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ABSTRACT 

 

Process Synthesis and Optimization of Biorefinery Configurations. (August 2011) 

Viet Pham, B.S., University of Technology, Ho Chi Minh City, Vietnam; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Mahmoud El-Halwagi 

 

The objective of this research was to develop novel and applicable methodologies to 

solve systematically problems along a roadmap of constructing a globally optimum 

biorefinery design. The roadmap consists of the following problems: (1) synthesis of 

conceptual biorefinery pathways from given feedstocks and products, (2) screening of 

the synthesized pathways to identify the most economic pathways, (3) development of a 

flexible biorefinery configuration, and (4) techno-economic analysis of a detailed 

biorefinery design. 

In the synthesis problem, a systems-based “forward-backward” approach was 

developed. It involves forward synthesis of biomass to possible intermediates and 

reverse synthesis starting with desired products and identifying necessary species and 

pathways leading to them.  Then, two activities are performed to generate complete 

biorefinery pathways: matching (if one of the species synthesized in the forward step is 

also generated by the reverse step) or interception (a task is determined to take a 

forward-generated species with a reverse-generated species by identifying a known 

process or by using reaction pathway synthesis to link to two species.)  

In the screening problem, the Bellman’s Principle of Optimality was applied to 

decompose the optimization problem into sub-problems in which an optimal policy of 

available technologies was determined for every conversion step. Subsequently, either a 

linear programming formulation or dynamic programming algorithm was used to 

determine the optimal pathways.  

In the configuration design problem, a new class of design problems with flexibility 

was proposed to build the most profitable plants that operate only when economic 
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efficiency is favored. A new formulation approach with proposed constraints called 

disjunctive operation mode was also developed to solve the design problems.  

In the techno-economic analysis for a detailed design of biorefinery, the process 

producing hydrocarbon fuels from lignocellulose via the carboxylate platform was 

studied. This analysis employed many state-of-the-art chemical engineering 

fundamentals and used extensive sources of published data and advanced computing 

resources to yield reliable conclusions to the analysis.  

Case studies of alcohol-producing pathways from lignocellulosic biomass were 

discussed to demonstrate the merits of the proposed approaches in the former three 

problems. The process was extended to produce hydrocarbon fuels in the last problem. 
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NOMENCLATURE 

 

Abbreviations 

ABE  Acetone-Butanol-Ethanol 

AIChE  American Institute of Chemical Engineers 

ASPEN Advanced Simulator for Process Engineering 

CPDM  Continuum Particle Distribution Model 

CS  Carbon Steel 

CSTR  Continuous Stirred-Tank Reactor 

DB  Declining Balance 

DDB  Double Declining Balance 

DOE  Department of Energy 

DS&B  Direct Salaries and Benefits 

DW&B Direct Wage and Benefits 

EIA  Energy Information Administration 
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FOB  Free on Board 

LRT  Liquid Residence Time 

MACRS Modified Accelerated Cost Recovery System 

MINLP Mixed-Integer Nonlinear Programming 

MPSP  Minimum Product Selling Price 

MS&B  Maintenance Salaries and Benefits 

MW&B Maintenance Wage and Benefits  

NREL  National Renewable Energy Laboratory 

PEA  Process Economic Analyzer 

PPI  Producer Price Index 

PSA  Pressure-Swing Adsorption 

RAM  Random Access Memory 

ROI  Return on Investment 
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SS  Stainless steel 

TCI  Total Capital Investment 

VS  Volatile Solid 

VSLR  Volatile Solid Loading Rate 

WCI  Working Capital Investment 

Variables 

 content  component flow rate of feedstock 

 d  design variable 

 δ  fractional variation of uncertainty 

 f  flow rate to and from equipment 

 F  Flexibility level 

 λ  Kuhn-Tucker multipler 

msize  maximum size of equipment 

prod  product flow rate 

r  value of objective function of the optimization problem 

 revenue revenue of plant operation 

s  slack variable 

 size  size of equipment 

 supply  flow rate of feedstock 

 tflow  total inlet flow rate of equipment 

 U  upper bound of the slack variable 

 waste  flow rate of waste streams 

 x  state variable 

 y  binary variable 

z  control variable 

Parameters 

 AVAIL availability of feedstock 

∆T temperature approach of latent heat exchangers without fouling  
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∆T' temperature approach of latent heat exchangers with fouling  

A heat transfer area of latent heat exchanger without fouling  

A'  heat transfer area of latent heat exchanger with fouling  

A0  base-case heat transfer area of latent heat exchanger  

CAPCOEF coefficient of capital cost function 

COST  cost of feedstock 

DEMAND demand of product 

FRACTION composition of feedstock 

LB  lower bound 

M  big-M – a scalar whichis big enough to deactivate a contraint 

m  fouling factor 

n number of control variable (Chapter III) or oversizing factor 

(Chapter IV) 

OPCOEF coefficient of operating costs 

P  number of scenarios 

PRICE  price of products 

PROB  occurrence probability of scenarios 

q  heat flux in latent heat exchangers 

q'  fouling heat flux in latent heat exchangers 

q0  base-case heat flux in latent heat exchangers  

Q heat transfer load in latent heat exchanger in non-fouling 

conditions 

Q'  heat transfer load in latent heat exchanger in fouling conditions 

SCALE power of capital cost functions 

SIZECOEF coefficient of sizing equations 

θ  uncertainty variable 

U heat transfer coefficient of latent heat exchanger in non-fouling 

conditions 

U' heat transfer coefficient of latent heat exchanger with fouling  
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UB  upper bound 

w  weighting factor of scenarios 

x  design parameter 

Indices 

i node in the synthesized branching trees (Chapter II) or feedstock 

(Chapter III) 

j node in the synthesized branching trees  (Chapter II) or equipment 

(Chapter III) 

 k  product 

 m  component 

 m'  component 

 n  node adjacent to node n' in the synthesized branching trees   

 n'  node adjacent to node n in the synthesized branching trees  

 N  the final (product) node 

 p  scenario 

Superscripts 

 flow  regarding flow rates 

 IN  inlet 

 k  vertex of polyhedron of uncertainty region 

 N  nominal value 

 OUT  outlet 

 p  scenario 

Sets 

 D  set of design variables 

 J  set of equipment indices 

 R  feasible region of uncertainty realization 

 T  region of uncertainty 
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 X  set of state variables 

 Z  set of control variables 

Functional notations 

f function of objective values regarding constituent conversion 

steps (Chapter II) or general functions in constraints of flexibility-

design problem (Chapter III) 

 g  function of mass and energy balances, and other equality relations 

h function of specifications and limitations in constraints of the 

optimization problems 

 Y  function of design parameters  

Units 

gal  gallon 

GB  gigabyte 

GHz  gigahertz  

h  hour  

kg  kilogram 

m  meter 

MJ  megajoule 

MMBtu million British thermal unit 

MMGPY million gallon per year 

MW  megawatts 

SCF  standard cubic foot 

tonne  a metric weight unit, equal to 1,000 kilograms. 

yr  year 

  



xii 

 

 

 

TABLE OF CONTENTS 

 

Page 

ABSTRACT ....................................................................................................................... iii 

DEDICATION .................................................................................................................... v 

ACKNOWLEDGEMENTS ............................................................................................... vi 

NOMENCLATURE .......................................................................................................... vii 

TABLE OF CONTENTS .................................................................................................. xii 

LIST OF FIGURES ........................................................................................................... xv 

LIST OF TABLES ......................................................................................................... xviii 

