive 

fluxes were observed than those at MC118. GC185 is the shallowest site occupied 

during this study. During a prior study at this site, a methane concentration of 608 nmol 

L-1 at a water depth of ~ 20 m was reported and used to determine a net sea-to-air flux of 

3420 μmol m-2 d-1 in the plume area [Solomon et al., 2009]. Therefore, higher methane 

concentrations in the air and sea surface as well as higher fluxes were anticipated. 

However, both the atmospheric methane and the sea surface (4 mbsl) methane were near 

background (Table 6.1). Spatial variability between sites is associated with 

characteristics of their geological and physical environment, e.g. seep intensity, oil-water 

ratio, water depth, currents, and mixed layer depth. Spatial variability within one seep 

site (Figure 6.5) is related with the rising angle of the bubbles and the directions of mid-

depth and surface currents. High temporal variability within one seep site was also 

observed during our surface survey (Figures 6.2 and 6.6). The magnitudes of the fluxes 

and the elevated flux areal extent vary from day to day (Table 6.3; Figure 6.6). The 

temporal variability of methane fluxes could be due to changes in seepage rates, 
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Table 6.3. Mass fluxes over the survey area using different interpolation gridding methods. The boundaries for the gridded 

fluxes are shown in figure 6.6. The year day is abbreviated as YD.   

Sites 
Survey 
Area 
(km2) 

Area with 
fluxes ≥ 8 

µmol m-2 d-1 
(km2) 

Natural Neighbor Inverse Distance Weighted Krigging 

Area weighted 
mean flux 

(µmol m-2 d-1) 

Mass Flux  
(mol d-1) 

Area weighted 
mean flux 

(µmol m-2 d-1) 

Mass 
Flux 

(mol d-1) 

Area weighted 
mean flux 

(µmol m-2 d-1) 

Mass 
Flux 

(mol d-1) 

MC118                 

YD 187 15.15 14.00 19.8 300 21.5 326 23.2 352 

YD 188 16.27 13.91 13.2 215 12.0 195 11.3 183 

YD 189 34.64 12.31 7.82 271 8.68 301 9.11 316 

YD 190 8.530 3.430 7.75 66.1 8.70 74.2 8.82 75.2 

YD 192.5 - 193.5 0.06155 0.03014 12.1 0.744 15.5 0.954 18.7 1.15 

YD 193.5 -195.2 0.5318 0.0055 6.98 3.71 6.36 3.38 6.23 3.31 

    
        

GC600 8.571 0.407 6.05 51.9 5.53 47.4 5.26 45.1 

GC185 6.686 0.000 1.02 6.85 1.03 6.86 1.00 6.69 
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currents, wind speeds, surface wave action, etc. [Clark et al., 2003, 2010; Greinert et al., 

2006; Leifer and Boles, 2005; Leifer et al., 2006; Quigley et al., 1999].  

The daily methane mass flux distribution for each survey area was determined by 

interpolation using natural neighbor, inverse distance weighted interpolation, and 

krigging (Table 6.3). The three different interpolation methods do not produce 

significantly different fluxes. Since the natural neighbor method produced a smoother 

shape, we chose this algorithm as our main interpolation method for plotting the mass 

flux distribution over the seep sites. Due to the high temporal and spatial variability of 

the methane fluxes within and between sites, it is difficult to extrapolate the observed net 

sea-to-air fluxes to other periods or to other hydrocarbon seeps (Figures 6.5 and 6.6). 

However, we can approximate the upper limit of the diffusive net sea-to-air flux of 

methane from the deepwater hydrocarbon seeps in the northern Gulf of Mexico under 

normal conditions (i.e. no mud volcanoes or submarine earthquake) by assigning the 

highest daily flux determined in this study, 300 mol d-1 (per seep site), to other 

deepwater hydrocarbon seeps in this region. Large uncertainty exists in the number of 

active seeps in the northern Gulf of Mexico. Geophysical anomalies generated by seeps 

in the geologic past exceed 5000 possible sites [Frye, 2008] whereas preliminary results 

for seeps detected by remote sensing (see the detailed method in Garcia-Pineda et al. 

[2010]) suggest a maximum number of active vents about 1500. Assuming that each of 

the 1500 - 5000 seeps in the northern Gulf of Mexico has daily net sea-to-air flux of 300 

mol d-1 and they persistently emit methane to the atmosphere at the same rate over a one-

year period, the total diffusive net sea-to-air flux from deepwater hydrocarbon seeps in 
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the northern Gulf of Mexico is about 3 - 9 Gg yr-1. Compared with the total annual 

emission of methane to the atmosphere, 5.8 Χ 105 Gg yr-1 [Denman et al., 2007], the 

contribution of the net diffusive sea-to-air flux from deepwater hydrocarbon seeps in the 

northern Gulf of Mexico is insignificant to the atmospheric methane budget.  

6.4.3. Explanation for flux discrepancy 

The three orders of magnitude methane flux discrepancy between this study and 

that reported by Solomon et al. [2009] is mainly attributable to the surface seawater 

methane values used in the flux equation (Equation 6.9). The “surface” seawater 

methane concentrations reported in Solomon et al. [2009] were in the range of 57.1 – 

1609 nmol L-1 while the methane concentrations in this study ranged from 1.72 – 23.5 

nmol L-1. Although we cannot exclude the possibility of temporal variability, we can 

evaluate the methodological differences between these two studies. How each study 

defines a "surface" sampling depth is a key factor that bears consideration. In the present 

study, seawater was continuously sampled from ~ 4 m water depth within the mixed 

layer as the ship was moving. Mean mixed layer depths were 4.8 m (0 – 28.8 m; median: 

3.5 m; 32 CTD casts) at MC118, 4.9 m (4.2 – 5.5 m; 2 CTD casts) at GC 600, and 2.1 m 

(1.4 – 2.6 m; 3 CTD casts) at GC185 (Figure 6.4). When determining the air-sea flux 

using the air-sea concentration gradient, the dissolved concentrations must be measured 

as close to the surface as possible. By contrast, the shallowest sample collected in 

Solomon et al. [2009] was around 20 m. Their temperature and salinity profiles (see 

supplementary materials in Solomon et al. [2009]) do not display a mixed layer depth 
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below 20 m. Therefore, the "surface" water value they used to calculate methane fluxes 

were not diagnostic of true surface water values.  

A contributing but minor factor to the differences in net sea-to-air fluxes reported 

in the two studies involves the atmospheric methane concentrations used in the flux 

calculation. Solomon et al. [2009] used an averaged atmospheric methane concentration 

for their flux calculations, while the atmospheric mixing ratios were measured once 

every 12 minutes locally during the current study. Atmospheric methane ranged from 

1.70 ppm to 4.01 ppm over the seep sites during the current study. At times, the 

atmospheric methane concentrations were over twice the average background 

concentration. In some places during the occupation of GC600, the surface ocean acted 

as a sink for atmospheric methane and would have been misinterpreted as a source to the 

atmosphere if average atmospheric methane concentrations were used in the flux 

calculations. Fluxes of methane from the ocean to the atmosphere or other incidental 

hydrocarbon emissions could result in perturbations to the local atmospheric methane 

concentrations, and these perturbations should be accounted for in the calculation of the 

flux.  

6.4.4. Impact of small area high concentration hotspots on the regional air-sea flux 

To determine if the regional air-sea flux results from continuous air-sea 

measurements are more representative than discrete measurements, we investigate 

whether the technique used in this study could have missed a high methane 

concentration hotspot that is large enough to impact the overall flux from the plume area. 

To address this possibility, the sensitivity of the corrected seawater concentration (Cw) to 
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the size and concentration of a potential hotspot is determined using equation (6.7). We 

assumed 1) that any corrected seawater concentration ≥ 4 nmol L-1 (twice the 

background concentration) indicated an observable hotspot; and 2) that the ship left a 

background concentration of 2 nmol L-1 and immediately crossed a methane hotspot 

with a concentration ranging from 4 to 1609 nmol L-1 (the highest 20 m value reported 

by Solomon et al. [2009]). Under these conditions, a surface hotspot with a concentration 

of 1609 nmol L-1 is observable for a hotspot with a diameter ≥ 2 m when the ship speed 

is 4 knots (e.g. when the ship is conducting coarse surveys) (Figures 6.7a and 6.7c), and 

a diameter ≥ 5 cm when the ship speed is 0.1 knots (e.g. when the ship was holding a 

station) (Figures 6.7b and 6.7d). As the concentration of the hotspot decreases, the 

hotspot size required for unequivocal detection would exponentially increase (Figure 

6.7). 

Since the corrected seawater concentration (Cw) is close to an average 

concentration over 12 min (see equation 6.7), it averages out the high and low seawater 

concentrations. Here, we will assess the possible impact of missed hotspots along the 

survey track. Assuming the three seep sites only contain hotspots with methane 

concentrations of 1609 nmol L-1 and waters with background concentrations of 2 nmol 

L-1, the possible sizes of the missed hotspots can be determined by equation (6.7) using 

the actual ship speeds and the observed concentrations. The area of each possible missed 

hotspot ranges from 5.2 x 10-4 m2 to 77 m2 and the total area of missed hotpots in each of 

the three plume areas is 181 – 930 m2 (MC118), 51 m2 (GC600) and 20 m2 (GC185), 

corresponding to fluxes of 0.80 – 5.16 mol d-1 (MC118), 0.24 mol d-1 (GC600) and 0.05  
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Figure 6.7. Corrected seawater methane concentrations (Cw) (colored contours) as a 

function of hotspot sizes (x-axis) and hotspot concentrations (y-axis). (a) A scenario 

when the ship crosses a hotspot with an infinite variety of sizes and concentrations from 

a background concentration of 2 nmol L-1 at a ship speed of 4 knots (e.g. when ship is 

doing coarse survey). (b) A scenario when the ship crosses a hotspot with an infinite 

variety of sizes and concentrations from a background concentration of 2 nmol L-1 at a 

ship speed of 0.1 knots (e.g. when ship is holding station). (c) is an expansion of (a) and 

(d) is an expansion of (b). White lines indicate 4 nmol L-1 contours, our defined 

boundary for an observable hotspot signal. Any concentration or size condition to the 

right and above the white line meets the criteria for being a detectable hotspot.
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Table 6.4. The integrated net mass flux of methane from each survey area each day and 

the total potential mass flux from hotspots at those sites. 

