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ABSTRACT 

 

High Performance Lipoprotein Profiling for Cardiovascular Risk Assessment 

(August 2012) 

Craig Daniel Larner, B.S., Adrian College 

Chair of Committee: Dr. Ronald D. Macfarlane 

 

 With the severity of cardiovascular disease (CVD) and the related mortality rate 

to this disease, new methods are necessary for risk assessment and treatment prior to the 

onset of the disease.  The current paradigm in CVD risk assessment has shifted towards 

the multivariate approach over the individual use of traditional risk factors or lipid 

measurements.  Through a combination of analytical techniques and multivariate 

statistical analysis, a novel method of cardiovascular risk assessment was developed.  

The analytical techniques employed include density gradient ultracentrifugation (DGU) 

and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) applied 

to human serum.  These techniques provided detailed information about the 

characterization of the lipoproteins and their structural components, specifically the 

apolipoproteins belonging to high density lipoproteins (HDL).  This information when 

combined with multivariate statistical analysis provided a method that accurately 

identified the presence of CVD in clinical studies between cohorts of subjects that had 

been previously diagnosed with CVD and cohorts of subjects that had been identified as 

healthy controls (CTRL) based on a clear angiography.   
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  The lipoprotein density profiles were divided into subclasses based on their 

density and measured using a fluorescent probe to tag the lipoprotein particles.  Use of 

multiple ethylenediaminetetraacetic acid (EDTA) based solutes allowed for the 

manipulation of the density gradient formation in order to separate the lipoproteins by 

specific density ranges in order to achieve better baseline separation of the profiles.  

Application of the integrated fluorescence intensities for each subclass of lipoprotein to 

linear discriminant analysis/sliced inverse regression (LDA/SIR) and quadratic 

discriminant analysis (QDA) yielded an advanced and accurate form of risk assessment 

for CVD.  This method was found to be highly accurate as well as identify potential 

atherogenic lipoprotein subclasses through studying the LDA/SIR prediction equation 

generated.  It was also shown that the LDA/SIR equation could be used to monitor 

medical treatment and lifestyle change for their effects on the risk assessment model. 

Further study into the atherogenicity of HDL through analysis of the 

apolipoproteins using MALDI-MS led to identification of potential risk factors that 

could be added to the statistical analyses.  These risk factors included mass differences 

in the Apolipoprotein A-I (Apo A-I) and Apolipoprotein C-I (Apo C-I) between CVD 

and CTRL samples as well as the presence of specific mass peaks related to 

Apolipoprotein A-II (Apo A-II) that were primarily found in the CVD samples.  These 

differences, in addition to the lipoprotein density profile data, were found to increase the 

potential accuracy of CVD risk assessment.   The combination of these methods has 

shown great potential in the assessment of CVD risk as well as the ability to increase 

researchers’ understanding of the nature of VD and how to treat it. 
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1. INTRODUCTION 

 

1.1 Significance 

 With the significance of cardiovascular disease (CVD) and the related mortality 

rate, the current paradigm in risk assessment of CVD has been shifted to the use of 

multiple risk factors in the development of predictive algorithms.
1-7

  Current risk 

assessment methods have only been shown to be 80% accurate, at most, and they are 

widely inaccurate for subjects that show limited to no traditional risk factors and those 

subjects that either elderly or youthful.  In a recent report, the National Cholesterol 

Education Program (NCEP) recommended that lipid screening tests consisting of total 

cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high density lipoprotein 

cholesterol (HDL-C), and triglyceride (TG) measurements be performed as a standard 

health assessment.
8
  While these measurements can be beneficial, they do not account 

for all the possible information that can be obtained from the lipoprotein particles.   

 Lipoproteins are a form of nanoparticle present in human serum that performs a 

major role in the metabolism and transportation of lipids, triglycerides, cholesterols, and 

cholesterol esters in the human body.  
9
  These nanoparticles can be separated and 

characterized based on their density through density gradient ultracentrifugation (DGU). 

 

________________ 
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While other techniques such as nuclear magnetic resonance (NMR), chromatographic 

separations, and electrophoretic separations have been used to profile lipoproteins, DGU 

has long been considered the “gold standard” of lipoprotein characterization.
9-11

  

Through a combination of novel EDTA-based solutes
12,13

 and NBD C6-Ceramide 

(NBD), a lipoprotein-specific fluorophore, the self-forming density gradients have 

expanded the potential and analytical power of DGU.  Previously, application of this 

method has shown potential application for the risk assessment of CVD.
14

  Through 

enhancing the precision of the method, it became possible to increase the accuracy of the 

risk assessment and apply the methodology to larger clinical studies. 

 Mass spectrometry is another analytical tool that has shown use in the 

characterization of lipoproteins and their content.  Through soft ionization techniques 

such as MALDI-MS
15

, the apolipoprotein content of the HDL in serum has been studied 

and potential risk factors identified.
16

  Application of the mass/charge data obtained from 

this technique, coupled with the lipoprotein density profile data, has the potential to be 

added to the risk assessment methods as possible risk factors.  

 To develop the risk assessment algorithm, different multivariate statistical 

analyses can be used.  Linear discriminant analysis/sliced inverse regression 

(LDA/SIR)
17-20

 and quadratic discriminant analysis (QDA)
21

 are two different types of 

multivariate statistical analyses that can be applied to CVD risk assessment.  These 

methods inter-relate the variables used to generate the prediction equation in order to 

optimize the separation of the different sample groups.   
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 This work utilizes the techniques of DGU and MALDI-MS coupled with 

LDA/SIR and QDA statistical analyses in order to identify potential risk factors for CVD 

and generate a risk assessment algorithm for early detection of CVD. 

 

1.2 Cardiovascular Disease Risk Assessment Methods and Therapies 

 Cardiovascular disease is a class of diseases that affect the heart and arteries.  

Despite the advances in medical treatment, cardiovascular disease remains the leading 

cause of death worldwide.
22

  For this reason, current research in the field of 

cardiovascular disease includes identification of novel risk factors, development of 

advanced multivariate risk assessment methods
5,23-25

, and investigation into therapeutic 

methods for risk reduction. 

 

1.2.1 CVD Risk Assessment Methods 

Traditional risk factors (TRF) for preclinical screening of CVD include levels of 

Total Cholesterol, Triglycerides, High Density Lipoprotein Cholesterol (HDL-C), and 

Low Density Lipoprotein Cholesterol (LDL-C).  Other factors included in risk 

assessment are age, high blood pressure, diagnosis of diabetes, tobacco use, family 

history, and hypertension.
3,6,26

  The old paradigm of cardiovascular risk assessment using 

the presence of individual risk factors in an additive risk system has begun to shift to a 

multivariate approach of how all risk factors interrelate.
2,4,5,23,24,27

  Different multivariate 

methods that have been developed include the Framingham Risk Score, Reynolds Risk 

Score, and Systematic COronary Risk Evaluation (FRS, RRS, and SCORE, 
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respectively).
3,6,28

  These methods are regularly used to diagnose the risk of disease over 

a given period of time and are fairly accurate.   

FRS is a risk assessment tool developed from the Framingham Heart Study.  This 

study was established in 1948 and monitored 5,209 subjects between the ages of 28 to 62 

over time for risk factors related to CVD.  This study was broadened in 1971 to include 

the offspring of the original cohort as well as their spouses.
3
  The risk models developed 

from this study have been design to assess 5-year, 10-year, 30-year, and lifetime risk of 

CVD.
3,7,29

  These risk models are based on lipid concentrations, specifically total 

cholesterol (TC) and HDL cholesterol (HDL-C).  The c-statistics for FRS typically range 

from 0.7-0.8 indicating a 70-80% accuracy using this model.
2,30

  These risk scores, 

specifically the 10-year risk score, have weaknesses in diagnosing specific populations.  

These populations include young people and women.
31

  Other populations that have been 

inaccurately identified with/without risk include subjects with normal lipid levels
3
, 

subjects of varied ethnicity
32

, and those subjects with extensive forms of the disease in 

need of more aggressive treatments
33

.   

Based on the FRS, multiple different risk score methods have been developed 

using additional risk factors or new methods in order to increase the overall accuracy of 

risk assessment.  In an attempt to apply novel risk factors for CVD to diagnose women, 

the Reynolds Risk Score (RRS) was developed.
6
  In the RRS, hemoglobin A1c, high 

sensitivity c-reactive protein (hs-CRP), lipoprotein(a), apolipoproteins A-I and B-100, 

and parental history were included to improve the classical risk score.  This method was 
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found to reclassify 50% of the study population into new risk categories that more 

accurately assessed the level or risk for the population.   

Due to the difference in the definition of non-fatal end-points used in the FRS 

from other clinical studies, the SCORE method was developed to estimate risk in 

European populations.
28,34

  This method was based on the TC and the TC/HDL-C ratio.  

The results showed that the methods were able to estimate risk at a level suitable for 

clinical practice by achieving 71-84% accuracy.  The over-arching goal of these and 

other risk assessment methods is to have an accurate and cost efficient method which 

could be used for early diagnosis of CVD risk and allow for monitoring of therapeutic 

treatments in an effort to reduce risk in the early stages of the disease.
30

  With the 

identification of novel risk factors and enhanced methodologies, current research is 

aimed at developing risk assessment algorithms with higher accuracy which can be 

applied to clinical applications. 

 

1.2.2 CVD Therapies 

 Risk assessment methods for CVD are only clinically applicable if methods of 

therapeutic treatment can be monitored for risk reduction.  Many therapeutic methods 

have been studied over the course of CVD research.  The primary methods of therapy 

currently used include statin therapy, niacin therapy, and lifestyle modifications such as 

diet and exercise.
26

  These therapies are designed to modify lipoproteins in the subject’s 

serum in order to promote the “good” forms of lipoproteins and reduce the “bad” forms. 
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 Statins have been used in clinical applications in order to lower LDL-C and raise 

HDL-C.
35-37

  Statins work through inhibition of 3-hydroxy-3-methylclutaryl-coenzyme 

A (HMG-CoA) reductase which causes increased regulation of LDL-C receptors and 

results in enhanced removal of LDL-C from human blood.
37

  Statin therapy has currently 

formulated six different types of statins which all show different efficacies based on 

dosage and have different side effects.  Intensive statin therapy has been shown to reduce 

the rate or progression of atherosclerosis as well as decrease the levels of atherogenic 

lipoproteins and CRP.
38

 

 Niacin therapies have been coupled with statin therapy to show enhancements in 

the reduction of cardiovascular risk.
39,40

  Niacin has been shown to reduce LDL-C, TG, 

and lipoprotein(a) while increasing HDL-C.
41

  Like statins, there are multiple forms of 

niacin therapy, each with their own beneficial properties.  The formulations for niacin 

are based on their release times: immediate release, extended release, and long acting.
41

  

The different formulations control how the drug is metabolized in the body.  Niacin has 

been limited in use due to issues with patient tolerability related to dosage and 

formulation.   

 Due to the potential adverse effects related to medical therapies, lifestyle 

modification prior to the onset of CVD shows the most promise in risk reduction.  Some 

of the specific lifestyle characteristics related to the onset of CVD include tobacco 

usage, inactivity, and obesity.
26

  CVD preventative measures for these areas include the 

cessation of tobacco usage, dietary modification, and exercise.  These types of 

modification are considered primordial prevention.  Exercise and dietary changes are 
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targeted to control lipid levels
42,43

, reduce blood pressure and obesity
44

, and prevent 

onset of conditions that are precursory to CVD, such as diabetes and metabolic 

syndrome.
45

  For dietary changes, it has been recommended that one should increase 

fiber intake through fruits and vegetables while lowering the intake of saturated fats 

from meat and dairy products.
26

  For exercise, it is recommended that one should have at 

least 30-60 minutes of moderate to intense physical activity every day if possible.
26

  

 Despite the method of therapy chosen, risk reduction associated with lipids and 

lipoproteins is common to all of them.  This is due to the correlations made between 

lipid levels and risk of CVD.
8
  It is for this reason that risk assessment methodologies are 

focused around lipoprotein characterization. 

 

1.3 Lipoprotein Composition and Function 

 Lipoproteins are a distribution of nanoparticles (5-500nm) in serum that play a 

large role in the transportation and metabolism of lipids, triglycerides, cholesterols, and 

cholesterol esters.  Lipoproteins are made up of a hydrophilic exterior and a hydrophobic 

lipid core similar to the structure of micelles: they have a hydrophilic exterior and a 

hydrophobic core.  The outer shell is made up of phospholipids and cholesterol while the 

inner core is composed of triglycerides and cholesterol esters.  Surrounding the outer 

shell are apolipoproteins which are used in the recognition and transportation of the 

lipoproteins.  The basic structure of lipoproteins is shown in Figure 1.
9
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Figure 1: Basic Lipoprotein Structure 

 

1.3.1 Lipoprotein Properties  

Lipoproteins are primarily classified by their hydrated densities, but they can also 

be identified by their specific composition.  Lipoproteins in circulation throughout the 

human body are constantly modified through metabolic processes.  As a result of the 

metabolic changes, there is a distribution of particles with slightly different physical and 

chemical properties throughout the lipoprotein classes.
46,47

  The differences in the 

densities, composition, and size of the lipoprotein are used in identification of the 

different classes of lipoproteins: chylomicrons, VLDL, IDL, LDL, HDL, and Lp(a).  A 

summary of the main lipoprotein characteristics including density, size, lipid content, 

and apolipoprotein content is shown in Table 1.
9,48
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Table 1: Lipoprotein Characteristics 

Lipoprotein 

Type 

Density 

(g/mL) 

Size 

(nm) 
Major Lipids 

Major 

Apolipoproteins 

Chylomicrons < 0.93 100 - 500 Dietary TAGs B-48, C-II, E 

VLDL 0.93 -1.006 30 - 80 
Endogenous 

TAGs 
B-100, C-II, E 

IDL 1.006 -1.019 25 - 50 CEs and TAGs B-100, E 

LDL 1.019 -1.063 18 - 28 CEs and TAGs B-100 

HDL 1.063 -1.210 15-May PL 
A-I, A-II, C-I, 

C-II, E 

Lp(a) 1.040 -1.090 25 - 30 CEs B-100, Apo(a) 

 

1.3.2 Lipoprotein Function 

The density of lipoproteins is directly related to the biological function of the 

lipoproteins.  As the density of the lipoproteins decrease, the ratio of TAGs to the 

phospholipid and cholesterol content of the lipoproteins decreases.  This change in 

composition means that denser lipoproteins have higher protein composition.  For this 

reason, chylomicrons (CM) and VLDL are commonly paired together and labeled as 

triglyceride-rich lipoproteins (TRL).  The function of these TRLs is primarily to 

transport triglycerides throughout the body.
49

  TRLs exchange triglycerides with 

cholesteryl esters from nascent HDL using cholesterylester transfer protein (CETP) and 

interacts with lipoprotein lipase which causes for loss of lipid content and the 

transformation of TRL into IDL and then, eventually, LDL.  This change can be 

measured by the progressive change in density to more dense particles.   

IDL is a remnant of VLDL as it changes to LDL.  It is formed as a result of 

lipolysis of VLDL.  This particle’s lifetime is normally short lived as it is converted to 

LDL or cleared through the liver by receptor-mediated endocytosis.
50

  IDL is composed 
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of multiple apolipoproteins Apo E and a singular copy of Apo B-100.  Apo E is present 

until IDL is transformed into LDL when only Apo B-100 is present.
51

 

LDL is primarily made up of cholesterol esters and the apolipoprotein Apo B-

100.  LDL transports cholesterol and cholesteryl esters from the liver to different tissues 

throughout the body using LDL receptors to permeate the membrane.  LDL has been 

divided even further into five different subclasses labeled as LDL-1 (1.019 – 1.023 

g/mL), LDL-2 (1.023 – 1.029 g/mL), LDL-3 (1.029 – 1.039 g/mL), LDL-4 (1.039 – 

1.050 g/mL), and LDL-5 (1.050 – 1.063 g/mL) as identified by equilibrium density 

gradient ultracentrifugation.
9
 

HDL reverses the cholesterol transport process by transporting the cholesterol 

from the tissues back to the liver.  This process is known as reverse cholesterol transport.  

HDL has two main subclasses identified as HDL2 and HDL3.  Further division of these 

subclasses through sequential centrifugation and DGU identified fractions of these 

subclasses known as HDL2b (1.063-1.091 g/mL), HDL2a (1.091-1.110 g/mL), HDL3a 

(1.110 –1.133 g/mL), HDL3b (1.133 –1.156 g/mL) and HDL3c (1.156 –1.179 g/mL).
9
  A 

summary of the different lipoprotein subclasses is displayed in Table 2. 
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Table 2: Lipoprotein Subclass Densities 

Lipoprotein 

Subclass 

Density 

(g/mL) 

TRL <1.006 

IDL 1.006-1.019 

LDL-1 1.019-1.023 

LDL-2 1.023-1.029 

LDL-3 1.029-1.039 

LDL-4 1.039-1.050 

LDL-5 1.050-1.063 

HDL2b 1.063-1.091 

HDL2a 1.091-1.110 

HDL3a 1.110-1.133 

HDL3b 1.133-1.156 

HDL3c 1.156-1.179 

 

1.3.3 Lipoprotein Subclasses and Their Relation to CVD Risk 

 The classical view of the role lipoproteins play in the risk for cardiovascular 

disease is that LDL is the “bad” form of lipoprotein while HDL is the “good” form of 

lipoprotein.  The idea of LDL as the “bad” form of lipoprotein comes from the 

established direct correlation between LDL and CVD risk.  Small, dense LDL (sd-LDL) 

particles have been shown to stay in serum for longer periods of time compared to large, 

buoyant forms of LDL.  sd-LDL also exhibits increased oxidation rates, lower affinity to 

the LDL receptor, and increased penetration into the arterial wall.
52-55

  Oxidized LDL 

has been identified to possess pro-atherogenic and pro-inflammatory properties and has 

long been a target of medical therapies.
56,57

 

The idea of HDL as the “good” form of lipoprotein comes from the established 

inverse correlation between HDL cholesterol levels (HDL-C) and CVD risk.
58

  HDL has 
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been identified to have many athero-protective properties which reduce the risk of CVD.  

Through activation of lecithin-cholesterol acyltransferase (LCAT), HDL promotes a 

reduction in oxidized lipids.
59,60

  This activity has specifically been identified as a 

property of small, dense HDL.
61

  Apo A-I, the primary apolipoprotein of HDL, has the 

mimetic peptide ETC-642 that has been associated with the anti-inflammatory properties 

of HDL.
62

  HDL also promotes macrophage cholesterol efflux and reverse cholesterol 

transport which are two of the primary methods in which HDL protects against 

atherosclerosis.
63

 

This view of HDL as the “good” form of lipoprotein has evolved in recent years 

and current research has identified potential atherosclerotic properties of HDL.  This 

dysfunctional form of HDL has been correlated with inflammatory biomarkers.
64

  The 

dysfunctionality of HDL has also been linked to obesity.  In terms of the composition of 

HDL, glycation of Apo A-I in diabetes patients has been related to dysfunctional HDL.
64

  

Triglyceride-rich HDL cholesterol has been shown to reduce the efficacy of reverse 

cholesterol transport.
65

  The idea of dysfunctional HDL has promoted research into the 

importance of HDL function over the classical view of HDL quantity.
66

 

 

1.4 Methods for Lipoprotein Analysis 

 With the varied characteristics and composition of lipoproteins, several methods 

of chemical analysis have been developed for commercial use in order to study 

lipoproteins and their components.  These methods separate lipoproteins based on 

properties such as relative density, electrophoretic mobility, molecular weight, and 
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chemical composition.  Despite the continuing development and refinement of the 

techniques related to these characteristics, recent review articles have identified 

problems in inter-relating the use of the methods for identifying individuals who have 

treatable early stage CVD.
67,68

   

 

1.4.1 Density Gradient Ultracentrifugation (DGU) 

Ultracentrifugation has long been the ideal technique for separation, 

identification, and quantization of lipoproteins.
10,11,69

  Ultracentrifugal methods separate 

lipoproteins based on their hydrated densities.  The different forms of this technique 

include rate zonal ultracentrifugation and isopycnic separations
70,71

.  Rate zonal 

ultracentrifugation applies a layering method of preformed gradients over the sample.  

As the centrifugal force is applied to the sample, particles will move through the gradient 

relative to their densities.  Separation of the particles is halted and they are characterized 

by the zone in which they migrated to during the UC spin.  For isopycnic separations, 

the particles migrate to the specific density of the particles, or isopycnic point, relative to 

the density gradient formation during ultracentrifugation.  Separation of the particles in 

this method is specific to the density properties of the individual particles.  Each of these 

techniques has specific advantages and disadvantages including the accuracy of the 

separation, its use in fraction preparation, and the extent of skill needed to perform these 

techniques.   
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1.4.1.1 Sedimentation Theory and Gradient Mapping 

 DGU works through the principles of sedimentation theory.  There are two 

primary competing forces at work during the experiment: sedimentation and diffusion.  

The centrifugal force exerted on a particle is related to the mass of the particle, mp, 

angular velocity, ω, and the radius of the rotor, r.  The formula for calculating the 

centrifugal force is seen in Eq. 1
72

: 

 

                
          Eq. 1 

 

Diffusion forces can also be defined as the buoyancy of the solvent.  This force 

can be measured by the mass of the volume of solvent displaced.  This mass can be 

determined by using the mass of the particle, the density (ρ) of the solvent, and the 

partial specific volume of the particle (ῡ).  The resulting force from buoyancy is given in 

Eq. 3
72

: 

 

              
           Eq. 2 

 

A third force which acts on the particles during centrifugation is the frictional 

force between the solute particles and the solvent.  This force works in opposition to 

both the centrifugal and buoyant forces.  The frictional force can be calculated using the 

frictional coefficient, ƒ, and the velocity of the moving particle, ʋ.   
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Using gradient forming solutes beginning from a homogeneous solution, these 

density gradients reach a steady state in the form of an exponential curve relating density 

to the distance away from the meniscus.  In terms of tube coordinate, a lower tube 

coordinate is near the meniscus and therefore would have a lower density relative to a 

higher tube coordinate which is further away from the meniscus and has a larger density.  

The relation of tube coordinate to density can be seen in Eq. 3: 

 

                        Eq. 3 

 

In this equation, x is the position relative to the meniscus, A and B are coefficients, and 

y0 is the intercept.  The position of the measurement can be related to density through 

use of refractive index and calibration curves relating refractive index to density.
73

   

 Research into density gradient formation has shown a relationship between the 

molecular weight of the gradient-forming solute and the slope of the resulting density 

curve.
12,73

  At equilibrium, the free energy of centrifugation is equal to the free energy of 

diffusion.  Through relation of the free energy equations for each of the different acting 

forces in ultracentrifugation, a relationship between the molecular weight of the solute 

(Mw) and the resulting gradient formation is found.  The resulting equation relating the 

slope of the density gradient and molecular weight of the solute is shown in Eq. 4: 

 

   
               

           
    

          Eq. 4 
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In this equation, T represents the temperature of the UC spin, R is the gas constant, and 

c1/c2 represents the concentration ratio between two points at radii r1 and r2 in the sample 

tube, respectively. 

  

1.4.1.2 Methods of DGU 

The need for a rapid and straight forward method of lipoprotein density profiling 

which can provide the most precise information possible is necessary if lipoprotein 

density profiles are to be used in clinical studies.  Currently, the commercialized method 

of lipoprotein separation through density gradient ultracentrifugation is Vertical Auto 

Profiling (VAP) run by Atherotech.  This method involves the use of potassium bromide 

(KBr) as the salt present in the aqueous gradient.
74,75

  Use of this high ionic strength 

solution is problematic as it has been shown to create multi-component aggregates of the 

low-density lipoproteins.
76

  Fractioning the profile using this technique normally 

involves puncturing the sample tube at the bottom and using a continuous-flow analyzer 

to monitor and separate each elution.  This can allow lipoprotein to adhere to the sample 

tube walls causing for error in the measurement.  The VAP method measures 

composition of the different elution in terms of UV absorbance.  VAP results have been 

applied to CVD risk assessment, however, the results can vary and the precision for an 

individual patient is questionable.
77

 

Current research into DGU has introduced the viability of using EDTA salts to 

control the density gradient formation process under ultracentrifugation conditions.
12,78,79

  

In particular, use of the NaBiEDTA complex has been shown to generate a density 
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gradient for profiling the full density distribution of lipoproteins in 6 hours rather than 

the 48 hours required for traditional rate zonal ultracentrifugation
12

.  The gradient 

formation when using EDTA salts also has been shown to be modifiable based on the 

metal-ion complex used for the salt and the relative concentration of salt used in 

solution.
12

  These EDTA salt solutions have a low ionic strength which reduces the risk 

of aggregation in the low density lipoproteins mentioned previously.  However, there is 

some evidence that apolipoprotein A-1 (apo A-1) loss in the high density lipoproteins 

could be affected by the low ionic strength.
80

 

 

1.4.1.3 Fluorescence Analysis of Lipoproteins 

Fluorescent techniques for quantification studies have the advantage of being 

highly sensitive with reduced noise. Coupling the lipoprotein density separation with the 

use of NBD in order to image the intensity of the lipoprotein subclasses has provided a 

method for measurement of a subject’s lipoprotein density profile through 

fluorescence.
79

  NBD is a lipophilic molecule that has been shown useful in labeling 

lipoproteins.
81

  This fluorophore consists of a hydrophilic head and a hydrophobic tail 

(Figure 2).  For this reason, NBD has the advantage for lipoprotein studies in that it 

fluoresces in hydrophobic environments.  The lipid core of lipoprotein particles presents 

such an environment.  The excitation and emission spectra for NBD is shown in  

Figure 3. 
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Figure 2: NBD C6-Ceramide Structure 

 

 

Figure 3: Excitation and Emission Spectra of NBD C6-Ceramide 

 

Previous research into the association of NBD and lipoprotein for application to 

lipoprotein profiling has identified the optimum conditions to use in terms of quantifying 

the lipoprotein profile.
14,79

  By monitoring the fluorescence intensity for all lipoproteins, 

it was found that a 30 minute incubation time was necessary for the NBD to completely 

interact with all lipoproteins in serum.  It was also found that there was relatively a one-



19 
 

 
 

to-one volumetric relationship between the amount of NBD at a concentration of 

1mg/mL and serum volume in order to saturate the lipoproteins for all densities.  These 

conditions were selected to account for the speed and the quantity of fluorophore uptake 

in the different types of lipoproteins.  