CHAPTER 

 I INTRODUCTION ...................................................................................... 1 

 II PRELIMINARY SYNTHESIS AND OPTIMIZATION  OF 
BIOREFINERY PATHWAYS .................................................................. 2 

2.1  Introduction ..................................................................................... 2 
2.2  Problem description ........................................................................ 3 
2.3  Literature review ............................................................................. 3 
2.4  Proposed approach .......................................................................... 5 

2.4.1  The synthesis problem ..................................................... 5 
2.4.2  Identifying optimal routes between nodes ....................... 9 
2.4.3  Framework ..................................................................... 12 

2.5  Case study ..................................................................................... 14 
2.6  Summary ....................................................................................... 21 

   III  DESIGN OF BIOREFINERY CONFIGURATIONS  WITH AN 
OPTIMAL LEVEL OF FLEXIBILITY ................................................... 22 

3.1  Introduction ................................................................................... 22 
3.2  Literature review of flexibility design .......................................... 24 
3.3  Problem description ...................................................................... 29 

3.3.1  Motivation ...................................................................... 29 
3.3.2  Problem statement.......................................................... 33 



xiii 

 

 

 

CHAPTER              Page 

3.4  Approach ....................................................................................... 35 
3.4.1  Disjunctive operation mode constraint .......................... 35 
3.4.2  Formulation .................................................................... 36 
3.4.3  Solution algorithm ......................................................... 38 

3.5  Case study ..................................................................................... 40 
3.5.1  Problem description ....................................................... 40 
3.5.2  Solution .......................................................................... 42 

3.6  Summary ....................................................................................... 47 

    IV TECHNO-ECONOMIC ANALYSIS OF A LIGNOCELLULOSE-TO-
HYDROCARBONS PROCESS VIA THE CARBOXYLATE 
PLATFORM ............................................................................................. 49 

4.1  Introduction ................................................................................... 49 
4.2  Approach ....................................................................................... 52 
4.3  Technical analysis ......................................................................... 55 

4.3.1  Process description ........................................................ 55 
4.3.2  Maximal theoretical yields............................................. 65 
4.3.3  Process performance ...................................................... 68 
4.3.4  Process simulation ......................................................... 68 
4.3.5  Process integration ......................................................... 70 
4.3.6  Energy efficiency analysis ............................................. 72 

4.4  Economic analysis ........................................................................ 74 
4.4.1  Analysis procedure and basis ......................................... 74 
4.4.2  Base-case economic analysis ......................................... 77 

4.5  Optimization and sensitivity analysis ........................................... 81 
4.5.1  Optimization of yield and fermentation operating 

conditions ........................................................................ 81 
4.5.2  Vapor compression system ............................................ 84 
4.5.3  Sources of hydrogen ...................................................... 90 
4.5.4  Other sensitivity analyses .............................................. 91 

4.6  Summary ....................................................................................... 93 
4.7  Legal disclaimer ............................................................................ 94 

    V CONCLUSIONS ...................................................................................... 95 

LITERATURE CITED .............................................................................................. 97 

APPENDIX A .......................................................................................................... 106 

APPENDIX B .......................................................................................................... 115 



xiv 

 

 

 

Page 

APPENDIX C .......................................................................................................... 118 

VITA ........................................................................................................................ 127 

  



xv 

 

 

 

LIST OF FIGURES 

 

Page 

Figure 1.  Schematic problem description. ................................................................. 3 

Figure 2.  Forward and reverse branching trees. ........................................................ 7 

Figure 3.  A superstructure of synthesized pathways representing conversion 
technologies (arcs) and intermediate chemicals (nodes), ........................... 8 

Figure 4.  Framework for the synthesis and optimization of biorefinery 
configurations. .......................................................................................... 13 

Figure 5.  Part of the branching trees for the production of bio-alcohols from 
lignocellulosic biomass. ........................................................................... 15 

Figure 6.  The superstructure of synthesized pathways after the screening 
step. .......................................................................................................... 16 

Figure 7.  The synthesized superstructure after the step of optimization 
between nodes. ......................................................................................... 20 

Figure 8.  Strategies to respond to uncertainty changes. .......................................... 24 

Figure 9.  U.S. monthly corn price received by farmers.82 ....................................... 30 

Figure 10.  Cold storage stock of U.S. corn.83 ............................................................ 31 

Figure 11.  Trade-off curve of profit and flexibility. .................................................. 34 

Figure 12.  Schematic configuration design with an optimal level of flexibility. ...... 34 

Figure 13.  Comparison of solutions from two design strategies: using 
conventional hard constraints (A) vs. using disjunctive operation 
mode constraints (B), at two scenarios a) idle is economically 
favored and b) operation is economically favored. .................................. 36 

Figure 14.  Solution framework to configuration design with an optimum level 
of flexibility. ............................................................................................. 39 

Figure 15.  A superstructure of the biomass-to-alcohols configurations. ................... 41 

Figure 16.  Designed flexible biorefinery with characteristic sizes. ........................... 45 

Figure 17.  Pathways for converting biomass to hydrocarbon fuels. .......................... 50 

Figure 18.  Major steps of the techno-economic analysis........................................... 54 

Figure 19.  Simplified process block diagram of the analyzed MixAlcoTM 
process (Pathway C). ................................................................................ 56 

Figure 20.  Pretreatment and fermentation pile reactor. ............................................. 58 



xvi 

 

 

 

Page 

Figure 21.  Round-robin operation (darker boxes represent older fermenting 
piles). ........................................................................................................ 58 

Figure 22.  Simplified process block of the descumming and dewatering unit. ......... 59 

Figure 23.  A parallel configuration of multi-effect vapor-compression 
evaporator. ................................................................................................ 60 

Figure 24.  Simplified block diagram of the ketonization and lime kiln unit. ............ 61 

Figure 25.  Simplified block diagram of ketone hydrogenation, dehydration & 
oligomerization, and olefin hydrogenation units. ..................................... 62 

Figure 26.  Simplified block diagram of gasification and cogeneration unit. ............ 64 

Figure 27.  Schematic of the atmospheric biomass gasifier. ...................................... 64 

Figure 28.  Simulation of the fermentation unit in Aspen Plus. ................................. 69 

Figure 29.  Grand composite curve for heat integration of the heat exchanger 
network. .................................................................................................... 71 

Figure 30.  Recycle of water and chemicals. .............................................................. 71 

Figure 31.  Energy balance of the plant. ..................................................................... 73 

Figure 32.  Breakdown of the fixed capital investment (FCI) for the base case. ....... 78 

Figure 33.  Historical monthly prices of crude oil, gasoline, and jet fuel (EIA, 
2011).113 .................................................................................................... 80 

Figure 34.  Minimum product selling prices with respect to multiplication of 
volatile solid loading rate and liquid residence time at various 
concentrations of carboxylic acids in fermentation broth (forage 
sorghum cost $60/dry tonne, after-tax discount rate 10%, hydrogen 
produced from gasification of fermentation residue, plant capacity 
200 dry tonne/h, plant life 20 years). ....................................................... 83 

Figure 35.  Heat flux of latent heat exchangers with respect to temperature 
approach at clean and various values of the fouling factor. ..................... 86 

Figure 36.  Minimum product selling price with respect to temperature 
approach at clean condition and various fouling expectation of the 
latent heat exchangers. ............................................................................. 87 

Figure 37.  Minimum product selling price with respect to purchased cost of 
latent heat exchangers at various values of overall heat transfer 
coefficient U (kW/(m2

·K)) at ∆T = 0.2 K. ................................................ 89 

Figure 38.  Plot of MPSP versus external hydrogen prices for the case of no 
hydrogen production. ............................................................................... 90 



xvii 

 