Sites  Survey 
Area (km2) 

Mass Flux a  
(mol d-1) 

Total Hotspot 
Area (km2)  

Hotspots Mass 
Flux b (mol d-1)  

MC118      
YD 187 15.15 300 0.930  x 10-3 5.16 

YD 188 16.27 215 0.238  x 10-3 1.34 

YD 189 34.64 271 0.444  x 10-3 1.82 
YD 190 8.53 66.1 0.181  x 10-3 0.82 

YD 192.5 - 193.5 0.062 0.74 0.597  x 10-3 4.66 

YD 193.5 -195.2 0.53 3.71 0.181  x 10-3 0.80 
Mean  142  2.43 

     
GC600 8.57 51.9 0.051 x 10-3 0.24 

GC185 6.69 6.85 0.020 x 10-3 0.05 

a Integrated mass flux using natural neighbor. b The total methane flux from hotspots assuming 
relatively small areas of hotspots exist on the survey tracks.
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mol d-1 (GC185) (Table 6.4). The mean flux over each plume area resulting from 

hotspots that might have been missed using the current survey technique accounts for 

only 1.7 % (MC118), 0.5 % (GC600) and 0.7 % (GC185) of the integrated regional flux 

(Table 6.4). 

Another potential limitation of the survey technique used in this study is the 

possibility that hotspots between the survey tracks were never sampled. Since the 

extremely high surface water methane concentrations reported in Solomon et al. [2009] 

were from GC185, we use this site to investigate the impact of missed hotspots between 

the survey tracks. Assuming that either the missed hotspots or our sampling pattern were 

randomly distributed throughout the survey area, we estimate the probability that a 

hotspot was completely missed.  For each surface water measurement, the probability 

(P) that a hotspot was missed is calculated as a function of the total integrated hotspot 

area (Ah) and the total survey area (A; 6.686 km2) of GC185. 

                                                  AAAP h /)(                                               (6.11) 

Since we sampled 71 times, the probability that the hotspot was completely missed on all 

71 measurements is P71. This calculation clearly shows that as the area of the hotspot 

increases, the probability that it was missed rapidly decreases (Figure 6.8). While there 

is an increased probability that a relatively small total integrated hotspot area was 

missed, this relatively small area leads to a relatively small flux from hotspots. 

Interestingly, even if we assume a background flux of 50 times the observed value for 

GC185, a total integrated hotspot area of only 1.92 % of the survey area is necessary to 

produce a daily flux similar to our “background” observations. And for a hotspot area of  
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Figure 6.8. Hotspots potentially missed between sampled locations at GC185 as a 

function of assumed total hotspot area. Probability that a hotspot was missed during the 

survey (n = 71) (solid line). CH4 flux from the total integrated hotspot area (dashed line). 

CH4 flux from the fifty-times the background (i.e. non-hotspot) area at GC185 (dashed-

dotted line).    
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1.92 %, there is only a 25 % chance that hotspots covering this total integrated area were 

missed during our sampling campaign. 

6.5. Conclusions 

Elevated methane concentrations in surface seawater were observed, and 

elevated net sea-to-air methane fluxes were determined at three seep sites (MC118, GC 

600 and GC185) in the northern Gulf of Mexico. The net sea-to-air methane fluxes 

ranged from - 4.19 μmol m-2 d-1 to 86.1 μmol m-2 d-1 over the deepwater hydrocarbon 

plume areas, agreeing with most previous studies. Variations in the atmospheric methane 

concentrations suggest the need for measuring atmospheric methane concentration when 

assessing the net sea-to-air fluxes. High temporal and spatial variability in the methane 

fluxes was observed over the three seep areas. Extrapolating the highest flux from this 

study to other deepwater hydrocarbon seeps in the northern Gulf of Mexico suggests that 

diffusive net sea-to-air fluxes from deepwater hydrocarbon seeps in the northern Gulf of 

Mexico is an insignificant source to atmospheric methane. However, the elevated air 

concentrations on GC600 require about 3 Χ 105 mol d-1 of methane released in this area. 

This tremendous methane source could not be characterized during this study. 

Three orders of magnitude of discrepancy exist between the results from this 

study and those reported in Solomon et al. [2009] for the estimation of the diffusive net 

sea-to-air flux of methane from deepwater hydrocarbon seeps in the northern Gulf of 

Mexico. The large discrepancy between these two studies is mainly attributed to the 

different concentrations observed and the depths of those concentrations. The 

concentrations reported here are all from within or close to the surface mixed layer and 
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appropriate for use in air-sea flux calculations. However, assuming that extremely high 

methane concentrations existed as relatively small hotspots in the surface seawater over 

deepwater hydrocarbon seep area, the impact of those hotspots on the regional diffusive 

air-sea flux would be small. 
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7. SUMMARY AND CONCLUSIONS 

 
 

The coastal ocean is supersaturated with CH3Br and CH3Cl [Hu et al., 2010; 

Lobert et al., 1995; Moore et al., 1996; Sturrock et al., 2003]. Contributions of CH3Br 

and CH3Cl from the coastal ocean to the atmosphere are not well studied. GOMECC 

(section 2) represents the first large-scale coastal study for CH3Br and CH3Cl. Results 

from this study indicate higher CH3Br and CH3Cl production rates in surface coastal 

seawater than those in surface open ocean [Hu et al., 2010]. Extrapolating emissions of 

CH3Br and CH3Cl from the GOMECC study to the global coastal area yields 1.4 (0.5 - 

3.6) Gg yr-1 and 50 (19 – 98) Gg yr-1 for the global coastal emissions of CH3Br and 

CH3Cl. There are some problems for simple global extrapolation, e.g., the extrapolated 

emissions may be biased by regional in-situ wind speed or regional production rate. To 

overcome this problem, we developed coastal saturation anomaly – (SST, wind speed) 

relationship for CH3Cl and estimated the global oceanic emission using the 1o x 1o 

gridded model (see section 4), which was 50 (± 17) Gg yr-1. For CH3Br, since the 

atmospheric mixing ratios are declining and the surface saturation anomalies of CH3Br 

keep changing, it is not possible to develop any empirical relationship between 

saturation anomalies of CH3Br and SST or wind speed that is valid during the decline of 

atmospheric CH3Br. Therefore, I applied the mean production rate calculated from the 

GOMECC and HalocAST study to the global coastal oceanic area, and calculated the 

emission rates using climatological wind speed. Results suggest that the calculated 

global emission would be 4.6 (± 1.5) Gg yr-1 for CH3Br. Coastal ocean removes CH3Br 
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and CH3Cl both chemically and biologically [Elliott and Rowland, 1995; King and 

Saltzman, 1997; Tokarczyk et al., 2003]. The total aquatic degradation rates in coastal 

ocean for CH3Br and CH3Cl are higher than those in open ocean [King and Saltzman, 

1997; Tokarczyk and Saltzman, 2001; Tokarczyk et al., 2001; Tokarczyk  et al., 2003; 

Tokarczyk et al., 2003]. Calculated global coastal oceanic degradation rates for CH3Br 

and CH3Cl using 1o x 1o gridded model (see Hu et al. [Submitted] for the method) are 

about 0.8 (± 0.3) Gg yr-1 (at the end of non-QPS phaseout) and 35 (± 10) Gg yr-1. The 

net fluxes of CH3Br and CH3Cl from the coastal ocean to the atmosphere are about 3.8 

(±1.2) (at the end of non-QPS phaseout) Gg yr-1 and 15 (±7) Gg yr-1. This suggests that 

the coastal ocean does contribute to the “missing sources” of CH3Br and CH3Cl.  

Lobert et al. [1995] first established a global oceanic net sink of -12.6 Gg yr-1 for 

atmospheric CH3Br. Their results were then supported by many subsequent field 

observations. In 2002, a key saturation anomaly-SST relationship [King et al., 2002] was 

developed to calculate global net sea-to-air fluxes of CH3Br before the atmospheric 

CH3Br phase-down. The implementation of Montreal Protocol on Substances That 

Deplete the Ozone Layer and its amendments resulted in the phaseout of fumigation - 

non-QPS uses of CH3Br. Sixteen years after that first cruise reported by Lobert et al. 

[1995, 1996], saturation anomalies of CH3Br were determined in the same region to 

assess the oceanic saturation state as the non-QPS phaseout nears completion (section 3). 

Our findings show for the first time that saturation anomalies of CH3Br over large areas 

have become more positive than those observed 16 years ago, which supports our 

hypothesis II. The global net sea-to-air flux in 2010 was estimated at 3 Gg yr-1, 
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indicating that the ocean has become a net small source for atmospheric CH3Br. This is a 

dramatic shift in the view of the ocean in the budget of atmospheric CH3Br. The change 

in the saturation state indicates that the saturation anomaly - SST relationship used by 

modelers for oceanic methyl bromide became invalid once the atmospheric CH3Br 

phase-down began. Our results also highlight the need to separate the emission from 

uptake by the ocean when determining the budget of atmospheric traces gases with 

oceanic sources and sinks. In addition, we demonstrated that there was no significant 

change in the annual oceanic production rate and the biological oceanic uptake rate 

constant over the past 16 years. 

The ocean is one of the major sources for atmospheric CH3Cl next to the tropical 

terrestrial source and biomass burning. Total efflux of CH3Cl from warm waters (annual 

mean SST ≥ 12oC) to the atmosphere was estimated at 380 – 500 Gg yr-1 [Clerbaux and 

Cunnold et al., 2007] whereas total influx from the atmosphere to cold waters (annual 

mean SST < 12oC) was estimated at 93 – 145 Gg yr-1 [Moore, 2000] previously. The 

shortcomings on the prior estimates include limited field data, lacking of salinity 

dependence in the solubility expression and use of old parameterization on the gas 

exchange coefficient. Section four represents our efforts to improve the estimate on the 

oceanic budget of CH3Cl. We measured solubilities of CH3Cl in both fresh water and 

seawater at temperatures from 0 oC to 40 oC and improved the solubility 

parameterization by including salinity dependence. We also developed seasonal 

saturation anomaly as a function of sea surface temperature and wind speed using data 

from ten different cruises. Including all of these improvements along with the updated 
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gas transfer velocity from Sweeney et al. [2007], the global net sea-to-air flux of CH3Cl 

was estimated at 335 (210 – 480) Gg yr-1. In addition, we estimated the emissions and 

uptake rates of CH3Cl from the global ocean with spatial resolution of 1o x 1o. Emissions 

and uptake rates in warm waters are about 540 (± 170) Gg yr-1 and 170 (± 50) Gg yr-1 

whereas they are about 150 (±45) Gg yr-1 and 200 (± 60) Gg yr-1 in cold waters. Our 

results support our hypothesis III that both warm waters and cold waters play a dual role 

in atmospheric budget of CH3Cl.  