 

1.4.2 Mass Spectrometry of Apolipoproteins 

 With the function of lipoproteins being targets as risk factors for CVD, 

characterization of the components of the lipoproteins, specifically the apolipoproteins 

which are directly related to the metabolic processes, is necessary.  To this end, mass 

spectrometry has recently been used to identify the apolipoprotein content of the 

different lipoproteins.  MALDI-MS is one of the forms of biological mass spectrometry 

that has been shown useful in the characterization of apolipoproteins.
16,82-86

  MALDI-MS 

is a soft-ionization technique developed in the late 1980’s which minimizes the 

fractioning of large macromolecules and results in primarily singly, sometimes doubly, 

charged ions.
87-89

  MALDI-MS is commonly paired with a time of flight (TOF) analyzer 

in a technique referred to as MALDI-TOF.  MALDI-MS is especially useful in the 

analysis and characterization of multi-component mixtures.  While MALDI-MS has 

been used in quantitative studies, it is primarily a qualitative method due to the potential 

error in signal intensity related to preparative techniques, ionization efficiencies, and ion 

suppression.
90,91

 

 MALDI-TOF mass spectrometry has been successful in the characterization of 

the protein and apolipoprotein content of HDL.  Specific proteomic signatures have been 
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identified in subjects with CVD using tryptic digestion of the HDL.
92

  Post-translational 

modifications (PTM) of apolipoproteins have been identified in HDL relative to 

CVD.
16,82

  While the nature of these PTMs and their impact on CVD are not fully 

understood, disease specific apolipoprotein signatures using MALDI-MS represent new 

potential risk factors in CVD risk assessment. 

  

1.4.3 Other Methods of Lipoprotein Analysis 

 The classical method for measuring lipoproteins is through measuring the 

cholesterol content.  The most used method of measuring cholesterol is currently the 

Friedewald method which has been used for over 30 years.
93

  This method uses 

enzymatic techniques to measure TC and TG, rapid precipitation to measure HDL-C, 

and then estimates the LDL-C using the following equation (Eq. 5): 

 

                      
    

 
     Eq. 5 

 

  Other methods of measuring lipoproteins include enzymatic assays to quantify 

apolipoprotein content
94

 as well as the bicinchoninic acid assay (BCA) 
95

 for protein 

quantification.  The enzyme-linked immunosorbent assays (ELISA) for apolipoprotein 

content use monoclonal or polyclonal antibodies to sandwich the apolipoprotein.  Then 

using a chromatic tag attached to one of the binding antibodies, the concentration of the 

solution is calculated based on a calibration curve relating absorbance to concentration.  

For BCA, the chemical reaction reduces Cu
2+

 to Cu
1+

 through interaction with the 



21 
 

 
 

proteins in an alkaline environment.  The Cu
1+

 cations are then chelated with 

bicinchoninic acid.  The absorbance of this BCA/Cu complex at 562nm is directly 

related to the protein concentration.  These methods just measure total content in a 

sample and give no information about the distribution or potential modification of the 

apolipoproteins. 

Due to the inherent time constraints and technical skill needed for analysis of 

density based lipoprotein separations, other analytical techniques such as nuclear 

magnetic resonance (NMR)
96-101

 and electrophoresis
81,102-108

 have been explored in order 

to qualify lipoproteins.  In these cases, it is not the hydrated densities, but the size of the 

lipoproteins as well as the electrophoretic mobility in a medium that are used to 

characterize the lipoproteins.  NMR, while useful in identifying multiple subclasses of 

lipoproteins through size differences, has some inherent problems including not being 

able to distinguish lipoprotein (a) ( Lp(a) ) from low density lipoproteins ( LDL ) and 

chylomicrons remnants from the very low density lipoproteins ( VLDL ).  There is also 

variability in the conversion of the peak areas into the cholesterol levels due to lipid 

composition variability.  While NMR profiles do give 15 different subclass 

measurements, only four subclasses of LDL are determined versus the five subclasses 

determined using hydrated densities.  The NMR profiles do have the advantage of 

identifying five subclasses of the VLDL.   

 Electrophoretic methods of lipoprotein separation include gel electrophoresis 

using agarose and analytical capillary isotachophoresis (ITP).
81,83

  Both of these 

techniques came about due to the problem of quantification of lipoproteins using 
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electrophoretic techniques.  Agarose gel electrophoresis has shown applicability in 

quantifying the VLDL-C, LDL-C, and HDL-C as well as the Lp(a)-C.
104

  Capillary ITP, 

in conjunction with NBD as a dye, has shown the ability to profile multiple subclasses 

for HDL and LDL and identify the VLDL and chylomicrons in a patient’s serum or 

plasma.
81

  This technique has a good correlation of peak intensity to cholesterol 

measurements and can be done rapidly.  However, this technique is limited by the 

number of subclasses that can be identified for each subclass.   

 Even with the advances in alternate techniques, the multiple subclasses and the 

differences in the hydrated densities of the lipoproteins make ultracentrifugation one of 

the best possible techniques for lipoprotein studies.  

 

1.5 Advanced Multivariate Statistical Analysis 

 Based on the paradigm shift in CVD risk assessment to a multivariable 

risk model, advanced statistical analysis such as linear discrimination analysis (LDA), 

sliced inverse regression (SIR)
17,109,110

, and quadratic discrimination analysis (QDA)
20,21

  

become available as statistical tools which can be used to develop an algorithm that can 

be used to separate defined groups by multiple variables.
20,111,112

  LDA separates groups 

through analysis of the mean values of variables and development of a linear algorithm 

using the selected variables.  SIR is a modern variation of R.A. Fisher’s original LDA 

method published in 1936.
19

  QDA separates the defined groups by using the mean, 

variance, and covariance between groups to develop a quadratic algorithm.  These 



23 
 

 
 

algorithms can be used to assess the positive or negative contributions that the risk 

factors play in classification. 

Application of the LDA/SIR and QDA analyses is tested in three steps: training 

set accuracy, cross validation accuracy, and accuracy on a holdout sample set.  The 

training set uses samples with known definitions to develop the mathematical algorithm 

in order to optimally separate the defined groups.  Cross validation is a method of data 

removal which systematically removes one sample’s data and re-develops a new 

algorithm.  This new algorithm is then tested on all samples, including the removed 

sample, for accuracy of definition.  This new accuracy, in comparison to the training set 

accuracy, represents the sample dependency of the training set algorithm for 

classification.  A small difference between the accuracy of the training set and the 

accuracy of the cross validation indicates a low sample dependency.  A large difference 

between the two accuracies indicates that the algorithm generated from the training set is 

highly sample-dependent.  Cross validation is traditionally used as a test of the 

significance of the separation between groups when only a small number of samples is 

available.  For larger sample libraries, the method of a holdout test is applied.  The 

holdout samples are a set of randomly selected samples from the library which are tested 

using the developed algorithm.  These samples are not used in the development of the 

algorithm and provide a real life sample set with which to test the accuracy of the 

prediction algorithm developed.    

Discriminant analyses have previously been used in the study of CVD diagnosis.  

LDA has been used in application to ejection fractions calculated from gated blood pool 
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studies to correctly classify coronary artery disease in 81% of the subjects.
18

  LDA has 

also been applied to cardiovascular risk variables such as HDL-C, LDL-C, TC, TG, Apo 

A-I, Apo B, and hs-CRP to show increased potential of risk assessment.
113

  These factors 

were shown to be highly accurate for the training set; however there were not enough 

samples to test a holdout.  Application of the LDA/SIR analysis has also been previously 

applied to the lipoprotein density profiles for small sample sets to show potential for risk 

assessment through just the integrated fluorescence intensities of the lipoprotein 

subclasses.
14

  Application of these discriminant analyses to CVD risk assessment using 

novel risk markers has the potential for improved risk classification as well as 

monitoring the effectiveness of therapeutic methods for risk reduction. 

 

1.6 Application of Methods 

 The goal of the research presented here is to develop an array of high precision 

analytical tools that can be used for clinical studies.  With traditional risk factors for 

CVD being present in roughly only 80% of the population,
114

 novel risk factors are still 

needed to enhance the accuracy of CVD risk assessment.  Using DGU as the primary 

tool for lipoprotein analysis, improved definition of the distribution of lipoprotein 

particles can be studied.  Through fluorescent tagging using NBD, the lipoprotein profile 

can be quantified and compared to the classical methods of cholesterol measurement.  

The NBD interaction with the lipoprotein particle acts as a probe into the chemical 

makeup and morphology of the individual particles.  DGU can also be used as a 

preparative separation technique for further characterization of the lipoproteins through 
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examination of their components.  MALDI-MS is a strong analytical tool through which 

the characterization of the lipoprotein components, specifically the apolipoproteins, can 

be performed.  The combination of these methods allow for the identification of new 

potential risk factors for CVD. 

 Use of these potential risk factors in application to multivariate statistical 

analyses can provide a novel approach to CVD risk assessment and classification.  

Through better medical definition of the presence of disease or lack thereof and through 

identification of significant risk factors, enhanced distinction between groups becomes 

possible.  Through use of the measured risk factors identified in this work as variables in 

the LDA/SIR and QDA analyses, a more accurate risk assessment algorithm can be 

generated.  The potential for this risk assessment algorithm to monitor the effectiveness 

of treatment provides a novel method of developing therapies that can be “personalized” 

based on the relevant risk factors.   

 The work presented here establishes high performance methods for lipoprotein 

characterization.  This work also establishes novel methods of CVD risk assessment 

through application of the data obtained from the lipoprotein characterization into 

multivariate statistical analyses.  These methods have clinical applications in the 

prescreening of the disease as well as the monitoring of therapeutic treatments aimed at 

reducing a patient’s risk.  
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2. MATERIALS AND METHODS 

 

2.1 Materials  

 

2.1.1 Chemicals and Supplies 

 NBD C6-ceramide (6-((N-(7-nitrobenz-2-oxa-1,3-diazol-4-

yl)amino)hexanoyl)sphingosine, catalogue # N1154) and Fluorospheres (0.1 µm 

carboxylate modified red fluorescent microspheres, catalogue # F-8801) were purchased 

from Invitrogen, Carlsbad, CA.  Acetonitrile (ACN), dimethyl sulfoxide (DMSO) and 

hexane (>95%) were purchased from EM Science (Darmstadt, Germany).  

Trifluoroacetic acid (TFA), ethylenediaminetetraacetic acid (H4EDTA), cesium 

hydroxide, cadmium carbonate, sinipinic acid, Dextralip® 50, and magnesium chloride 

hexahydrate were purchased from Sigma-Aldrich (St. Louis, MO).  Sodium bismuth 

EDTA (C10H12N2O8NaBi4H2O) was purchased from TCI America (Portland, Oregon).  

Strata C18-E solid phase extraction cartridges and syringe adapter caps were purchased 

from Phenomenex (Torrance, CA).  Deionized water (DI H20) used in all experiments 

was from a Milli-Q water purification system (Millipore, Bedford, MA) 

HDL and LDL standards standards were purchased from Sigma-Aldrich (St. 

Louis, MO).  Apo A-I standards were purchased from Academy Biomedical (Houston, 

TX). 

Polycarbonate thick wall ultracentrifugation tubes (1.5 mL, 34 mm length, 

catalogue # 343778) were purchased from Beckman-Coulter (Palo Alto, CA).  Strata 
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C18-E solid phase extraction cartridges and syringe adapter caps were purchased from 

Phenomenex (Torrance, CA)  

 

2.1.2 Cs2CdEDTA Synthesis 

The Cs2CdEDTA complex was synthesized from H4EDTA, cesium hydroxide, 

and cadmium carbonate.
73

  The reagents were combined stoichiometrically in 500 mL of 

DI H2O, followed by a two hour reflux, yielding a clear solution.  The cesium hydroxide 

was added to the clear solution to bring the final pH range to 6-7.  The final solution 

volume was reconstituted to 500 mL to account for evaporation during reflux to give the 

desired final concentration for the solution.  The synthesis of the Cs2CdEDTA complex 

is shown in Eq. 6. 

 

                                            Eq. 6 

 

2.1.3 Serum Collection   

The serum used for these studies was acquired from multiple donors with 

informed consent.  The serum was collected in a 9.5mL Vacutainer treated with polymer 

gel and silica activator (366510, Beckton Dickinson Systems, Franklin Lakes, NJ).  The 

serum was separated from the red blood cells by centrifugation at 3200 rpm for 30 min 

at 5°C and then stored at -80°C prior to use.   
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The work described in this dissertation was carried out in accordance with The 

Code of Ethics of the World Medical Association (Declaration of Helsinki) for 

experiments involving humans. 

 

2.2 Analytical Methods 

 

2.2.1 Ultracentrifugation 

Ultracentrifugation was carried out using an Optima TLX ultracentrifuge and a 

TLA 120.2 fixed-angle rotor (Beckman-Coulter, Palo Alto, CA). Samples were spun 

using a rotor speed of 120,000 rpm. For the TLA120.2 rotor, these speeds correspond to 

average relative centrifugal force of 511000g.  Salt concentrations were selected to 

achieve the desired density gradient profiles. 

 

2.2.2 Density Gradient Measurement  

 

2.2.2.1 Properties of EDTA Solutions 

Serial dilutions for each of the EDTA solutions were made in order to construct 

calibration curves necessary for relating density, refractive index, and concentration.
14,73

  

Initial concentrations for each stock solution of EDTA salt were 0.4000M, calculated 

stoichiometrically.  Densities for each serial dilution were determined gravimetrically 

using a calibrated 10-mL glass pipet.  The refractive index for each dilution was 
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measured at 20°C using an Abbe 60/DR refractometer from Bellingham + Stanley 

(Lawrenceville, GA). 

 

2.2.2.2 Gradient Formation and Measurement 

Density gradient measurements were performed as previously described by 

Johnson et al.
14,73

  Briefly, the density gradients were formed in an Optima TLX 

ultracentrifuge, TLA 120.2 fixed-angle rotor.  All tubes contained 1150μL of the 

designated EDTA solution and were centrifuged as previously described (Section 2.2.1).  

After centrifugation, gradient formations were determined by removing 10μL aliquots 

from distinct positions throughout the formed gradient and measuring their respective 

refractive indexes. Aliquots were obtained sequentially from the top of the UC tube 

down in order to not disturb the density gradient below.  Images of the UC tube were 

taken using a digital color microscope camera (S99808, Optronics, Goleta, CA) while 

the sample was being removed so that the exact location of each aliquot could be 

determined by digital analysis.  The density of each aliquot was then mapped in relation 

to its orientation inside the tube (tube coordinate). 

 

2.2.3 Fluorescent Labeling of Serum Samples    

Serum samples were stained for imaging as follows: 6µL of serum were mixed 

with 10µL of NBD C6-ceramide (1mg/mL in DMSO) and diluted to 1300 µL using an 

aqueous solution of the density-forming solute (NaBiEDTA) followed by incubated for 

30 min to achieve saturation.
12,79 
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2.2.4 Fluorescence Image Analysis 

 Fluorescence imaging was used in monitoring the dynamics of the density 

gradient formation as well as the measurement of the sedimentation equilibrium density 

profile. An image of the tube containing the fluorophore-tagged lipoproteins or 

fluorescent nano-spheres was obtained and analyzed using a digital Optronics Microfire 

Camera (S99808, Goleta, CA) with a Fiber-Lite MH-100 Illuminator, a metal halide 

lamp, as a light source (MH100A, Edmund Industrial Optics, Barrington, NJ). A digital 

color microscope camera (S99808, Optronics, Goleta, CA) was used to record the image. 

The camera and light source were placed orthogonally to each other on an optical bench 

to illuminate the ultracentrifuge tube mounted in a custom-designed holder.  Two filters 

matching the excitation and emission characteristics of the fluorophore were chosen. 

Specific settings for the Microfire camera software were a gain of 1.000 and a target 

intensity of 30% to illuminate the tube.  The exposure time was optimized for sensitivity 

and to achieve linearity.   

The image of the polycarbonate ultracentrifuge tube was then converted to a 

density profile following the method described by Johnson et al.
12

  Briefly, the two-

dimensional pixel field generated by the camera software was converted to a digital 

matrix of intensity versus tube coordinate (6-33 mm length) using Origin 8.5 software to 

generate a graphical representation of the density profile.  The relationship between tube 

coordinate and density was then used to modify the x-axis in terms of density rather than 

tube coordinate. 
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2.2.5 Lipoprotein Density Profiling 

To obtain the lipoprotein density profile, the specific instrument set-up and 

settings is described here.  Following the UC spin, and layering depending on the 

respective study, an image of the sample tube was obtained and analyzed using the 

method for fluorescence imaging previously described.  Two filters matching the 

excitation and emission characteristics of NBD C6-ceramide from Schott Glass 

(Elmsford, NY) were chosen. A blue-violet filter (BG-12) with a bandwidth centered at 

455 nm and a yellow emission filter (OG-515) with a bandwidth centered at 570 nm 

were used as the excitation and emission filters, respectively.  Specific settings for the 

Microfire camera software were an exposure of 53.3 mS with a gain of 1.000 and a 

target intensity of 30% to illuminate the tube prior to image capture. 

 

2.2.6 NaBiEDTA Gradient Optimization Studies 

 

2.2.6.1 Spatial Separation of Lipoprotein Density Profiles 

 To test for the optimum volume that can be spun inside the UC tube, 1200µL 

samples of DI H2O were weighed and then spun inside the ultracentrifuge.  After being 

spun, the samples were weighed again to measure the sample loss inside the rotor.  By 

calculating the relationship of weight loss to volume of water, the optimum volume able 

to be used inside the tube without sample loss was determined.  This volume was then 

used as the standard volume in a spin for optimization of the method.  
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2.2.6.2 Density Gradient Development over Time 

The density gradient distribution for the 0.1800 M NaBiEDTA was measured for 

several different spin times ranging from 2 – 8 hours.  The method used follows a 

procedure and calibration method developed by Johnson et al where 10 aliquots (20 µL 

volumes) are withdrawn from well-defined positions within the gradient and their 

densities measured by refractive index.
12

 Gradient curves were then calculated by 

mapping the tube coordinate versus density using Origin 8.5.   

 

2.2.6.3 Precision of Density Measurements Using Nano-spheres 

Using the fluorospheres and following the method for density gradient 

measurements, the accuracy and precision of the density measurement were studied. 

Briefly, 1µL of the fluorosphere solution was mixed with 1299µL of 0.1800M 

NaBiEDTA.  A volume of 1150µL of this mixture was then spun as described 

previously and imaged using a green excitation filter (VG-6) with a bandwidth centered 

at 520 nm and a red emission filter (R-60) with a low cutoff at 600 nm (Edmund 

Industrial Optics, Barrington, NJ).  This was done for a set of 10 replicate samples for 

each spin condition.  Using Origin 8.5 graphing software, the images were mapped 

according to their tube orientation and relative densities.  The peak density (g/mL), full 

width at half maximum (mm), change in densities, and the density resolution were 

calculated for each replicate. 
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2.2.6.4 Polar Layering with H2O vs. Non-polar Layering with Hexane  

In preliminary studies, our laboratory used DI H2O as a layering medium for 

separation of the different TRL subclasses.
14

  Initial layering of the samples was done 

with 150µL DI H2O layered using gel loading tips (Sigma Aldrich, St. Louis, MO, 

Catalogue # CLS4853).  Hexane was chosen as the new layering medium in order to 

remove the meniscus interference from the TRL subclass measurement.  Following the 

UC spin, 240µL of hexane was slowly added on top of the spun samples without 

perturbing the density profile using gel loading tips (Sigma Aldrich, St. Louis, MO). 

 

2.2.6.5 Effects of Ultracentrifugation Spin Temperature 

The effect of the temperature in the ultracentrifuge chamber on the lipid profiles 

was studied when the samples were run using the pre-described method for the UC spin 

and varying the temperature at which the samples are run.  Specifically, the samples are 

run at 5, 15, and 25°C. 

 

2.2.6.6 Tube Orientation for Imaging 

 Each UC sample tube was marked to indicate its position inside the 

ultracentrifuge rotor.  After a standard spin at 5°C, the sample tube was rotated 360° 

using 90° increments inside the imaging station sample holder and imaged to test the 

effect that the tube orientation has on the lipoprotein profile.  Ten replicate samples were 

measured in order to assess the repeatability based on orientation in the tube holder. 
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2.2.6.7 Stability of the Lipoprotein Profile after UC Spin 

Stability of the lipoprotein profile was studied by taking an initial image of the 

spun sample as described previously and then taking consecutive images every 30 

minutes for a period of 90 minutes.  The images were then analyzed for the density 

profiles as described previously (Section 2.2.4). 

 

2.2.6.8 Precision and Normalization of the Density Profiles 

 Using serum from the single donor, ten replicate measurements were made of the 

lipoprotein density profile.  The ten profiles were overlaid using Origin 8.5 graphing 

software to identify any systematic error in the measurement.  A more quantitative and 

informative approach to measuring the inherent precision of the method was introduced 

that involves determining the integrated fluorescence intensities of the eleven subclasses 

based on density ranges as described in the literature.
9
  For each of the subclasses the 

mean value and standard deviation of the intensities of each of the subclasses was 

evaluated.   

While this analysis gave an overall estimate of the precision of the measurement 

related to sample preparation, an additional contribution of error comes from day-to-day 

variability in the intensity of the light source.  Consequently, two methods for measuring 

precision were established. The first method (referred to as Mode 1) determined the 

mean value and standard deviation of the absolute fluorescence intensities of each of the 

subclasses.  The second method (Mode 2) was a normalization of data where the 
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fluorescence intensity of each of the subclasses is given as a percent of the total 

integrated intensity.  In order to test the efficiency of Mode 2, sample tubes were imaged 

using exposure times of 53.3ms and 100ms.  The resulting profiles were normalized 

using Mode 2 analysis and the subclass percentages were compared.  This approach was 

designed to eliminate the day-to-day variability of the light source intensity. 

 

2.2.7 High Performance Lipoprotein Density Profiling (HPLDP) 

 Based on the previous studies, the optimum method for lipoprotein density 

profile using DGU was identified.  Serum samples were fluorescently tagged and 

prepared for the UC spin as follows: 6µL of serum were mixed with 10µL of NBD C6-

ceramide (1mg/mL in DMSO) and diluted to 1300µL using an aqueous solution of the 

desired EDTA salt concentration followed by incubation for 30min to achieve 

saturation.
12,79

   

 Using 1150µL of the serum/aqueous salt solution, the samples were then spun in 

the ultracentrifuge.  Ultracentrifugation was carried out as previously described with a 

spin temperature of 5°C and spin time of six hours.  Following the UC spin, samples 

were carefully layered with 240µL of hexane and images of the samples were obtained 

and analyzed using a digital Optronics Microfire Camera as previously described 

(Section 2.2.5).  Specific settings for the Microfire camera software were a gain of 1.000 

and a target intensity of 30% to illuminate the tube.  The exposure time was optimized 

for sensitivity and to achieve linearity.  The image of the polycarbonate ultracentrifuge 
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tube was then converted to a density profile following the method as previously 

described (Section 2.2.4). 

 

2.2.8 Lipoprotein Density Profiling of Commercial HDL/LDL Standards 

 Serial dilutions of the commercial standards for HDL and LDL were used to 

obtain lipoprotein density profiles using the HPLDP method.  The concentrations for 

each standard were reported in terms of total protein concentration.  For HDL, the serial 

dilutions were prepared in concentrations of 520µg/dL, 260µg/dL, 130µg/dL, 65µg/dL, 

and 32.5µg/dL.  For LDL, the serial dilutions were prepared in concentrations of 

160µg/dL, 120µg/dL, 80µg/dL, 40µg/dL, and 20µg/dL.  These concentrations for HDL 

and LDL represented four times and two times the average concentrations of protein 

present in a human sample
48

, respectively.  Calibration curves were developed relating 

the integrated fluorescence intensities to concentration.   

 

 2.2.9 Serum Viability Studies 

 The stability of the lipoprotein density profiles relative to storage conditions was 

studied in terms of time spent at room temperature and the effect that multiple 

freeze/thaw cycles would have on the density profiles.  Aliquots of a serum sample 

obtained from a volunteer were stored at room temperature for periods of 0.5, 2, 4, and 

24 hours prior to the UC spin.  Further aliquots of this serum were stored in a -80.0°C 

freezer.  These samples were thawed at room temperature for 30 minutes and then flash 
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frozen using liquid nitrogen for up to 12 cycles.  The serum samples were then profiled 

using the HPLDP method and compared to study the effects of each condition. 

 

2.2.10 Preparative Ultracentrifugation and Fraction Collection 

Preparative ultracentrifugation is a method developed in our laboratories in order 

to separate lipoproteins for further analysis using a variety of analytical techniques.
73

  

This method utilizes the density gradient separation applied to larger volumes of serum.  

Based on previously identified dysfunction forms of HDL, this work focused on 

isolation of HDL for further analysis. 

 

2.2.10.1 Dextran Sulfate Precipitation 

In order to eliminate interference from other lipoproteins, serum samples were 

first treated with dextran sulfate (DS) and magnesium chloride hexahydrate.  Dextran 

sulfate has been previously identified as method or removing all lipoproteins containing 

Apo B.
115,116

  A stock solution with the final concentration of 10.0g/L of DS and 0.500M 

magnesium chloride was formulated as follows: 

2.500g of the 50,000 molecular weight variant of dextran sulfate (Dextralip® 50) 

25.375g of dried magnesium chloride hexahydrate 

500mL of DI H2O 

This working solution was added to a serum sample at a volume of 10% of the serum 

volume. For these studies, 200µL of serum was combined with 20µL of the DS mixture.  

The serum/DS solution was mixed briefly through vortexing and incubated at room 
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temperature for 10 minutes. The precipitate was separated using a tabletop centrifuge 

spun at 12,000g for 5 minutes.  This resulted in the sedimentation of all Apo B 

containing lipoprotein particles.  The supernatant was then spun in the ultracentrifuge. 

 

2.2.10.2 Preparative Ultracentrifugation 

The recovered supernatant from the dextran sulfate precipitation reaction was 

spun in the UC.  For preparative methods, the 0.2500M concentration of the 

Cs2CdEDTA gradient forming solution was used due to its optimum separation of HDL 

over the length of the UC tube.  The samples were prepared as follows: 

~200µL of DS treated serum (supernatant) 

1100µL of 0.2500M Cs2CdEDTA solution 

NBD was not applied to the samples in order to reduce any effect it might have on the 

further analysis of HDL.  1150µL of this solution was added to the UC tube and spun 

using the standard spin conditions as previously described for the HPLDP method 

(Section 2.2.7). 

 

2.2.10.3 Freeze/Cut Method for Fraction Collection 

A freeze/cut method developed through our laboratory was used to fractionate 

lipoproteins following preparative UC spin.
73

  The spun samples were slowly frozen in 

their respective UC tubes using liquid nitrogen by placement into a custom 10-slot 

holder and lowering the holder into a Dewar of liquid nitrogen.  This method caused the 

liquid in the tubes to freeze from the bottom to the top as it was lowered into the Dewar.  
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The expansion of water as it turns to ice was accounted for by the following equation 

(Eq. 7): 

  

                          Eq. 7 

 

In the equation, mms corresponds to the relative tube coordinate when in the solid state 

and mml corresponds to the tube coordinate when in the liquid state, the state in which 

the image of the UC tube was captured.  The values for mml corresponded to the 

endpoints of the specific density range for lipoproteins to be studied.  In this case, for 

HDL, the densities were 1.063g/mL and 1.179g/mL which corresponded to tube 

coordinates of 10.63mm and 25.63mm, respectively. 