 

 

Page 

Figure 39.  Sensitivity analysis of the key factors on minimum product selling 
price. ......................................................................................................... 91 

Figure 40.  Minimum selling prices and fixed capital investment versus plant 
capacities using biomass at various prices (sorghum) and $10/dry 
tonne (manure). Hydrogen is produced by gasification. .......................... 92 

Figure 41.  A snapshot of the Lingo solver status report for the case study. ............ 118 

  



xviii 

 

 

 

LIST OF TABLES 

 

Page 

Table 1.  Technology arcs eliminated due to their low yields. ................................ 15 

Table 2.  Problems of optimizing policy between two nodes.................................. 18 

Table 3.  Problems of optimizing pathways. ........................................................... 19 

Table 4.  Summary of the case study result. ............................................................ 47 

Table 5.  Key process performances. ...................................................................... 67 

Table 6.  Aspen Plus models for key processing units. ........................................... 69 

Table 7.  Utility consumption in targeted and expected scenarios of heat 
integration. ................................................................................................ 72 

Table 8.  Savings from the recycle of chemicals. .................................................... 72 

Table 9.  Scaling factors to estimate equipment costs at various sizes. .................. 75 

Table 10.  Factors in estimation of project costs. ...................................................... 76 

Table 11.  Basis and assumptions of the financial models for the base case. ........... 77 

Table 12.  Variable operating costs. .......................................................................... 78 

Table 13.  Fixed operating costs. ............................................................................... 79 

Table 14.  Cost components of MPSP in the base case. ............................................ 80 

Table 15.  Ranges of fermentation operation parameters. ......................................... 82 

Table 16.  Ranges of latent heat exchanger parameters. ........................................... 85 

Table 17.  Input data for raw material composition (%). ........................................ 106 

Table 18.  Input data for raw material availabilities (tonne/h). ............................... 106 

Table 19.  Input data for raw material costs ($/tonne). ........................................... 106 

Table 20.  Input data for product demand (tonne/h). ............................................... 106 

Table 21.  Input data for product prices ($/tonne). .................................................. 106 

Table 22.  Input data for  capital costs of equipment. ............................................. 107 

Table 23.  Data for operating costs of equipment. .................................................. 108 

Table 24.  Yield matrices (Scenario 1/Scenario 5 if yield is varied). ...................... 109 

Table 25.  Results on raw materials, products, and waste (tonne/h). ...................... 119 

Table 26.  Results on operational mode (Y). ........................................................... 119 

Table 27.  Results on total flow rate (TFLOW). ..................................................... 120 



xix 

 

 

 

Page 

Table 28.  Results on sizes (SIZE and MSIZE). ..................................................... 120 

Table 29.  Results on inlet components flow rate (FIN). ........................................ 121 

Table 30.  Results on outlet component flow rates (FOUT). .................................. 124 



1 

 

 

CHAPTER I  

INTRODUCTION 

 

With the growing attention to sustainable development, the concept of biorefineries 

is gaining an increasing attention. A biorefinery is a processing facility that receives 

biomass feedstocks and produces one or more chemical products and/or biofuels through 

a system of physical/chemical/biological processes. The resurging interest in 

biorefineries has been motivated by the dwindling fossil-fuel resources and increasing 

attention to strategies that reduce greenhouse-gas emissions. Several lab-scale concepts 

have been developed to produce biofuels; however, there are still very few biorefineries 

that have been commercialized to meet the techno-economic criteria for biofuels.  

Well-developed approaches to the synthesis of reaction pathways are not suitable for 

problems of biorefinery design which have specific characteristics. Recently, a certain 

processing platform is usually chosen based on developer’s interest, preferences, and 

experience without a thorough analysis or systematic approach to determine the best 

option. Although the development of the chosen option can lead to feasible biorefineries, 

the economic may not be viable. More importantly, new biorefinery configurations with 

better performance may not be generated. There is a critical need to quickly and 

methodically generate cost-effective and innovative biorefinery configurations.  

The objective of this research is to develop novel and applicable methodologies to 

systematically solve the problems along a roadmap of constructing a globally optimum 

biorefinery design. The roadmap consists of the following steps: (1) synthesis of 

conceptual biorefinery pathways from given feedstocks and products, (2) screening of 

the synthesized pathways to identify the most economic pathways, (3) development of a 

flexible biorefinery configuration, and (4) techno-economic analysis of a detailed 

biorefinery design. The approaches to first two steps will be developed in Chapter II. 

The third and fourth problems will be addressed in Chapters III and IV, respectively. 

 

This dissertation follows the style of AIChE Journal.  
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CHAPTER II  

PRELIMINARY SYNTHESIS AND OPTIMIZATION  

OF BIOREFINERY PATHWAYS 

 

2.1 Introduction  

Recently, there has been a growing interest in research and development activities to 

develop technologies leading to cost-effective renewable energy. Traditional approaches 

to the design of biorefinery configurations usually do not lead to a globally optimum 

solution whereas systematic approaches developed for similar process system 

engineering problems are not well suited for biorefinery design.  

A common approach to the design of biorefinery configurations is to start with a core 

conversion technology, which is usually located at the front end of a biorefinery (e.g., 

pretreatment, hydrolysis, fermentation, digestion, gasification, and pyrolysis), then add 

pre-processing and post-processing units for feedstock preparation and product 

separation and upgradation. Another common approach is to scale up the same units 

developed at the laboratory scale and revise the process configuration based on the 

practical aspects of large-scale production. Although these approaches can lead to 

process configurations that work, their overall performance may not be attractive. 

Furthermore, they may severely hinder innovation of new configurations.  

This chapter proposes a novel two-stage approach to the synthesis and optimization 

for the design of biorefinery configurations. In the synthesis work with specified 

feedstocks and products, possible pathways are created to include conversion steps that 

are based on proven reactions or available technologies. A pathway synthesis method 

referred to as the “forward-backward” approach is introduced. It involves forward 

synthesis of biomass to possible intermediates and reverse synthesis starting with desired 

products and identifying necessary species and pathways leading to them. In the 

optimization work to determine an optimal configuration from the synthesized pathways, 

a preprocessing step of selecting an optimal policy in every conversion step of the 
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pathways is performed. This preprocessing step reduces the size of the subsequent 

optimization calculations. 

2.2 Problem description 

The problem can be described as follows: Given a set of biomass feedstocks with 

known flowrates and characteristics and a desired final product with specifications, it is 

desired to develop a systematic methodology to generate optimal configurations from 

feedstocks to products. Available for service is a set of conversion technologies with 

known performance. Various objectives may be considered such as the highest yield, the 

highest energy efficiency, the shortest route (the least number of processing steps), the 

minimum-cost route, or the most sustainable route (as characterized by sustainability 

metrics). Figure 1 shows the inputs and outputs of the problem. 

 

2.3 Literature review 

Several important pathways to produce transportation fuels and chemicals from 

biomass can be found in literature. Huber et al.1 provided a review of current and 

possible future pathways for obtaining transportation fuels. Kamm and Kamm2 and 

Fernando et al.3 reviewed product trees of four biorefinery systems: lignocellulosic 

feedstock biorefinery, green biorefinery, whole-corn biorefinery, and biorefinery with 

integration of thermochemical and biochemical platforms. Fernando et al.3 proposed an 

integration between biorefineries and petroleum refineries to produce 12 potential 

chemicals in addition to conventional fuels.  

Databases of biomass-derived chemicals were developed at National Renewable 

Energy Laboratory. Werpy and Petersen4 reported a large collection of chemicals that 

Figure 1. Schematic problem description. 