Numerous studies were conducted to quantify sources and sinks of atmospheric 

methyl bromide and methyl chloride since the 1990s. However, the atmospheric budgets 

of methyl bromide and methyl chloride remain imbalanced. In section five, we examined 

the linkage of the “missing sources” between CH3Cl and CH3Br using a “top-down” 

two-box model. Results suggest that the “missing sources” of CH3Cl and CH3Br are 

likely to share the same origin. Part of their “missing sources” is likely from the tropical 

terrestrial ecosystems. This demonstrates that part of hypothesis IV is true. Because the 

“unknown emissions” (total terrestrial emissions + the imbalance in the atmospheric 

budget) of CH3Cl and CH3Br share the same origin, we constrained the emission rate of 

fumigation – non-QPS emissions assuming that the “unknown emissions” of CH3Br 

have the same trend as those of CH3Cl. Using the derived “unknown emissions” and the 

emission ratio of fumigation – non-QPS emissions, we predicted the new steady-state of 

CH3Br under three different scenarios (assuming only eliminating fumigation – non-QPS 

emissions; assuming eliminating all the fumigation emissions; and assuming removing 

all the anthropogenic sources). Results suggest that, if eliminating all the anthropogenic 
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sources, the atmospheric CH3Br is likely to drop to the pre-industrial level and the ocean 

will become a more significant source for atmospheric CH3Br.  

Combining results from sections two to five, it suggests that the total oceanic 

emissions of CH3Br and CH3Cl account for 29 % and 15 % in the total natural emissions 

of CH3Br and CH3Cl whereas the ocean contributes 23 % and 7.5 % to the global sinks 

of CH3Br and CH3Cl. As a conclusion, the ocean is both a source and a sink for the 

atmospheric CH3Br and CH3Cl but it plays a more important role in the atmospheric 

CH3Br budget than that in the atmospheric CH3Cl budget. 

Gas hydrates are the largest methane reservoir. Whether gas hydrates, especially 

the deepwater gas hydrates, contribute significantly to the atmospheric methane budget 

is uncertain. Section six presents our study in the northern Gulf of Mexico during 

HYFLUX. Continuous air-sea flux measurements of methane were made with high 

spatial and temporal resolution. Results suggest that methane fluxes to the atmosphere 

from deepwater hydrocarbon seeps in the northern Gulf of Mexico were insignificant to 

atmospheric methane budget [Hu et al., 2012]. We also estimated methane fluxes from 

possibly missed methane hotspots over deepwater hydrocarbon plume area. Results 

suggest that fluxes from high methane-concentration hotspots are unlikely to contribute 

significantly to total regional methane flux. Another subsequent study was conducted in 

the same region to quantify methane sea-to-air fluxes during the Deepwater Horizon oil 

spill [Yvon-Lewis et al., 2011], which simulated rapid clathrate decomposing condition. 

The amount of methane transported to the atmosphere during this event was small. Most 

methane emitted from the wellhead was dissolved at ~1100 m [Valentine et al., 2010; 
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Yvon-Lewis et al., 2011] and oxidized overtime [Kessler et al., 2011]. Combining results 

from all these studies suggest that the deepwater hydrocarbon sources are not likely to 

contribute significantly to the atmospheric methane budget. They also reject our 

hypothesis V. 

 

 

 

 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 



166 
 

 

REFERENCES 

 

Alvain, S., C. Moulin, Y. Dandonneau, and F. M. Bréon (2005), Remote sensing of 
phytoplankton groups in case 1 waters from global SeaWiFS imagery, Deep Sea 

Research Part I: Oceanographic Research Papers, 52(11), 1989-2004, doi: 
10.1016/j.dsr.2005.06.015. 

Alvain, S., C. Moulin, Y. Dandonneau, and H. Loisel (2008), Seasonal distribution and 
succession of dominant phytoplankton groups in the global ocean: A satellite 
view, Global Biogeochem. Cycles, 22(3), GB3001, doi: 10.1029/2007gb003154. 

Amouroux, D., G. Roberts, S. Rapsomanikis, and M. O. Andreae (2002), Biogenic gas 
(CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters 
of the north-western Black Sea, Estuarine, Coastal and Shelf Science, 54(3), 575-
587. 

Andreae, M. O., and P. Merlet (2001), Emission of trace gases and aerosols from 
biomass burning, Global Biogeochem. Cycles, 15(4), 955-966, doi: 
10.1029/2000gb001382. 

Antajan, E., M. J. Chretiennot-Dinet, C. Leblanc, M. H. Daro, and C. Lancelot (2004), 
19'-hexanoyloxyfucoxanthin may not be the appropriate pigment to trace 
occurrence and fate of Phaeocystis: the case of P-globosa in Belgian coastal 
waters, J. Sea Res., 52(3), 165-177. 

Baker, J. M., C. E. Reeves, P. D. Nightingale, S. A. Penkett, S. W. Gibb, and A. D. 
Hatton (1999), Biological production of methyl bromide in the coastal waters of 
the North Sea and open ocean of the northeast Atlantic, Mar. Chem., 64(4), 267-
285. 

Baker, J. M., C. E. Reeves, S. A. Penkett, L. M. Cardenas, and P. D. Nightingale (1998), 
An estimate of the global emissions of methyl bromide from automobile 
exhausts, Geophys. Res. Lett., 25(13), 2405-2408. 

Bange, H. W., U. H. Bartell, S. Rapsomanikis, and M. O. Andreae (1994), Methane in 
the Baltic and North Seas and a Reassessment of the Marine Emissions of 
Methane, Global Biogeochem. Cycles, 8(4), 465-480. 

Bange, H. W., S. Dahlke, R. Ramesh, L. A. Meyer-Reil, S. Rapsomanikis, and M. O. 
Andreae (1998), Seasonal study of methane and nitrous oxide in the coastal 
waters of the southern Baltic Sea, Estuarine, Coastal and Shelf Science, 47(6), 
807-817. 



167 
 

 

Bange, H. W., S. Rapsomanikis, and M. O. Andreae (1996), The Aegean Sea as a source 
of atmospheric nitrous oxide and methane, Mar. Chem., 53(1-2), 41-49. 

Bertram, F. J., and J. B. Kolowich (2000), A study of methyl bromide emissions from 
automobiles burning leaded gasoline using standardized vehicle testing 
procedures, Geophys. Res. Lett., 27(9), 1423-1426, doi: 10.1029/1999gl011008. 

Blei, E., C. J. Hardacre, G. P. Mills, K. V. Heal, and M. R. Heal (2010), Identification 
and quantification of methyl halide sources in a lowland tropical rainforest, 
Atmospheric Environment, 44(8), 1005-1010. 

Blough, N. V., and R. Del Vecchio (2002), Chromophoric DOM in the coastal 
environment, in Biogeochemistry of Marine Dissolved Organic Matter, edited by 
D. Hansell and C. Carlson, pp. 509 - 546, Academic Press, New York. 

Boswell, R., and T. S. Collett (2011), Current perspectives on gas hydrate resources, 
Energy & Environmental Science, 4(4), 1206-1215. 

Brainerd, K. E., and M. C. Gregg (1995), Surface mixed and mixing layer depths, Deep 

Sea Research Part I: Oceanographic Research Papers, 42(9), 1521-1543. 

Butler, J. H. (1994), The potential role of the ocean in regulating atmospheric CH3Br, 
Geophys. Res. Lett., 21(3), 185-188. 

Butler, J. H. (2000), Atmospheric chemistry: Better budgets for methyl halides?, Nature, 
403(6767), 260-261. 

Butler, J. H., D. B. King, J. M. Lobert, S. A. Montzka, S. A. Yvon-Lewis, B. D. Hall, N. 
J. Warwick, D. J. Mondeel, M. Aydin, and J. W. Elkins (2007), Oceanic 
distributions and emissions of short-lived halocarbons, Global Biogeochem. 

Cycles, 21, GB1023, doi:1010.1029/2006GB002732. 

Butler, J. H., and J. M. Rodriguez (1996), Mehyl bromide in the atmosphere, in The 
Methyl Bromide Issue, edited by C. Bell, N. Price and B. Chakrabarti, London: 
John Wiley and Sons, Ltd. 

Butler, J. H., M. Battle, M. L. Bender, S. A. Montzka, A. D. Clarke, E. S. Saltzman, C. 
M. Sucher, J. P. Severinghaus, and J. W. Elkins (1999), A record of atmospheric 
halocarbons during the twentieth century from polar firn air, Nature, 399(6738), 
749-755. 

Butler, J. H., J. W. Elkins, T. M. Thompson, B. D. Hall, T. H. Swanson, and V. 
Koropalov (1991), Oceanic Consumption of CH3CCl3: Implications for 
Tropospheric OH, J. Geophys. Res., 96(D12), 22347-22355. 



168 
 

 

Chen, N., T. S. Bianchi, and J. M. Bland (2003), Implications for the role of pre- versus 
post-depositional transformation of chlorophyll-a in the Lower Mississippi River 
and Louisiana shelf, Mar. Chem., 81(1-2), 37-55. 

Chen, T., D. R. Blake, J. P. Lopez, and F. S. Rowland (1999), Estimation of global 
vehicular methyl bromide emissions: Extrapolation from a case study in 
Santiago, Chile, Geophys. Res. Lett., 26(3), 283-286, doi: 
10.1029/1998gl900214. 

Clark, J. F., I. Leifer, L. Washburn, and B. P. Luyendyk (2003), Compositional changes 
in natural gas bubble plumes: observations from the Coal Oil Point marine 
hydrocarbon seep field, Geo-Mar. Lett., 23, 187-193. 

Clark, J. F., L. Washburn, and K. Schwager Emery (2010), Variability of gas 
composition and flux intensity in natural marine hydrocarbon seeps, Geo-Mar. 