 The constant 1.058 represents the correction factor necessary relating the ratio 

water’s density in the liquid state to its corresponding density in the solid state.  Water is 

denser in its liquid state; therefore the ratio is greater than unity.  The subtraction of 

10.405mm was necessary to correct for the calibration of the micrometer/tube holder 

assembly that was used to dial in the correct cut points. This micrometer/tube holder 

assembly contained a micrometer head which functioned to advance the position of the 

UC tube relative to the location of the notch for the saw blade. A Dremel® scroll saw 

(Racine, WI) was fitted with 0.25mm blades for the cutting of the tubes. 

. 
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2.2.11 Solid Phase Extraction (SPE) 

 After preparative ultracentrifugation and fractionation, delipidation and desalting 

of the lipoproteins were accomplished using a Strata C18-E reversed phase solid phase 

extraction cartridge from Phenomenex (Torrance, CA).  Delipidation of samples was 

performed based on a published method.
117

  The method used was as follows: 

 

1) The cartridge was conditioned drop wise with three 1mL aliquots of 0.1% 

(v/v) TFA in acetonitrile (ACN), allowing no air to enter the cartridge.  

2) The cartridge was then conditioned drop wise with three 1mL aliquots of 

0.1% (v/v) TFA in DI H2O, allowing no air to enter the cartridge.  

3) The sample to be delipidated was first acidified with a volume of 0.1% (v/v) 

TFA in DI H2O equal to that of the sample volume.  This mixture was then 

slowly added to the cartridge, allowing no air to enter. 

4) The cartridge was then washed with three 1mL rinses of 0.1% (v/v) TFA in 

DI H2O to remove the salts, the non-specifically bound apolipoproteins, and 

the water soluble components from the serum sample. After the washes, one 

milliliter of air was pushed through the cartridge to remove any remaining 

liquid. 

5) Elution of the bound apolipoproteins was performed using six 100μL aliquots 

of 0.1% (v/v) TFA in acetonitrile and purging with 1mL of air in between 

each aliquot.  For each aliquot of the TFA solution, an incubation time of at 
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least one minute was giving for the sorbent to soak prior to purging with air.  

All six elutions were combined as the recovered apolipoproteins. 

 

Following SPE, the recovered samples were evaporated to dryness through the 

use of a SVC-100H Speed-Vac concentrator with a refrigerated condensation trap from 

Savant Instruments (Farmingdale, NY) which was connected to a 5KC36PN435AX 

vacuum pump from General Electric (Fort Wayne, IN).  The dried HDL apolipoprotein 

were then reconstituted in 0.1% (v/v) TFA in DI H2O for MS experiments.  The volume 

of the TFA/DI H2O solution used to reconstitute the sample was chosen based on the 

desired concentration relative to initial concentration in a subject’s serum.  For example, 

with 200µL of serum initially used, use of a 100µL volume to reconstitute the dried 

apolipoproteins would result in a concentration twice that of the initial serum 

concentration. 

 

2.2.12 Colorimetric Assays for Measuring Protein Concentration 

 

2.2.12.1 Bicinchoninic Acid Assay (BCA) 

 In order to determine the protein concentration of the serum samples, fractioned 

samples, and recovered apolipoproteins from SPE, a BCA Protein Assay Reagent kit 

from Pierce Biotechnology was used (Rockford, IL).
95

  This kit comes with three 

different reagents which need to be mixed in the proper ratios in order to make the 

working reagent (WR) for the assay and bovine serum albumin (BSA) to be used as a 
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standard to generate a calibration curve relating absorbance to concentration of protein.  

The three reagents are labeled A, B, and C and are composed of the following: 

 

A: Sodium carbonate, sodium bicarbonate, and sodium tartarate in 0.2M NaOH 

B: 4% (v/v) Bicinchoninic acid in H2O 

C: 4% (v/v) Cupric sulfate pentahydrate in H2O  

 

The volumetric ratio of reagents needed to create the WR is as follows (Eq. 8): 

 

                     Eq. 8 

 

150µL of the WR, followed by 150uL of the desired sample or standard to be analyzed, 

was pipetted into a 96 well microtitre plate.  The microtitre plate was then incubated in 

an over at 37°C for 2 hours, followed by a cool down period of 10 minutes at room 

temperature.  The plate was then placed on a µQuant spectrophotometer from Bio-Tek 

Instruments (Winooski, VT) and the absorbance at 562nm was recorded for all standards 

and sample replicates.  Each sample and standard was measured in triplicate to reduce 

the systematic error in analysis. 

 

2.2.12.2 Apo A-I ELISA 

 The commercial immunoassay for measuring Apo A-I concentrations in serum 

and plasma from Assaypro, LLC was applied to measuring the concentrations in serum, 
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recovered HDL, and recovered apolipoproteins (St. Charles, MO, Cat. # EA5201-1).  

The procedure provided by Assaypro was followed with few modifications.  Briefly, all 

samples were first diluted in 1:200 ratio of initial sample volume to final volume with 

the MIX Diluent provided in the assay kit.  For samples with higher concentrations, 

dilutions of up to 1:800 were necessary.  Incubation times were kept consistent with the 

provided procedure.  Absorbance for each sample was measured at 450nm and 570nm.  

The readings at 570nm were subtracted from the readings at 450nm to correct for 

background noise.  Samples and standards were run in triplicate to reduce systematic 

error. 

 

2.2.13 MALDI-TOF MS Analysis of HDL Apolipoproteins 

Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) 

analysis was used to characterize the recovered apolipoproteins from the HDL fractions.  

A commercial Voyager-DE STR, MALDI-TOF mass spectrometer equipped with a 2m 

flight tube from Applied Biosystems (Foster City, CA, USA) and a mass range of 3000-

40,000 Da was used for the analyses.  The MALDI matrix used for the samples consisted 

of a 10mg/dL solution of sinapinic acid in a 1:1 mixture of acetonitrile and 0.1% TFA in 

water.  A thin-layer sample preparation method in which a MALDI plate was first 

spotted with the desired MALDI matrix and allowed to dry followed by a mixture of the 

sample and matrix (1:1 ratio) deposited atop the original spot was used for this analysis.  

Calibration of the instrument was performed with a mixture of bovine insulin, bovine 

serum albumin, and myoglobin as an external standard.  1μL of the standard was added 
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to 24μL of the matrix. For the MALDI analysis, the acceleration potential was held at 

25kV, the grid potential was at 93%, and the delay time was 575ns. Approximately 100 

shots per spectrum were collected.  

 

2.3 Clinical Studies 

Serum samples for each clinical study were selected from the serum libraries 

collected through collaboration of our laboratory with Scott & White Hospital (Temple, 

TX).  The complete adult serum library consists of CVD patients that were identified 

through patient histories of cardiovascular event and arterial blockage measured by 

angiography and control patients (CTRL) that were identified through arterial blockage 

of less than 10% measured by angiography.  Patient medical histories including 

information about ethnicity, family history of disease, diabetes, etc. were collected using 

a standard questionnaire for all subjects.  Standard lipid panel measurements for TC, TG, 

HDL-C, and LDL-C were performed by Scott & White clinicians and reported with the 

patient history data.  All serum libraries consist of donated serum from Scott & White 

patients. Informed consent was obtained from all donors.  

 

2.3.1 Statistical Methods of Analysis 

 Data for each clinical study was analyzed using multiple statistical methods. 

Linear discriminant analysis (LDA), sliced inverse regression (SIR), and quadratic 

discriminant analysis (QDA) were used to develop risk assessment algorithms for CVD.  

Analysis of Variance (ANOVA) and 2-sample T-tests were used to indentify factors 
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with statistical differences between selected cohorts.  LDA, QDA, ANOVA analyses, 

and T-tests were applied using Minitab 15 (State College, PA).  SIR was applied using 

the R statistical package (R Foundation for Statistical Computing, Vienna, Austria).   

The LDA and QDA analyses output the prediction accuracy of the training set, 

cross validation analysis (X-Val), and accuracy of a holdout sample.  The training set is 

a set of defined samples which are used for developing the prediction algorithm.  For 

large sample libraries, the training set is a group of randomly selected samples from the 

full library in order to remove any bias based on sample selection.  The X-Val is a 

method of removing one random sample from the sample set and then rerunning the 

analysis.  The resulting new equation is tested on the full sample set; including the 

sample that was removed.  The difference between the new prediction accuracy and the 

accuracy of the training set represents the level of dependence that the model has on the 

sample data that was removed.  For sample libraries that are large enough to use a 

randomly selected training set, the remaining samples are used for a holdout sample set.  

These are samples which were not used for development of the prediction algorithm.  

The accuracy of the holdout sample set using the prediction algorithm represents the real 

world application potential and statistical significance of the algorithm. 

SIR is a modern variation of R.A. Fisher’s original Linear Discriminant Analysis 

(LDA) method published in 1936 
19

.  SIR outputs the coefficients of each variable 

relative to the prediction algorithm.  These coefficients are relative to the coefficients 

from the LDA analysis with the inclusion of a scalar modification.  SIR also allows for 
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the calculation of the p-value which is a measurement of the statistical significance of 

the separation algorithm.   

 

2.3.2 Normal Lipidemic Serum Library 

Normal lipidemic serum samples were selected based on the following criteria: 

TC<200mg/dL, TG<150mg/dL, HDL-C >40mg/dL for men and >50mg/dL for women, 

and LDL-C<100mg/dL.  Twelve CTRL subjects were identified based on the criteria and 

through angiography (<10% arterial blockage).  Sixteen CVD patients were identified 

based on the criteria and having documented CVD.  

 

2.3.3 Comprehensive Serum Library 

 The comprehensive serum library study consisted of all adult serum samples 

collected through the Scott & White collaboration.  The library was made up of 100 

CVD subjects who were identified through patient histories of cardiovascular event and 

arterial blockage measured by angiography and 72 CTRL subjects who were identified 

to have less than 10% arterial blockage through angiography.  Of this library, 70 CVD 

and 40 CTRL subjects were selected using a random number generator (Minitab 15) to 

be used for the training set.  The remaining 30 CVD and 32 CTRL were used as a 

holdout sample set to test the generated algorithm.  The CVD serum library consisted of 

subjects from 34-83 years of age with varied racial backgrounds, primarily Caucasian.  

The CTRL serum library consisted of subjects from 29-83 years of age with varied racial 
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backgrounds, again primarily Caucasian.  The gender ratios for each library were 

approximately half male and half female. 

 

2.3.4 Hypercholesterolemia Serum Library 

 The hypercholesterolemia serum library was comprised of 30 children’s serum 

samples.  The subjects for this study ranged from ages 10 to 20. The definition of disease 

for these samples included children with a parental history of hypercholesterolemia or 

family history of premature CVD and also those children with two or more classical risk 

factors.  Eight healthy children samples were also collected.  The healthy children were 

defined as having normal lipid levels and no familial history of CVD or related risk 

factors.  These samples were similar in age range to the hypercholesterolemic children.  

This study was designed independent of gender and ethnicity.  

After dietary monitoring, hypercholesterolemic children with a fasting LDL-C 

remaining ≥ 130 mg/dl (e.g., high risk by NCEP guidelines) were randomized for 

simvastatin (20 mg) or placebo for 6 months.  The Scott & White inpatient pharmacy 

provided and dispensed compounded drug and placebo in identical forms.  Serum draws 

for each patient were taken every 12 weeks.   

 

2.3.5 Niacin Treatment Study 

 For this study, a single serum donor with documented CVD was treated with 

increasing amounts of niacin therapy from 0mg to 2000mg using increments of 500mg 

roughly every four weeks.  A baseline serum draw was performed prior to treatment and 
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then serum draws were performed after every treatment period.  A washout period of one 

week was performed after the last treatment to remove all drug effects.  A serum draw 

was performed after this washout period to assess the effect of stopping medical 

treatment.  The serum samples were analyzed using the HPLDP method of lipoprotein 

density profiling and the resulting integrated fluorescence intensities for the lipoprotein 

subclasses were applied to the risk assessment algorithm generated for the 

comprehensive serum library. 

 

2.3.6 Exercise Regime Study 

 For this study, a single volunteer underwent lifestyle modification in the form of 

increased exercise.  A baseline serum draw was performed prior to any change in 

exercise.  The first phase of the exercise program for this volunteer was made up of three 

to five 30 minute runs every week for 16 weeks.  This phase’s exercise was designed to 

keep the heart rate down to an optimal range for burning fat (60-70% of maximum heart 

rate).  After 16 weeks, the second phase was introduced.  This phase increased the 

exercise to include an extra 30 minute run each day at a pace that was set for 

cardiovascular training (70-80% of maximum heart rate) in addition to the fat burning 

run.  Serum draws were performed weekly through Scott & White (College Station, TX) 

to monitor the change in the lipoprotein density profiles relative to the exercise.  The 

serum samples were analyzed using the HPLDP method of lipoprotein density profiling 

and the resulting integrated fluorescence intensities for the lipoprotein subclasses were 

applied to the risk assessment algorithm generated for the comprehensive serum library. 
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3. RESULTS AND DISCUSSION 

 

 The overall objective of this study was to develop and enhance analytical 

techniques and methods which, when combined, could be used to assess the risk an 

individual has of developing cardiovascular disease.  The data from these techniques 

were combined with advanced statistical analysis methods for developing multivariate 

algorithms that not only determine classification, but also identify individual 

contributions and importance from the factors used in the analysis.  The first stage in 

completing this goal dealt with optimizing the methods to be used in the lipoprotein 

profile analysis in order to reduce error.  This was done through a fundamental 

understanding of the conditions and factors which have an effect on the reproducibility 

of the results.  After successful reduction of error in the measurements of lipoprotein 

profiles using density gradient ultracentrifugation and NaBiEDTA, the method was 

applied to multiple clinical studies with much success. 

 With the success of the NaBiEDTA-based density gradient system for lipoprotein 

profiles, further research was carried out employing a more versatile gradient based on 

the use of Cs2CdEDTA as the solute.  The higher solubility of Cs2CdEDTA allows for 

greater manipulation of the density gradient in order to isolate specific sections of the 

lipoprotein profile.  For this study, the selected concentrations were focused on the 

optimal separation of the main lipoproteins LDL and HDL.  HDL separation was a major 

interest due to the statistical analysis results from the previous clinical studies 

identifying the HDL subclasses as the largest contributor to risk classification.  While 
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the application of the Cs2CdEDTA profiles did not improve risk assessment, it did 

confirm the classification method and application of the LDA/SIR analysis for risk 

assessment using lipoprotein profiles.  Optimal separation of the HDL subclasses also 

allowed for application of the Cs2CdEDTA-based density gradient as an improved 

preparatory method for further analysis of the HDL profiles through mass spectrometry.  

Use of the Cs2CdEDTA gradient to isolate LDL allowed for the observation of a unique 

cationic interaction of the Cs
+ 

with the phospholipids on the surface of an LDL particle 

which affects the density of LDL in the profiles in comparison to the NaBiEDTA 

profiles. 

 Using the optimized Cs2CdEDTA gradient and dextran sulfate precipitation as a 

method for removal of LDL from serum, further studies were performed to test the 

viability of using mass spectra of HDL apolipoproteins for LDA/SIR analysis and risk 

assessment based on the earlier observation that HDL subclasses had highest 

contributions to the LDA/SIR classification.  This data was applied in addition to the 

lipoprotein profile data as well as being used as a separate method for risk assessment.  

Despite identification of differences in the masses of the major apolipoproteins present 

in HDL, the application of this data into the LDA/SIR analysis showed no improved risk 

assessment.  

 Overall, this research has advanced the field of cardiovascular risk assessment 

through application of high performance lipoprotein density profiling and further 

analysis through mass spectrometry.  Identification of distinct lipoprotein subclasses 

which can be used to assess risk and condition specific mass alterations of the 
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apolipoproteins specific to HDL have allowed for an 85% accurate risk assessment 

model for CVD which applies to the comprehensive serum library available through the 

collaboration of Scott & White Hospital and the Laboratory for Cardiovascular 

Chemistry at Texas A&M University. 

 

 3.1 Analytical Methods 

 

3.1.1 NaBiEDTA Lipoprotein Profile Optimization 

 The objective of this study was to identify sources of error in the NaBiEDTA-

based gradient system in order to focus on those features of the method that could be 

enhanced and therefore enhance the overall precision of the lipoprotein profile analysis.  

To accomplish this, several aspects of the gradient formation and lipoprotein profile 

were studied.  These factors included studies into the gradient formation, accuracy of the 

density measurement, lipoprotein propagation during the ultracentrifuge spin, spatial 

separation of the lipoproteins, layering methods, spin conditions, imaging conditions, 

and data analysis. 

 

3.1.1.1 Initial System Error Analysis 

 In order to identify components of the method where enhancements could be 

made and error reduced, a baseline analysis of the method was performed.  To 

accomplish this, a serum sample was spun and imaged in 10 replicate measurements 

using the 0.2000M NaBiEDTA-based density gradient with a 1000µL volume spin 
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previously described by Johnson et al.  The tubes were layered with 200µL of H2O and 

the resulting profiles were integrated based on the density profile and total intensity was 

calculated for each of the 12 lipoprotein subclasses.  The resulting profiles were overlaid 

as shown in Figure 4.  The average integrated intensities for each subclass and their 

respective errors, calculated based on the standard deviation, are graphed in Figure 5.   

The average error over the 12 subclasses was calculated based on the percent 

relative standard deviations (%RSD) and was found to be 23.39%.  As can be seen from 

the overlaid profiles and error bar analysis of the subclasses, the largest errors were in 

the buoyant TRL, dense TRL, and low density LDL subclasses.  There was also a larger 

amount of error at the dense region of the HDL subclasses.  The error in the TRL and 

LDL regions was associated with the H2O layering method.  The error in the HDL 

region was related to the curvature of the sample tube and the effect it has on the 

uniform exposure of the NBD fluorophore from the excitation source. 
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Figure 4: Overlaid Lipoprotein Profiles for Baseline Error Analysis 
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Figure 5: Integrated Intensities and Error Bars for Baseline Error Analysis 
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3.1.1.2 Optimization of the Spatial Separation of the Density Profile 

 In order to achieve a better overall spatial separation of the lipoprotein particles, 

extending the total length of separation was deemed necessary.  This meant that the 

optimum spin volume needed to be established.  A base volume of 1200µL of H2O was 

spun under standard conditions similar to that used for lipoprotein profiling.  Each tube 

was weighed prior to and after the spin.  By measuring the weight loss, the total volume 

loss was able to be calculated using the density of H2O.  It was discovered that an 

average of 3.5% by weight or 40µL of H2O was lost per tube during the spin.  This loss 

was due to overflow from the sample tube into the angled rotor when samples are spun 

in the ultracentrifuge.  To compensate for this loss, the maximum spin volume was set at 

1150µL.  A second sample loss study was carried out to confirm that no sample loss 

would occur using this volume.  Results from this study showed that the sample loss 

using the 1150µL spin volume was an average of 0.173% or 2µL.  This loss was uniform 

for all samples and was deemed to have minimal effect on the final analysis.  Therefore, 

the 1150µL spin volume was confirmed as the optimal volume to allow for best spatial 

resolution. 

 The change in spin volume meant that the initial concentration of the solution 

had to be adjusted.  Based on density gradient theory, increasing the overall volume spun 

inherently increases the total number of moles of the EDTA salt that is present.  This 

meant that the initial concentration of the NaBiEDTA had to be lowered in order to 

optimally spread the lipoprotein profile over the whole tube. At the same time, the 

saturation concentration of NaBiEDTA must be avoided and spatial separation on the 
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HDL subclasses must occur away from the curvature at the bottom of the UC tube.  The 

optimum concentration that allowed for the identification of all lipoprotein subclasses 

was found to be 0.1800M NaBiEDTA. 

 

3.1.1.3 Density Gradient Development over Time 

 Measuring the formation kinetics of the density gradient made possible the 

mapping of a lipoprotein profile based on density as well as a determination of the 

density resolution of the measurements.  Figures 6 and 7 shows the formation of the 

density curve over time measured at 2, 4, 6, and 8 hours. (Figures 6A&B, Figures 

7A&B).  As can be observed from the formation of the density curve, and through 

comparison of the R
2
 value for curve fit, for full exponential curve formation to occur, it 

takes 6 hours.  Before 6 hours, the lower density region of the gradient is still not fully 

formed and does not fit an exponential curve, i.e the R
2 

values of 0.955 for a 2 hours 

spin.  Development of the exponential form of the gradient can be seen as the R
2
 

approaches 1.0 over time.  After 6 hours, the curve shows an R
2
 value of 0.9897 and a 

density profile that is close to exponential.  After 8 hours, the R
2
 value increases to 

0.99095.  The 6 hour spin time was chosen as it gives an acceptable exponential gradient 

while minimizing the spin time.   
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Figure 6: Gradient Formation over Time (2 and 4 Hours).  (A) 2 hour spin, (B) 4 

hour spin 
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Figure 7: Gradient Formation over Time (6 and 8 Hours).  (A) 6 hour spin, (B) 8 

hour spin 
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As the gradient forms, the progression of the lipoprotein profile, portrayed in 

Figure 8, shows that the lipoproteins are resolved at the higher densities first and then 

propagates down the tube as the density gradient becomes steep enough to reach the 

same density at the lower portion of the sample tube.  As the exponential gradient forms, 

the lower density lipoproteins are then separated by their respective densities in a similar 

fashion.  This shows that the lipoproteins density relatively do not change during 

ultracentrifugation.  Any change in the lipoproteins would have to happen immediately. 
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Figure 8: Overlaid Serum Profiles at 2-8 hours 
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For the density profile to be applied to clinical studies, the density gradient 

formation must be repeatable and precise as well.  To test the repeatability of the 

gradient formation, the density gradient was measured for 3 different ultracentrifuge 

spins.  It was found that the average error in the density curve was minimal.  The 3 

density curves are graphed together in Figure 9.  When comparing the 3 different 

exponential equations, the largest error was in the multiplicative constant applied to the 

exponential function.  The %RSD was calculated to be 2.44%.  The other constants in 

the equation had errors no greater than 0.4%.  This data showed that the gradient 

formation was highly repeatable and very precise.  This feature of the density profile is 

an important contribution to the application of this method to clinical studies and the risk 

classification.  Precision in the measurements will lead to more precise classification. 
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Figure 9: Replicate Density Gradients for 0.1800M NaBiEDTA Spun for 6 hours 
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3.1.1.4 Precision of Density Measurements Using Nano-spheres 

With the density gradient now mapped and spin time identified, the next step was 

to measure the inherent resolution of the particle density.  To carry out this 

measurement, a mono-dispersed fluorescent tagged nanoparticle was employed.  The 

objective of this study was to identify how the peak for the mono-dispersed nanoparticle 

forms and what is the inherent resolution of the density measurement based on the 

exponential density curve.  Figure 10 shows the progression of the fluorescent 

nanoparticle based on the spin time.  By measuring the full width half maximum 

(FWHM) of the peak intensity, it was observed that the peaks from the nanoparticles 

become sharper as spin time increases.  Looking at peak resolution in terms of the 

 

 
Figure 10: Fluorescent Nanoparticle Profile Based on Spin Time 
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percent change in density at the FWHM in relation to the average peak density of the 

nanoparticle (Table 3), it is seen that this percentage gets larger as the spin time 

increases.  This makes sense in terms of the nature of an exponential curve.  The change 

in density increases rapidly when the peak is portrayed further into the sample tube due 

to the rate of density change in relation to the exponential curve.  The resolution change 

is insignificant as the percent change is no more than 0.20% even at an 8 hour spin. 

 

Table 3: Nanoparticle Density Measurements and Resolution 

Spin 

Time 

(Hrs) 

Avg 

Density 

(g/mL) 

Std. 

Dev. 
%RSD 

Avg. 

FWHM 

(mm) 

Avg. Δ 

Density 

(g/mL) 

Avg. 

Resolution 

(%) 

2 1.0562 0.0001 0.0118 1.2563 0.0012 0.1124 

4 1.0544 0.0003 0.0237 0.6845 0.0014 0.1304 

6 1.0524 0.0004 0.0411 0.5861 0.0019 0.1782 

8 1.0552 0.0003 0.0319 0.5462 0.0021 0.1979 

 

According to the manufacturer, the reported density of the nanoparticle is 

between 1.040 and 1.060 g/mL.  Using the density curve formation for each time spin, 

the density of the nanoparticle was shown to be 1.0545 +/- 0.0016 g/mL on average for 

all spin times and propagates with the density gradient formation similar to the way 

serum was shown to in Figure 8.  The percent relative standard deviations (%RSD) of 

the density measurement ranged from 0.01-0.04% with an average of 0.027% over all 

spin times measured.  This observation suggests that the nanoparticles propagate from a 

homogeneous solution, before it is spun, to a focused band within 2 hours that matches 
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the density of the nanoparticles.  For larger spin times, the nanoparticle propagation 

follows the formation of the density gradient as it approaches equilibrium.  By balancing 

the resolution with the gradient curve formation, a 6 hour spin was chosen because it 

allows for optimal gradient formation while maximizing the resolution.     

 

3.1.1.5 Polar Layering with H2O vs. Non-Polar Layering with Hexane 

The initial method described previously by Johnson et al. used deionized water 

(DI H2O) as a layering medium for separation of the chylomicrons and TRLs that are 

less dense than 1.00g/mL from the VLDL and TRLs that have a greater density than 

1.00g/mL.  This method of layering creates a large amount of experimental error.  The 

DI H2O can readily mix with the gradient at the meniscus due to turbulence which will 

induce mixing of the VLDL/TRL layers with the LDL.  There is also an added factor of 

creating an error in the fluorescent intensity of the VLDL/TRL layers due to the 

meniscus scattering light at the wavelength for NBD emission.  To counter this effect, a 

method of using a non-polar layering medium that is less dense than the lipoproteins was 

developed.  The use of hexane was chosen as the layering medium.  Hexane’s density is 

0.68g/mL which means it will trap all of the TRLs, VLDL, and chylomicrons into one 

peak while at the same time, removing the error due to meniscus light scattering by 

separating the meniscus from the TRL/VLDL layer being measured. 

The effects of the two different layering techniques can be seen in Figure 11.  