Optimal biorefinery 

configurations? 

Given feedstocks 

(biomass) 

Given products  

(fuels and chemicals) 
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can be derived from sugar and syngas. Holladay et al.5 made a similar effort to find the 

most promising chemicals derived from lignin. 

Various techniques have been developed for reaction pathway synthesis. The earlier 

work in the 1970’s was reviewed by Agnihotri and Motard6 and Nishida et al.7 Proposed 

techniques in that period included matrix synthesis approach,8 symbol triangle 

approach,9 retro-synthesis approach,10, 11 minimum Gibbs free energy approach,12 and 

geometry synthesis approach.13 The approach using Gibbs free energy was further 

developed in the 1980’s.6,14,15 In the 1990’s, environmental aspects were incorporated in 

the synthesis of reaction pathways.16-18 Recently, optimization-based approaches19,20 and 

an evolutionary technique21 for reaction path synthesis were introduced.  

A systematic approach to the synthesis of optimal biorefinery pathways was reported 

by Bao et al.22 The approach is based on developing a superstructure of conversion 

technologies and resulting intermediate chemicals then using a tree-branching and 

searching technique to determine candidate pathways. 

Several papers have focused on the techno-economic analysis and optimization of 

specific production pathways such as ethanol,23-27 biodiesel,28,29 mixed alcohols and 

transportation fuels,30-32 and energy.33,34  There is also research to establish processing 

routes with minimum energy consumption prior to establishing the optimal products.3,35-

37 Elms and El-Halwagi38 introduced an optimization routine for feedstock selection and 

scheduling for biorefineries and included the impact of greenhouse gas policies on the 

biorefinery design. Pokoo-Aikins et al.39 included safety metrics along with process and 

economic metrics to guide the design and screening of biorefineries.  

The optimization problem to determine the best pathway from the synthesized ones 

has been investigated by several researchers. Optimization has been performed based on 

yield,22 entropy analysis,40 optimization framework,41 and modular platform.42 Ng43 used 

a pinch analysis for an automated targeting procedure to find the highest production rate 

and revenue without a detailed design of biorefineries. Alvarado-Morales et al.35 applied 

principles of group-contribution to predict pure-component properties to simultaneously 

model, design, and synthesize biorefineries.  
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2.4 Proposed approach 

The proposed approach involves synthesis and optimization tasks. The following are 

the main steps: 

• Forward and backward branching 

• Matching 

• Screening 

• Selecting optimal policies between each two consecutive nodes 

• Optimizing pathways 

These steps are explained in the ensuing sections. 

2.4.1 The synthesis problem 

To avoid generating complex (and potentially impractical) configurations, the 

number of conversion steps in the synthesis problem is limited to five.  Each conversion 

step is a reaction system (a reactor or a set of reactors), followed by separation units 

necessary to purify the produced chemicals to appropriate levels for the next conversion 

steps. Pretreatment of lignocellulosic biomass is not counted as one of the conversion 

steps. The synthesis approach involves forward synthesis of biomass to possible 

intermediates and reverse synthesis starting with the desired products and identifying the 

necessary species and pathways leading to them.  Once the feedstock-forward and the 

product-backward pathways are synthesized, two activities are performed: matching 

(which corresponds to direct connection of two species if one of the species synthesized 

in the forward step is also generated by the backward step) and interception (which 

refers to the addition of a conversion steps to convert a forward-generated species to a 

backward-generated species). The interception task may be detailed by identifying 

known processes to achieve such conversion or by using reaction pathway synthesis to 

link the two species.  

Figure 2 illustrates an example of the branching trees. Each node represents an 

intermediate compound (i.e., a species) and each arc represents a conversion step. In the 

forward branching problem, the branching starts from the feedstock node. The nodes 

connecting to the feedstock node are compounds that can be directly produced from the 
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feedstock through one conversion technology. Two forward steps are allowed from the 

feedstock. For example, a carbohydrate feedstock can be converted into methane (by 

digestion), sugar (by enzymatic hydrolysis), syngas (which is a mixture of carbon 

monoxide and hydrogen, by gasification), etc. The next layer of nodes lists compounds 

that can be produced from the compounds at the previous nodes. For example, acetylene 

is produced from methane (by cracking). This is called the “forward problem" because 

the branching direction is co-current with the processing flows. 

In the reverse problem, the branching originates from the final product node and is 

countercurrent to the processing flows. Two backward steps are taken from the final 

product. For example as shown by Figure 2, node Bromoethane (C2H5Br) connects to 

node Ethanol because bromoethane can be hydrolyzed into ethanol. One of the 

chemicals that can be used to produce bromoethane (by hydrobromination) is ethylene.  

Next, nodes from the forward branching tree and from the backward branching tree 

are connected in one of two ways: matching or interception. An example of matching is 

when sugar appears as both a forward node and a backward node (see Figure 2). By 

connecting the two sugar nodes, a pathway is created from biomass to ethanol. An 

example of interception is the use of hydrogenation step (see Figure 2) to connect nodes 

Acetylene (C2H2) and Ethylene (C2H4), making another complete pathway from the 

biomass to the ethanol. 

As a result of the synthesis problem, one or more complete pathways connecting a 

feedstock and products are found. Although based on known building blocks, the 

generated pathways can be novel because of their interconnections. The generated 

pathways can also be quickly constructed and screened. Figure 3a is an example of a 

superstructure of synthesized pathways. Lettered nodes represent intermediate 

compounds. Between each two nodes, there can be more than one pathway (e.g., the 

pathway from Feedstock to E) or arc (e.g., A-G, D-E, E-H, and F-I). It is useful to 

identify optimal pathways between nodes, which is described in the next section.  
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Figure 2. Forward and reverse branching trees. 
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Figure 3. A superstructure of synthesized pathways representing conversion 
technologies (arcs) and intermediate chemicals (nodes),  

(a) with all brainstormed arcs and nodes, 
and after applying the principle of optimality to pathways connecting: 

(b) every pair of adjacent nodes, 
(c) Feedstock – C,  
(d) Feedstock – E,  
(e) D – Product. 

Feedstock 

Product 

B 

D 

F 

A 

C 

E 

I H G 

a) b)

Product 

B 

D 

F 

A 

C 

E 

I H G 

Feedstock 

Product 

B 

D 

F 

A 

C 

E 

I H G 

Feedstock 

c)

Product 

B 

D 

F 

A 

E 

I H G 

Feedstock 

d)

Product 

B 

D 

A 

E 

H G 

Feedstock 

e)



9 

 

 

2.4.2  Identifying optimal routes between nodes  

In this proposed approach, a parameter-optimization step is performed first. In this 

step, a set of design parameters xntn' is designated for each conversion technology t that 

produces species n' from species n. The objective is to optimize the objective values rntn' 

as follows:  

Problem P1.1:  

 ' 'min ( )ntn ntn
x

r Y x= for every t (1) 

 subject to '( ) 0ntnh x ≤  (2) 

   '( ) 0.ntng x =  (3) 

The objective function of this optimization problem may be defined as the 

conversion step with the highest yield, the highest energy efficiency, the simplest, the 

minimum cost, the maximum profit, etc. The constraints of the formulation include: 

• Key performances of processing technologies: yield, conversion, etc. 

• Mass balances 

• Energy balances  

• Capital cost 

• Operating cost 

In this step, detailed analysis can be performed using available data and/or appropriate 

levels of simulation.  