Lett., 30(3), 379-388. 

Clerbaux, C., D. M. Cunnold, J. Anderson, A. Engel, P. J. Fraser, et al. (2007), Chapter 
1: Long-Lived Compounds, in Scientific Assessment of Ozone Depletion: 2006, 
edited by C. A. Ennis, World Meteorological Organization, Global Ozone 
Research and Monitoring Project-Report No. 50. 

Cox, M. L., P. J. Fraser, G. A. Sturrock, S. T. Siems, and L. W. Porter (2004), Terrestrial 
sources and sinks of halomethanes near Cape Grim, Tasmania, Atmospheric 

Environment, 38(23), 3839-3852, doi:10.1016/j.atmosenv.2004.03.050. 

Cynar, F. J., and A. A. Yayanos (1991), Enrichment and Characterization of a 
Methanogenic Bacterium from the Oxic Upper Layer of the Ocean, Curr. 

Microbiol., 23(2), 89-96. 

de Angelis, M. A., and C. Lee (1994), Methane Production during Zooplankton Grazing 
on Marine-Phytoplankton, Limnol. Oceanogr., 39(6), 1298-1308. 

De Bruyn, W. J., and E. S. Saltzman (1997a), Diffusivity of methyl bromide in water, 
Mar. Chem., 57(1-2), 55-59. 

De Bruyn, W. J., and E. S. Saltzman (1997b), The solubility of methyl bromide in pure 
water, 35%. sodium chloride and seawater, Mar. Chem., 56(1-2), 51-57. 

Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. 
Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, 
P. L. da Silva Dias, S. C. Wofsy, and X. ZHang (2007), Couplings Between 
Changes in the Climate System an Biogeochemistry, in Climate Change 2007: 
The Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change, edited by 



169 
 

 

S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor 
and H. L. Miller, Cambridge University Press, Cambridge, United Kingdom and 
New York, NY, USA. 

Dimmer, C. H., P. G. Simmonds, G. Nickless, and M. R. Bassford (2001), Biogenic 
fluxes of halomethanes from Irish peatland ecosystems, Atmospheric 

Environment, 35(2), 321-330. 

Ehhalt, D., M. Prather, F. Dentener, R. Derwent, E. Dlugokencky, E. Holland, I. Isaksen, 
J. Katima, V. Kirchhoff, P. Matson, P. Midgley, and M. Wang (2001), 
Atmospheric Chemistry and Greenhouse Gases, in Climate Change 2001: The 

Scientific Basis. Contribution of Working Group I to the Third Assessment 
Report of the Intergovernmental Panel on Climate Change, edited by J. T. 
Houghton, et al., Cambridge University Press, Cambridge, U. K. 

Elliott, S., and F. S. Rowland (1993), Nucleophilic substitution rates and solubilities for 
methyl halides in seawater, Geophys. Res. Lett., 20(11), 1043-1046. 

Elliott, S., and F. S. Rowland (1995), Methyl halide hydrolysis rates in natural waters, J. 

Atmos. Chem., 20(3), 229-236. 

Emery, W. J., and R. E. Thomson (2001), Data Analysis Methods in Physical 
Oceanography, Elservier, Amsterdam - London - New York - Oxford - Paris - 
Shannon - Tokyo. 

Erickson, D. J., III (1993), A Stability Dependent Theory For Air-Sea Gas Exchange, J. 

Geophys. Res., 98(C5), 8471-8488. 

Fahey, D., and M. Hegglin (2011), Twenty Questions and Answer About the Ozone 
Layer: 2010 Update, in Scientific Asessment of Ozone Depletion: 2010, edited, 
World Meteorological Organization, Geneva, Switzerland. 

Feely, R. A., R. Wanninkhof, D. A. Hansell, M. F. Lamb, D. Greeley, and K. Lee 
(2002), Water column CO2 measurements during the Gas Ex-98 expedition, in 
Gas Transfer at Water Surfaces, edited, pp. 173-180, AGU, Washington, DC. 

Food and Agriculture Organization of the United Nations (FAO) (2010), Global Forest 
Resources Assessment Rep., Rome. 

Forster, P. and V. Ramaswamy, et al. (2007), Chapter 2: Changes in Atmospheric 
Constituents and in Radiative Forcing, in Climate Change 2007: The Physical 

Science Basis. Contribution of Working Group I to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change, edited by S. 
Solomon, D. Qin, M. Manning, Z. Chen, M. Marguis, K. B. Averyt, Tignor M. 



170 
 

 

and H. L. Miller, Cambridge University Press, Cambridge, United Kingdom and 
New York, NY, USA. 

Frye, M. (2008), Preliminary Evaluation of in-Place Gas Hydrate Resources: Gulf of 
Mexico Outer Continental Shelf, MMS Report 2008-004 (US Department of 
Interior, Minerals Management Service, 2008). 

Garcia-Pineda, O., I. MacDonald, B. Zimmer, B. Shedd and H. Roberts (2010), Remote-
sensing evaluation of geophysical anomaly sites in the outer continental slope, 
northern Gulf of Mexico, Deep-Sea Res. II, 57, 1859 – 1869. 

Garrido, J. L., and M. Zapata (1998), Detection of new pigments from Emiliania Huxleyi 
(primnesiophyceae) by high-performance liquid chromatography, liquid 
chromatography-mass spectrometry, visible spectroscopy, and fast atom 
bombardment mass spectrometry, J. Phycol., 34(1), 70-78. 

Gebhardt, S., A. Colomb, R. Hofmann, J. Williams, and J. Lelieveld (2008), 
Halogenated organic species over the tropical South American rainforest, Atmos. 

Chem. Phys., 8(12), 3185-3197, doi:10.5194/acp-8-3185-2008. 

Goericke, R., S. L. Strom, and M. A. Bell (2000), Distribution and Sources of Cyclic 
Pheophorbides in the Marine Environment, Limnol. Oceanogr., 45(1), 200-211. 

Greinert, J., Y. Artemov, V. Egorov, M. De Batist, and D. McGinnis (2006), 1300-m-
high rising bubbles from mud volcanoes at 2080 m in the Black Sea: 
Hydroacoustic characteristics and temporal variability, Earth Planetary Sci. Lett., 
244(1-2), 1-15. 

Groszko, W., and R. M. Moore (1998), Ocean-atmosphere exchange of methyl bromide: 
NW Atlantic and Pacific Ocean studies, J. Geophys. Res., 103(D13), 16737-
16741. 

Hayduk, W., and H. Laudie (1974), Prediction of diffusion coefficients for 
nonelectrolytes in dilute aqueous solutions, AIChE Journal, 20(3), 611-615. 

Head, E. J. H., B. T. Hargrave, and D. V. S. Rao (1994), Accumulation of a 
Pheophorbide a-Like Pigment in Sediment Traps During Late Stages of a Spring 
Bloom: A Product of Dying Algae?, Limnol. Oceanogr., 39(1), 176-181. 

Hornafius, J. S., D. Quigley, and B. P. Luyendyk (1999), The world's most spectacular 
marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): 
Quantification of emissions, J. Geophys. Res., 104(C9), 20703-20711. 



171 
 

 

Houweling, S., F. Dentener, and J. Lelieveld (2000), Simulation of preindustrial 
atmospheric methane to constrain the global source strength of natural wetlands, 
J. Geophys. Res., 105(D13), 17243-17255. 

Hu, L., S. A. Yvon-Lewis, J. D. Kessler, and I. R. MacDonald (2012), Methane fluxes to 
the atmosphere from deepwater hydrocarbon seeps in the northern Gulf of 
Mexico, J. Geophys. Res., 117, C01009, doi:10.1029/2011JC007208. 

Hu, L., S. A. Yvon-Lewis, J. H. Butler, J. M. Lobert and D. B. King (submitted), An 
improved oceanic budget of methyl chloride, J. Geophys. Res. 

Hu, L., S. A. Yvon-Lewis, Y. Liu, J. E. Salisbury, and J. E. O'Hern (2010), Coastal 
emissions of methyl bromide and methyl chloride along the eastern Gulf of 
Mexico and the east coast of the United States, Global Biogeochem. Cycles, 24, 
GB1007, doi:10.1029/2009GB003514. 

Hu, L., S. A. Yvon-Lewis, Y. Liu, and T. S. Bianchi (submitted), The ocean in near 
equilibrium with atmospheric methyl bromide, Global Biogeochem. Cycles. 

IPCC (Intergovernmental Panel on Climate Change) (2001), Climate Change 2001 - The 
Scientific Basis, edited by J. T. H. e. al., p. 881, Cambridge Univ. Press, 
Cambridge, UK. 

Jeffrey, S. W., R. G. C. Mantoura, and S. W. Wright (1997), Phytoplankton pigments in 
oceanography, United Nations Educational Scientific and Cultural Organization, 
Paris. 

Johnson, J. E. (1999), Evaluation of a seawater equilibrator for shipboard analysis of 
dissolved oceanic trace gases, Analytica Chimica Acta, 395(1-2), 119-132. 

Keene, W. C., M. A. K. Khalil, D. J. Erickson, III, A. McCulloch, T. E. Graedel, J. M. 
Lobert, M. L. Aucott, S. L. Gong, D. B. Harper, G. Kleiman, P. Midgley, R. M. 
Moore, C. Seuzaret, W. T. Sturges, C. M. Benkovitz, V. Koropalov, L. A. Barrie, 
and Y. F. Li (1999), Composite global emissions of reactive chlorine from 
anthropogenic and natural sources: Reactive Chlorine Emissions Inventory, J. 

Geophys. Res., 104(D7), 8429-8440. 

Keppler, F., D. B. Harper, T. Röckmann, R. M. Moore, and J. T. G. Hamilton (2005), 
New insight into the atmospheric chloromethane budget gained using stable 
carbon isotope ratios, Atmos. Chem. Phys., 5(9), 2403-2411. 

Kessler, J. D., W. S. Reeburgh, J. Southon, R. Seifert, W. Michaelis, and S. C. Tyler 
(2006), Basin-wide estimates of the input of methane from seeps and clathrates to 
the Black Sea, Earth Planetary Sci. Lett., 243(3-4), 366-375. 