Figure 11A shows the original lipoprotein separation using 0.20M NaBiEDTA and DI 

H2O as a layering medium.  The fluorescent layer near the top of the sample tube is due 
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to scattered light from the meniscus and a small amount of the low density TRLs.  This 

feature can also be seen in Figure 11B where the lipoprotein separation was carried out 

using 0.1800M NaBiEDTA without any layering.  The intense band at the top of the 

image is mainly from the meniscus and VLDL/TRL fluorescence.  This interpretation is 

supported by comparing the image to Figure 11C where the sample has been layered 

with hexane to remove the meniscus effect and leave the VLDL/TRL band exposed.  In 

Figure 11C, the hexane volume was chosen in order to shift the meniscus created from 

the hexane from the illumination area, and therefore remove any false fluorescent 

intensity that would be due to the scattered light from the meniscus.  Consequently, the 

TRL and VLDL form a single band without affecting the measurement since the hexane 

will trap all TRL’s based on their densities in relation hexane’s (0.68g/mL). 

The use of hexane not only eliminates the meniscus reflection problem, but it 

also removes the error that occurs due to the diffusion of the DI H2O into the aqueous 

gradient.  Figure 11D shows a comparison of the two layering techniques through 

overlaid lipoprotein profiles.  As can be distinguished from the graph, when DI H2O is 

used as the layering medium, the peak at the lower tube coordinates broadens due to 

diffusion of the DI H2O which then causes error in the lipoprotein profile.  Selecting 

hexane as the layering medium means that there is no diffusion as the polar properties of 

the aqueous gradient and the non-polar properties of hexane prevents the two layers from 

mixing. 
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Figure 11: Layering Medium Comparison. (A) DI H2O as a layering medium, (B) 

no layering medium, (C) hexane as a layering medium, (D) Lipoprotein profile 

comparison of DI H2O layering and hexane layering.  Note: (A) does not represent 

the same serum used in (B) and (C). 
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3.1.1.6 Effects of Ultracentrifugation Spin Temperature 

With the general ultracentrifugation spin conditions such as EDTA concentration 

and spin time established, a more detailed study of other variables was undertaken.  

When considering the potential of applying lipoprotein profiles to clinical studies, it is 

important to take into account the viability of the lipoprotein profile over time.  With a 6 

hour spin necessary for the gradient formation, it becomes important to understand the 

effect the temperature at which the samples are spun has on the profile.   

For this study, the temperatures of 5°C, 15°C, and 25°C were chosen to test a 

broad range of possible settings.  Figure 12 shows the effect of spin temperature on the 

lipoprotein profiles.  Figures 12A shows the overlaid lipoprotein profiles for the three 

selected temperatures.  Figures 12B shows relationship between the average %RSD in 

the lipoprotein profiles as it relates to the spin temperature.  This %RSD was calculated 

based on 10 replicate samples that were spun at the designed spin temperature.  The 

profile subclasses were integrated and the %RSD was calculated.  Figures 13A and 13B 

map the peak shifts observed for both LDL and HDL distributions as a function of spin 

temperature.  As temperature increases, the LDL and HDL peaks shift to a lower tube 

coordinate.  This does not mean that the lipoprotein density has changed, just that the 

density gradient profile has changed due to the spin temperature.  Temperature influence 

on density gradient formation was previously discussed in Section 1.4.1.1.  According to 

density gradient theory, temperature is a component of the diffusion forces acting in situ.  

Increase in temperature will increase the rate of diffusion and therefore accelerate the  
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Figure 12: Effect of Spin Temperature on Lipoprotein Profiles. (A) Overlaid 

lipoprotein profiles for 5, 15, and 25C, (B) Average Repeatability Error vs. Spin 
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Figure 13: Effect of Spin Temperature on Lipoprotein Peak Orientation. (A) LDL 

peak orientation vs. Spin Temperature, (B) HDL peak orientation vs. Spin 

Temperature 
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change in the resolved density range.  It is important to note that repeatability error of 

the profiles based on integration of the subclass intensities increases as the spin 

temperature increases (Figure 12B).  This means that to reduce the error in the profiling 

of lipoproteins, the samples must be spun at low temperatures.  Lower spin temperatures 

slow the formation of the gradient and therefore minimize the error in profiling while 

keeping the serum sample viable. 

 

3.1.1.7 Tube Orientation for Imaging 

 With the optimal UC spin conditions now established, the next step was to 

reduce the error contributed by imaging and analysis of the sample.  To investigate these 

factors, the influence of the sample tube’s orientation was studied by marking each 

sample as it related to the center of the UC rotor and imaging the sample by rotations of 

90
o
 from the initial orientation point.  The orientation of the tube was found to have an 

effect on the resulting profiles due to a circular particulate deposit on the inside surface 

of the sample tube relating to its initial orientation in the UC rotor.  This particle deposit 

and the resulting profiles can be viewed in Figure 14.  Without the rotation, this stain can 

result in false intensity peaks in the lipoprotein profile (Figure 14E, 0° rotation).  These 

peak errors appear in the range of the LDL region of the density profile (12mm-15mm).  

Rotating the tube away from the camera still portrayed the deposit in the image 

background.  Rotating the tube’s orientation towards the light source resulted in light 

scattering and uneven intensity of the excitation light source.  Rotation of the sample 

tube by 90°, so that the particulates faced away from the light source and were not in the   
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Figure 14: Tube Orientation for Imaging.  (A) 0° rotation, (B) 90° rotation, (C) 180° 

rotation, (D) 270° rotation, (E) Overlaid Lipoprotein Profiles. Images are of 6uL of 

Serum in 0.20M NaBiEDTA based density gradient after being spun in the 

Ultracentrifuge.  Sample was spun for 6 h at 120,000rpm and 5 °C.  Initial image is 

oriented so that the part of the tube facing the camera is the same part that was 

facing the center of the UC rotor.  The red rectangles signify the area of the image 

used to create the lipoprotein density profiles. 

  

3 6 9 12 15 18 21 24 27 30 33

0

500

1000

1500

2000

2500

In
te

n
s
ity

Tube Coordinate (mm)

 0 Degree Rotation

 90 Degree Rotation

 180 Degree Rotation

 270 Degree Rotation

A B C D 

E 



70 
 

 
 

center of the image, was found to remove this effect on the lipoprotein profile.  For this 

study, layering methods were not implemented. 

 

3.1.1.8 Stability of the Density Profile after UC Spin 

 The next factor studied in order to limit the error in the imaging process of the 

lipoprotein profiles was stability of the profile over time.  The stability of the lipoprotein 

profile over time will have a direct effect on the use of the profile for clinical studies.  

With use of the EDTA salt gradients, there will be a slow diffusion of the gradient back 

to a homogeneous concentration.  The profiles must be imaged prior to this diffusion.  

For this study, profiles were imaged every 30 minutes after the initial image in order to 

map the change in the lipoprotein profile due to time.   

 Figure 15 shows how the profile changes over time after the sample was spun 

and layered.  Figure 15A shows the resulting profiles overlaid on the same graph while 

Figure 15B shows the profiles staggered based on the amount of time after the UC spin 

that the sample was imaged.  The figures showed that it was the high density range of 

the profile that was more affected by time.  The protein peak separated at the high 

density section of the lipoprotein profile began to merge with the HDL3 density range 

after just 30 minutes and continued over time.  The rest of the lipoprotein profiles stay 

relatively stable during the tested time periods.  This was most likely due to the gradient 

starting to diffuse back to the homogeneous state of the aqueous solution before the UC 

spin.  For repeatability and quality of the lipoprotein profile, the results show that the  
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Figure 15:  Stability of the Lipoprotein Density Profile over Time.  (A) Overlaid 

lipoprotein density profiles, (B) Staggered lipoprotein density profiles 
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images must be taken within the first 30 minutes after the UC spin to minimize the 

influence of gradient diffusion. 

 

3.1.1.9 Precision of the Density Profiles after Optimization 

After incorporating these improvements in the measurement of the lipoprotein 

density profiles, an error analysis of the new lipoprotein profiling method was 

completed.  By comparing the average %RSD of the lipoprotein subclasses for each 

method, and the overlaid lipoprotein density profiles, a significant reduction in error was 

observed.  For the initial method described by Johnson et al, the average %RSD was 

found to be 23.39%.  Applying the enhancements that were identified to create the High 

Performance Lipoprotein Density Profiling method (HPLDP), the average %RSD was 

reduced to 5.28% +/- 0.88.  All subclasses of the lipoprotein profile showed reduction in 

error.  The %RSD of the TRL and low density LDL regions of the profile were the most 

significantly reduced.  This feature can be linked to the change in layering methods.  The 

polar/non-polar relationship of the aqueous gradient to the hexane prevents diffusion of 

the layering medium and therefore reduced the %RSD layering had on the lipoprotein 

profiles.  Figure 16A shows the overlaid sample profiles of 10 replicate measurements 

using the original method.  Figure 16B is the overlaid sample profiles of 10 replicate 

measurements using the HPLDP method.  The HPLDP method shows a much more 

congruent overlay of lipoprotein profiles compared to the original method.  This 

observation corresponds to the reduced error that was calculated from the average 

%RSD of the subclasses. 
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Figure 16: Repeatability of Lipoprotein Density Profiles for 10 Replicate Samples. 

(A) Overlaid profiles for original method of density profiling, (B) Overlaid profiles 

Using HPLDP method of density profiling 

 

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

In
te

n
s
it
y

Density (g/mL)

3c

3b

3a

2a

2b5432

HDLLDLdTRLbTRL
1

1.021 1.027 1.040 1.065 1.114 1.210(<1.000)

6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

500

1000

1500

2000

2500

In
te

n
s

it
y

Tube Coordinate (mm)

TRL

3c
3b

3a
2a

2b5432

HDLLDL

1

Density (g/mL)

1.014 1.026 1.038 1.049 1.070 1.117 1.2301.014 1.026 1.038 1.049 1.070 1.117 1.230

A 

B 



74 
 

 
 

3.1.1.10 Normalization of Density Profile Data 

An analysis of the lipoprotein profiles for light source related errors was 

performed by calculating the percent intensity of the lipoprotein subclass in relation to 

the total intensity of the lipoprotein density profile.  The rationale behind this study was 

to reduce any error present due to the pipetting of serum or NBD fluorophore as well as 

due to possible fluctuations in the light source over time.  Since the classification 

analysis is based on the fluorescence intensities of the lipoprotein subclasses, factors that 

influence the fluorescence intensity are sources of systematic error. 

The initial method of measuring the total intensity of each lipoprotein subclass 

(Mode 1) showed the average %RSD to be 5.28% +/- 0.88 as previously reported.  Using 

the percent intensity of each subclass in relation to the total intensity of the profile 

(Mode 2), the average error of the lipoprotein profiling method was reduced to 3.69% 

+/- 1.41.  Figure 17 illustrates this difference in error between Mode 1 and Mode 2 

analysis when applied to profiles that were taken using different exposure settings on the 

camera (53.3ms versus 100ms exposure) to simulate possibly fluctuations in light 

intensity.  As can be observed from Figure 17A, the total intensities are near double for 

the higher exposure.  However, when applying the Mode 2 analysis, the two different 

exposure times show similar values for each lipoprotein subclass; effectively reducing 

any error due to the excitation source or preparative variation.   



75 
 

 
 

TRL LDL-1 LDL-2 LDL-3 LDL-4 LDL-5 HDL-2b HDL-2a HDL-3a HDL-3b HDL-3c

0

20000

40000

60000

80000

100000

In
te

n
s
it
y

Lipoprotein Subclass

 53.3ms exp

 100ms exp

Mode 1 Data Analysis (Total Intensities)

TRL LDL-1 LDL-2 LDL-3 LDL-4 LDL-5 HDL-2b HDL-2a HDL-3a HDL-3b HDL-3c

0

5

10

15

20

Mode 2 Data Analysis (% Intensities)

%
 I
n
te

n
s
it
y

Lipoprotein Subclass

 53.3ms exp

 100ms exp

 

Figure 17: Application of Mode 2 Analysis for Density Profile Normalization. (A) 

Total Intensity (Mode 1), (B) Percent Intensity (Mode 2).  Black Bars Represent 

Data Measured at 53.3ms Exposure.  Red Bars Represent Data Measured at 100ms 

Exposure. 
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Not only was the RSD improved by the normalization of the lipoprotein profiles, 

but it also offered the possibility of considering that the population of lipoprotein 

subclasses is a coupled system instead of just individual measurements. This realization 

has the potential for a new systematic approach to the use of the lipoprotein density 

profile in clinical applications.  This application will be discussed later in Clinical 

Applications Section 3.2. 

 

3.1.1.11 Profiling HDL/LDL Commercial Standards 

 The final phase of the optimization involved the measurement of HDL and LDL 

subclass intensities through serial dilutions of commercial standards.  This study was 

necessary so that the relationship between HDL and LDL integrated fluorescence 

intensities could be related to the concentration of the lipoproteins present in the spin.  

For this study, commercial standards of HDL and LDL were obtained through Sigma-

Aldrich.  The concentration of these standards was reported by the manufacturer in terms 

of amount of total protein (µg/dL).  These standards were diluted in situ and the resulting 

fluorescent profiles were obtained.   

 The resulting profiles have been overlaid and are shown in Figures 18A and 18B.  

The HDL peak was prominent for the largest concentration showing a peak intensity of 

near 2000.  The LDL peak however showed very little intensity with a peak of only 125 

for the highest concentration.  HDL’s concentration was 3.25 times higher than that of 

LDL, but this relationship did not translate to the total intensities.  This data leads to  

  



77 
 

 
 

3 6 9 12 15 18 21 24 27 30 33

0

50

100

150

200

250

300

350

400

450

500

dTRL

3c
3b

3a
2c

2b5432

HDLLDL

1

In
te

n
s
it
y

Tube Coordinate (mm)

 160 ug/dL

 120 ug/dL

 80 ug/dL

 40 ug/dL

 20 ug/dL

3 6 9 12 15 18 21 24 27 30 33

0

200

400

600

800

1000

1200

1400

1600

1800

2000

In
te

n
s
it
y

Tube Coordinate (mm)

 520 ug/dL

 260 ug/dL

 130 ug/dL

 65 ug/dL

 32.5 ug/dL
dTRL

3c
3b

3a
2c

2b5432

HDLLDL

1

 
Figure 18: LDL and HDL Density Profiles Using Commercial Standards.  (A) LDL 

Density Profiles of Serial Dilutions.  (B) HDL Density Profiles of Serial Dilutions.  
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Figure 19: LDL and HDL Calibration Curves Using Commercial Standards.  (A) 

LDL Calibration Curve Relating Concentration to Integrated Intensities.  (B) HDL 

Calibration Curve Relating Concentration to Integrated Intensities. 
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the realization that the LDL and HDL particles interact with the NBD fluorophore based 

on their individual composition rather than in a uniform relationship.    

 By integrating the total fluorescence intensity for each lipoprotein density class, 

calibrations curves were generated comparing the concentration to the corresponding 

intensity.  These calibration curves are shown in Figures 19A and 19B.  This study 

showed that for standard samples, there is a linear relationship between the lipoprotein 

concentration and the resulting fluorescent intensities.  These findings will be used to 

compare the fluorescent intensities for each lipoprotein density class for the clinical 

subjects to determine whether similar relationships exist. 

 

3.1.2 Cs2CdEDTA-Based Gradients for Isolation of LDL and HDL 

 With the successful error reduction and implementation of the NaBiEDTA-based 

density gradient system, the results led to the possibility that enhancing the baseline 

separation of the lipoproteins, especially the HDL region, would allow for a more 

detailed characterization of lipoprotein profiles that could result in a more accurate risk 

assessment when applied to the clinical studies.  There was also the added benefit that 

this enhanced separation would aid in the preparatory techniques previously applied in 

order to isolate specific areas of the lipoprotein profile for further analytical analysis.   

 Because of NaBiEDTA’s relatively low solubility, its use in forming the density 

gradient was limited to profiling the entire density range of serum lipoproteins in a 

singular spin.  The use of Cs2CdEDTA as the solute has previously shown to have a 

higher solubility which in turn would allow for greater control over the density gradient.  
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This meant that through use of the Cs2CdEDTA solute, initial concentrations could be 

manipulated in order to isolate the LDL density range and the HDL density range 

through individual spins designed for this purpose.  The objective of this study was to 

identify the solute concentrations necessary for implementation of a dual spin system to 

isolate LDL and HDL separately, measure the repeatability and error in these solute 

systems, and to compare the resulting profiles to the profiles found when using 

NaBiEDTA as the solute in the density gradient. 

 

3.1.2.1 Cs2CdEDTA Gradient Measurement and Optimization 

 With the optimum conditions for gradient development during the UC spin and 

for profile imaging having been previously studied and identified, the first step toward 

application of Cs2CdEDTA as a solute system was the identification of the ideal 

concentrations of solute needed to form gradients that would separate the LDL and HDL 

subclasses respectively.  To carry this out, the first step was to use different 

concentrations of solute ranging from 0.05M-0.30M Cs2CdEDTA with serum to 

measure the resulting lipoprotein profiles.  The resulting lipoprotein profiles are 

displayed in Figure 20.  It was anticipated that lower concentrations of the solute would 

result in a narrow range of densities that can be resolved once the density gradient is 

formed.  Taking this effect into account when observing the different peak movement 

compared to the concentration of solute used, the results clearly show the LDL peak 

moving to the lower tube coordinates with increasing initial concentration of the solute 

as was expected.  The concentrations of 0.0500M and 0.1000M Cs2CdEDTA provided 
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the best conditions for resolving the LDL over the full length of the tube while the 

concentration of 0.2500M Cs2CdEDTA was shown to spread out the HDL region of the 

profile.   
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Figure 20:  Lipoprotein Density Profiles for Varying Cs2CdEDTA Concentrations 

 

These solute concentrations were then mapped for density gradient formation in 

order to assess the resolution of the density regions.  The 0.2500M Cs2CdEDTA was 

found to resolve the LDL5 subclass and all HDL subclasses over the optimum length of 

the UC tube.  For the LDL region, it was found that the 0.0500M Cs2CdEDTA resolved 

all LDL subclasses over the optimum length of the UC tube and also resolved the density 

range of IDL as well.  The resulting density gradient curves are portrayed in Figure 21A 
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and 21B.  The average error between the constants from the exponential equation for the 

0.2500M Cs2CdEDTA-based density gradient was calculated to be 15.73%.  The 

average error between the constants from the exponential equation for the 0.0500M 

Cs2CdEDTA-based density gradient was calculated to be 7.55%.  This increased error 

was associated with the fact that the Cs2CdEDTA gradients are synthesized versus 

simply using a commercially available salt like NaBiEDTA.  The error associated with 

the synthesis of the Cs2CdEDTA compounds the overall %RSD on the gradient 

formation.   

 To assess the extent this factor influences the clinical samples, the %RSD was 

then calculated for the resolution of the lipoprotein subclasses based on the tube 

coordinates for each density cut-point between subclasses using the corresponding 

exponential equation.  The %RSD or for the density cut-points for HDL subclasses was 

found to be 3.87%.  The lower density cut-points were associated with the highest 

%RSD at 15.58%.  The %RSD for the density cut-points for LDL subclasses was found 

to be 6.24%.  The lower density cut-points were again associated with the highest %RSD 

at 15.98%.  This %RSD at the lower density subclass of each spin is most likely due to 

the smaller slope at the beginning of an exponential curve.  The %RSD is reduced in the 

higher density regions due to the increased slope.  While the %RSD was higher for the 

Cs2CdEDTA based gradients when compared to the NaBiEDTA based gradients, the 

average %RSD in subclass definition was still small enough to qualify the gradient 

system for further evaluation of the systematic error when applied to the clinical serum  
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Figure 21: Cs2CdEDTA Density Gradient Formation. (A) 0.2500M Cs2CdEDTA 
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samples based on the definition of error required for clinical testing previously identified 

in Section 1.2.1. 

 

3.1.2.2 Precision of Density Profiles Using Cs2CdEDTA Gradients 

 Before applying the dual Cs2CdEDTA-based gradients to clinical samples, the 

systematic error must be low enough to ensure repeatability of the analysis similar to 

that of the NaBiEDTA-based gradients.  This error was again measured by running a 

standard serum sample in 10 replicates and calculating the error between lipoprotein 

density profiles.  The resulting lipoprotein density profiles and error analysis are 

displayed in Figure 22 and Figure 23, respectively.  As can be observed from the figure, 

the lipoprotein density profiles again have low error overall.  The average %RSD for the 

LDL profile was calculated to be 11.00%.  The average %RSD for the HDL profile was 

calculated to be 7.06%.  While this error is higher than the error found for the 

NaBiEDTA-based density profiles, it is still within an acceptable range for application to 

clinical studies. 

 When comparing the lipoprotein density profiles of the dual Cs2CdEDTA-based 

spins to the NaBiEDTA-based spin, some interesting observations can be made.  First, in 

the NaBiEDTA gradient, LDL’s most prominent peak is portrayed between LDL4 and 

LDL5 (1.049g/mL).  The most prominent peak in the Cs2CdEDTA gradient for LDL was 

portrayed at a higher density inside the density range of LDL5 (1.061g/mL).  The 

difference in density, based on the measured density gradients, is 0.012g/mL.  As for the 

HDL, in the NaBiEDTA based gradient, the density peak was found at 1.098g/mL.  For  
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Figure 22: Dual Concentration Cs2CdEDTA-Based Gradient Density Profiles. (A) 

0.0500M Cs2CdEDTA LDL Profiles Overlaid, (B) 0.2500M Cs2CdEDTA HDL 

Profiles Overlaid 
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Figure 23: Dual Concentration Cs2CdEDTA-Based Gradient Profile Error 

Analysis. (A) 0.0500M Cs2CdEDTA LDL Subclass Error, (B) 0.2500M 

Cs2CdEDTA HDL Subclass Error 
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the Cs2CdEDTA-based gradient, the density of the HDL peak was found to be 

1.100g/mL; a difference of only 0.002g/mL.  Similar differences in the lipoprotein 

density for LDL have been reported by Johnson et al
12

 who first studied the application 

of different EDTA salt-based gradients.  However, a larger difference in HDL density 

was reported between the two gradient solutes by Johnson et al
12

 where only a small 

density change was recorded in this study.   

 The reason for this density shift in the different EDTA solutes could be due to a 

cation-interaction between the phospholipids on the outer shells of the lipoprotein 

particles and the different metal cations.  Through reviewing sedimentation theory, it 

was documented that the use of Cs
+
, which has a high affinity to bind to phosphate 

groups, can alter the density of DNA when studied.
72

  Na
+
 has the same effect but it is 

less due to the mass difference between the Cs
+
 and Na

+
.  Similarly, this would affect the 

monolayer of lipoproteins since phospholipids can be found there.  When referencing 

Krilov et al for FT-IR spectra on lipoproteins, it is reported that an LDL particle has 724 

phospholipids where HDL2 and HDL3 particles have 137 and 51, respectively.
118

  This 

increase in active sites could explain why the LDL is affected more than the HDL.  With 

the use of Cs2CdEDTA, there is the potential for more metal cations to bind with the 

phospholipids on the monolayer of the LDL due to the fact that the CdEDTA-complex 

has a -2 charge and therefore there are twice as many Cs
+
 cations in the solution as there 

are Na
+
 cations in the NaBiEDTA solution.  The potential for unassociated 

phospholipids would be decreased with the enhanced number of Cs
+
 cations present in 

solution.  Despite this density changing effect, the dual concentration Cs2CdEDTA-
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based gradients were shown to have high repeatability as well as the ability to spread out 

the density profiles for the LDL and HDL density ranges.  The effect that the metal 

cation has on the density profile will be further studied in clinical samples to test on 

multiple subjects.  It is possible that this effect could be subject dependant and therefore 

could contribute as a risk marker for CVD classification. 

 

3.1.3 Serum Viability Studies 

 With the analytical methods for lipoprotein density profiling optimized, the only 

other source of possible error was the viability and stability of serum samples.  

Understanding the way that serum is affected by being thawed multiple times and how 

serum is affected through the length of exposure it has to room temperature will serve as 

a guide in how clinical samples should be treated.  These studies were designed to 

understand these effects so that the optimum method of serum treatment could be 

employed when studying clinical samples in order to minimize sample degradation.  The 

NaBiEDTA-based density gradient was used for all studies in order to compare results. 

 

3.1.3.1 Density Profiles Relative to Time Serum Spent at Room Temperature 

 The goal of this study was to examine the effect that serum being stored at room 

temperature has on the lipoprotein profile over time.  To carry out this study, the same 

serum sample was aliquotted into several identical fractions and stored at room 

temperature for 0.5hr, 2hr, 4hr, and 24hr. The fractions were then profiled in 5 replicate 

measurements.  The resulting lipoprotein density profiles are depicted in Figure 24A.  As 
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can be observed from the overlaid profiles, there is relatively no change in the TRL, 

HDL, or Protein peaks in the serum profiles.  There is, however, a distinct change in the 

LDL peak of the lipoprotein density profile.  This peak shift has been mapped by 

studying the peak density as a function of exposure time at room temperature as shown 

in Figure 24B.  This graph shows a direct relationship between the peak density and the 

exposure time in the form of an exponential decay.  This relationship indicates that the 

density change is a process which slows and reaches an endpoint over time.  The change 

in LDL density can possibly be attributed to increased enzymatic activity as time elapses 

or loss of lipids from the lipoproteins.  Regardless of the reason for the change, in order 

to evaluate lipoprotein density profiles for clinical applications, the exposure to 

increased temperature must be minimal.  For this reason, a 30 minute thaw time for 

serum was selected to reduce the temperature effect. 
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Figure 24: Effects of Exposure at 23°C on Serum over Time.  (A) An Overlay of 

Lipoprotein Density Profiles Obtained from Serum Exposed at Different Times, (B) 

Density Change in LDL based on Exposure Time at 23°C 
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3.1.3.2 Effect of Multiple Freeze/Thaw Cycles of Serum on Density Profiles 

 With the thaw time identified for viability of the lipoprotein density profile, the 

next factor studied was the stability of the profile over freezer storage time and multiple 

freeze/thaw cycles.  The goal of this study was to identify any effect that these multiple 

freeze/thaw cycles could have on the lipoprotein density profile.  To study this factor, a 

serum sample was thawed for 30 minutes and then flash-frozen using liquid nitrogen 

several times.  After each thaw, an aliquot of the serum was withdrawn for profiling.   

 The %RSD between freeze/thaw cycles was calculated and compared to the 

baseline %RSD for ten replicates previously reported as the systematic error of the 

enhanced lipoprotein profiling method.  This error was previously identified at 5.28% 

+/- 0.88 for Mode 1 and 3.69% +/- 1.41 for Mode 2.  For the 12 different thaw cycles, 

the %RSD was calculated to be 7.05% +/- 1.59 for Mode 1 and 5.77% +/- 1.10 for Mode 

2.  The profiles are shown in Figure 25.  Only small differences in the profiles were 

observed showing that the relative error due to thaw cycles was insignificant for 12 

cycles.  This number of cycles is more than a standard clinical sample would undergo. 
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Figure 25: Effect of Multiple Freeze/Thaw Cycles on Density Profiles 

 

3.1.4 Optimization of Preparative Techniques for HDL Apolipoprotein Mass 

Spectrometry  

 Differences between control and CVD samples in the mass spectra of HDL 

apolipoproteins have been identified through previous work in the Macfarlane research 

group.  These differences have been identified as a possible biomarker for the presence 

of CVD.  Specifically, a difference in the mass of Apo C-I was found in a small cohort 

of CVD samples that was not present in a small cohort of control samples. Application 

of mass spectrometry to HDL was previously performed on the HDL2 and HDL3 

subclasses.  This separate analysis of the major subclasses of HDL identified that the 
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modified Apo C-1 was present in both HDL subclasses.  For this reason, it was decided 

that mass spectra analysis of the full HDL fraction would be studied. 