It is not uncommon to have multiple routes connecting two adjacent nodes. To 

reduce the complexity of the design problem, it is useful to determine optimal routes 

among the nodes. In this context, it is proposed to use Bellman’s Principle of 

Optimality44 to decompose the optimization problem into several sub-problems. The 

Principle of Optimality follows:44 “An optimal policy has the property that whatever the 

initial state and initial decision are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision.” 
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For network problems of the type addressed here in the biorefinery pathway 

synthesis, the principle of optimality may be stated as follows:45 “There exists a policy 

that is optimal for every node.” 

Hence, an optimal policy is first identified for subproblems. Each subproblem 

corresponds to identifying the optimal conversion route between a pair of nodes. 

Specifically, two types of subproblems are considered: 

• Arcs directly connecting two adjacent nodes (e.g., the three arcs connecting 

nodes F and I in Fig. 3a).  

Problem P1.2:  

 ' 'minnn ntn
t

r r=  (4) 

where 'nnr  is the objective value of the optimum arc connecting two adjacent 

nodes, 

'ntnr  is the objective value of the arc using technology t and connecting 

the two adjacent nodes n and n'. 

• Routes connecting two non-adjacent nodes through different intermediates 

(e.g., in Figure 3a, nodes Feedstock and E connected through the route 

Feedstock-C-E versus the route Feedstock-B-D-E).  

Problem P1.3: 

'
, '

min ( )ij nn
n n

r f r=  (5) 

where ijr  is the objective value of the optimum route connecting two non-

adjacent nodes i and j by combination of adjacent acrs (n, n'), 

'nnr  is the objective value of the optimum arc connecting two 

adjacent nodes n and n'. 

As a result of solving Problems P1.2 and P1.3, optimal policies are determined and the 

superstructure is simplified to one of the levels as shown in Figure 3b – e.  This is done 

prior to solving the superstructure-optimization problem. 
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Next, an optimal configuration from the synthesized and locally optimized pathways 

(the simplified superstructure) is determined by solving either a linear programming 

formulation or dynamic programming algorithm. As for the approach of linear 

programming formulation, the following problem is solved: 

Problem P1.4: 

 1
,

min ( )N ij
i j

r f r=   (6) 

where 1Nr  is  the objective value of the optimum pathway connecting nodes Feedstock 

and Product, 

     ijr  is the objective value of the optimum route connecting two non-adjacent 

nodes i and j. 

If the objective functions are non-linear, Problem P3a is difficult to solve for global 

optima. In such cases, the following approach of dynamic programming is preferred 

because it is guaranteed to obtain the global optima. The approach of dynamic 

programming algorithm is based on the functional equation: 

Problem P1.5: 

 1 ' 1 'min ( , )n n nn
n

r f r r=  (7) 

where 1nr  and 1 'nr  are the objective values of the optimum routes connecting nodes 

Feedstock – n and Feedstock – n' respectively, 

     n and n' are two adjacent nodes and the path direction is n → n'. 

Using the functional equation, 1 'nr  can be determined once 1nr  is known for every n 

and n' such that (n, n') is an arc. The algorithm starts from the first node (Feedstock) and 

ends at the last node (Product). This algorithm is called forward optimization in dynamic 

programming. The reverse algorithm that starts from the last node and is similarly 

developed is also applicable. 
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2.4.3 Framework  

The proposed framework for the synthesis and optimization of biorefinery 

configurations is shown in Figure 4. Starting from the input information on feedstock 

and products, the following steps are performed in sequence: 

1. Forward and backward branching. These two branching steps enumerate as 

many intermediate compounds (and associating conversion technologies) as 

possible. Those compounds can be produced from the feedstock (in forward 

branching problem) or converted into the final product (in reverse branching 

problem).  

2. Matching. Some of the branches of the two trees are connected to yield complete 

pathways (from the feedstock to the final product) by identifying the identical 

intermediate compounds.  

3. Interception. When two compounds on the edging layers of the branching trees 

are not connected, it is possible to identify known processes or reactions that will 

link the two compounds. This is referred to as “interception.” 

4. Screening. Based on simple technical and economic analyses, this step eliminates 

the synthesized pathways that are too complex, thermodynamically infeasible, 

economically infeasible, or have too low yields. The elimination reduces the 

work load in the next steps without sacrificing optimal pathways. 

5. Optimizing parameters. Before solving the superstructure-optimization problem, 

the design parameters are optimized for every synthesized pathway in this 

optimization step. Analyses (include simulation and techno-economic analysis) 

can be performed at different levels of details.  

6. Optimizing policies between two nodes. Based on the connectivity between the 

nodes, two types of subproblems are solved: adjacent and non-adjacent. For the 

former subproblem, technologies that process the same nodes are compared for 

the identification of an optimal one. However, there can be cases in which a 

series of conversion steps are considered at the same time for a global optimum. 

For these cases, the latter subproblem is solved. Based on the principle of 
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optimality, this step reduces the number of synthesized pathways without 

affecting the final results of the optimization problem.   

 

 

Figure 4. Framework for the synthesis and optimization of biorefinery 

configurations. 
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7. Optimizing pathways. Either a linear programming formulation or dynamic 

programming algorithm is used to determine the optimal configuration from the 

superstructure of synthesized pathways.  

These steps are categorized into two stages: synthesis stage (which includes the first 

three steps) and optimization stage (which includes the remaining four steps). The output 

of the framework is a biorefinery configuration which is technically feasible and 

optimum according to the given data. The configuration comprises not only the 

optimized pathways between feedstock and final products, but also some open branches 

connecting to the pathways which represent by-product production. 

2.5 Case study 

It is desired to synthesize pathways that produce fuel-grade alcohols from 

lignocellulosic biomass and to determine the most cost-effective pathway. The proposed 

procedure for the solution is applied as described in the ensuing steps. 

First, the branching and matching were performed. A tree of forward branching 

search from the feedstock was constructed. This tree tracks the compounds that can be 

produced from the lignocellulosic biomass within two conversion steps. Another tree 

starting from the bio-alcohol node was built to enumerate compounds from which the 

bio-alcohols can be derived. The enumeration in each direction is limited to two 

conversion steps to avoid an unnecessarily exhausting blind search. After the branching 

searches were done, the matching and interception steps were performed to identify 

complete pathways. Figure 5 shows a part of the two branching trees with identified 

complete pathways. Compounds, associating conversions, and unmatched branches are 

not presented for a clearer presentation. In the figures of synthesized pathways, it is not 

necessary to note to which layer a specific compound belongs. The left-hand side of 

Figure 5 collects biochemical pathways whereas the other side collects mostly 

thermochemical routes. The upper half (which is front-ends of biorefineries) includes 

biological conversions whereas the lower half involves chemical conversions.  
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Table 1. Technology arcs eliminated due to their low yields. 

Conversion steps Feed Product Yield Yield base Reference 
(6) Pyrolysis Biomass Syngas Max 29.2% Biomass weight Goyal et al.46 
(14) Aqueous 
phase reforming 

Sugar Ketones 23.7% Fed carbon 
weight 

Blommel and 
Cortright47 

(15) Aqueous 
phase reforming 

Sugar Alcohols 8.7% Fed carbon 
weight 

Blommel and 
Cortright47 

(19) Syngas 
fermentation 

Syngas Alcohols 53.1% Carbon monoxide 
weight 

Piccolo and 
Bezzo48 

(24) Chlorination Methane Chloro-methane Max 12% Methane weight Schmittinger49 

Figure 5. Part of the branching trees for the production of bio-alcohols from 

lignocellulosic biomass. 
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Figure 6. The superstructure of synthesized pathways after the screening step. 
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effective to produce the syngas because it employs less equipment, conversion, and 

separation steps. Note that although the routes involving Arcs 3 – 17 and 4 – 17 are 

eliminated, the Arcs 3 and 4 are kept because they are parts of other routes, for instance, 

through the one involving Arcs 3, 14, and 28. It is possible for an arc to connect the 

feedstock and the product to form a pathway. For example, the pathway via Arc 5 

comprises only one conversion step which is acetone-butanol-ethanol (ABE) 

fermentation (pretreatment as well as other treatment and separation are not considered 

as conversion steps in this branching-tree presentation). Figure 6 shows the simplified 

superstructure after the screen step is performed. 