172 
 

 

Kessler, J. D., D. L. Valentine, M. C. Redmond, M. Du, E. W. Chan, S. D. Mendes, E. 
W. Quiroz, C. J. Villanueva, S. S. Shusta, L. M. Merra, S. A. Yvon-Lewis and T. 
C. Weber (2011), A Persistent Oxygen Anomaly Reveals the Fate of Spilled 
Methane in the Deep Gulf of Mexico, Science, 331(6015), 312-315, doi: 
10.1126/science.1199697. 

Khalil, M. A. K., and R. A. Rasmussen (1999), Atmospheric methyl chloride, 
Atmospheric Environment, 33(8), 1305-1321. 

Khalil, M. A. K., and R. A. Rasmussen (2000), Soil-Atmosphere exchange of radiatively 
and chemically active gases, Environmental Science and Pollution Research, 
7(2), 79-82, doi: doi:10.1065/espr2000.04.021. 

Khalil, M. A. K., R. M. Moore, D. B. Harper, J. M. Lobert, D. J. Erickson, V. 
Koropalov, W. T. Sturges, and W. C. Keene (1999), Natural emissions of 
chlorine-containing gases: Reactive Chlorine Emissions Inventory, J. Geophys. 

Res., 104(D7), 8333-8346. 

King, D. B., and E. S. Saltzman (1997), Removal of methyl bromide in coastal seawater: 
Chemical and biological rates, J. Geophys. Res., 102(C8), 18715-18721. 

King , D. B., J. H. Butler, S. A. Montzka, S. A. Yvon-Lewis, and J. W. Elkins (2000), 
Implications of methyl bromide supersaturations in the temperate North Atlantic 
Ocean, J. Geophys. Res., 105(D15), 19763-19769. 

King, D. B., J. H. Butler, S. A. Yvon-Lewis, and S. A. Cotton (2002), Predicting oceanic 
methyl bromide saturation from SST, Geophys. Res. Lett., 29(24), 2199, 
doi:2110.1029/2002GL016091. 

Kossina, E. (1921), Die Tiefen des Weltmeeres, Veroff. N. F., A. Geogr. - Naturwiss. 
Reihe, 9, 70. 

Kourtidis, K., I. Kioutsioukis, D. F. McGinnis, and S. Rapsomanikis (2006), Effects of 
methane outgassing on the Black Sea atmosphere, Atmos. Chem. Phys., 6, 5173-
5182. 

Large, W. G., and S. Pond (1982), Sensible and latent heat flux measurements over the 
ocean, J. Phys. Oceanogr., 12, 464-482. 

Le Treut, H., R. Somerville, U. Cubasch, Y. Ding, C. Mauritzen, A. Mokssit, T. 
Peterson, and M. Prather (2007), Historical Overview of Climate Change, in 
Climate Change 2007: The physical Science Basis. Contribution of Working 
Group I to the Fourth Assessment Report of the Intergovernmental Panel on 
Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. 



173 
 

 

Marqis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA. 

Lee-Taylor, J. M., and E. A. Holland (2000), Litter decomposition as a potential natural 
source of methyl bromide, J. Geophys. Res., 105(D7), 8857-8864. 

Lee-Taylor, J. M., G. P. Brasseur, and Y. Yokouchi (2001), A preliminary three-
dimensional global model study of atmospheric methyl chloride distributions, J. 

Geophys. Res., 106(D24), 34221-34233, doi: 10.1029/2001jd900209. 

Lee-Taylor, J. M., and K. R. Redeker (2005), Reevaluation of global emissions from rice 
paddies of methyl iodide and other species, Geophys. Res. Lett., 32, L15801. doi: 
0.1029/2005gl022918. 

Leifer, I., B. P. Luyendyk, J. Boles, and J. F. Clark (2006), Natural marine seepage 
blowout: Contribution to atmospheric methane, Global Biogeochem. Cycles, 20, 
GB3008, doi:3010.1029/2005GB002668. 

Leifer, I., and I. MacDonald (2003), Dynamics of the gas flux from shallow gas hydrate 
deposits: interaction between oily hydrate bubbles and the oceanic environment, 
Earth Planet. Sci. Lett., 210(3-4), 411-424. 

Leifer, I., and J. Boles (2005), Measurement of marine hydrocarbon seep flow through 
fractured rock and unconsolidated sediment, Marine and Petroleum Geology, 
22(4), 551-568. 

Li, H.-J., Y. Yokouchi, H. Alkimoton, and Y. Narita (2001), Distribution of methyl 
chloride, methyl bromide and methyl iodide in the marine boundary air over the 
western Pacific and southeastern Indian Ocean, Geochemical Journal, 35(2), 137 
- 145. 

Liss, P. S., and L. Merlivat (1986), Air-sea gas exchange rates: Introduction and 
synthesis, in The Role of Air-Sea Exchange in Geochemical Cycling, edited by 
P. Buat-Menard, pp. 113 – 127, Springer, New York. 

Llewellyn, C. A., and S. W. Gibb (2000), Intra-class variability in the carbon, pigment 
and biomineral content of prymnesiophytes and diatoms, Mar Ecol-Prog Ser, 
193, 33-44. 

Lobert, J. M., J. H. Butler, L. S. Geller, S. A. Yvon, S. A. Montzka, R. C. Myers, A. D. 
Clarke, and J. W. Elkins (1996), BLAST94: Bromine Latitudinal Air/Sea 
Transect 1994, Report on oceanic measurements of methyl bromide and other 
compounds, NOAA Tech. Memo. ERL CMDL. 



174 
 

 

Lobert, J. M., J. H. Butler, S. A. Montzka, L. S. Geller, R. C. Myers, and J. W. Elkins 
(1995), A Net Sink for Atmospheric CH3Br in the East Pacific Ocean, Science, 
267(5200), 1002-1005. 

Lobert, J. M., W. C. Keene, J. A. Logan, and R. Yevich (1999), Global chlorine 
emissions from biomass burning: Reactive Chlorine Emissions Inventory, J. 

Geophys. Res., 104(D7), 8373-8389. 

Low, J. C., N. Y. Wang, J. Williams, and R. J. Cicerone (2003), Measurements of 
ambient atmospheric C2H5Cl and other ethyl and methyl halides at coastal 
California sites and over the Pacific Ocean, J. Geophys. Res., 108(D19), 4608. 

Mabey, W., and T. Mill (1978), Critical review of hydrolysis of organic compounds in 
water under envrionmental conditions, J. Phys. Chem. Ref. Data 7(2), 
doi:10.1063/1061.555572. 

Manley, S. L., N.-Y. Wang, M. L. Walser, and R. J. Cicerone (2007), Methyl halide 
emissions from greenhouse-grown mangroves, Geophys. Res. Lett., 34(1), 
L01806, doi:10.1029/2006GL027777 

Matthews, E. (1983), Global Vegetation and Land Use: New High-Resolution Data 
Bases for Climate Studies, Journal of Climate and Applied Meteorology, 22(3), 
474-487, doi: 10.1175/1520-0450(1983)022<0474:gvalun>2.0.co;2. 

Mau, S., D. L. Valentine, J. F. Clark, J. Reed, R. Camilli, and L. Washburn (2007), 
Dissolved methane distributions and air-sea flux in the plume of a massive seep 
field, Coal Oil Point, California, Geophys. Res. Lett., 34, L22603, 
doi:22610.21029/22007GL031344. 

McAnulla, C., I. R. McDonald, and J. C. Murrell (2001), Methyl chloride utilising 
bacteria are ubiquitous in the natural environment, FEMS Microbiology Letters, 
201(2), 151-155, doi: doi:10.1016/s0378-1097(01)00256-7. 

McCulloch, A., M. L. Aucott, C. M. Benkovitz, T. E. Graedel, G. Kleiman, P. M. 
Midgley, and Y.-F. Li (1999), Global emissions of hydrogen chloride and 
chloromethane from coal combustion, incineration and industrial activities: 
Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104(D7), 8391-8403. 

McGinnis, D. F., J. Greinert, Y. Artemov, S. E. Beaubien, and A. Wüest (2006), Fate of 
rising methane bubbles in stratified waters: How much methane reaches the 
atmosphere?, J. Geophys. Res., 111, C09007, doi:09010.01029/02005JC003183. 

Mead, M. I., M. A. H. Khan, G. Nickless, B. R. Greally, D. Tainton, T. Pitman, and D. 
E. Shallcross (2008b), Leaf cutter ants: a possible missing source of biogenic 
halocarbons, Environmental Chemistry, 5(1), 5-10. 



175 
 

 

Mead, M. I., I. R. White, G. Nickless, K.-Y. Wang, and D. E. Shallcross (2008a), An 
estimation of the global emission of methyl bromide from rapeseed (Brassica 
napus) from 1961 to 2003, Atmos. Environ., 42(2), 337-345. 

Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, 
A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. 
J. Weaver and Z.-C. Zhao (2007), Global Climate Projections, In: Climate 
Change 2007: The Physical Science Basis. Contribution of Working Group I to 
the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change, edited by Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. 
B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, New York, 
USA. 

Menard, H. W., and S. M. Smith (1966), Hypsometry of Ocean Basin Provinces, J. 

Geophys. Res., 71(18), 4305 - 4325. 

Midgley, P. M., and A. McCulloch (1995), The production and global distribution of 
emissions to the atmosphere of 1,1,1-trichloroethane (methyl chloroform), 
Atmospheric Environment, 29(14), 1601-1608, doi: 10.1016/1352-
2310(95)00078-d. 

Millero, F. J. (1974), Seawater as a multicomponent electrolyte solution, in The Sea, 
edited by E. D. Goldberg, Wiley, New York. 

Montzka, S. A., P. J. Fraser et al, J. H. Butler, P. S. Connell, D. M. Cunnold, J. S. 
Daniel, R. G. Derwent, et al., (2003), Controlled substances and other sources 
gases, in Chapter 5 in Scientific Assessment of Ozone Depletion: 2002, edited, 
Global Ozone Research and Monitoring Project - Report No. 47, World 
Meterological Organization, Geneva. 

Montzka, S. A., S. Reimann, A. Engel, K. Krüger, S. O’Doherty, et al. (2011), Ozone-
Depleting Substances (ODSs) and Related Chemiscals, in Scientific Assessment 
of Ozone Depletion 2010, edited by A. R. Ravishankara, pp. 1-108, World 
Meteorol. Organ., Geneva. 