 Before performing this analysis on a large scale cohort of clinical samples, it 

was necessary to identify the proper methods for sample preparation that allow for the 

optimum recovery of the apolipoproteins off of HDL.  Multiple methods of sample 

purification have been previously studied and applied to serum to isolate HDL including 

dextran sulfate precipitation of the Apo B containing lipoproteins and UC density 

separation for isolation of HDL.
115

  To delipidate the HDL fraction, reverse phase solid 

phase extraction has been shown through previous studies as a simple and efficient 

method for removing the lipids.
117

  In order to verify the efficiency of these methods, 

commercially available ELISA kits were used to measure the recovered Apo A-I-

containing lipoproteins taking advantage of the one-to-one relationship between Apo A-I 

and the HDL particles.  The BCA protein analysis was also used to quantify the total 

protein recovery.  The objective of these studies was to determine the optimal method 

for recovery of the proteins associated with HDL with the highest percent recovery of 

the full spectrum of HDL-related protein, realizing this feature of the protocol 

maximizes the probability of discovering new CVD-related biomarkers. 

 

3.1.4.1 Optimizing Recovery of HDL and HDL Apolipoproteins  

   In order to identify the optimum method of sample preparation for mass 

spectra analysis, a comparison of the preparative protocols was made using the resulting 

mass spectra as the criteria for optimization.  The three protocols studied were 1) UC 
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density preparation with the 0.25M Cs2CdEDTA-based density gradient to recover the 

HDL fraction, 2) dextran sulfate precipitation to isolate HDL, and 3) the combination of 

dextran sulfate precipitation followed by density gradient separation to isolate HDL.  

Each recovered HDL fraction was then desalted and delipidated by SPE.  The resulting 

mass spectra for the three protocols are shown in Figure 26.  When comparing the total 

intensities of the peaks for each of the preparative methods, it was found that the highest 

Apo C-I peak intensities were observed in the dextran sulfate treated serum.  However, a 

more complete coverage of the mass spectrum was achieved with a combination of the 

use of preparative ultracentrifugation and dextran sulfate precipitation (Figure 26C).  In 

order to establish the most information-rich recovery method, further investigation was 

needed to determine the reason why there were such noticeable differences. 
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Figure 26:  Mass Spectra of HDL Apos for Different Preparative Methods. (A) 

HDL Isolated through UC Preparation, (B) HDL Isolated through DS Preparation, 

(C) HDL Isolated through Combining UC and DS preparation 
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3.1.4.2 Protein Recovery of Delipidated HDL   

 In order to understand the differences in the mass spectra between preparative 

methods, additional analytical methods were implemented to obtain quantitative data 

using Apo A-I specific ELISA and the BCA assay for total protein measurement.  The 

products of the dextran sulfate precipitation were first tested to measure the total 

recovery both before and after solid phase extraction was performed.   Initial 

concentrations of multiple serum samples were measured and then compared to the 

concentration recovered after dextran sulfate precipitation and after solid phase 

extraction.  The average recovery after dextran sulfate precipitation was 95.20 +/- 

3.24%.  This result showed that use of dextran sulfate precipitation had little influence 

over the resulting mass spectra due to the high recovery rate of the dextran sulfate 

precipitation method.  On the other hand, after the sample was run through solid phase 

extraction to collect the free apolipoproteins, the recovery was calculated to be only 

11.43 +/- 2.84%.  When testing the wash sample used to remove the salts from the 

sample in the SPE cartridge, the total concentration of Apo A-I was calculated to be 

90.59 +/- 4.59%.  This high recovery yield indicated that the signal loss previously found 

in the mass spectrometry analysis of HDL apolipoproteins was due to the solid phase 

extraction technique.   

 To understand this loss, previous research into the method of reverse phase 

solid phase extraction for delipidation of lipoproteins was reviewed.  The previous 

research had shown recoveries of up to 90% on pure protein samples.
117

  However, when 

lipids were present, there was a reduced functionality that limited the loading capacity of 
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the SPE cartridge to no more than 150µg of total protein.  When limiting the sample load 

to 100µg of protein with the presence of lipids, the total recovery found was 80%.  In 

reference to the methods performed in this study, 200µL of serum were used.  With the 

average concentration of protein in human serum ranging from 60-83mg/mL, this range 

translates into a total range of 14,000-16,600ug of total protein present in the initial 

serum sample.  Since dextran sulfate precipitation only removes the proteins that are 

related to LDL, the HDL proteins and the free proteins, such as globulin and albumin, 

are present in the sample when loaded onto the SPE cartridge.  This overload of protein, 

combined with the presence of lipids, explains the sample loss that was found in the 

wash step of the SPE method.   

 With total protein content being the controlling factor in the amount of 

apolipoproteins recovered from HDL, it was now possible to explain why the 

combination of dextran sulfate precipitation and preparative ultracentrifugation resulted 

in the best mass spectra total signal.  The preparative ultracentrifugation technique adds 

a secondary purification process in isolating HDL that removes abundant globulins and 

albumin.  The removal of these proteins minimized the total amount of protein that was 

loaded onto the SPE cartridge and in turn improved the total recovery of the HDL 

apolipoproteins.   

 The total amount of protein present in HDL is primarily due to the Apo A-I 

concentration since it is present on every HDL particle.  Other apolipoproteins are 

present, but only in small concentrations relative to the concentration of Apo A-I.  The 

average concentration of Apo A-I in a normal human’s HDL is 130 mg/dL.
48

  Coupled 
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with the other apolipoproteins present, the average concentration of the HDL-related 

proteins is approximately 200mg/dL.  For an average human serum samples, this 

concentration translates into a total protein content of 400µg for HDL in 200µL of 

human serum.  With the maximum loading capacity of the SPE cartridge being reported 

at 150ug of protein when lipids are present, this means that the SPE extraction cartridge 

would have been overloaded.  In order to test this possibility, multiple recovered protein 

samples were measured for their total protein content.  While total protein content varied 

between subjects, all samples tested at an average recovery of 387 +/- 119µg.  These 

recovered protein values show an increased recovery from that previously reported when 

using the SPE cartridge and confirm that the majority of the apolipoproteins present in 

HDL are being recovered. 

 With the large spread in HDL-protein concentrations, it became necessary to 

identify the reproducibility of the full preparative method.  To measure the 

reproducibility of the protein recovery when combining the dextran sulfate precipitation 

method and the ultracentrifugation preparative method, the use of the BCA assay to 

measure the total protein recovered from HDL was implemented in order to measure all 

protein content instead of just the Apo A-I.  To test the reproducibility, a volunteer 

serum sample was run through the method in triplicate and the %RSD was calculated.  

%RSD was found to be 15.54%.  This low value suggests that the variation in protein 

recovery previously found in patient samples was due to patient variability and not error 

in the preparative methods.  These results show that by combining dextran sulfate 

precipitation with preparative ultracentrifugation, a viable technique has been developed 
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for HDL apolipoprotein isolation and recovery that can be combined with mass 

spectrometry techniques in order to assess the application of the mass spectra in terms of 

the risk assessment for CVD. 

 

3.1.4.3 Optimizing Mass Spectra Signal for Clinical Applications 

 With the apolipoprotein recovery methods now established, a standard serum 

sample was prepped using dextran sulfate precipitation and preparative 

ultracentrifugation.  The sample was then reconstituted to different levels of 

concentration based on the initial serum volume used.  The goal of this study was to find 

an optimum concentration for which the mass spectra would show strong peaks in all 

mass regions.  For application of the mass spectrum data to the LDA/SIR analysis, there 

must be enough signal strength to distinguish peaks in the mass ranges for the lower 

abundant apolipoproteins such as Apo A-II, Apo C-II, Apo C-III, etc. 

  The apolipoprotein concentrations chosen for this study were 1x, 2x, and 4x 

more concentrated than what is in the serum sample.  For the 200µL of serum used for 

each concentration, the recovered apolipoproteins were evaporated to dryness and 

reconstituted to 200µL, 100µL, and 50µL to provide samples with increasing protein 

concentrations.  The resulting mass spectra are shown in Figure 27A-27C.  The signal 

intensities for all mass ranges show close to double the intensity when comparing the 2x 

and 1x concentrated samples.  However, the 4x concentrated sample shows a large signal 

drop for all mass ranges except between 7000Da and 11000Da.  For this mass range, the  
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signal intensity is roughly twice as large as the intensities seen for the 2x concentrated 

sample.  All other mass ranges show even less peak intensity than the 1x concentrated 

sample.  This difference in peak intensity is larger than any error that might be present in 

MALDI-TOF experiments due to the preparation techniques.  The decrease in signal for 

the most concentrated HDL apolipoprotein sample could indicate that there is some form 

of sample aggregation that is suppressing the signal.  Based on these results, the 2x 

concentrated sample was shown to allow for clean mass spectra with sufficient peak 

intensities for application of the results to the LDA analysis.  For this reason, the 2x 

concentration was selected as the method for measuring the mass spectra of all clinical 

samples in future studies. 

 

3.2 Clinical Applications of High Performance Lipoprotein Profiling Methods 

 

3.2.1 Lipoprotein Density Profiles and LDA/SIR Analysis for CVD Risk Assessment  

 The objective of these studies was to assess the influence of the improved 

lipoprotein profiling method for use in CVD risk analysis.  Previous research had shown 

the potential for the use of advanced statistical analysis of the lipoprotein profiles in the 

assessment of CVD risk.
14

  The previous study research was limited by the small sample 

library and the precision of the methods used.  With the more precise method of the 

lipoprotein density profiling developed in this thesis work, the application of this method 

to a broader library with better clinical definitions of control (CTRL) and CVD was 

expected to yield a more accurate CVD risk assessment.  The studies described here 
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include the original results of the lipoprotein profiles and LDA/SIR analysis found by 

R.Henriquez
14

 in comparison to the more precise lipoprotein profiles and LDA/SIR 

analysis to show improvement in the classification, as well as the implementation of the 

methods to a normal lipidemic cohort of samples, a cohort of hypercholesterolemic 

children, and, finally, to the comprehensive serum library to test for a universal risk 

assessment. 

 

3.2.1.1 Improving the Predictive Power of the Original Pilot Study through Application 

of HPLDP Method 

 The initial pilot study, prior to improving the precision of the method, was 

performed on a small sample cohort of subjects to assess the use of LDA/SIR in 

application to the lipoprotein density profiles.  LDA/SIR is a multivariate analysis that 

produces an equation that classifies CVD and CTRL groups.  The subjects for this study 

were selected based on having normal to elevated levels of HDL cholesterol, normal 

levels of LDL cholesterol, and their individual CVD status.   

 The importance of each lipoprotein subclass in the LDA/SIR multivariate 

analysis equation, relative to CVD prediction, was reflected in the coefficients of the 

equation.  The equation generated for the original method of lipoprotein profiling is 

shown in Equation 9.  In the equation, the natural log of the integrated intensities for 

each subclass is used to normalize the data.  Positive subclass coefficients (red) indicated 

that the subclass was weighted towards risk of CVD while a negative coefficient (green) 

was weighted towards being a CTRL.  For the pilot study, the HDL-3c, LDL-4, and  



103 
 

 
 

LDL-2 subclasses were found to be the most important factors for a prediction of CTRL.  

The HDL-3b, dTRL, and LDL-5 subclasses were found to be the most important factors 

for prediction of CVD.  Figure 28 highlights each lipoprotein subclass relative to its 

coefficient polarity (CVD or CNTL).  Seven of the twelve subclasses were weighted 

towards CVD classification.  To better visualize the relative importance of each 

subclass, the coefficients from the equation are graphed in Figure 29.  LDL-1 was found 

to not be as important relative to the other lipoprotein subclasses. 

 

                                                          

                                                      

                                                     

                                                    (Eq. 9) 

 

 



104 
 

 
 

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

3c3b3a2a2b5432

HDLLDLdTRL

In
te

n
s
it
y

bTRL

1

>1.301.1501.0771.0441.0291.023~1.00<1.00

Density (g/mL)  

Figure 28: Influence of Lipoprotein Subclasses Based on Pilot Study Algorithm: 

Red = CVD factor, Green =CTRL Factor 
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Figure 29: Pilot Study LDA/SIR Coefficients for Lipoprotein Subclasses Using 

Original Lipoprotein Profiling Method 
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 The separation found using the LDA/SIR calculated values for the initial 

method, prior to improvement, is shown in Figure 30.  Of the 16 CVD subjects, 3 

subjects were found to have negative LDA/SIR values which indicated that they were 

misclassified as controls based on the LDA/SIR equation.  Of the 14 CTRL subjects, 3 

subjects were found to have positive LDA/SIR values which indicated that they were 

misclassified as CVDs based on the statistical model.  Based on the total number of 

correct classifications, the baseline prediction potential was found to be 80% accurate.   
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Figure 30: Pilot Study LDA/SIR Separation of CVD/CTRL Using Original Method 

 

 The standard method of evaluating the significance of a statistical model would 

be to test the predictive power of the LDA/SIR equation on a set of subjects, for which 

the classifications of CVD and CTRL are known.  These samples would not have been 
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used to develop the statistical model in order to assess the model’s viability.  This set of 

samples is called a hold out set.  Because the sample size was limited, a hold out sample 

set was not available and therefore the method of cross validation (X-Val) was used as a 

substitute evaluation of the method.  Cross validation is a method of testing the bias of 

the model in terms of the subject dependency (Section 1.5).  X-val is a method of 

removing one random sample from the sample set and then rerunning the analysis.  The 

resulting equation is tested on the full sample set; including the sample that was 

removed.  The difference between the new prediction accuracy and the original accuracy 

represents the level of dependence that the model has on the sample data that was 

removed.  The X-Val score for the pilot study was found to be 60%.  This low X-Val 

score indicated that the LDA/SIR classification accuracy is sensitive to the sample set 

size based on the difference in prediction power being 20% relative to the prediction 

accuracy using the full sample set.  While the prediction accuracy showed the potential 

of combining lipoprotein density profiles with LDA/SIR analysis, the X-Val prediction 

indicated that the prediction accuracy was not statistically significant.   

 To study the effect that the more precise lipoprotein density profiling method 

has on CVD risk assessment, the initial pilot study sample library was profiled using the 

high precision method.  The LDA/SIR analysis of the enhanced method lipoprotein 

profiles produced a prediction equation that was 92.7% accurate with an X-Val accuracy 

of 63%.  Through use of the high precision method of lipoprotein density profiling, only 

one subject each were misclassified for the CVD and CTRL groups.  The resulting  
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Figure 31: Pilot Study LDA/SIR Separation of CVD/CTRL Using HPLDP Method 

 

TRL LDL1 LDL2 LDL3 LDL4 LDL5 HDL2b HDL2a HDL3a HDL3b HDL3c

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

(-)  CVDL
D

A
/S

IR
 S

u
b

c
la

s
s

 C
o

e
ff

ic
ie

n
t

Lipoprotein Subclass

(+)  CVD

 

Figure 32: LDA/SIR Coefficients for Lipoprotein Subclasses Using HPLDP Method 
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separation between CVD and CTRL subjects is shown in Figure 31.  The coefficients for 

the LDA/SIR equation are graphed in Figure 32.   

 These coefficients differed from the original analysis in many ways.  Five of 

the 11 subclasses changed in their polarity from being a factor towards CVD to being a 

factor towards being a CTRL and vice versa. Most notably, the majority of the LDL 

subclasses were now factors for CVD and the majority of the HDL factors were now 

factors for CTRL classification.  The changes in these coefficients changed the 

classification of the previously misclassified samples from an incorrect classification to a 

correct classification.  The change also changed one subject from each of the CVD and 

CTRL cohorts to being misclassified.  The increase in prediction accuracy between the 

original pilot study data and the data obtained from application of the enhanced method 

can be directly related to the change in the subclass coefficients.  The improved 

classification confirmed that the enhanced method increased the risk assessment of CVD 

and therefore was an improvement over the original method.  However, the X-Val 

accuracy still showed a high subject bias. 

 

3.2.1.2 Effect of Redefining the Definition of CTRL 

 To investigate the reason for the subject bias, the definitions of CTRL were 

questioned.  The initial method of CTRL definition was that the subject had no risk 

factors for CVD and no history of disease.  This definition did not account for subjects 

that might be in the pre-stages of atherosclerosis.  For this reason, a new cohort of CTRL 

subjects was acquired for the study.  These CTRL samples were identified through 
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angiography based on the level of arterial blockage.  Any subject who showed less than 

10% blockage through angiography was identified as a CTRL and a serum sample was 

collected.   
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Figure 33: LDA/SIR Separation of CVD/CTRL Using Redefined CTRL Library 

 

 Of the new CTRL samples collected to build the redefined library, a subset of 

this new library fit the design profile for inclusion to the original pilot study CVD 

samples.  In this study, LDA/SIR analysis was performed the same CVD samples as 

used in the pilot study but using the more accurately defined CTRL samples from the 

new library.  The LDA/SIR separation of this new library is depicted in Figure 33.  The 

prediction accuracy for this library was found to be 100%.  The X-Val for this library 
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was found to be 84%.  This X-Val score showed that the new LDA/SIR separation was 

statistically significant.   
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Figure 34:  LDA/SIR Coefficients for the Separation of the Pilot Study CVD 

Samples and Angiography-Defined CTRL Samples 

 

 The LDA/SIR constants for the prediction equation are depicted in Figure 34.  

When comparing the constants for the newly defined library to the constants from the 

original pilot study found in Figure 29, there were some significant differences that were 

observed.  The relative value of each subclass coefficient between the two libraries was 

compared in order to identify the relative contributions of each subclass when compared 

to the other subclasses.  The LDL-3 coefficient changed in polarity, i.e. the LDL-3 

weighted subjects towards a CVD classification in the original pilot study and a CTRL 

classification in the new library study.  Another difference found when the CTRL 

subjects were better defined was observed in the relative importance of the subclasses.  
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Several subclasses, most notably LDL-2 and HDL-2b, changed their relative 

contribution to the LDA/SIR value.  The overall improvement in classification can be 

attributed to having a more precise protocol of lipoprotein density profiling as well as 

having a better defined CTRL population. The enhancement of both the prediction 

accuracy and X-Val accuracy proved that the newly defined CTRL library better 

identified what is a true control by using a medically defined test rather than the 

subjective appearance of no disease.  While the X-Val score did improve in comparison 

to the original study, there still was a large subject bias with a difference of 16% 

between the prediction equation accuracy and the X-Val accuracy.  For this reason, a 

larger serum library was deemed to be necessary to test the overall validity of this 

methodology of CVD risk assessment. With a larger serum library to test the accuracy of 

the prediction equation, the hold out sample set protocol can be utilized as the ultimate 

test of the utility of the method in a clinical setting. 

 

3.2.1.3 LDA/SIR Analysis Applied to Normal Lipidemic Patient Samples for CVD Risk 

Assessment 

 With the improvements in CVD risk assessment for the original pilot study, 

application of the enhanced lipoprotein density profiles and LDA/SIR analysis was 

applied to specific cardiovascular risk studies to better assess the methods potential in 

the clinical setting.  The first study was to explore whether this methodology could be 

used to identify risk for those subjects that showed none of the traditional risk factors, 

i.e. normal lipidemic subjects.  While other CVD risk assessment methods have been 
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shown to be applicable to patients with identified risk factors
7
, these methods are still 

inaccurate for the normal lipidemic subject population.  The results presented here 

summarize the application of LDA/SIR to lipoprotein density profiles in order to 

distinguish between normal lipidemic subjects with documented CVD and those without 

CVD.  The sample population size for this study was 26 subjects and was composed of 

14 CVD subjects and 12 CTRL subjects. 

 In order to assess the level of improvement that lipoprotein density profiles has 

over tradition methods, traditional lipid cholesterol and triglyceride measurements 

acquired through a standard lipid panel were compared to the lipoprotein profiles as the 

accepted standard for lipoprotein measurement.   The effect of sample size versus 

number of measurements was also explored by separating the lipoprotein profiles by 

density in three ways: 3 lipoprotein subclasses, 5 lipoprotein subclasses, and 11 

lipoprotein subclasses.  The 3 lipoprotein subclasses are the integrated intensities based 

on the lipoprotein profile identified as TRLs (ρ<1.019g/mL), LDL 

(1.019g/mL<ρ<1.063g/mL), and HDL (1.063g/mL<ρ<1.179g/mL).  These subclasses 

are further broken down by density into the 5 lipoprotein subclasses defined as TRLs 

(ρ<1.019g/mL), low-density LDL (1.019g/mL<ρ<1.039g/mL, LDL-1 through LDL-3), 

high-density LDL (1.039g/mL<ρ<1.063g/mL, LDL-4 through LDL-5), low-density 

HDL (1.063g/mL<ρ<1.110g/mL, HDL2), and high-density HDL 

(1.110g/mL<ρ<1.179g/mL, HDL3).  Finally, the lipoprotein subclasses are broken down 

into the 11 density subclasses as defined in Section 1.3.3.
9,68

  A sample of the lipoprotein 

density profile and the different methods of fractioning the profile is shown in Figure 35.  
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Though examining the effects that increasingly more distinct lipoprotein subclasses have 

on the LDA/SIR analysis, the benefits of lipoprotein density profiles over the traditional 

lipid panel measurements were established.  The results of the LDA/SIR analysis for 

these different data sets are summarized in the following sections. 
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Figure 35: Lipoprotein Density Profile Fractioned into 3, 5, and 11 Subclasses 

 

3.2.1.3.1 LDA/SIR Results of Lipoprotein Measurements 

 Table 4 summarizes the accuracy of LDA/SIR analysis on each of the four data 

sets: traditional lipid panel measurements, 3 lipoprotein subclasses, 5 lipoprotein 

subclasses, and 11 lipoprotein subclasses.  Because of the small number of samples 

available for this study, X-val was selected to test the subject dependency of the 

analysis.  As shown from the reported accuracy values for each lipoprotein measurement  
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Table 4: LDA/SIR Analysis Summary for Normal Lipidemic Serum Library of 

Different Lipoprotein Measurements 

Lipoprotein Measurement 
LDA/SIR Accuracy 

(%) 

X-validation 

(%) 
p-value 

Traditional Lipid Panel 73.1 53.8 NA 

3 Lipoprotein Subclasses 69.2 69.2 NA 

5 Lipoprotein Subclasses 88.5 73.1 0.0186 

11 Lipoprotein Subclasses 92.3 69.2 0.0952 

 

method in Table 4, the accuracy of the LDA/SIR prediction increased with respect to the 

number of subclasses that were included in the lipoprotein profile.  The traditional lipid 

panel measurements used in standard medical dianostics showed a low accuracy rate of 

73.1% when using LDA/SIR analysis.  This approach was further influenced by the  

patient dependency represented by the X-Val value of 53.8%.  For the small number of 

subjects included in the study, the use of the 5 lipoprotein subclasses gave the best 

relationship of prediction accuracy and X-Val indicating a low subject bias with values 

of 88.5% and 73.1%, respectively.  Use of all 11 possible subclasses increased the 

accuracy of the prediction to 92.3%.  However, the increase in the number of subclasses 

also increased the subject dependency seen through the lower X-Val score.  With more 

variables included in the LDA/SIR analysis, a larger subject population is required to 

strengthen the statistical significance of the classification.  When using the p-value to 

distinguish the statistical significance the LDA/SIR separation, it was found that the 5 

subclass method of analysis gave a statistically significant separation while the other 

methods did not.  This statistical significance is represented by a p-value of 0.0186 

which is lower than the required value of 0.05 to distinguish a significant difference 

between groups.  The p-value is larger when the 11 lipoprotein subclass data method is 
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used due the calculation of the p-value being related to the number of sample variables 

and sample population size.  The results found in this study emphasized the need for a 

larger sample population relative to the number of variables applied to the LDA/SIR 

analysis and the benefits that can be obtained through use of lipoprotein density profile 

data in the LDA/SIR analysis in comparison to tradition lipid measurements used in 

current medical practices.   

 

3.2.1.3.2 LDA/SIR Separation and Coefficients Using 5 and 11 Lipoprotein Subclasses 

With the optimum risk assessment for CVD in normal lipidemic subjects found 

using the 5 and 11 lipoprotein subclass methods, further analysis was performed in order 

to assess the differences between the LDA/SIR analysis when 5 and 11 subclasses were 

used.  Figure 36 illustrates the separation of CVD and Control subjects through 

LDA/SIR analysis of 5 lipoprotein subclasses.  LDA/SIR separates the CVD and CTRL 

samples based on the mathematical equation developed in the statistical analysis.  The 

two CVD samples with negative LDA/SIR values are considered misclassified, i.e they 

were incorrectly identified by this method as not having CVD.  The CTRL sample with 

the positive LDA/SIR values was also considered misclassified. 
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Figure 36: LDA/SIR Separation of CVD/CTRL of Normal Lipidemic Library 

Using 5 Lipoprotein Subclasses 

 

Figure 37 shows the graphical representation of the coefficient strength found 

through the LDA/SIR analysis of the 5 subclasses included in the analysis.  The 

coefficients with negative values identify subclasses that increase the chance of being 

classified as a healthy control, and the coefficients with positive values identify 

subclasses that increase the chance of being classified as CVD.  As can be seen from the 

coefficients, the low density LDL (LDL1-LDL3) and TRL subclass values are identified 

as control factors, and the high dense LDL (LDL4-LDL5) and HDL3 subclasses are 

identified as CVD factors.  The HDL3 subclass has a very small positive coefficient, 

which could be an indication that there are some properties of low dense HDL that are 

atherogenic.   
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Figure 37: Normal Lipidemic LDA/SIR Coefficients for 5 Lipoprotein Subclasses 
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Figure 38: Normal Lipidemic LDA/SIR Separation of CVD/CTRL Using 11 

Lipoprotein Subclasses 
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Figure 38 represents the LDA/SIR separation of the CVD and CTRL subjects 

using the 11 subclasses.  The classification is similar to Figure 36 in that the negative 

values represent the classification as a CTRL and the positive values represent 

classification as a CVD.  The difference between Figure 36 and Figure 38 is that one less 

CVD subject was misclassified.   
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Figure 39: Normal Lipidemic LDA/SIR Coefficients for 11 Lipoprotein Subclasses 

 

 Figure 39 shows the coefficients found using LDA/SIR analysis on the 11 

lipoprotein subclasses.  When compared to the coefficients found for the 5 subclass 

separation, it can be seen that the smaller, more defined subclasses alter the coefficient’s 

strength and sign.  LDL-1 is part of the low density LDL subclass in the 5 subclass 

separation, which had a sign indicating it to be a CTRL factor.  However, when using the 

small subclasses, LDL-1 was assigned a positive coefficient indicating it as a factor 
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towards CVD identification.  It has also been observed that the HDL subclasses change 

sign as well.  HDL-2b, the lowest density HDL subclass, and HDL-3c, the highest 

density HDL subclass, are identified as a CTRL factors while HDL-2a, 3a, and 3b are 

identified as factors toward CVD classification. 