In this case study, the parameter-optimization step to optimize the process designs 

(Problem P1.1) was not performed because the overall objective values – production costs 

– of most of the pathways could be found from techno-economic analyses in the 

literature. In these techno-economic analyses, optimization of the process designs was 

done to some extent. 

The next step is to optimize the policy between nodes. The technologies used for 

adjacent nodes were compared to find the most cost-effective ones (Problem P1.2). These 

pairs of technologies were considered: (Arcs 27 vs. 28) and (Arcs 18 vs. 20). Then, 

another type of subproblems (Problems P1.3) is solved to determine the optimal routes 

connecting the non-adjacent nodes: A → E, A → F, K → O, and G → O. The objective 

function of these subproblems is the minimization of the production costs, which has to 

be identical to that of the overall optimization problem. This work uses information of 

the production costs of these conversion steps from published data (with adjustments for 

the time value of money, location, and production capacity). In some cases where such 

economic information may not be available, simulation and heuristics can be used to 

determine the optimal ones. Table 2 summarizes the policy optimization between nodes.  

At the end of this step, the superstructure is simplified as shown in Figure 7.   
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 Table 2. Problems of optimizing policy between two nodes. 

Nodes Feed Product Routes a Key comments References 
A → F Biomass Methane (7) Gasification & (21) 

Methanation 
Production cost: $8.53/GJ of methane Gassner and 

Maréchal51 
(8) Landfill Production cost: $1.90 – $3.79/GJ of methane EPA52 
(9) Digestion Production cost: $0.20 – $0.55/GJ of methane Gray53 

A → E Biomass Syngas (7) Gasification Energy efficiency: 82.8% Hamelinck 
and Faaij54 

(9) Digestion & (22) 
Autothermal reforming 

Energy efficiency: 63% Calculation 

H → O Ketones Alcohols (27) Grignard synthesis Yield is 82 – 88% Carey and 
Sundberg55 

(28) Hydrogenation Yield is 100% Chang56 
K → O Ethylene Ethanol (31) Indirect hydrolysis Well developed and commercialized in 1960s but 

phased out because less economic than hydration. 
 

(32) Hydration Simple, direct, and most costly effective pathway  
(33) Hydrobromination & (35) 

Hydrolysis 
Involves many more steps than hydration pathway  

(34) Hydroformylation & (36) 
Hydrogenation 

Involves many more steps than hydration pathway  

G → O Acid 
carboxylic 

Alcohols (25)  Esterification & (30) 
Hydrogenolysis 

Includes mild esterification (203 kPa and 
50oC) and hydrogenation (160oC and 405 kPa) 

Kiff and 
Schreck57 

(26) Hydrogenation Involve furnace, intense hydrogenation (230 – 
270oC and 4.1 – 7.1 MPa), and expensive 
molecular sieve. 

Kiff and 
Schreck57 

E → O Syngas Methanol (18) Methanol synthesis Production cost ($2010): $19.98/GJ methanol b Hamelinck 
and Faaij54 

Syngas Alcohols (20) Mixed alcohol synthesis Production cost ($2010): $19.98/GJ methanol c Bechtel58 
Note:  a. Bold routes are optimal ones; b. 20% was added to account for additional cost of processing municipal solid waste;  

c. An additional cost of $0.425/gal was added to account for biomass feedstock.59 
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Table 3. Problems of optimizing pathways. 

Pathways Description Product Base year Year 2010 References 
Capacity Product 

cost b 
Energy 
density 

Date PPI c Alcohols cost 

MMGPY a $/gal MJ/gal $/gal $/GJ 
A→B→J
→O 

Mixed alcohols production 
via acid fermentation and 
esterification 

Mixed 
alcohols 

45 1.21 92 2007 213.7 1.39 15.14 Granda et al.60 

A→C→
H→O 

Mixed alcohols production 
via acid fermentation and 
ketonization 

Mixed 
alcohols 

35 1.44 101 2009 229.4 1.54 15.28 Pham et al.61 

A→D→
G→J→O 

Ethanol production via 
acetongen fermentation  
and ester synthesis 

Ethanol n/a n/a n/a n/a n/a n/a n/a The Zeachem 
process 

A→D→
O 

Ethanol production via 
hydrolysis and yeast 
fermentation 

Ethanol 50 1.03 79 2003 161.8 1.56 19.69 Hamelinck et 
al.50 

A→O Mixed butanol and ethanol 
production via ABE 
fermentation 

Mixed 
alcohols 

n/a 1.50 110 2007 214.8 1.71 15.47 Pfromm et al.62 

A→E→
O 

Methanol  production via 
biomass gasification 

Methanol 24 0.61 59 2001 151.8 1.18 19.98 Hamelinck and 
Faajj54 

A→F→I
→K→O 

Ethanol production via 
syntheses of methane, 
acetylene, and ethylene 

Ethanol 13 2.74 79 2008 245.5 2.73 34.43 Calculation 

Note: a. MMGPY: Million gallons per year of products. Online operation is 8,000 hours per year 

 b. All the product costs exclude feedstock costs 

 c. PPI: Producer Price Index for Chemicals and Allied Products. PPI in 2010 (245.1) is the average from January 2010 

to July 2010. 
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Figure 7. The synthesized superstructure after the step of optimization between nodes. 
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The calculations show that the following pathways are the most economically 

attractive routes: Mixed alcohols production via acid fermentation and esterification 

(A→B→J→O; $15.14/GJ of products). Mixed alcohol production via acid fermentation 

and ketonization (A→C→H→O; $15.28/GJ). Mixed butanol and ethanol production via 

ABE fermentation (A→O; $15.47/GJ). 

Because the calculated costs of these three configurations are relatively close, additional 

analyses must be performed. This is consistent with the stated objective of the devised 

approach which is aimed at quick screening of pathways to generate a set of attractive 

configurations that can be later screened in more detail. 

2.6 Summary 

A common approach to the design of biorefinery configurations is to develop 

flowsheets around a core conversion technology or scale-up a laboratory-scale unit. 

Although feasible process configurations can be derived, their overall performance may 

not be attractive and the approach may severely hinder the innovation of new 

configurations. 

A new methodology for the synthesis and optimization of biorefinery configurations 

was proposed in this chapter. The proposed forward and backward branching techniques 

– along with matching and interception steps – are used to synthesize the biorefinery 

pathways based on known conversion technologies. Bellman’s Principle of Optimality 

can be applied to decompose the optimization problem into subproblems that can be 

readily solved to reduce the number of possible pathways from the synthesized ones 

without missing the globally optimal solution. The methodology is a systematic way to 

quickly synthesize and screen biorefinery pathways so as to generate promising 

pathways that can be assessed in more details. 