Montzka, S. A., J. H. Butler, B. D. Hall, D. J. Mondeel, and J. W. Elkins (2003), A 
decline in tropospheric organic bromine, Geophys. Res. Lett., 30(15), 1826, 
doi:10.1029/2003GL017745. 

Moore, R. M. (2000), The solubility of a suite of low molecular weight organochlorine 
compounds in seawater and implications for estimating the marine source of 
methyl chloride to the atmosphere, Chemosphere - Global Change Science, 2(1), 
95-99. 



176 
 

 

Moore, R. M., C. E. Geen, and V. K. Tait (1995), Determination of Henry's Law 
constants for a suite of naturally occurring halogenated methanes in seawater, 
Chemosphere, 30(6), 1183-1191. 

Moore, R. M., W. Groszko, and S. J. Niven (1996), Ocean-atmosphere exchange of 
methyl chloride: Results from NW Atlantic and Pacific Ocean studies, J. 

Geophys. Res., 101(C12), 28529-28538. 

Nightingale, P. D., P. S. Liss, and P. Schlosser (2000), Measurements of air-sea gas 
transfer during an open ocean algal bloom, Geophys. Res. Lett., 27, 2117 – 2120.  

Penkett, S. A., J. H. Butler, M. J. Kurylo, C. E. Reeves, J. M. Rodriguez, H. Singh, D. 
Toohey, and R. F. Weiss (1994), Methyl Bromide, in Scientific Assessment of 
Ozone Depletion: 1994, edited by C. A. Ennis, World Meterorological 
Organization, Global Ozone Research and Monitoring Project -Report No. 37, 
Geneva, Switzerland. 

Prinn, R. G., et al. (2005), Evidence for variability of atmospheric hydroxyl radicals over 
the past quarter century, Geophys. Res. Lett., 32(7), L07809, doi: 
doi:10.1029/2004gl022228. 

Quigley, D. C., J. Scott Hornafius, B. P. Luyendyk, R. D. Francis, J. Clark, and L. 
Washburn (1999), Decrease in natural marine hydrocarbon seepage near Coal Oil 
Point, California, associated with offshore oil production, Geology, 27(11), 1047-
1050. 

Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. 
Nakajima, G. Shi, and S. Solomon (2001), Radiative forcing of climate change in 
Climate Change 2001: The Scientific Basis, Contribution of Working Group I to 
the Third Assessment Report of the Intergovernmental Panel on Climate Change, 
edited by J. T. Houghton, et al., pp. 349-416, Cambridge Univ. Press., 
Cambridge, U. K. 

Reeburgh, W. S. (2007), Oceanic Methane Biogeochemistry, Chem. Rev., 107, 486-513. 

Reeburgh, W. S., S. C. Tyler, and J. Carroll (2006), Stable carbon and hydrogen isotope 
measurements on Black Sea water-column methane, Deep-Sea Res Pt II: 

Tropical Studies in Oceanography, 53(17-19), 1893-1900. 

Reeburgh, W. S., B. B. Ward, S. C. Whalen, K. A. Sandbeck, K. A. Kilpatrick, and L. J. 
Kerkhof (1991), Black-Sea Methane Geochemistry, Deep-Sea Res., 38, S1189-
S1210. 

Reeves, C. E. (2003), Atmospheric budget implications of the temporal and spatial 
trends in methyl bromide concentration, J. Geophys. Res., 108(D11), 4343. 



177 
 

 

Rehder, G., P. W. Brewer, E. T. Peltzer, and G. Friederich (2002), Enhanced lifetime of 
methane bubble streams within the deep ocean, Geophys. Res. Lett., 29(15), 
doi:10.1029/2001GL013966. 

Rehder, G., I. Leifer, P. G. Brewer, G. Friederich, and E. T. Peltzer (2009), Controls on 
methane bubble dissolution inside and outside the hydrate stability field from 
open ocean field experiments and numerical modeling, Mar. Chem., 114(1-2), 
19-30. 

Rhee, T. S., A. J. Kettle, and M. O. Andreae (2009), Methane and nitrous oxide 
emissions from the ocean: A reassessment using basin-wide observations in the 
Atlantic, J. Geophys. Res., 114, D12304, doi:12310.11029/12008JD011662. 

Rhew, R. C. (2011), Sources and sinks of methyl bromide and methyl chloride in the 
tallgrass prairie: Applying a stable isotope tracer technique over highly variable 
gross fluxes, J. Geophys. Res., 116(G3), G03026, doi: 10.1029/2011jg001704. 

Rhew, R. C., and T. Abel (2007), Measuring Simultaneous Production and Consumption 
Fluxes of Methyl Chloride and Methyl Bromide in Annual Temperate 
Grasslands, Environmental Science & Technology, 41(22), 7837-7843, doi: 
10.1021/es0711011. 

Rhew, R. C., M. Aydin, and E. S. Saltzman (2003), Measuring terrestrial fluxes of 
methyl chloride and methyl bromide using a stable isotope tracer technique, 
Geophys. Res. Lett., 30(21), 2103, doi: 10.1029/2003gl018160. 

Rhew, R. C., C. Chen, Y. A. Teh, and D. Baldocchi (2010), Gross fluxes of methyl 
chloride and methyl bromide in a California oak-savanna woodland, Atmospheric 

Environment, 44(16), 2054-2061, doi: 10.1016/j.atmosenv.2009.12.014. 

Rhew, R. C., B. R. Miller, M. K. Vollmer, and R. F. Weiss (2001), Shrubland fluxes of 
methyl bromide and methyl chloride, J. Geophys. Res., 106(D18), 20875-20882, 
doi:10.1029/2001jd000413. 

Rhew, R. C., B. R. Miller, and R. F. Weiss (2000), Natural methyl bromide and methyl 
chloride emissions from coastal salt marshes, Nature, 403(6767), 292-295. 

Rhew, R. C., Y. A. Teh, and T. Abel (2007), Methyl halide and methane fluxes in the 
northern Alaskan coastal tundra, J. Geophys. Res., 112, 
G02009,doi:02010.01029/02006JG000314, doi: 10.1029/2006jg000314. 

Saemundsdottir, S., and P. A. Matrai (1998), Biological Production of Methyl Bromide 
by Cultures of Marine Phytoplankton, Limnol. Oceanogr., 43(1), 81-87. 



178 
 

 

Saito, T., and Y. Yokouchi (2006), Diurnal variation in methyl halide emission rates 
from tropical ferns, Atmospheric Environment, 40(16), 2806-2811. 

Saito, T., and Y. Yokouchi (2008), Stable carbon isotope ratio of methyl chloride 
emitted from glasshouse-grown tropical plants and its implication for the global 
methyl chloride budget, Geophys. Res. Lett., 35(8), L08807, doi: 
10.1029/2007gl032736. 

Saito, T., Y. Yokouchi, Y. Kosugi, M. Tani, E. Philip, and T. Okuda (2008), Methyl 
chloride and isoprene emissions from tropical rain forest in Southeast Asia, 
Geophys. Res. Lett., 35(19), L19812, doi: 10.1029/2008gl035241. 

Saltzman, E. S., M. Aydin, W. J. De Bruyn, D. B. King, and S. A. Yvon-Lewis (2004), 
Methyl bromide in preindustrial air: Measurements from an Antarctic ice core, J. 

Geophys. Res., 109, D05301, doi:05310.01029/02003JD004157. 

Sander, S. P., D. M. Golden, M. J. Kurylo, G. K. Moortgat, P. H. Wine, et al. (2006), 
Chemical kinetics and photochemical data for use in Atmospheric Studies: 
Evaluation Number 15, edited, JPL publication 06-2, Pasadena, CA: Jet 
Propulsion Laboratory, NASA. 

Scarratt, M. G., and R. M. Moore (1996), Production of methyl chloride and methyl 
bromide in laboratory cultures of marine phytoplankton, Mar. Chem., 54(3-4), 
263-272. 

Scarratt, M. G., and R. M. Moore (1998), Production of methyl bromide and methyl 
chloride in laboratory cultures of marine phytoplankton II, Mar. Chem., 59(3-4), 
311-320. 

Schauffler, S. M., E. L. Atlas, D. R. Blake, F. Flocke, R. A. Lueb, J. M. Lee-Taylor, V. 
Stroud, and W. Travnicek (1999), Distributions of brominated organic 
compounds in the troposphere and lower stratosphere, J. Geophys. Res., 
104(D17), 21513-21535. 

Schauffler, S. M., L. E. Heidt, W. H. Pollock, T. M. Gilpin, J. F. Vedder, S. Solomon, R. 
A. Lueb, and E. L. Atlas (1993), Measurements of halogenated organic 
compounds near the tropical tropopause, Geophys. Res. Lett., 20(22), 2567-2570. 

Schmale, O., J. Greinert, and G. Rehder (2005), Methane emission from high-intensity 
marine gas seeps in the Black Sea into the atmosphere, Geophys. Res. Lett., 32, 
L07609, doi:07610.01029/02004GL021138. 

Schoemann, V., S. Becquevort, J. Stefels, W. Rousseau, and C. Lancelot (2005), 
Phaeocystis blooms in the global ocean and their controlling mechanisms: a 
review, J. Sea Res., 53(1-2), 43-66. 



179 
 

 

Shorter, J. H., C. E. Kolb, P. M. Crill, R. A. Kerwin, R. W. Talbot, M. E. Hines, and R. 
C. Harriss (1995), Rapid degradation of atmospheric methyl bromide in soils, 
Nature, 377(6551), 717-719. 

Singh, H. B., L. J. Salas, and R. E. Stiles (1983), Methyl Halides in and Over the Eastern 
Pacific (40°N-32°S), J. Geophys. Res., 88(C6), 3684-3690. 

Solomon, E. A., M. Kastner, I. R. MacDonald, and I. Leifer (2009), Considerable 
methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico, 
Nat. Geosci., 2(8), 561-565. 

Spivakovsky, C. M., et al. (2000), Three-dimensional climatological distribution of 
tropospheric OH: Update and evaluation, J. Geophys. Res., 105(D7), 8931-8980, 
doi: doi:10.1029/1999jd901006. 