 This analysis shows the advantage of using the 11, more detailed subclasses of 

lipoproteins coupled with the advanced statistical methods of LDA/SIR in order to 

distinguish risk for CVD in normal lipidemic subjects.  As the lipoprotein subclasses 

became more defined, the LDA/SIR analysis increased the accuracy of its prediction.  

When compared to the standard lipid panel values used by practicing physicians, the 

lipoprotein density profile was better able to distinguish between those normal lipidemic 

subjects with CVD and those that are without CVD as defined through angiography.  

The only limitation of this method was in the requirement of having a large enough 

sample size in order to reduce the patient dependency of the analysis identified through 

X-Val. 

 LDA/SIR analysis of the lipoprotein subclasses goes further in prediction of 

CVD by identifying the subclasses that lead to high risk.  For the most part, this analysis 

fits into the current medical literature that low dense LDL and HDL are healthy and the 

high dense LDL and HDL are not.  This analysis, along with the previously described 

pilot study, indicates that there could be specific subclasses of the HDL that are 

atherogenic.  This is a new feature of HDL that is gaining support in recent studies.
58,119-

126
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3.2.1.4 Advanced Statistical Analyses Applied to the Comprehensive Patient Library for 

CVD Risk Assessment 

 As a result of the success in application of the LDA/SIR analysis to small 

libraries, it was determined that the lipoprotein density profiles and statistical analysis 

protocols would be more rigorously tested using a larger library that included a more 

comprehensive spectrum of subjects.  This study was designed to answer questions that 

had previously been unanswered, such as the accuracy of the method when used on a 

hold out sample, what effect patient demographics have on the analysis, how the 

fluorescent intensity for lipoproteins is affected by presence of CVD, and what method 

of analysis is best for the risk assessment of CVD.  For this study, the CVD patients 

were defined as having been diagnosed with CVD through angiography or cardiac event.  

The CTRL patients were defined as having a clear angiogram with less than 10% arterial 

blockage.  Traditional lipid panels for measurement of triglycerides and cholesterol for 

each subject were performed at Scott & White Hospital.  To assess the best method of 

analysis, Modes 1 and 2 data sets were analyzed using the LDA/SIR and QDA statistical 

analyses.  The comprehensive library consisted of 100 CVD subjects and 58 CTRL 

subjects.  Of these subjects, 70 CVD and 40 CTRL were selected as the training set for 

generating the LDA/SIR equation.  The remaining subjects were used as a holdout 

sample set to test the accuracy of the method on samples not used to create the LDA/SIR 

prediction equation. 
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3.2.1.4.1 Relation of HDL/LDL Cholesterol Measurements to Lipoprotein Density 

Profile Integrated Intensities 

 Before application of the statistical analyses to the lipoprotein density profiles, 

the relationship between the profiles and the traditional lipid measurements used for 

current risk assessment was explored.  Using commercial standards of HDL and LDL, a 

linear relationship between protein concentration and integrated fluorescence intensities 

was found.  These relationships are graphed in Figure 40.  However, when comparing 

cholesterol measurements with integrated fluorescence intensities for clincal subjects, a 

varied relationship was observed.  For the CVD subjects, the relationship was a scatter 

plot that showed little linearity.  When fitting the data to a linear equation, the R
2
 value 

was found to be 0.30 for LDL cholesterol measurements and 0.42 for HDL cholesterol 

measurements for the CVD subjects, indicating a poor fit.  These relationships are 

graphed in Figures 41 A and B.  By comparison, for the CTRL subjects, the relationship 

between the cholesterol measurements and the integrated fluorescence intensities 

showed a much more improved fit to the linear equation.  The R
2
 values for the CTRL 

measurements were found to be 0.69 for the LDL measurements and 0.67 for the HDL 

measurements.  This improved relationship between cholesterol measurements and 

fluorescence intensities for CTRL subjects is graphed in Figures 42 A and B.  A possible 

explanation for the difference between the CVD and CTRL libraries is that the NBD 

fluorophore interacts differently with the lipoprotein particles from a CVD subject when 

compared to the lipoprotein particles that are associated with the healthy controls.  This  
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Figure 40: Calibration Curve of Protein Concentration vs. Integrated Intensities of 

Commercial Lipoprotein Standards.  (A) LDL Calibration Curve (B) HDL 

Calibration Curve 
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Figure 41: Traditional Lipid Measurements in Relation to Integrated Intensities 

Found Using Lipoprotein Density Profiles for CVD Subjects. (A) LDL 

Measurements for CVD Library, (B) HDL Measurements for CVD Library 
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Figure 42: Traditional Lipid Measurements in Relation to Integrated Intensities 

Found Using Lipoprotein Density Profiles for CTRL Subjects. (A) LDL 

Measurements for CTRL Library, (B) HDL Measurements for CTRL Library 
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inherent difference may be contributing to the reason why the LDA/SIR analysis has 

been able to distinguish classification better than the tradition lipid measurements.  The 

interaction of the NBD-ceramide with the lipoprotein particles may be a sensitive probe 

of the morphology of these particles. 

 

3.2.1.4.2 Statistical Comparison of Lipoprotein Measurements between CVD and CTRL 

Sample Libraries 

 

Table 5: Comparison of Statistical Analysis for Traditional Risk Factors between 

CVD/CTRL Groups for the Comprehensive Library 

 
Factor P-value 

Patient Data 
Age 0.564 

Weight 0.368 

Standard Lipid 

Measurements 

TC 0.595 

TG 0.352 

HDL 0.628 

LDL 0.692 

Lp(a) 0.519 

 

 In order to assess the differences in the traditional lipid measures and patient 

background information between CVD and CTRL libraries, a 2-sample T-test was 

applied to compare the two groups using the comprehensive library.  Table 5 shows the 

results of the 2-sample T-tests applied to the patient’s background data and comparing 

the CVD group to the CTRL group.  The p-values from the T-tests were used to assess 

whether or not there were differences between the two groups.  A p-value of greater than 

0.05 meant that at a 95% confidence interval, the two groups were not statistically 
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different.  As can be seen from Table 5, there was no statistical difference between the 

CVD and CTRL groups for background data selected or the standard lipid 

measurements.  This leads to two conclusions: (1) the age distribution between the 

samples is similar and therefore differences are not due to age and (2) no difference can 

be detected using standard lipid measurements.  The findings presented here suggest that 

any improvements found in the risk assessment of CVD when applying the lipoprotein 

density profiles developed in this thesis to the comprehensive library of samples 

represent a significant improvement over the standard lipid measurements.  Current 

studies have indicated that there are significant relationships between cholesterol 

measurements for lipoproteins and CVD mortality rates.
42,57,122

  For example, elevated 

HDL cholesterol was correlated with a reduced level of CVD risk and mortality.  These 

studies were not able to identify a relationship between lipoprotein levels and the 

mortality rate for healthy subjects.  When compared to the data presented in this thesis, 

this relationship was not seen as no statistical difference could be found when using the 

cholesterol measurements for the subject population. 

Table 6 summarizes the results when the T-test analysis of the lipoprotein 

subclasses was applied to the lipoprotein density profiles.  The analysis was carried out 

on the total intensities of the subclasses (Mode 1) and the percent intensities of the 

subclasses (Mode 2).  For those lipoprotein subclasses with a p-value of <0.05, a 

statistically significant difference was found between the CVD and CTRL values for the 

respective subclass.  By comparing the p-values for each subclass with the standard lipid 

measurements, some conclusions were reached. First, the lipoprotein subclasses found 
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by density profiling showed statistical differences where the standard lipid 

measurements did not.  Second, there are differences in the statistical significance of the 

lipoprotein subclass that were detected when using the Mode 1 data analysis in 

comparison to Mode 2 data analysis.  These differences indicated that the method of data 

analysis could have an effect on the outcome of the LDA/SIR predictive outcome due to 

the quantitative measurement of the lipoprotein subclass calculated in Mode 1 analysis 

versus the measurement of relative contribution to the total lipoprotein density profile 

calculated in Mode 2 analysis.   

 

Table 6: Comparison of Statistical Analysis for Lipoprotein Density Profiles 

between CVD/CTRL Groups 

  
P-value from 2-Sample t-test 

 
Subclass Mode 1 Mode 2 

Lipoprotein Subclass 

TRL 0.000 0.000 

LDL1 0.000 0.024 

LDL2 0.002 0.070 

LDL3 0.000 0.005 

LDL4 0.019 0.490 

LDL5 0.309 0.000 

HDL2b 0.499 0.210 

HDL2a 0.008 0.877 

HDL3a 0.043 0.313 

HDL3b 0.031 0.000 

HDL3c 0.245 0.347 

 

3.2.1.4.3 LDA/SIR Analysis on Lipoprotein Measurements 

 With the differences between CVD and CTRL groups that were found through 

lipoprotein density profiling, application of the LDA/SIR analysis allowed for enhancing 
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the individual differences into a prediction model using the full lipoprotein density 

profile.  In order to identify the improvement in risk assessment that the lipoprotein 

density profiles had over the traditional lipid measurements, the traditional 

measurements were also analyzed using LDA/SIR.  Mode 1 and Mode 2 data from the 

lipoprotein density profiles were also compared to assess the best method for CVD risk 

assessment.   

 

Table 7: LDA/SIR Prediction Summary for Traditional Lipid Measurements and 

Lipoprotein Density Profiles 

Statistical Output 

Traditional 

Lipid 

Measurements 

Mode 1 Mode 2 

Prediction Accuracy (%) 58.5 81.8 81.8 

X-Val Accuracy (%) 50.0 76.4 77.3 

Holdout Accuracy (%) 50.0 72.9 72.9 

p-value 0.613 2.72 E-07 3.62 E-07 

 

For each data set, the total prediction accuracy, X-Val value, and efficiency of 

the model on a hold out sample were tested.  The results of these analyses are 

summarized in Table 7.  The p-values were calculated for the separations between CVD 

and CTRL groups that showed the most accurate prediction.  As can be seen from Table 

7, the traditional lipid measurements were only able to obtain 58.5% accuracy and an X-

Val and hold out sample score of 50.0%, indicating that the measurements did not allow 

for significant risk assessment.  However, the lipoprotein density profiles were able to 

obtain 81.8% accuracy with significant X-Val and hold-out sample scores.  The p-values 

were calculated for the LDA/SIR separations using just the Mode 1 and Mode 2 data and 
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showed that both data sets gave statistically significant separations between the CVD 

and CTRL groups.  Therefore, it was not evident which method of data analysis was 

preferred based on the similar predictive power between the methods of analysis.  

Further investigation into the nature of the LDA/SIR prediction equation was necessary 

to study the similar outcome found between Mode 1 and Mode 2 data analysis versus the 

different outcomes found when using the T-test. 

To further investigate the LDA/SIR predictive similarities between Mode 1 and 

Mode 2 data analysis, the coefficients for these analyses were studied for comparison 

between Modes 1 and 2 and between the previous studies reported.  The coefficients are 

graphed in histogram form in Figure 43.  The coefficients show similar polarities 

between the Mode 1 and Mode 2 data sets with slightly varied importance measured by 

the relative size of the coefficients.  The strength of each coefficient does not directly 

represent the differences found between subclasses in the 2-samples T-test.  For 

example, the HDL-2b subclass was found to be statistically similar between CVD and 

CTRL groups using the T-test analysis, but was given a larger coefficient in the 

LDA/SIR prediction equation when compared to other subclasses that were shown to be 

statistically different.  The reason for this lack of congruence between the LDA/SIR 

prediction equation and the T-test results is most likely due to the multivariate nature of 

the LDA/SIR analysis and how it includes the relationship of variables inside the CVD 

and CTRL groups and not just between the CVD and CTRL groups.  When comparing 

these coefficients of the comprehensive library study to the coefficients found from the 

normal lipidemic library study, the most significant observation is that the alternating 
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polarities of the HDL subclasses found from the normal lipidemic library study are 

present in the comprehensive library study with the exception of the HDL-3a subclass.  

The alternating HDL subclass polarities again gave evidence to support the existence of 

atherogenic forms of HDL as suggested in recent studies.  
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Figure 43: LDA/SIR Coefficients for Prediction of CVD for the Comprehensive 

Serum Library Using Mode 1 and Mode 2 Data Sets. 
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The graphical separation of CVD and CTRL for the traditional lipid 

measurements and each Mode of the training set data are depicted in Figure 44.  From 

Figure 44, it can be seen that the traditional lipid measurements were not able to separate 

the CVD and CTRL groups through a generated LDA/SIR equation.  Mode 1 and Mode 

2 data for lipoprotein subclasses were able to separate the two groups by using the 

respective LDA/SIR equations generated for each data set.  Slightly different 

distributions can be seen between Modes 1 and 2, but there was no difference in 

prediction accuracy between Modes 1 and 2.  There was a small increase in the X-Val 

score for Mode 2.  This increase in X-Val in Mode 2 represented the correct 

classification of one additional subject when compared to the X-Val of Mode 1.  The 

correct classification of one subject did not represent a significant change between 

Modes 1 and 2 and therefore it was unclear which method of data analysis was best for 

risk assessment.  It was clear from the analyses that lipoprotein density profiles did allow 

for better risk assessment of CVD in comparison to the traditional 

cholesterol/triglyceride measurements. 
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Figure 44: LDA/SIR Separations for the Comprehensive Serum Library for 

Lipoprotein Measurement Methods.   

(A) Tradition Lipid Measurement Data, (B) Mode 1 Data, (C) Mode 2 Data  
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The separation of CVD and CTRL groups for the Mode 1 data of the holdout 

sample set based on the calculated LDA/SIR values using the generated LDA/SIR 

equation is graphed in Figure 45.  The subject samples in the hold out set were not used 

to develop the LDA/SIR equation.  Therefore, the separation/accuracy of the holdout 

sample indicated that the LDA/SIR values can be used to assess risk for clinical samples.   
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Figure 45:  LDA/SIR Separations for the Hold Out Sample Set of the 

Comprehensive Serum Library Using Mode 1 Data 

 

In order to apply this prediction analysis to clinical samples, the error in 

classification needed to be studied further.  To study the precision of the LDA/SIR 

classification, the LDA/SIR analysis was carried out on the 10 replicate measurements 

used to assess the lipoprotein density profiling method repeatability.  Based on the 

LDA/SIR value, this sample was classified as at risk due to the positive value.  Using the 
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LDA/SIR prediction equation, the average LDA/SIR value for Mode 1 analysis was 

calculated to be 0.124 +/- 0.030.  The error represented by the standard deviation of the 

measurement represented a 23.61% spread in the LDA/SIR value.  For Mode 2, the 

average LDA/SIR value was calculated to be 0.152 +/- 0.030.  The standard deviation of 

this measurement represented a 19.74% spread in the LDA/SIR value.  This reduction 

was attributed to the reduced error due to the light source and serum volume when using 

the normalized Mode 2 analysis of the data.  Further reduction of this error was possible 

by using three sets of three replicate measurements and comparing the average data 

calculated for each set of three profiles.  The average %RSD for this method was 

calculated at 11.13% and 9.46% for Modes 1 and 2, respectively, when applying the 

LDA/SIR equations to the averages of three replicates.  This reduction of the error in the 

LDA/SIR values qualified the analysis for clinical assessment of risk as previously 

defined.  

To further improve in the prediction accuracy of the LDA/SIR analysis, patient 

histories and background information were added as additional variables.  The 

traditional risk factors for CVD that were included in the analysis include tobacco use, 

family history of disease, presence of hypertension, presence of diabetes, subject age, 

and body mass index.  For the factors that had a yes/no answer as a response, they were 

included into the analysis using a 1 for yes and 2 for no.  The summaries of the 

LDA/SIR analyses on the Mode 1 and Mode 2 data sets are shown in Tables 8 and 9, 

respectively.  The results for the LDA/SIR analyses are expressed in terms of the 
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prediction accuracy, X-Val accuracy, and accuracy on a holdout sample when each 

individual factor was added to the lipoprotein density profile information.   

 

Table 8: Influence of Tradition Risk Factors on the LDA/SIR Analysis of Mode 1 

Data of Lipoprotein Density Profiles for the Comprehensive Library 

Risk Factor 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

Holdout 

Accuracy 

(%) 

Density Profile Data (DP) 81.8 76.4 72.9 

DP + Age 80.9 76.4 75.0 

DP + BMI 82.1 75.5 77.1 

DP + Diabetes 80.6 77.8 70.8 

DP + Tobacco Use (T) 82.7 78.2 77.1 

DP + Hypertension (HT) 85.2 75.0 75.0 

DP + Family History (FH) 83.5 77.1 75.0 

DP + HT/FH 86.9 77.6 75.0 

DP + T/HT/FH 84.1 79.4 72.9 

 

Table 9: Influence of Tradition Risk Factors on the LDA/SIR Analysis of Mode 2 

Data of Lipoprotein Density Profiles for the Comprehensive Library 

Risk Factor 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

Holdout 

Accuracy 

(%) 

Density Profile (DP) 81.8 77.3 72.9 

DP + Age 81.8 74.5 72.9 

DP + BMI 83 76.4 75 

DP + Diabetes 80.6 76.9 75 

DP + Tobacco Use (T) 80.9 77.3 75 

DP + Hypertension (HT) 84.3 78.7 75 

DP + Family History (FH) 82.6 75.2 75 

DP + HT/FH 86 80.4 72.9 

DP + T/HT/FH 84.1 78.5 72.9 
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Of the six risk factors added to the LDA/SIR analysis, only three showed 

improvement in the accuracy of the method.  These factors were tobacco use, 

hypertension, and family history.  The largest improvement was seen when applying the 

history of hypertension in subjects.  The prediction accuracy increased from 81.8% to 

85.2% and 84.3% for Modes 1 and 2, respectively.  Limited improvement was realized 

in the X-Val scores, but there was an increase of the accuracy of the model when testing 

the holdout sample sets.  Combinations of the factors which showed the best 

improvement were also tested as indicated in Tables 8 and 9.  The combination of 

hypertension and family history, in addition to the lipoprotein subclasses, was found to 

have the best accuracy at 86.9% for Mode 1 and 86.0% for Mode 2.  There was also an 

increase in the accuracy of the X-Val and holdout sample scores.  These results indicate 

that the best prediction method was when the lipoprotein density profiles were combined 

with the factors relating to hypertension and family history. 

Subject age, BMI, and presence of diabetes were included as factors in the 

analysis but there were no significant improvements in the LDA/SIR prediction 

accuracy.  These results showed that the LDA/SIR analysis on lipoprotein density 

profiles for risk assessment of CVD was not improved by the addition of the age, BMI, 

or presence of diabetes in the subjects.  The hypothesis that the lipoprotein density 

profiles may be time dependent fingerprints that represent the status of CVD in a patient 

at the time that the serum sample was collected would explain the lack of improvement 

with the additional risk factors.  The effects of age, BMI, and diabetes could be 
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inherently represented in the lipoprotein density profiles.  The effects these factors have 

on the lipoprotein density profiles require further research. 

To examine the effect of adding the traditional risk factors to the statistical 

analyses, the coefficients of the LDA/SIR prediction equation formed from using the 

Mode 1 data coupled with the traditional risk factors were compared to the coefficients 

found using just the Mode 1 data set.  The coefficients for the addition of traditional risk 

factors are depicted in Figure 46.  The polarity of the coefficients for family history and 

presence of hypertension were both found to be negative, indicating that the risk factors 

influence the risk assessment towards being a CTRL.  To understand this finding, the 

method of applying these values to the LDA/SIR analysis was explored.  The presence 

of the risk factor was given the value of 1 and the lack of presence of the risk factor was 

given the value of 2.  With the larger value indicating that the subjects did not have the 

the risk factor, the negative value of the LDA/SIR coefficient indicates that the lack of 

risk factors increased the probability of being classified as a CTRL.  This finding is 

consistent with the established risk factors and gives support to the premise that the 

LDA/SIR coefficients have the potential for augmenting the risk assessment panel.  
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Figure 46: LDA/SIR Coefficients for Lipoprotein Subclasses with the Addition of 

Tradition Risk Factors. (FH=Family History, HT=Hypertension) for the 

Comprehensive Library 

 

3.2.1.4.4 QDA Analysis of Lipoprotein Measurements 

 A more advanced statistical analysis that can be applied to the patient libraries is 

Quadratic Discrimination Analysis (QDA).  QDA is closely related to LDA in that it 

creates a classification equation based on the variables for the CVD and CTRL goups.  

QDA does not hold to the initial assumption that the covariance between groups is 

identical.  The model for QDA analysis takes into account the covariance differences 

and can be a more comprehensive analysis.  For this reason, a larger number of subject 

samples are required to achieve statistical significance when using QDA.  Consequently, 

the comprehensive serum library was utilized for the QDA study.  Since the sample size 
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was not increased, an increase in sample bias was expected in the form of a lower X-Val 

score. 

 With the results from the LDA/SIR analysis of the comprehensive serum library 

showing that application of traditional risk factors can improve the CVD risk 

assessment, the same factors were studied using the QDA analysis.  Mode 1 and Mode 2 

data sets were both used to further explore and identify the best method with which to 

represent the data.  The summaries of these analyses can be found in Tables 10 and 11 

for Modes 1 and 2, respectively.   

The best accuracy for CVD risk assessment previously reported using LDA/SIR 

was 81.8% for the lipoprotein subclasses and 86.9% with the addition of family history 

and hypertension to the Mode 1 data set.  Based on the results found when implementing 

the QDA analysis, improvements were realized in the prediction accuracy and the 

accuracy when testing the holdout sample set.  The total prediction accuracy for the 

lipoprotein subclasses increased to 84.5% and the addition of the family history and 

hypertension risk factors further improved the analysis to 89.7% accuracy.  The best 

result previously seen for the holdout sample set was 75% accuracy.  Using the 

lipoprotein subclasses coupled with the risk factors of family history and hypertension, 

the holdout sample set accuracy was improved to 85.4%.  There was a reduction in the 

X-Val score, but this was anticipated due to the nature of the statistical analysis in 

relation to the sample size.  A larger sample library would improve the X-Val score. 
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Table 10: Influence of Tradition Risk Factors on the QDA Analysis of Mode 1 Data 

of Lipoprotein Density Profiles for the Comprehensive Library 

Risk Factor 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

Holdout 

Accuracy 

(%) 

Density Profile (DP) 84.5 70.9 83.3 

DP + Age 84.5 70.9 81.3 

DP + BMI 88.7 70.8 77.1 

DP + Diabetes 87.0 67.6 79.2 

DP + Tobacco Use (T) 86.4 68.2 85.4 

DP + Hypertension (HT) 87.0 70.4 77.1 

DP + Family History (FH) 89.0 70.6 83.3 

DP + HT/FH 89.7 68.2 85.4 

DP + T/HT/FH 89.7 64.5 72.9 

 

Table 11: Influence of Tradition Risk Factors on the QDA Analysis of Mode 2 Data 

of Lipoprotein Density Profiles for the Comprehensive Library 

Risk Factor 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

Holdout 

Accuracy 

(%) 

Density Profile (DP) 85.5 70.0 79.2 

DP + Age 85.5 68.5 72.9 

DP + BMI 84.0 69.8 81.3 

DP + Diabetes 88.0 67.6 79.2 

DP + Tobacco Use (T) 87.3 66.4 83.3 

DP + Hypertension (HT) 87.0 70.4 75.0 

DP + Family History (FH) 89.9 70.6 83.3 

DP + HT/FH 88.8 70.1 79.2 

DP + T/HT/FH 88.8 67.3 75.0 
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 The improvements seen through the application of QDA statistical analysis 

proved to show the best classification accuracy for CVD.  There were significant 

improvements over the LDA/SIR analysis.  For both the LDA/SIR and QDA statistical 

analyses, the lipoprotein density profiles have shown to provide a more accurate CVD 

risk assessment than traditional lipid measurement or traditional risk factors.  Based on 

the results in this study, the optimum method of CVD risk assessment for application to 

clinical studies was found using the QDA analysis of the lipoprotein density profile data 

with the addition of the tradition risk factors hypertension and family history of CVD.  

Future directions in the improvement of this methodology include increasing the size of 

the library and incorporating the correct epidemiology of the sample library.  In addition, 

incorporation of novel risk markers will be included to increase the accuracy 

determining whether an individual has risk of developing CVD.   

 

3.2.1.5 LDA/SIR Analysis Applied to Hypercholesterolemia 

 The next sample library in which the lipoprotein density profiles and LDA/SIR 

analysis was applied was a library of children’s serum samples for which there were 

subjects with and without hypercholesterolemia.  Hypercholesterolemia is a disease that 

involves abnormally high levels of cholesterol in a subject’s serum.  This disease can 

also be a precursor to the onset of CVD.  Early risk assessment of this disease in children 

would be a first step in utilizing the potential for using the lipoprotein density profiles as 

a CVD risk assessment tool.  Preventative measures could then be applied to reduce the 

subject’s risk of CVD.  The hypercholesterolemic subjects from this library were also 
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monitored over a period of time as they were treated with statin therapies or placebos to 

measure the effectiveness of the therapy.  The goal of this study was to use the LDA/SIR 

analysis to develop a prediction algorithm for hypercholesterolemia and then in case 

studies to assess the effectiveness of using the LDA/SIR algorithm to monitor the 

influence of statin treatment. 
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Figure 47: LDA/SIR Separation for Hypercholesterolemic Subjects 

 

3.2.1.5.1 LDA/SIR Analysis for Risk Assessment of Hypercholesterolemia 

 The LDA/SIR analysis proved effective in the risk assessment of 

hypercholesterolemia.  For this study, all 11 lipoprotein subclasses were included.  The 
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prediction accuracy of this study was found to be 97.6% with an X-Val value of 92.7%.  

The LDA/SIR separation is depicted in Figure 42.  Only one subject from the sample 

library was misclassified using the LDA/SIR analysis.  The difference in the prediction 

accuracy and the X-Val score was only 4.9% which indicated that there was very little 

sample dependency for this analysis, even though the total sample size was only 41 

subjects.  This study showed a robust statistical significance based on the X-Val test 

despite the small number of subjects in the library.   