The proposed methodology was demonstrated in a case study of producing fuel-

grade alcohols from lignocellulosic biomass. The result indicated mixed alcohol 

production via acid fermentation and ABE fermentation as the most economically 

attractive pathways. 
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CHAPTER III  

DESIGN OF BIOREFINERY CONFIGURATIONS  

WITH AN OPTIMAL LEVEL OF FLEXIBILITY 

 

3.1 Introduction  

Decisions on the design of chemical processes rely on input information, which 

generally has uncertainty or predictable variations in operation stage. The problem of 

accommodating these input changes in early design stage is referred to as design with 

flexibility. Based on sources of uncertainty, the input changes can be categorized into 

four types:64 

• Model-inherent uncertainties – parameters in modeling equations to 

mathematically describe the process. They are obtained from experiments. 

Their changes are usually described in ranges possible realizations or in 

probability distribution functions. 

• Process-inherent uncertainties – flowrates, temperatures, pressures, and 

stream qualities that normally disturb or fluctuate when the process is in 

operation. Their values can be obtained from measurement instruments and 

described by probability distribution functions.  

• External uncertainties – availability, demand, prices, and qualities of raw 

materials, utility, and products. It also includes surrounding environmental 

conditions. The behaviors of these input changes depend on specific market 

or environmental conditions. They can be predicted (forecasted) from 

historical data. 

• Discrete uncertainties – equipment availability and other random discrete 

events. An uncertainty of this type, for example, is an equipment failure of 

which probability (and frequency) can be retrieved from reliability databases.  

Another classification of the input changes is based on the uncertainty nature and on 

how to describe it.65 There are two categories of this classification: deterministic and 

stochastic. The deterministic uncertainties are described by a finite set of values 
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(scenarios) with given occurrence probabilities; therefore, they are preferred for the 

external and discrete uncertainties. The stochastic uncertainties have behavior of 

continuous random variations described by joint probability density functions; hence, 

they are more suitable for the model and process-inherent uncertainties. 

Let θ be the uncertainty parameters, d be design variables, z be control variables, and 

x be state variables. The problem of flexibility design can be formulated in the following 

general forms: 

  Problem P2.1: 

, ,
max ( , , , )
d z x

P d z xθ
  

(8)
 

 subject to ( , , , ) 0f d z xθ ≤  (9) 

   ,  ,  .d D z Z x X∈ ∈ ∈  

The objective function P(d,z,x,θ) is a cost function (e.g., revenue, profit, operation 

cost, capital cost). If the θ is described by (or discretized into) a set of scenarios with 

given probabilities (or weighting factors), P(d,z,x,θ) is an expected value of the cost 

function. The constraints represent specifications and process-modeling relations such as 

mass balance, energy balance, equilibrium, design equations, product qualities, etc. 

(Note that equality constraints are equivalent to a set of two inequality constraints with 

opposite signs; therefore, equality constraints are not shown in P2.1 for simplification.) In 

the literature, design specifications were formulated in one of two constraint types: hard 

constraints and soft constraints. Hard constraints strictly restrict calculated variables in 

predefined ranges (e.g., z ≤ 1). On the other hand in soft constraints, violations are 

allowed with a penalty. For example, (z – 1)2 is a Taguchi loss function66 to impose a 

penalty charge if value of z is not equal to 1, a desired value.  

In design stage, process designers must anticipate the changes of input (θ) which 

may occur in operation stage and must decide on what strategies to respond. The 

response strategies can be categorized into three levels as shown in Figure 8. The 

quickest and easiest way to respond to the changes is manipulation of operation 

conditions (i.e., changing z values). If this strategy can not accommodate them (e.g., 

product specifications can not be met in any operation conditions), substitution of 
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feedstocks or products (changing other z) is considered. If the second-level strategy fails, 

the change of equipment sizes (i.e., changing d values) and/or of process structure 

(retrofitting) may need to be performed. The higher levels of the strategy pyramid 

require more effort, expense, and time to respond.  

 

 

 Figure 8. Strategies to respond to uncertainty changes. 
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flexibility in which the design must be feasible at all values of uncertainties in a discrete 

set of realizations (multiperiod design problem) or in specified ranges (general design-

under-uncertainty problem) – a semi-infinite set of realizations. These approaches are 

suitable for deterministic model of uncertainty.  

In the multiperiod problems, solutions can be determined from the following one-

stage formulation where the functions in program P2.1 are rewritten for all periods: 

  Problem P2.2: 

, ,
1

max ( , , , )
p p

P

p p p
d z x

p

P d z x θ
=
∑

  
(10)

 

 subject to ( , , , ) 0,     1,...,p p pf d z x p Pθ ≤ =  (11) 

   ,  ,  .p pd D z Z x X∈ ∈ ∈  

where P is the number of operation periods. 

Multiperiod problems are usually easy to solve. However, the general design-under-

uncertainty problems are much more difficult. Halemane and Grossmann69 formulated 

the latter problem in a two-stage program: 

  Problem P2.3: 

{ },
max max ( , , , ) | ( , , , ) 0

Td z x
P d z x f d z x

θ
θ θ

∈
Ε ≤

  
(12)

 

 subject to { }( , )[ ( ( , , , ) 0)] .jT z x j J f d z xθ θ∀ ∈ ∃ ∀ ∈ ≤  (13) 

The outer stage is a design-stage problem where d is determined to optimize the 

expected value of the cost function. The inner stage, 
,

max ( , , , ) | ( , , , ) 0,
z x

P d z x f d z xθ θ ≤ is 

an operating-stage problem where values of design d are fixed and values of control z are 

determined to yield optimum values of the cost function for every θ ∈T .  

The main difficulties of Problem P2.3 are the need to solve a semi-infinite number of 

operating-stage problems because realizations of θ are (bounded) ranges and the 

flexibility tests (logical Constraint 13) must be verified. A common approach to the first 

difficulty, which was proposed by Grossmann and Sargent,70 is to transform the 

formulation into a multiperiod program by discretizing θ space from the continuous 
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regions into discrete sets. As for the second difficulty, Halemane and Grossmann69 

reformulated the logical constraint with the following equivalent constraint: 

,
max min max ( , , , ) 0j

z xT j J
f d z x

θ
θ

∈ ∈
≤

  
(14)

 

and proved that only vertices in the polyhedron of T (instead of continuous space of T) 

need to be verified with Constraint 14 if inequalities are convex, which significantly 

reduces computational expense. 

The second category is design with optimal degree of flexibility. Its design objective 

is somewhere between the two extreme cases above (the traditional approach and the 

optimal design for fixed degree of flexibility) as the design is not necessary to be 

feasible at all value of uncertainties. Decision-making is based on a trade-off between a 

cost function and degrees of flexibility, which are quantified by a metric.  

The key issue of the second-category is analysis of flexibility, i.e., quantification of 

flexibility level. Swaney and Grossmann71 proposed a flexibility index to measure a 

partial region (of a given θ space) in which a fixed design d still satisfies feasible 

conditions. The feasible ranges of θ are expressed in terms of flexibility index F: 

N NF Fθ θ θ θ θ− +− ⋅ ∆ ≤ ≤ + ⋅ ∆
 

(15)
 

where  θN is the nominal value,  

∆θ
- and ∆θ+ are given negative and positive deviations. 

Then, the program to determine flexibility index F can be mathematically formulated: 

  Problem P2.4: 

maxF δ=
 

(16) 

 subject to 
,( )

max min max ( , , , ) 0j
z xT j J

f d z x
θ δ

θ
∈ ∈

≤  (17) 

( ) ( | ).N NT δ θ θ δ θ θ θ δ θ− += − ⋅∆ ≤ ≤ + ⋅∆  (18)
 

To solve Problem P2.4, Swaney and Grossmann72 assumed the critical points 

(solutions) lie at vertices of T(δ). Then Problem P2.4 is equivalent to: 

  Problem P2.5: 

min k

k V
F δ

∈
=

 
(19) 
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, ,
maxk k

z xδ
δ δ=

 
(20) 

 subject to  ( , , , ) 0f d z xθ ≤  (21) 

N kθ θ δ θ= + ⋅ ∆  (22)
 

  where  V is the index set of vertices 

   ∆θ
k is deviation of nominal value θN towards vertex k. 