Sturrock, G. A., C. E. Reeves, G. P. Mills, S. A. Penkett, C. R. Parr, A. McMinn, G. 
Corno, N. W. Tindale, and P. J. Fraser (2003), Saturation levels of methyl 
bromide in the coastal waters off Tasmania, Global Biogeochem. Cycles, 17(4), 
1101, doi:10.1029/2002GB002024. 

Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento, and 
R. Wanninkhof (2007), Constraining global air-sea gas exchange for CO2 with 
recent bomb 14C measurements, Global Biogeochem. Cycles, 21, GB2015, doi: 
2010.1029/2006GB002784. 

Takahashi, T., S. C. Sutherland, R. Wanninkhof, C. Sweeney, R. A. Feely, D. W. 
Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D. C. E. 
Bakker, U. Schuster, N. Metzl, H. Yoshikawa-Inoue, M. Ishii, T. Midorikawa, Y. 
Nojiri, A. Körtzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T. S. Arnarson, B. 
Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C. S. Wong, B. Delille, N. R. 
Bates, and H. J. W. de Baar (2009), Climatological mean and decadal change in 
surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep Sea 

Research Part II: Topical Studies in Oceanography, 56(8-10), 554-577. 

Tans, P. P., I. Y. Fung, and T. Takahashi (1990), Observational constraints on the global 
atmospheric CO2 budget, Science, 247, 1431 – 1438. 

Thomas, V. M., J. A. Bedford, and R. J. Cicerone (1997), Bromine emissions from 
leaded gasoline, Geophys. Res. Lett., 24(11), 1371-1374, doi: 
10.1029/97gl01243. 

Tilbrook, B. D., and D. M. Karl (1995), Methane sources, distributions and sinks from 
California coastal waters to the oligotrophic North Pacific Gyre, Mar. Chem., 
49(1), 51-64. 



180 
 

 

Tokarczyk, R., and E. S. Saltzman (2001), Methyl bromide loss rates in surface waters 
of the North Atlantic Ocean, Caribbean Sea, and eastern Pacific Ocean (8°-
45°N), J. Geophys. Res., 106(D9), 9843-9851. 

Tokarczyk, R., K. D. Goodwin, and E. S. Saltzman (2001), Methyl bromide loss rate 
constants in the north Pacific Ocean, Geophys. Res. Lett., 28(23), 4429-4432. 

Tokarczyk, R., K. D. Goodwin, and E. S. Saltzman (2003b), Methyl chloride and methyl 
bromide degradation in the Southern Ocean, Geophys. Res. Lett., 30(15), 1808, 
doi:10.1029/2003GL017459. 

Tokarczyk, R., E. S. Saltzman, R. M. Moore, and S. A. Yvon-Lewis (2003a), Biological 
degradation of methyl chloride in coastal seawater, Global Biogeochem. Cycles, 
17(2), 1057, doi:10.1029/2002GB001949. 

United Nations Environment Programme (UNEP) (2007), 2006 Report of the Methyl 
Bromide Technical Options Committee 2006 Assessment, coordinated by M. 
Pizano, I. Porter, M. Marcotte, M. Besri, and J. Banks, Naribi, Kenya. 

Valentine, D. L., J. D. Kessler, M. C. Redmond, S. D. Mendes, M. B. Heintz, C. Farwell, 
L. Hu, F. S. Kinnaman, S. A. Yvon-Lewis, M. Du, E. W. Chan, F. G. Tigreros 
and C. J. Villanueva (2010), Propane Respiration Jump-Starts Microbial 
Response to a Deep Oil Spill, Science, 330(6001), 208 - 211, doi: 
10.1126/science.1196830. 

van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, 
D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen (2010), Global fire 
emissions and the contribution of deforestation, savanna, forest, agricultural, and 
peat fires (1997–2009), Atmos. Chem. Phys., 10(23), 11707-11735, 
doi:10.5194/acp-10-11707-2010. 

Varner, R. K., P. M. Crill, and R. W. Talbot (1999a), Wetlands: A potentially significant 
source of atmospheric methyl bromide and methyl chloride, Geophys. Res. Lett., 
26(16), 2433-2435, doi:10.1029/1999gl900587. 

Varner, R. K., P. M. Crill, R. W. Talbot, and J. H. Shorter (1999b), An estimate of the 
uptake of atmospheric methyl bromide by agricultural soils, Geophys. Res. Lett., 
26(6), 727-730, doi:10.1029/1999gl900071. 

Vernet, M., B. G. Mitchell, E. Sakshaug, G. Johnsen, R. Iturriaga, and P. Wassmann 
(1996), Evidence for a novel pigment with in vivo absorption maximum at 708 
nm associated with Phaeocystis cf pouchetii blooms, Mar. Ecol. Prog. Ser., 
133(1-3), 253-262. 



181 
 

 

Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the 
ocean, J. Geophys. Res., 97(C5), 7373-7382. 

Warner, M. J., and R. F. Weiss (1985), Solubilities of chlorofluorocarbons 11 and 12 in 
water and seawater, Deep Sea Research Part A. Oceanographic Research 

Papers, 32(12), 1485-1497. 

Warwick, N., J. Pyle, and D. Shallcross (2006), Global Modelling of the Atmospheric 
Methyl Bromide Budget, J. Atmos. Chem., 54(2), 133-159, doi:10.1007/s10874-
006-9020-3. 

Watling, R., and D. B. Harper (1998), Chloromethane production by wood-rotting fungi 
and an estimate of the global flux to the atmosphere, Mycol. Res., 102(7), 769-
787. 

Weiss, R. F. (1970), The solubility of nitrogen, oxygen and argon in water and seawater, 
Deep-Sea Res., 17(4), 721-735. 

Weiss, R. F., and B. A. Price (1980), Nitrous oxide solubility in water and seawater, 
Mar. Chem., 8(4), 347-359. 

Welschmeyer, N. A., and C. J. Lorenzen (1985), Chlorophyll Budgets - Zooplankton 
Grazing and Phytoplankton Growth in a Temperate Fjord and the Central Pacific 
Gyres, Limnol. Oceanogr., 30(1), 1-21. 

World Meteorological Organization (WMO) (2003), Scientific assessment of ozone 
depletion: 2002, Global Ozone Research and Monitoring Project - Report No. 44. 

World Meteorological Organization (WMO) (2007), Scientific Assessment of Ozone 
Depletion: 2006, Global Ozone Research and Monitoring Project - Report No. 
50. 

World Meteorological Organization (WMO) (2011), Scientific Assessment of Ozone 
Depletion: 2010, Global Ozone Research and Monitoring Project - Report No. 
52. 

Wright, S. W., S. W. Jeffrey, R. F. C. Mantoura, C. A. Llewellyn, T. Bjoernland, D. 
Repeta, and N. Welschmeyer (1991), Improved HPLC method for the analysis of 
chlorophylls and carotenoids from marine phytoplankton, Mar. Ecol. Prog. Ser., 
77, 183-196. 

Wuebbles, D. J., and K. Hayhoe (2002), Atmospheric methane and global change, 
Earth-Science Reviews, 57(3-4), 177-210. 



182 
 

 

Xiao, X., R. G. Prinn, P. G. Simmonds, L. P. Steele, P. C. Novelli, J. Huang, R. L. 
Langenfelds, S. O'Doherty, P. B. Krummel, P. J. Fraser, L. W. Porter, R. F. 
Weiss, P. Salameh, and R. H. J. Wang (2007), Optimal estimation of the soil 
uptake rate of molecular hydrogen from the Advanced Global Atmospheric 
Gases Experiment and other measurements, J. Geophys. Res., 112, D07303, 
doi:10.1029/2006JD007241. 

Yagi, K., J. Williams, N.-Y. Wang, and R. J. Cicerone (1995), Atmospheric Methyl 
Bromide (CH3Br) from Agricultural Soil Fumigations, Science, 267(5206), 
1979-1981, doi:10.1126/science.267.5206.1979. 

Yevich, R., and J. A. Logan (2003), An assessment of biofuel use and burning of 
agricultural waste in the developing world, Global Biogeochem. Cycles, 17, doi: 
10.1029/2002gb001952. 

Yokouchi, Y., M. Ikeda, Y. Inuzuka, and T. Yukawa (2002), Strong emission of methyl 
chloride from tropical plants, Nature, 416(6877), 163-165. 

Yokouchi, Y., T. Saito, C. Ishigaki, and M. Aramoto (2007), Identification of methyl 
chloride-emitting plants and atmospheric measurements on a subtropical island, 
Chemosphere, 69(4), 549-553. 

Yoshida, Y., Y. Wang, T. Zeng, and R. Yantosca (2004), A three-dimensional global 
model study of atmospheric methyl chloride budget and distributions, J. 

Geophys. Res., 109, D24309, doi:10.1029/2004JD004951. 

Yvon, S. A., and J. H. Butler (1996), An improved estimate of the oceanic lifetime of 
atmospheric CH3Br, Geophys. Res. Lett., 23(1), 53-56. 

Yvon-Lewis, S. A., and J. H. Butler (1997), The potential effect of oceanic biological 
degradation on the lifetime of atmospheric CH3Br, Geophys. Res. Lett., 24(10), 
1227-1230. 

Yvon-Lewis, S. A., and J. H. Butler (2002), Effect of oceanic uptake on atmospheric 
lifetimes of selected trace gases, J. Geophys. Res., 107(D20), 4414, 
doi:4410.1029/2001JD001267. 

Yvon-Lewis, S. A., L. Hu, and J. Kessler (2011), Methane flux to the atmosphere from 
the Deepwater Horizon oil disaster, Geophys. Res. Lett., 38, L01602, 
doi:01610.01029/02010GL045928. 

Yvon-Lewis, S. A., D. B. King, R. Tokarczyk, K. D. Goodwin, E. S. Saltzman, and J. H. 
Butler (2004), Methyl bromide and methyl chloride in the Southern Ocean, J. 

Geophys. Res., 109(C02008), doi:10.1029/2003JC001809. 