 The low sample dependency for detection of hypercholesterolemia could 

indicate that the separation between the two groups in this study was more readily 

detected due to the nature of the hypercholesterolemia and the elevated lipoprotein 

cholesterol content related to the disease.
127

  This elevated cholesterol level affected the 

fluorescence intensities in the lipoprotein profiles.  When comparing the total integrated 

fluorescence intensities for the TRL, LDL, and HDL between groups, it was found that 

the intensities for the TRL and LDL of the hypercholesterolemic subjects were almost 

double that of the non-hypercholesterolemic subjects.  The average HDL intensities 

between groups were relatively similar and did not show any difference between groups.  

The elevated fluorescence intensities throughout the TRL and LDL subclasses more 

readily distinguished between sample groups and reduced the sample dependency of this 

study. 
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Figure 48: LDA/SIR Coefficients for Prediction of Hypercholesterolemia in 

Children 

 

 To access the effect of the lipoprotein subclasses with respect to the prediction 

analysis, the coefficients of the prediction algorithm were studied.  These coefficients 

are depicted in Figure 48.  The majority of the coefficients for the hypercholesterolemia 

prediction algorithm have the same polarities as the coefficients for the comprehensive 

serum library.  The coefficients for TRL, LDL-1, and LDL-5 are the only variables that 

change polarity between the studies.  The constant that is included in the algorithm also 

changes.  The constant for the hypercholesterolemic study was found to be -1.353.  The 

constant for the comprehensive serum library was found to be 2.054.  The polarity 

change for the hypercholesterolemic study means that the samples were weighed 
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towards a “healthy” classification and that the classification changed based on the 

increase in fluorescent intensities for the variables with positive coefficients.  When 

compared to the coefficients for the comprehensive serum library, the HDL subclasses 

show a similar pattern of polarities for CVD prediction.  This again is evidence that 

supports the theory of atherogenic forms of HDL.     

 With the similarities in algorithm coefficients between the comprehensive 

serum library and the hypercholesterolemia children’s library, application of the 

hypercholesteremic subject data from the lipoprotein profiles to the LDA/SIR equation 

for the comprehensive serum library was investigated.  The resulting LDA/SIR values 

for the different subjects have been overlaid onto the separation graph from the 

comprehensive library in Figure 49.  Of the 31 hypercholesterolemic subjects, six of the 

subjects were classified as CTRL and 25 of the subjects were classified as CVD based 

on the LDA/SIR calculated values.  For the 10 non-hypercholesterolemic subjects, 9 of 

the 10 subjects were classified as CVD while only one was classified as CTRL based on 

the LDA/SIR calculated values. 
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Figure 49: Classification of Hypercholesterolemia Children's Library Using the 

Comprehensive Serum Library LDA/SIR Algorithm. (HC = Hypercholesterolemia 

Subject, Non-HC = Non-hypercholesterolemia Subject) 

 

 The classification of the hypercholesterolemic subjects as CVD correlated with 

the fact that the disease can be a precursor to the onset of CVD.  The classification of the 

“healthy” children as CVD indicated that the algorithm generated for the adult 

population of the comprehensive serum library was not applicable to the children 

samples since there should be very little, if any, arterial blockage in children.  Current 

studies into the stability of the lipid panels from childhood to adulthood indicate the 

potential changes in lipoprotein profiles during adolescence.
128

  There are also studies 

that have indicated the correlation between lipoprotein levels in childhood and the 

resulting adult levels.
129

  The findings from this research coupled with the ambiguity that 
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has been reported in the correlation of lipid values between childhood and adulthood 

indicate that further investigation is needed into the correlation of the LDA/SIR risk 

assessment and the longitudinal development of CVD. 

  

3.2.1.5.2 Effects of Therapy/Placebo on Risk Assessment of Hypercholesterolemia 

 The next goal of this research was to assess the benefits of implementing the 

LDA/SIR risk analysis in identifying the effects that treatment can have on the subject’s 

risk.  The specific treatment studied in this experiment was the use of statin therapy.  

Statin therapy has been well documented to reduce cholesterol levels and mortality due 

to CVD.
37,38,124

  To test statin therapy’s effectiveness on the hypercholesterolemic 

children, some were given the treatment while others received a placebo.  Treatment was 

applied over a 48 week span with serum samples drawn at the 0, 24, and 48 week point.  

There was also a washout period of 12 weeks applied to this study after the 48 week 

mark.  This washout period halted all therapies and was designed to test the effect that 

halting statin therapy had on the lipoprotein profiles.  In this study, the effects of 

treatment were related to the change in the initial risk assessment for risk of 

hypercholesterolemia. 

 When studying the profiles of subjects treated with statin therapy, results were 

subject-dependent.  While nearly all subjects treated with statins showed changes in 

LDA/SIR values towards the CTRL group at some point during therapy, there were 

some patients whose values fluctuated up and down.  Four patient’s (I-IV) LDA/SIR 

changes over time have been depicted in Figures 50 and 51.  Subjects I and II showed a  
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Figure 50: LDA/SIR Values for Hypercholesterolemia Subjects Treated with Statin 

Therapy (Subjects I and II) 
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Figure 51: LDA/SIR Values for Hypercholesterolemia Subjects Treated with Statin 

Therapy (Subjects III and IV) 
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general reduction in the LDA/SIR value which indicated a decrease in the risk of 

hypercholesterolemia over the span of statin treatment.  This trend was found in six of 

the eight subjects treated with statin therapy.  Subjects III and IV showed varied results 

including LDA/SIR values that were increased relative to the baseline value at Week 0.  

This result could indicate that there is a patient to patient variability in the effectiveness 

of treatment.  In all statin treated subjects, some form of reduced LDA/SIR value was 

observed throughout the study.  Three of the eight subjects even showed a change from a 

positive LDA/SIR value to a negative LDA/SIR value which would indicate a change in 

CVD risk.  After the washout period (Week 60), seven of the eight statin-treated subjects 

showed an increased LDA/SIR value indicating that when statin treatment was 

terminated, the CVD risk increased.   

 The placebo-treated subject’s LDA/SIR values showed a variety of patterns.  

These patterns are depicted in Figures 52 and 53.  Of the nine subjects treated with 

placebos, three subjects showed varying LDA/SIR values similar to that found with the 

statin treated subjects indicating no significant changes over the study period (Subject V, 

Figure 52A).  Three of the subjects showed increased LDA/SIR value over the study 

period indicating stability in the classification identified through the LDA/SIR analysis 

(Subject VI, Figure 52B).  Finally, three subjects displayed a decrease in LDA/SIR 

values over the study period which would indicate a reduced risk of disease even though 

they were treated with placebos (Subject VII, Figure 53A).  Of these three subjects, only 

one subject (Subject VIII, Figure 53B) showed a reduction in the LDA/SIR value to a  
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Figure 52: LDA/SIR Values for Hypercholesterolemia Subjects Treated with 

Placebos (Subjects V and VI) 
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Figure 53: LDA/SIR Values for Hypercholesterolemia Subjects Treated with 

Placebos (Subjects VII and VIII) 
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negative value indicating a diagnosis change.  These studies suggest that the LDA/SIR 

value for a subject can fluctuate over a period of time, most like due to lifestyle. 

 To understand how the changes in the lipoprotein density profiles affected the 

LDA/SIR value calculated from the algorithm, a comparison of the integrated 

fluorescent intensities and the value of each lipoprotein subclass using the coefficients 

from the LDA/SIR algorithm was carried out.  Figures 54 and 55 compares the 

lipoprotein density profiles for Subject I (statin therapy) and Subject V (placebo) and the 

calculated LDA/SIR contributions by lipoprotein subclass for the baseline draw (Week 

0) and final draw (Week 48) for each treatment.  For Subject I, analysis of the integrated 

fluorescence intensities between week 0 and week 48 showed reduction in LDL-1 

through LDL-4 subclasses and a relative increase in the HDL3 subclasses.  This pattern 

correlated with the reported effects of statin therapy on lipoproteins.  The impact of these 

changes was not as prevalent in the LDA/SIR values for each subclass due to the use of 

natural logs to normalize the data.  An increase in values for three subclasses with 

negative coefficients and decrease in value for one subclass with a positive coefficient 

explained the reduction in the total calculated LDA/SIR value for Subject I between 

week 0 and week 48.  For Subject V, the integrated intensities showed relatively no 

difference between week 0 and week 48 except for a reduction in the LDL-3 and LDL-4 

subclasses.  The calculated LDA/SIR values for each subclass also showed relatively no 

change between week 0 and week 48.  These findings show that slight changes in the 

profile were seen despite using a placebo for treatment.  
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Figure 54:  Comparison of Integrated Fluorescent Intensities and LDA/SIR Values 

for Each Lipoprotein Subclass: Subject I (Statin Therapy).  
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Figure 55:  Comparison of Integrated Fluorescent Intensities and LDA/SIR Values 

for Each Lipoprotein Subclass: Subject V (Placebo Therapy) 
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 To identify whether or not the changes found in the placebo treated subjects 

were insignificant, a study would need to be performed to assess the stability of the 

lipoprotein density profile and the LDA/SIR value over time.  The current study gave 

evidence that the effects of statin treatment can be studied using the lipoprotein density 

profile and the LDA/SIR analysis and that the treatment did reduce the risk assessment 

of hypercholesterolemia.  Other forms of medical treatment must still be studied in order 

to confirm the use of these methods for the assessment of individual treatment 

effectiveness.  Similar studies must also be carried out in order to assess the effect of 

medical treatments on CVD risk assessment. 

 

3.2.2 Further Analytical Methods Applied to the Statistical Analyses to Improve Risk 

Assessment of CVD 

 In order to assess any improvements that changes in methodology or additional 

risk factors might have on the CVD risk assessment, a subset of serum samples were 

selected from the Comprehensive Serum Library to test prior to application to the full 

serum library.  This subset was made up of 36 CVD and 36 CTRL samples which were 

selected based on the LDA/SIR analysis and were a mix of correctly and incorrectly 

classified samples for each condition.  The baseline accuracies for the LDA/SIR and 

QDA analyses on this sample set were found to be 86.1% and 93.1%, respectively.  The 

X-Val scores for the LDA/SIR and QDA analyses were found to be 79.2% and 70.8%, 

respectively.  The LDA/SIR prediction equation coefficient histogram for the 72 subject 

library is shown in Figure 56.  
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Figure 56:  LDA/SIR Coefficients for the 72 Patient Library Using the NaBiEDTA-

Based Gradient System 

 

The goal of these studies was to measure the improvements in risk assessment 

when applying new analytical methods and/or risk factors to the statistical analyses.  The 

methods tested for improvement were the use of Cs2CdEDTA based gradients to expand 

the lipoprotein density profiles and application of mass spectrometry to the 

apolipoproteins present in each subject’s HDL.  
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3.2.2.1 Application of Cs2CdEDTA-based Lipoprotein Density Profiling for CVD Risk 

Assessment 

 With all of the evidence from the previous CVD risk studies pointing to the HDL 

subclasses as the major contributors to the risk assessment, further studies were designed 

to specifically look at the HDL subclasses by expanding this region of the lipoprotein 

profiles using the Cs2CdEDTA solute based systems.  As previously described, the 

Cs2CdEDTA solute-based gradient systems allow for expansion of the HDL or the LDL 

subclasses.  The goal of this study was to explore the effect that expanding the 

lipoprotein profiles have on the statistical analyses for risk assessment.   

 The use of the Cs2CdEDTA-based gradients was analyzed in multiple ways.  

First, the total lipoprotein profile was analyzed by combining the results from the LDL 

and HDL profiles using Cs2CdEDTA.  Next, the use of Cs2CdEDTA for profiling the 

HDL subclasses was studied by combining the HDL data with LDL data from the 

NaBiEDTA-based profiles.  The differences in prediction accuracies and X-Val scores 

were used to assess the advantages of the expanded lipoprotein profiles.  For this 

analysis, Mode 1 data from the NaBiEDTA-based profiles was used as a baseline due to 

it previously showing the best accuracy in terms of risk assessment. 
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Table 12:  LDA/SIR and QDA Statistical Analyses for Cs2CdEDTA-Based 

Gradients of the 72 Subject Data Set 

System 

LDA/SIR Analysis QDA Analysis 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

NaBiEDTA 86.1 79.2 93.1 70.8 

Cs2CdEDTA 88.9 83.3 93.1 76.4 

Cs2CdEDTA w/o IDL 86.1 79.2 91.7 77.8 

NaBiEDTA (TRL & LDL) 

and Cs2CdEDTA (HDL)  
87.5 77.8 94.4 77.8 

NaBiEDTA + HT & FH 88.6 78.6 92.9 74.3 

Cs2CdEDTA + HT & FH 90 82.9 98.6 82.9 

Cs2CdEDTA w/o IDL + HT 

& FH 
87.1 78.6 95.7 82.9 

NaBiEDTA (TRL & LDL) 

and Cs2CdEDTA (HDL) + 

HT & FH  

87.1 80 94.3 75.7 

 

 The summary of the LDA/SIR and QDA statistical analyses are displayed in 

Table 12.  The use of Cs2CdEDTA-based lipoprotein density profiles showed minimal 

improvements in the prediction accuracy.  This improvement was found in the form of 

one more subject being correctly classified than when using the NaBiEDTA-based 

density profiles.  This improvement was not clearly defined as significant due to the 

small number of samples in the study.   The application of QDA with the risk factors of 

family history and hypertension to the Cs2CdEDTA density profile data, however, 

showed a very large improvement in the prediction accuracy and the X-Val score.  The 

prediction accuracy was found to be 98.6% with an X-Val score of 82.9%.  The 15.7% 

difference between the X-Val score and prediction accuracy indicates some level of 

patient dependency.  However, this was just a subset of the data tested to confirm the 
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potential of expanding the lipoprotein profiles.  The increased prediction power 

indicated that the Cs2CdEDTA-based gradients for expanding the lipoprotein profiles 

have the potential for improving the risk assessment of CVD. 

 With the best potential for risk assessment of CVD found using the Cs2CdEDTA-

based gradients and patient history, further analysis of how these factors impacted the 

risk assessment by studying the coefficients of the LDA/SIR analysis was performed.  

The coefficients are depicted in Figure 57.  The addition of the IDL subclass to the 

analysis was deemed significant with the large coefficient that was associated with the 

lipoprotein subclass.  The coefficients for the family history and hypertension, 4.53E-4 

and 1.48E-3 respectively, were so small in comparison to the lipoprotein subclasses that 

they are indistinguishable in the figure.  The small size of these coefficients explains 

why the improvement when adding the traditional risk factors only improves the 

accuracy of the analysis by one patient.  The largest difference between the coefficients 

from the Cs2CdEDTA lipoprotein subclasses and the NaBiEDTA subclasses was seen in 

the LDL subclasses.  The LDL2-LDL5 subclasses all switched polarities and relative 

strengths.  The LDL1 subclass did not change in polarity, but the size of the coefficient 

was largely different.  These differences in the LDL subclasses and their application to 

the CVD risk analysis required further study. 
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Figure 57: LDA/SIR Coefficients for Lipoprotein Subclasses and Traditional Risk 

Factors Using Cs2CdEDTA Density Gradient System on the 72 Subject Data Set 

 

 To further understand the changes in how the LDL subclasses contributed to the 

LDA/SIR analysis when applied to the Cs2CdEDTA lipoprotein subclass data, the LDL 

profiles of different subjects were compared when using the two different gradient 

systems.  The change in LDL peak densities between the different solute gradient curves 

was seen for both CVD and CTRL subjects.  Examples of lipoprotein profiles for both 

solute systems are shown for CTRL and CVD subjects in Figures 58 and 59, 

respectively.  When examining the changes in the densities of the prominent fluorescent 

peaks between the CVD and CTRL groups, it was found that the average changes in 
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density were 0.0260 +/- 0.0020g/mL and 0.0276 +/- 0.0020g/mL, respectively.  When 

testing the difference between these two groups with an ANOVA analysis, the p-value of 

the analysis was found to be 0.131, which means that at a 95% confidence level, the two 

groups were not statistically different.  This means that the change in densities was 

uniform between the disease classifications and that it had nothing to do with the type of 

patient tested.  The change in the LDA/SIR equation between solute systems was 

therefore related to the difference in cationic interactions between the solute and the 

phospholipids in LDL. 

 

3.2.2.2 Mass Spectrometry of HDL Apolipoproteins for Application to CVD Risk 

Assessment 

 Through previous work performed in our laboratory for profiling the mass 

spectra of apolipoproteins in the HDL fraction of patient serum, the identification of a 

post translational modification (PTM) of Apo C-I was identified in a small cohort of 

CVD subjects that wasn’t present in the cohort of CTRL subjects.
16

  This PTM was 

identified as a potential risk factor that could aid in the risk assessment of CVD.  For this 

reason, further analysis of the applications of the mass spectra was performed, 

specifically to incorporate mass spectral data into the LDA/SIR and QDA analyses.  The 

goal of this study was to assess the potential of adding HDL apolipoprotein mass 

spectral data to the statistical analyses in order to improve the CVD risk assessment and 

identify potential risk factors for CVD based on the mass spectra. 
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Figure 60: Mass Spectra of HDL Apolipoproteins for CVD Patient 124 
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Figure 61: Mass Spectra of HDL Apolipoproteins for CVD Patient 148 
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Figure 62: Mass Spectra of HDL Apolipoproteins for CVD Patient 171 
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Figure 63: Mass Spectra of HDL Apolipoproteins for CTRL Patient 013 
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Figure 64: Mass Spectra of HDL Apolipoproteins for CTRL Patient 033 
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Figure 65: Mass Spectra of HDL Apolipoproteins for CTRL Patient 043 
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3.2.2.2.1 Mass Spectra Differences between CVD and CTRL Cohorts 

 Through examination of the mass spectra between the subsets of CVD and CTRL 

samples, differences in the mass spectra for the two groups were identified.  Examples 

for both CVD and CTRL mass spectra are shown in Figures 60-65.  Figures 60-62 

represent mass spectra for CVD samples.  Figures 63-65 represent mass spectra for 

CTRL samples.  Each mass spectrum represents a molecular weight modification 

(MWM) that was observed relative to the CVD or CTRL cohort.  The most easily 

identifiable MWMs found between the CVD and CTRL groups were in the Apo A-I, 

Apo C-I, and Apo A-II mass regions.  These features were easily identifiable due to the 

large mass differences between these apolipoproteins in comparison to each other and 

the other apolipoproteins present in the HDL particles.  A summary of the average 

apolipoprotein masses and the MWMs observed are shown in Table 13.  The high 

standard deviation in masses for the un-modified forms of Apo A-I and Apo A-II could 

indicate further MWMs that were not able to be identified through the small number of 

samples selected for this study.  In the sections following, the differences between CVD 

and CTRL groups for these mass ranges will be further explored. 
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Table 13: Masses of HDL Apolipoproteins between CVD and CTRL Cohorts 

Measured Using MALDI-TOF MS 

Apolipoprotein 

CTRL Cohort CVD Cohort 

Avg. Mass 

(Da) 

Std. 

Dev. 

Avg. Mass 

(Da) 

Std. 

Dev. 

Apo A-I 28051 118 28110 72 

Apo A-I MWM 27558 7 27543 19 

Apo A-II 17275 92 17258 124 

Apo A-II MWM 16999 2 16988 6 

Apo C-I 6631 12 6623 17 

Apo C-I MWM 6729 4 NA NA 
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Figure 66: Apo A-I Mass Distribution between CVD and CTRL Cohorts 

 

 The difference between the CVD and CTRL groups with respect to the 

apolipoprotein Apo A-I mass distribution is depicted in Figure 66.  The documented 

molecular weight for Apo A-I is 28,016Da.
48

  The masses for Apo A-I and its MWM in 

the CVD samples were found to be an average of 28,110 +/- 72 Da and 27543 +/- 19 Da, 
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respectively.  The masses for Apo A-I and its MWM in the CTRL samples were found to 

be an average of 28,051 +/- 118 Da and 27558 +/- 7 Da, respectively.  The difference in 

the Apo A-I masses between groups was examined through an ANOVA analysis.  The p-

value for this analysis was found to be 0.001 which indicated that there was a 

statistically significant difference between the CVD and CTRL cohorts.  The difference 

between groups was attributed to the number of samples in the CVD group with the 

presence of the MWM of Apo A-I.   

The MWM of Apo A-I was present in a large number of samples in the CVD 

cohort in comparison to its presence in the CTRL cohort.  20 of the 36 CVD subjects 

were identified to possess the MWM of Apo A-I.  Figure 60 (Patient 124) shows a CVD 

sample without the Apo A-I MWM.  Figures 61 and 62 (Patients 148 and 171, 

respectively) show CVD samples with the MWM of Apo A-I.  Figure 64 (Patient 033) 

shows a CTRL sample with the presense of the MWM of Apo A-I.  Figure 63 and 65 

(Patients 013 and 043, respectively) show CTRL samples without the Apo A-I 

modification.   

The MWM of Apo A-I identified in this study was attributed to a change in the 

molecular weight of the apolipoprotein by approximately -450Da to a final molecular 

weight of ~27,550Da.  This molecular weight of Apo A-I has previously been identified 

in cows where the Apo A-I is missing two amino acids in comparison to the human form 

of Apo A-I.  It is possible that a loss of two amino acids in the Apo A-I in humans could 

result in an increased risk of CVD due to the changes it causes in the metabolism of 

HDL.  A mass peak for the subjects with the MWM of Apo A-I was present in the mass 
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spectra at the documented molecular weight of Apo A-I; however it was not the 

prominent mass peak of the region.   

Of the 36 CTRL subjects in this study, only four of the CTRL subjects were 

identified as having the MWM of Apo A-I present in their mass spectra.  The presence 

of this MWM in the CTRL samples indicated that while the MWM could be a risk 

factor, having the MWM of Apo A-I does not mean that a subject will have CVD.  The 

presence of the MWM did show the potential for the application of Apo A-I mass 

spectral data to the LDA/SIR and QDA analyses as an added risk factor in the 

multivariate analyses. 

 The results of comparing the Apo C-I mass spectra between CVD and CTRL 

groups led to an unexpected observation.  Previous analysis of the Apo C-I mass spectra 

indicated that there was a MWM present for all eight CVD subjects tested while there 

was no MWM present in the eight CTRL subjects tested.
16

  This MWM presented itself 

in the form of an additional 90-100Da to the documented molecular weight of 6630Da 

for Apo C-I.  The results found using the subset of 72 patients, 36 CVDs and 36 CTRLs, 

differed from this observation in that the only subjects for whom a MWM was present 

were the CTRL subjects.  The distribution of the Apo C-I masses for each group is 

shown in Figure 67. 
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Figure 67: Apo C-I Mass Distribution between CVD and CTRL Cohorts 

 

Of the 36 CTRL subjects in this study, eight showed the presence of the Apo C-I 

MWM that was previously identified for the CVD subjects in the pilot study.  For the 

CTRL subjects that did not show the presence of the MWM, the average mass was found 

to be 6631 +/- 12 Da.  The MWM of Apo C-I was identified with the average mass of 

6729 +/- 12 Da.  Figure 65 (Patient 043) represents the mass spectrum of a subject with 

the MWM of Apo A-I.  The MWM was not present in any of the 36 new CVD subjects 

tested in this study.  The average mass for all of the 36 CVD subjects was found to be 

6623 +/- 17 Da.  While the Apo C-I mass between the CVD and CTRL groups was 

found to be statistically significant through ANOVA analysis, the relative error in the 

MALDI-TOF instrument for this mass region was reported to be +/-10Da which 
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indicated that the mass difference between the two groups is indistinguishable except for 

those subjects with the MWM of Apo C-I. 

 The presence of the MWMM in the Apo C-I for the CTRL subjects is counter to 

the pilot study data that identified the MWM of Apo C-I is a biomarker for CVD.  Of the 

36 CTRL subjects in this study, seven of the subjects tested were also used for the pilot 

study.  For all seven subjects, the results of the current mass spectra correlated with the 

results found in the pilot study.  This indicated that the MWM presence in the CTRL 

subjects was not experimental error, but a real observation.  The observation that none of 

the 36 CVD subjects tested in this study had the reported MWM for Apo C-I was also 

counter to the pilot study.  The variation between the pilot study results and the results 

found in the current study could be related to the design of each study.  The pilot study 

was specifically designed to study subjects based on their likelihood to have atherogenic 

HDL.  The 72 subjects selected for the current study were selected based on their 

LDA/SIR classification in the comprehensive library study.   

In order to explain the presence of the Apo C-I MWM in CTRL subjects and the 

lack of the MWM presence in CVD subjects, the subjects’ medical records were put 

under further review.  When comparing the subject histories between those subjects with 

the MWM of Apo C-1 and the subjects without the MWM of Apo C-I, no correlation 

could be made to the available patient histories to explain the presence of the MWM.  

While the majority of the subjects with the MWM of Apo C-I had the presence of 

hypertension in their medical histories, there were many of the subjects without the 

MWM of Apo C-I that also had the presence of hypertension.  While the MWM of Apo 
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C-I could still be a risk factor for CVD, further exploration into the nature of the MWM 

is necessary to understand its influence on CVD risk. 
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Figure 68: Apo A-II Mass Distribution between CVD and CTRL Cohorts 

 

The third apolipoprotein that portrayed a difference in the mass spectra between 

CVD and CTRL groups was Apo A-II.  Apo A-II’s presence in HDL is primarily in the 

form of a homodimer with the molecular weight of 17,414Da.
48

  The distribution of Apo 

A-II masses is shown in Figure 68.  When comparing this region of the mass spectra 

between the CVD and CTRL groups, 14 of the 36 CVD subjects portrayed a MWM with 

primary peaks in the Apo A-II mass region at 16,988 +/- 6 Da (Figures 61 and 62, 

Patients 148 and 171, respectively).  The other 22 CVD subjects were found to have the 

average Apo A-II mass of 17,258 +/- 124 Da (Figure 60, Patient 124).  For the CTRL 
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subjects, only two of the 36 subjects portrayed a similar MWM for their primary peak in 

this mass region with an average mass of 16999 +/- 2 Da (Figures 64, Patient 033).  The 

average mass of Apo A-II for the remaining 34 CTRL subjects was calculated to be 

17,275 +/- 92 Da (Figures 63 and 65, Patient 013 and Patient 043, respectively).  The 

large deviation in masses for the “unmodified” Apo A-II could indicate the presence of 

further MWMs that were not distinguishable due to the sample size of this study. 

The mass region of 16,990 Da was identified as a possible MWM due to the 

population of CVD samples with this mass as the primary peak in the region.  There 

were also satellite peaks with masses less than 16,990Da that were primarily present in 

the CVD samples.  The presence of these peaks could indicate a truncated form of the 

Apo A-II dimer or the presence of a hetero dimer.  The distinction of this mass peak 

between the CVD and CTRL groups showed potential for application of this Apo A-II 

PTM to the LDA/SIR and QDA analyses. 