183 
 

 

Yvon-Lewis, S. A., E. S. Saltzman, and S. A. Montzka (2009), Recent trends in 
atmospheric methyl bromide: analysis of post-Montreal Protocol variability, 
Atmos. Chem. Phys., 9(16), 5963-5974. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



184 
 

 

APPENDIX A 

THE ANALYTICAL SYSTEM FOR AIR AND SURFACE SEAWATER 

MEASUREMENTS FOR HALOCARBONS DURING GOMECC 

 

Concentrations of 26 halocarbon compounds (CH3Cl, CH3Br, HCFC-22, CFC-

12, HCFC-142, C2H5Cl, H-1211, CFC-11, C5H8, DMS, CH3I, CH3NO3, CFC-113, 

CH2BrCl, CHCl3, CH3CH2NO3, CH3CCl3, CCl4, i-C3H7NO3, n-C3H7NO3, CH2Br2, 

C2HCl3, CHBrCl2, CHClBr2, CHBr3, and C2Cl4) in the air and surface seawater were 

measured with an automated gas chromatograph (Agilent 6890N) and mass spectrometer 

(Agilent 5973N) (GC-MS) equipped with a “Weiss”-type equilibrator (20 L). Air 

samples were pumped continuously at ~ 6 L min-1 through 0.63 cm ID Synflex tubing 

(Motion Industries, TX). Surface seawater was continuously flowing through the 

equilibrator at 15 L min-1. The ratio of the headspace and seawater volumes was about 

2:1. Gases in surface seawater were constantly equilibrating with gases in the 

equilibrator headspace for ~ 80 min. Air or gas in the equilibrator was alternately 

sampled to our analytical system through a nafion drier (Figure A1). The collected gas 

sample passed through a Unibeads 1S packed trap (3.175 mm OD, 1.6 mm ID) (Trap 1) 

at -80 ºC and into a calibrated, evacuated stainless steel flask (3 L) (Figure A1). 

Halocarbon compounds were trapped in the Unibeads 1S packed trap. The change in 

flask pressure and the flask temperature were recorded electronically. The pressure in the 

flask was used to determine the exact volume of the whole air sample that was collected. 

After GC valve #1 (GCV1) was switched from “load” to “transfer”, the primary trap 



185 
 

 

(trap 1) would be flash heated at 200 ºC for 3 min, which allowed the sample to be 

focused in the second Unibeads 1S packed trap (1.59 mm OD, 0.5 mm ID) (trap 2) at -80 

ºC. When GC valve #2 (GCV2) was switched from “backflush” to “inject”, the second 

trap was flash heated at 200 ºC for 3 min and the sample was then injected into the GC 

column (0.25 mm ID x 5 m pre- and 55 m main, DB-VRX; J&W). The pre-column (4 

m) was backflushed at 10 min after injection to prevent the entry of heavier compounds 

into the main column (56 m). The temperature of the GC was programmed with settings 

shown in Table A1 and the head pressure of the carrier gas (He) for the GC column was 

set to 24.5 psi. 
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Table A1. Temperature program in the halocarbon GC instrument. 

  Ramp Rate (oC min-1)  Temperature (oC)  Hold (min) 
Step 1 - 30 5 
Step 2 35 100 3 
Step 3 45 220 7 

 

 

 

Figure A1. Schematic diagram of the automated analytical system for air and surface 

seawater measurements for halocarbons.  
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APPENDIX B 

THE ANALYTICAL SYSTEM FOR AIR AND SURFACE SEAWATER 

CONCENTRATION MEASUREMENTS FOR HYDROCARBONS DURING 

HYFLUX 

 

Concentrations of C1 - C3 hydrocarbons in the air and surface seawater were 

measured with an automated gas chromatograph and flame ionization detector (GC/FID, 

Agilent 6850) equipped with a “Weiss”-type equilibrator (20 L). Air samples were 

pumped continuously at ~ 6 L min-1 through 0.63 cm ID Synflex tubing (Motion 

Industries, TX). Surface seawater was continuously flowing through the equilibrator at 

15 L min-1. The ratio of the headspace and seawater volumes was about 2:1. Air or gas in 

the equilibrator was alternately sampled to our analytical system every 6 minutes with a 

stream select valve. The sample stream passed through a 20 μL sampling loop after 

being dehumidified by a Nafion dryer (Permapure Inc) (Figure B1). The Nafion dryer 

and the 20 μL sampling loop were flushed with the sample air at a rate of 25 mL min-1 

for 90 seconds before injection into the GC/FID, which was equipped with a 15 m long, 

32 μm ID GS-GasPro column (1 m pre-column and 14 m main-column) with nitrogen 

carrier gas. The temperature of the GC oven was programmed (Table B1) and the head 

pressure of the GC column was set at 6.5 psi.  

 

 

 



188 
 

 

Table B1. Temperature program in the hydrocarbon GC instrument. 

  Ramp Rate (oC min-1)  Temperature (oC)  Hold (min) 
Step 1 - 40 1 
Step 2 40 80 1 

 

 

 
Figure B1. Schematic diagram of the automated analytical system for air and surface 

seawater concentration measurements for hydrocarbons. 
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APPENDIX C 

THE COMBINED ANALYTICAL SYSTEM FOR AIR AND SURFACE 

SEAWATER CONCENTRATION MEASUREMENTS FOR HALOCARBONS 

AND HYDROCARBONS DURING HALOCAST 

 

The analytical system used during HalocAST is a combined system according to 

the analytical systems described in Appendices A and B. Concentrations of 20 

halocarbon compounds (CH3Cl, CH3Br, HCFC-22, CFC-12, HCFC-142, C2H5Cl, H-

1211, CFC-11, CH3I, CFC-113, CH2BrCl, CHCl3, CH3CCl3, CCl4, CH2Br2, C2HCl3, 

CHBrCl2, CHClBr2, CHBr3, and C2Cl4) along with methane in the air and surface 

seawater were measured with an automated GC- (MS/FID) system (the model of 

GC/FID: Agilent 6850; the model of MS: Agilent 5975) equipped with a “Weiss”-type 

equilibrator (20 L) (Figure C1). Air samples were pumped continuously at ~ 6 L min-1 

through 0.63 cm ID Synflex tubing (Motion Industries, TX). Surface seawater was 

continuously flowing through the equilibrator at 15 L min-1. The ratio of the headspace 

and seawater volumes was about 2:1. Air and gas in the equilibrator were alternately 

sampled to our analytical system every ~ 40 minutes using a stream select valve. The 

sample stream passed through a Nafion dryer and a 20 μL sampling loop (Figure C1). 

Halocarbons were then trapped in the cryotraps at - 80 oC whereas the gas sample in the 

20 μL sampling loop was injected into the GC/FID. The temperature program of the GC 

oven was optimized for methane analysis after injecting the 20 μL sample to the 

GC/FID. The settings for the GC oven, the head pressure of the carrier gas (N2) and the 
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lengths of pre- and main columns (GS-GasPro column) were described in Appendix B. 

Once the methane run was completed and the temperature of the GC oven dropped to 35 

oC, halocarbons in the sample were focused at trap 2. By heating up trap 2 to 200 oC and 

turning GC valve #3 (GCV3) from “backflash” to “inject”, halocarbons were injected 

into the narrow bore DB-VRX column (I.D. 0.18 mm; length: 40 m (pre-column: 3 m; 

main column: 27 m); film: 1.0 μm). Head pressure of the carrier gas (He) was set to 34 

psi and the temperature program of the GC oven was shown in Table C1. GCV3 was 

switched to “backflush” in 12 min after halocarbons were injected into the GC. 
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Table C1. Temperature program for the halocarbon analysis in the combined halocarbon 

and hydrocarbon instrument. 

  Ramp Rate (oC min-1)  Temperature (oC)  Hold (min) 
Step 1 - 35 4.7 
Step 2 35 100 3 
Step 3 30 220 7 

 

 

 

Figure C1. Schematic diagram of the analytical system for air and surface seawater 

concentration analysis for both hydrocarbons and halocarbons. 
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APPENDIX D 

THE ANALYTICAL SYSTEM FOR HALOCARBON DEPTH-PROFILE 

MEASUREMENTS  

 

Depth profile samples were collected from Niskin bottles with 100 mL ground 

glass syringes and loaded to volume calibrated bulbs connected to purge valve #2 (PV2) 

(a Valco loop selection valve (VICI Metronics, TX) with 34 ports and 16 positions) 

(Figure D1). All the water samples were stored in the bulbs at 5 oC until they were 

analyzed within 12 hours. When PV2 was switched from “load” to “inject”, humidified 

helium or nitrogen would push the water sample into a sparger at 144 ml min-1 (Figure 

D1). Gases in the water sample were carried by helium or nitrogen into the primary trap 

(trap 1) through purge valves (PV3 and PV1) and two nafion driers (Figure D1). The 

second part of this system is the same as the surface saturation-anomaly instrument 

described in Appendix A.  
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Figure D1. Schematic diagram of the halocarbon depth-profile instrument. 
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APPENDIX E 

THE ANALYTICAL SYSTEM FOR 13C-LABELED METHYL BROMIDE 

CONCENTRATION MEASUREMENTS 

 

Biological degradation rate constant measurements of CH3Br with a stable 

isotope incubation technique (Section 3) involve periodically monitoring 13CH3Br 

concentration in incubated seawater samples. Analysis of 13CH3Br concentration in 

seawater samples was conducted with an analytical system shown in Figure E1, which 

was modified based on the depth-profile instrument (Figure D1). About 25 ml of 

incubated seawater was loaded into a volume calibrated bulb. The seawater sample was 

then pushed into a sparger along with 10 μL known concentration of CD3Br (25 ppm) at 

144 ml min-1. 13CH3Br and CD3Br were purged by N2 into the cryotrap and GC-MS 

system described in Appendices A, C and D. 

Concentrations of 13CH3Br were determined by signals of masses (m/z) 97 and 

99 [e.g., Tokarczyk and Saltzman, 2001]. The signal of mass 97 was derived from both 

13CH3
81Br and CD3

79Br whereas mass 99 was entirely contributed by CD3
81Br. Since 

CD3Br was used as an internal standard, the CD3Br 97/99 remained constant among 

different runs. However, the concentration of 13CH3Br kept decreasing during the 

incubation due to the chemical and biological degradation, resulting in a decline in the 

ratio of peak areas of 97/99. Using the ratio of peak areas of 97/99 and the known 

concentration of CD3Br, we can calculate the concentration of 13CH3Br for each run. The 
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precision of 13CH3Br concentration measurements, 0.3 %, was determined by multiple 

injections from aliquants of MilliQ water spiked with 13CH3Br.  

 

 

 

 

Figure E1. Schematic diagram of the instrumentation for 13CH3Br concentration 

measurements. 
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