 

3.2.2.2.2 Application of Mass Spectral Data to Statistical Analyses 

 With the identification of potential mass spectra data that could be used in the 

statistical analyses in order to enhance the accuracy of CVD risk assessment, these 

factors were now added systematically to study the individual and combined potentials 

of the mass spectrum data as an addition to the lipoprotein density profiles for CVD risk 

assessment.  These factors were also tested separately to explore the potential of the 

mass spectra as an individual method of risk assessment when applied to the LDA/SIR 

and QDA analyses.  The mass spectral data for the apolipoproteins was added to the 
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statistical analyses in terms of the natural log of the masses for the most prominent peak 

in the mass regions of Apo A-I, Apo A-II, and Apo C-I.  

The summary of the results when applying the mass spectrum data to the 

statistical analyses can be found in Table 14.  The statistical analyses were carried out 

using both the NaBiEDTA-based lipoprotein density profile data and the Cs2CdEDTA-

based lipoprotein density profile data.  For the NaBiEDTA-based lipoprotein density 

profiles, the addition of Apo C-I and Apo A-I mass spectra data to the statistical analyses 

was shown to improve the classification.  The Apo A-II data only enhanced the 

prediction analysis when applied to QDA.  The best accuracy for the NaBiEDTA-based 

profiles was found when combining the data for Apo C-I and Apo A-I for both LDA/SIR 

and QDA.   

For the Cs2CdEDTA-based lipoprotein density profiles, the addition of Apo C-I 

and Apo A-I mass spectra data was shown to best improve the classification similar to 

the improvement seen with the NaBiEDTA density profiles.  The Apo A-II data showed 

limited improvement for both QDA and LDA.  Through the combination of 

Cs2CdEDTA-based lipoprotein density profile data and Apo A-I and Apo C-I data, the 

prediction analysis was increased to 93.1% for the LDA/SIR analysis and 100% for the 

QDA analysis.  The low X-Val score for the QDA analysis indicated that there was a 

large subject dependency inherent to the analysis.  This subject dependency was to be 

expected due to the nature of the QDA analysis in that there is no assumption that the 

covariance matrices are equal between groups like in the LDA/SIR analysis.  The 
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addition of more risk factors without the addition of more subjects directly affected the 

subject dependency. 

 

Table 14: Application of Mass Spectra Data to the LDA/SIR and QDA Analyses for 

CVD Risk Assessment Using the 72 Subject Data Set 

System 

LDA/SIR Analysis QDA Analysis 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

Prediction 

Accuracy 

(%) 

X-Val 

Accuracy 

(%) 

NaBiEDTA DP 86.1 79.2 93.1 70.8 

NaBiEDTA + Apo A-I 84.5 78.9 94.4 72.2 

NaBiEDTA + Apo C-I 86.1 77.8 93.1 73.6 

NaBiEDTA + Apo A-II  84.7 76.4 95.8 70.4 

NaBiEDTA + Apo A-I + 

Apo C-I 
87.5 77.8 93.1 70.8 

NaBiEDTA + Apo A-I + 

Apo C-I + Apo A-II 
84.7 79.2 93.1 73.6 

Cs2CdEDTA DP 88.9 83.3 93.1 76.4 

Cs2CdEDTA + Apo A-I 91.7 86.1 97.2 80.6 

Cs2CdEDTA + Apo C-I 93.1 86.1 97.2 76.4 

Cs2CdEDTA + Apo A-II  90.3 83.3 94.4 79.2 

Cs2CdEDTA + Apo A-I 

+ Apo C-I 
93.1 86.1 100.0 75.0 

Cs2CdEDTA + Apo A-I 

+ Apo C-I + Apo A-II 
93.1 86.1 98.6 77.8 

Apo A-I + Apo C-I + 

Apo A-II 
70.8 68.1 56.9 51.4 

 

With the improvements in CVD risk assessment through the application of the 

mass spectrum data to the lipoprotein subclass data, the use of the mass spectrum data as 

a singular method of CVD risk assessment was further examined.  When using only the 

mass spectrum data for the three apolipoproteins identified, the LDA/SIR analysis was 

shown to be 70.8% accurate.  While the mass spectrum data did not improve the 
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prediction accuracy, it did show the potential for use of mass spectrometry of 

apolipoproteins for CVD risk assessment.  The current preparative methods only isolated 

the HDL apolipoproteins for study.  Future applications of the mass spectra include the 

study of the lower concentration apolipoproteins in HDL such as Apo C-II and C-III.  

The mass region for these apolipoproteins in the MALDI-TOF spectra is 8,000Da-

10,000Da.  Due to the multiple peaks in this mass region and the closely related masses 

of these apolipoproteins, identification of any potential risk factors for CVD would 

require further isolation of the specific apolipoproteins before the analysis of these 

apolipoproteins. 

The prediction equation coefficients of the LDA/SIR analyses with the addition 

of the mass spectral data were further studied to identify the influence that the mass 

spectrum data had on the CVD risk assessment.  The coefficients for each variable used 

in the LDA/SIR analysis are graphed for the different density gradient systems in 

histogram form in Figures 69 and 70 (NaBiEDTA and Cs2CdEDTA, respectively). 

 



182 
 

 
 

Apo CI Apo AI Apo AII TRL LDL1 LDL2 LDL3 LDL4 LDL5 HDL2b HDL2a HDL3a HDL3b HDL3c

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

(0.181)

(-0.537)

L
D

A
/S

IR
 V

a
lu

e

Variable
(-0.822)

 

Figure 69: LDA/SIR Coefficients for Lipoprotein Subclasses Using NaBiEDTA-

Based Density Gradients and Mass Spectrometry Data for the HDL 

Apolipoproteins when Applied to the 72 Subject Library 

 

When comparing the coefficients found for the NaBiEDTA density profiles of 

the 72 subject library (Figure 56) to the coefficients found for the addition of the mass 

spectral data, the primary change was in the magnitude of the coefficients.  The 

coefficients for the apolipoproteins were very large in comparison to the coefficients of 

the lipoprotein subclasses.  The lipoprotein subclass coefficients were also smaller with 

the addition of the mass spectral data when compared to the coefficients found using the 
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lipoprotein subclasses alone.  The majority of the lipoprotein subclasses retained their 

polarities toward CVD or CTRL except for the LDL-5 and HDL-2a. 
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Figure 70: LDA/SIR Coefficients for Lipoprotein Subclasses Using Cs2CdEDTA-

Based Density Gradients and Mass Spectrometry Data for the HDL 

Apolipoproteins when Applied to the 72 Subject Library    

  

When comparing the coefficients found for the Cs2CdEDTA density profiles of 

the 72 subject library (Figure 57) to the coefficients found for the addition of the mass 

spectral data, a few differences were observed.  First, the coefficient value for each 
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lipoprotein subclass was reduced with the addition of the mass spectral data similar to 

what was observed with the NaBiEDTA density profiles.  Only the LDL-5 subclass 

changed in polarity to being a factor towards CVD classification when coupled with the 

mass spectrometry data.  Second, the apolipoprotein variables were again associated 

with the largest variables using the Cs2CdEDTa lipoprotein subclass data.   

The polarity of the mass spectrometry variables for both density systems 

indicated the Apo A-I and Apo C-I as variables for classification as CTRL and Apo A-II 

as a variable for CVD.  The implication on the mass spectrometry data indicates that the 

higher masses of Apo A-I and Apo C-I would weigh the subject towards a CTRL 

classification.  This observation for the Apo C-I mass is contrary to the Apo C-I data 

reported in the initial pilot study of 16 subjects.  Further exploration into the nature of 

the Apo C-I MWM is necessary due to the uncertainty present with respect to the nature 

of the Apo C-I MWM and how it relates to CVD.  The higher masses of Apo A-II would 

weigh the subject towards a CVD classification based on the LDA/SIR coefficients.  

This coefficient of Apo A-II was contrary to the data for Apo A-II which indicated that 

the lower masses are more prevalent for the CVD subjects.  This contradiction could 

only be accounted for by the fact that the LDA/SIR analysis inter-relates all the variables 

used to generate the equation and does not just compare the differences of single 

variables between the defined groups. 

The optimum separation of CVD and CTRL subjects through use of the 

LDA/SIR equation that was generated with the lipoprotein subclasses and mass 

spectrometry data is displayed in Figure 71.  The p-value for the LDA/SIR separation of 
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CVD and CTRL was calculated to be 1.14E-05.  This p-value indicated that the 

distinction found between CVD and CTRL groups using the LDA/SIR equation was 

statistically significant.  Based on the prediction accuracy of the LDA/SIR and QDA 

analyses and the statistical significance of the separation between CVD and CTRL 

groups, the coupling of the mass spectrometry data with the lipoprotein subclasses was 

decidedly the best method for CVD risk assessment. 
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Figure 71: LDA/SIR Separation for the 72 Subject Library Using Lipoprotein 

Subclasses and Mass Spectrometry Data 
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3.2.3 Case Studies for Monitoring CVD Therapies 

 With the potential for the use of lipoprotein density profiles in the assessment of 

CVD risk established and the evidence seen in the hypercholesterolemia study that 

therapy effectiveness could be monitored using the LDA/SIR equation, further studies 

into the sensitivity of the lipoprotein density profiles and risk analysis were carried out 

with respect to the effects of further medical treatment and the increase of exercise.  For 

the use of the LDA/SIR risk assessment to be valuable in clinical applications, methods 

of medical treatment must be able to be monitored using the LDA/SIR equation for CVD 

risk when applied to subjects undergoing drug therapy or lifestyle modifications.  The 

goal of these studies was to show that lipoprotein density profiles, in conjunction with 

the LDA/SIR analysis, are sensitive enough to monitor the effectiveness of medical 

treatment and lifestyle modification with respect to their impact on CVD risk. 

 

3.2.3.1 Case Study Monitoring the Effects of Niacin Therapy 

 The effects of statin therapy on lipoprotein density profiles were previously 

studied with respect to the hypercholesterolemic children.  Another medical treatment 

related to the reduction of CVD symptoms is niacin.  Niacin has been thought to reverse 

atherosclerosis by reducing total cholesterol, triglycerides, very-low-density lipoprotein 

(VLDL), and low-density lipoprotein (LDL), and increasing high-density lipoprotein 

(HDL).
39-41,130

  There are also studies relating niacin therapy with the reduction of 

lipoprotein (a) (Lp(a)).
131

  In this study, the effects of increasing the dosage of niacin 

therapy were examined with respect to the effects it had on the lipoprotein profiles.  
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HDL cholesterol and Lp(a) protein concentrations in relation to the niacin dosage were 

also examined.  The LDA/SIR values for the sequential serum draws were calculated 

using the LDA/SIR equation found for the comprehensive library study using the 

NaBiEDTA-based gradient system in order to examine any effects niacin had on the 

CVD risk assessment.   

The subject in this study was treated with increasing amounts of niacin from 0mg 

to 2000mg using increments of 500mg.  Serum samples for this subject were drawn over 

a period of five months with a baseline sample of the subject having no treatment and a 

washout sample one week after the last treatment was taken.  Each serum sample was 

tested for HDL cholesterol content, Lp(a) protein concentration, and lipoprotein density 

profiles.  The increase in niacin treatment and the results of the serum tests are graphed 

in Figure 72.  The traditional HDL cholesterol measurements showed a general increase 

in relation to the niacin treatment dosage (Figure 72B).  With respect to the Lp(a) protein 

concentration, an inverse relationship was observed in relation to the increasing niacin 

dosage.(Figure 72C)  These results concur with the current literature on the effects of 

niacin treatment on lipoproteins.  Using the lipoprotein density profiles, fluctuation in 

the integrated fluorescence intensities for the TRL and total LDL fractions (Figures 72D 

and 72E, respectively) of the lipoprotein density profiles led to no specific conclusions 

with respect to the effects of the niacin treatment.  However, the integrated fluorescence 

intensities for the total HDL fraction of the profiles showed a surprising result.  There 

was an inverse relationship between the total HDL fluorescence intensity and the niacin 

dosage. (Figure 72F)  This result is contrary to the relationship previously documented   
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Figure 72: Niacin Dosage Effects on Lipoprotein Measurement Methods. (A) Niacin 

Dosage over Time, (B) HDL Cholesterol Concentration over Time, (C) Lp(a) 

Protein Concentration over Time, (D) TRL Fluorescence Intensity over Time, (E) 

LDL Fluorescence Intensity over Time, (F) HDL Fluorescence Intensity over Time 
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between the HDL cholesterol concentration and niacin dosage.  This discontinuity 

between HDL measurement methods further supported the hypothesis that the NBD-

ceramide fluorescence can be influenced by the morphology and chemical content of the 

HDL particles.  

The effect that the niacin treatment had on the lipoprotein profiles was further 

examined in order to understand its effect on the HDL subclasses.  The overlaid 

lipoprotein density profiles are shown in Figure 73.   The HDL peak at the density 

~1.117g/mL steadily decreased in intensity as the niacin dosage increased.  The decrease 

of the fluorescence intensity in this density range explained the decrease in the total 

HDL fluorescence intensity previously observed.  There was also a peak at ~1.049g/mL 

in the baseline serum draw on 05/07/2010 that was not apparent in the serum draws 

taken after niacin treatment.  This peak reappeared in the final serum draw after a one 

week washout period of no niacin.  The density range for this peak indicates that it is 

possibly the result of an increase in Lp(a) concentration. 
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Figure 73: Lipoprotein Density Profiles by Draw Date/Niacin Dosage 

 

 With niacin’s effect on the lipoprotein density profile showing significant 

changes in the HDL fraction; this effect was now studied in terms of its influence on the 

LDA/SIR risk assessment for CVD.  The change in the LDA/SIR value over time is 

graphed in Figure 74.  While niacin treatment is supposed to reduce the risk of CVD, the 

LDA/SIR value showed a general increase over time with respect to the niacin dosage.  

As previously discussed in Section 3.2.1.4, the HDL subclasses were attributed with the 

largest coefficients in the LDA/SIR equation.  The change in HDL fluorescence intensity 

found in relation to the niacin treatment was identified in the HDL-3a subclass.  This 

subclass was attributed with the largest coefficient for classification of a CTRL.  

Reduction of the HDL fluorescence intensity in this region explains why the LDA/SIR 
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value, and therefore the CVD risk, was found to be increased with the increase in niacin 

dosage. 

 

4/22/2010

6/9/2010

7/27/2010

9/13/2010

0.05

0.10

0.15

0.20

0.25

0.30

0.35

LD
A

/S
IR

 V
al

ue

Draw Date

 

Figure 74: LDA/SIR Value in Relation to Draw Date/Niacin Dosage 

 

 While the effects of statin therapy were identified to reduce the risk of 

hypercholesterolemia in children, this case study indicates that the effects of niacin 

therapy have an adverse effect on the CVD risk assessment through the lipoprotein 

density profiling and LDA/SIR statistical analysis.  Further investigation is required to 

ascertain the true effect of niacin on CVD risk assessment in terms of the methods of this 

thesis.  This was only one case study and it could have been affected by uncontrolled 

factors.  A larger study which includes more subjects, a variety of dosages, and a control 

arm is recommended. 
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3.2.3.2 Case Study Monitoring the Effects of Lifestyle Modification 

 With the various methods of medical therapy currently being studied for CVD 

risk reduction, the most universal and available way for a person to lower risk is through 

lifestyle modifications including exercise and diet change.  Lifestyle modification can 

also be performed prior to any presentation of CVD risk.  With the methodology 

developed in this thesis, the idea of monitoring the effect of lifestyle modification 

through a standard test without the use of more invasive methods became possible.  The 

case study described here involved a subject that underwent an exercise program that 

was made up of three to five 30 minute runs every week for 16 weeks.  The program was 

designed to keep the heart rate down to an optimal range for burning fat (60-70% of 

maximum heart rate).  After 16 weeks, the regime was increased to include an extra 30 

minute run each day at a pace that was set for cardiovascular training (70-80% of 

maximum heart rate) in addition to the fat burning run.  Serum draws were performed 

each week to monitor the change in the lipoprotein density profiles.   

 



193 
 

 
 

6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

400

800

1200

Week 28

Week 24

Week 20

Week 16

Week 12

Week 8

Week 4

Week 0

In
te

n
si

ty

S
tudy W

eek

Density (g/mL)

1.014 1.026 1.038 1.049 1.070 1.117 1.2301.014 1.026 1.038 1.049 1.070 1.117 1.230

 

Figure 75: Lipoprotein Density Profiles Comparison Based on the Increase of 

Physical Exercise – NaBiEDTA-Based Density Gradient 

 

A comparison of the lipoprotein density profiles over every four weeks is 

graphed in Figure 75.  The baseline draw (Red) shows a dual peak in the LDL density 

range that is not present for the next three sequential draws.  The dual peak was again 

present after Week 16 where the cardiovascular run was added to the exercise regime.  

There was also an apparent density shift in the primary LDL peak over the exercise 

period to a lower density.  As for the HDL, the total intensity of the HDL fraction 

seemed to increase over the exercise period.  Increase in HDL content and the shift of 

LDL to a lower density concur with the current theories and trends for healthy 

lipoproteins. 
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To further study the changes in the lipoprotein density profiles, the integrated 

fluorescence intensities for the TRL, total LDL, and total HDL subclasses were graphed 

in relation to the exercise week in Figure 76.  The total HDL fluorescence intensity 

generally increased over time.  The total LDL fluorescence intensity decreased initially 

and then balanced out to a range similar to the baseline value.  The TRL fluorescent 

intensities fluctuate but do not change in a significant manor relative to the exercise 

program. 
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Figure 76: Fluorescence Intensities for Major Lipoprotein Fractions Found 

through Lipoprotein Density Profiling with Respect to Increase in Physical 

Exercise 
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Figure 77: LDA/SIR Values in Relation to Increased Physical Exercise 

 

 To assess how the changes in the lipoprotein density profiles affect the LDA/SIR 

risk assessment for the subject of this case study, the LDA/SIR equation generated was 

used to calculate the LDA/SIR value for each week.  The resulting LDA/SIR values are 

graphed in Figure 77 with respect to the week of the exercise program.  Surprisingly, the 

LDA/SIR values generally increased over the first 13 weeks of exercise.  The increase in 

the LDA/SIR values indicated an increase in CVD risk after exercise.  After Week 13, 

there was a steep drop in LDA/SIR values which would indicate a reduction in CVD risk 

for the subject.  There was also a brief increase in LDA/SIR values after the change in 

the exercise program.  This increase only lasted three weeks this time and then LDA/SIR 

values decreased to lower than the baseline value and stabilized at this low LDA/SIR 

value for the rest of the study.  Both increases in the LDA/SIR values occurred directly 

after the increase of physical activity.  The increase in CVD risk at the beginning of the 



196 
 

 
 

exercise program can be related to the drop in the low density LDL subclasses.  It is 

possible that the increase in metabolism related to exercise increased the subject’s 

catabolism of these low density LDL subclasses and resulted in the increased LDA/SIR 

score by reducing the fluorescent intensities of lipoprotein subclasses that were 

associated with the classification of CTRL in the LDA/SIR equation.  The reduction in 

LDA/SIR values at the end of the exercise program indicated that exercise can be used 

for reduction of CVD risk.  With the case study subject not having a definitive definition 

of CVD or CTRL, further studies involving subjects that have been diagnosed with CVD 

and the effects that exercise can have on the lipoprotein density profiles are necessary to 

establish this methodology not only as a risk assessment tool but also as a tool for 

monitoring the effectiveness of risk reduction through lifestyle modification.   

This case study and the previous case study involving the niacin therapy show 

the sensitivity of the lipoprotein density profiles and how they can fluctuate based on 

day-to-day factors.   With this sensitivity, the risk assessment for CVD when using the 

lipoprotein density profiles is a mobile snapshot of a subject’s health at the time the 

serum sample was extracted.  Further investigation into the stability of the lipoprotein 

density profile when no outside factors like medical therapy or change in physical 

activity are involved is necessary in order to assess the use of this methodology in a 

longitudinal CVD risk assessment. 
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4. CONCLUSIONS 

 

The overall objective of this research was to develop and enhance analytical 

techniques and methods which, when combined, could be used to assess the risk an 

individual has of developing cardiovascular disease.  This objective was achieved 

through use of high precision lipoprotein density profiling, mass spectrometry of HDL 

apolipoproteins, and the application of advanced multivariate statistical analyses.  

Through application of these methods to clinical studies, an equation was developed 

using the method variables to accurately identify subjects with and without CVD.  For 

clinical studies, the definition of a healthy control was redefined from the lack of patient 

history and risk factors to having a clean angiogram of less than 10% arterial blockage.  

This new definition of CTRL was able to increase the distinction between the CVD and 

CTRL groups in the applied clinical studies for both CVD risk assessment and 

lipoprotein characterization.  These clinical studies showed the feasibility of this 

methodology as a novel method of risk assessment that has the potential for early 

detection of CVD prior to the onset of the disease. 

Through studies designed to increase the precision of the lipoprotein density 

profiles using heavy metal EDTA complexes for density gradient formation, a better 

understanding of the optimal conditions necessary for creating a high precision method 

of separating lipoproteins was attained.  This high precision method was able to be used 

as a profiling method as well as a preparative method for further analysis of the 

lipoproteins and their content.  Future use of these EDTA complexes and high precision 
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lipoprotein density profiles includes the use of larger UC tubes and modifications of the 

density gradient in order to isolate specific lipoprotein subclasses for further studies. 

The SPE method of isolation of apolipoproteins was studied using quantitative 

ELISAs and protein analysis techniques in order to optimize recovery of the 

apolipoproteins so that comparative studies between CVD and CTRL cohorts were 

possible.  The combination of preparative ultracentrifugation techniques and dextran 

sulfate precipitation was found to optimally isolate the HDL prior to applying the SPE 

method.  Through quantitative analysis of the protein content in the recovered fraction, 

improved recovery of the apolipoproteins over the previously documented SPE 

capabilities was obtained. 

Through the use of preparative ultracentrifugation, SPE, and MALDI-TOF MS, 

multiple differences in the apolipoprotein content of HDL fractions were identified when 

comparing CVD and CTRL groups.  The Apo A-I mass spectra for multiple CVD 

subjects showed a change in mass of ~450Da when compared to the CTRL subjects.  

The Apo A-II mass spectra for CVD subjects showed the presence of peaks at a m/z of 

<16,900Da that were not present for the majority of CTRL subjects.  Finally, the PTM 

for Apo C-I that was identified in CVD subject from prior research(ref) was present in 

multiple CTRL subjects while not present in the CVD subjects studied in this research.  

Future research into the nature of these modifications and their causes can illuminate 

methods of medical treatment and the role these modifications play as risk factors for 

CVD.  Future research into the lower abundant apolipoproteins, such as Apo C-II and 

Apo C-III, also showed potential.  However, further separation of these compounds 
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would be necessary due to their similar mass characteristics in order to identify any PTM 

or truncated form that might be associated with CVD risk. 

Application of the high precision lipoprotein density profiling method developed 

in this thesis, in conjunction with LDA/SIR analysis, was able to generate equations 

using the lipoprotein subclasses to accurately assess which subjects were at risk in the 

different clinical studies.  Compared to the accuracy of the LDA/SIR analysis when 

using traditional lipid measurements performed by medical practitioners, the lipoprotein 

density profiles were found to have significant increases in the accuracy of risk 

assessment.  The method was successfully applied to subjects with normal lipidemic 

characteristics with a prediction accuracy of up to 92.7%.  When applied to the 

prediction of hypercholesterolemia in children, the prediction accuracy was found to be 

97.6%.  These results indicated the potential for lipoprotein density profiles over 

traditional methods of lipid measurement.   

Further investigation into a sample library with an increased number of samples 

was necessary to investigate the subject dependency found in these studies.  For the large 

comprehensive library of subjects, the prediction accuracy was found to be 81.8%.  A 

reduction in the subject dependency was observed that was related to the increase in 

subjects relative to the number of variables used in the LDA/SIR analysis.  Through 

inclusion of specific traditional risk factors: the presence of hypertension and family 

history of CVD, an increased prediction accuracy of 86.9% was attained.  Through 

examination of the LDA/SIR equation generated, evidence was found to support the 
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existence of atherogenic forms of HDL due to multiple subclasses being coupled with 

coefficients weighting them towards a CVD classification. 

Further research into the LDA/SIR analysis was designed to increase the 

accuracy in CVD risk assessment by identifying characteristics that could distinguish 

between CVD and CTRL groups through alternate analytical techniques.  This research 

included identification of the differences in mass spectrometry between the two groups 

and the use of Cs2CdEDTA as the solute for density gradient formation to further 

separate the lipoproteins through density profiling.  The additional lipoprotein subclass 

resolved when using the new solute (IDL) and the differences in the mass spectra 

between CVD and CTRL groups showed the potential for increasing the prediction 

accuracy of the LDA/SIR analysis to 93% in a subset of samples from the 

comprehensive library.  This result proved the feasibility of adding mass spectra 

information to the LDA/SIR analysis for enhanced CVD risk assessment. 

In an effort to identify the optimal method of multivariate statistical analysis to 

be used for CVD risk assessment, the method of QDA was applied to the comprehensive 

library and the 72 patient subset of the comprehensive library. QDA showed an increase 

potential of risk assessment through the increased prediction accuracy for every data set 

for which it was applied in comparison to the prediction accuracy of the LDA/SIR 

analysis.  The optimal prediction accuracy was found when using QDA on the data set 

that included the lipoprotein density profiles with the addition of HDL apolipoprotein 

information from mass spectrometry.  With this data the prediction accuracy for the 72 

patient subset of the comprehensive library using QDA was found to be 100%.  There 
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was a large subject dependency that was seen through the X-Val score relative to this 

analysis.  Increasing the subject size was hypothesized to remove this dependency. 

The results presented in this thesis identified the potential for enhanced CVD risk 

assessment through the combination of analytical methods for lipoprotein profiling and 

characterization with advanced multivariate statistical techniques.  Use of these 

techniques showed potential for an increased accuracy in risk assessment relative to 

current methods such as the Framingham and Reynold’s Risk Score.  Further application 

of the lipoprotein profiles and the algorithms generated through the statistical analyses 

was seen in the sensitivity of the methods for monitoring the effectiveness of medical 

therapies designed to reduce a subject’s cardiovascular risk.  Through further 

characterization of the lipoproteins, potential atherogenic subclasses of HDL and novel 

potential risk factors in the HDL apolipoproteins were identified.  These novel factors 

were shown to improve the CVD risk assessment when added to the integrated 

fluorescence intensities from the lipoprotein density profiles. These methods represent 

the potential for a more “personalized” view of medical therapy and for monitoring the 

effectiveness of such therapies. 

In the future, this methodology should be applied to larger libraries of serum 

samples for which epidemiological data has been accumulated in order to assess the 

differences in risk assessment when applied as a longitudinal risk study and due to 

factors like gender, ethnicity, etc.  One such serum library is the Framingham Heart 

Study.  This would allow for direct comparison between the different methods and for 

comparison of the results to the current medical standard. 
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