Alternatively, Grossmann and Floudas73 proposed an approach to determine explicit 

solution of Problem P2.4 without the assumption of critical point locations lying at 

vertices of T(δ). By analyzing properties of active constraints of feasible conditions 

(constraint 14), the authors formulated an equivalent mixed-integer minimization 

problem of the following forms: 

  Problem P2.6: 

, , , , , ,
min

j j jz x s y
F

θ δ λ
δ=

 
(23) 

 subject to ( , , , ) 0,      j js f d z x j Jθ+ ≤ ∈  (24) 

 1j
j J

λ
∈

=∑  (25) 

 0j
j

j J

f

z
λ

∈

∂
=

∂∑
 (26) 

 0,      j jy j Jλ − ≤ ∈  (27) 

 (1 ) 0,      j js U y j J− − ≤ ∈  (28) 

 
1j z

j J

y n
∈

= +∑
 (29) 

N Nθ δ θ θ θ δ θ− +− ⋅ ∆ ≤ ≤ + ⋅ ∆
 

(30)
 

0,1;jy      j J= ∈
 

(31)
 

where  sj is a slack variable for constraint j: f (d,z,θ) ≤ 0, 

 λj is a Kuhn-Tucker multiplier for constraint j, 

 U is an upper bound for the slack, 

 nz is the number of control variables z. 
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Problem P2.6 has the advantage of not requiring the assumption of critical points on 

the vertices or exhaustive vertex search. Hence, it has been embedded in formulations to 

solve various types of retrofitting design problems. Pistkopoulos and Grossmann solved 

optimal retrofit design problems for increasing its flexibility to above a desired level in 

linear systems,74 to exactly a desired level in nonlinear systems,75 or to an optimum level 

that corresponds to a maximum profit with deterministic76 and stochastic77 uncertainty 

models. 

Another way found in the literature to quantify flexibility levels is stochastic 

flexibility. Stochastic flexibility is defined as the probability that operation of a given 

design is feasible.78 Thanks to probability nature, problems of determining optimal levels 

of flexibility with stochastic models of uncertainty parameters are best treated in this 

approach. In mathematical viewpoint, stochastic flexibility is the cumulative probability 

of the joint distribution j(θ) describing stochastic uncertainty over a feasible region, i.e., 

it is  the integral of j(θ) over the feasible regions of θ:78  

( )

( ) ( )
R d

SF d j dθ θ= ∫  
(32)

 

{ }( ) ( , ) ( ( , , , ) 0) .jR d T z x j J f d z xθ θ = ∈ ∃ ∀ ∈ ≤   
(33)

 
Straub and Grossmann79 embeded and handled this integral by discretization in design 

optimization problem of maximizing stochastic flexibility subject to a cost constraint. 

Pistkopoulos and Ierapetritou80 solved the design problem with stochastic flexibility by 

optimizing a cost function while simultaneously measuring design feasibility.  

Extensive reviews on the optimal flexibility design were reported by Grossmann et 

al.68 and later by Grossmann and Straub.81 Besides flexibility design, there are some 

other process system engineering problems that also encounter uncertainty and may 

share similar solution approaches. Some of them are controllability (ability of a control 

system to dynamically respond to disturbances), robustness, reliability (ability of a 

process to maintain normal operation when mechanical or electrical failures occur), 

value of perfect information, production planning, design and production of batch 
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processes. Reviews on these problems can be found in the publications of Pistkopoulos64 

and Bernardo et al.65 

Above is a selective literature review of common formulation and solution 

approaches to process designs with flexibility under uncertainty. In gerneral, those 

methodologies are systematic but they share some common limitations. The optimal 

design for fixed degree of flexibility is conservative because it requires feasible 

operation in the whole ranges of unceratinty, which may result in unnecessary additional 

costs of oversizing and maintenance. On the other hand, the approaches to design with 

optimal degree of flexibility reduce those additional costs; however, they involve the 

issue of flexibility analysis, which requires complicated formulation and solution 

methodologies. The research objective is to propose a novel formulation approach that 

tackles these two limitations and is well suited for the design of flexible bio-refinery 

configurations. 

3.3 Problem description 

3.3.1 Motivation  

Design of flexible biorefinery configurations involves external uncertainties and 

model-inherent uncertainties. External uncertainties usually include: 

• Feedstock prices, availability, and composition 

• Product prices, demand, and specifications 

• Prices and availability of raw chemical and utility 

Values of those parameters are uncertain because they depend on market conditions, 

which change with time and vary from one parameter to another. Most of their changes, 

for instance corn prices as shown in Figure 9, are arbitrary. But some of them, 

particularly availabilities of agricultural products, are seasonal and recurrent. For 

example, storage stocks of frozen corn in the United States are annually repeated due to 

weather conditions (Figure 10). (Note: Although frozen corn is not a biorefinery 

feedstock, its stocks reflect the availability change of corn crop used for fuel 

production). 
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Figure 9. U.S. monthly corn price received by farmers.82 

 

Some of the parameters depend on each other. For example, the price of hydrogen 

(as a raw material for an option to remove oxygen content out of biomass components) is 

proportional to the price of natural gas (as a common utility for heating) because 

hydrogen is mainly produced by reforming natural gas. The relationship is of the 

following form:60 

Hydrogen price ($/kg) = 0.172 · Natural gas price ($/GJ)  (34)
 

Such a relationship between uncertainties does not impose more difficulty on the 

solution approach; instead, it reduces the number of uncertainty scenarios to be 

investigated. 

Uncertainty levels of the external uncertainties can be reduced by performing 

analysis of historical market data and predicting future trends based on data. However, 

uncertainty levels can not be further reduced because the uncertainties depend on 

external conditions.  
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Figure 10. Cold storage stock of U.S. corn.83 

 

On the other hand, model-inherent uncertainties have different characteristics. They 

are obtained from experiments; therefore, their uncertain levels can be further reduced 

with more experiments (yet requires more experimental costs).65 In conceptual 

biorefinery configuration design, the uncertainties in interest are usually yields of being-

developed conversion technologies. In detail process design, other process-modeling 

parameters such as kinetic constants, physical properties, efficiency, transfer 

coefficients, and so on should be also considered. They are uncertain because of 

tolerance of the models (e.g., models are linearized for simplification), discrepancy 

between operation in research scales and in commercial scales (e.g., ideal mixing might 

not be achieved in commercial-scale large vessel as in laboratory-scale small apparatus), 

and degradation in operation (e.g., heat transfer coefficient decreases due to fouling). 

The changes are usually described in ranges possible realizations or in probability 

distribution functions. 

Let consider a simple example of corn-to-ethanol design with two uncertainties. For 

demonstration purpose, assume the future change of corn price (θ1) will be the same as 

the historical monthly price shown in Figure 9. Between January 2000 and April 2011, 

the price reached a minimum at $1.52/bushel in August 2000 and a maximum of 
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$6.40/bushel at the latest data record (April 2011). The average value is $2.87/bushel 

and the time period when the price exceeds $5/bushel is short (9 months out of 137 

months of the whole recorded data). Ignore the increasing trend of the price after the 

latest month. The second uncertainty is overall yield of the process (θ2) defined as a 

fraction of theoretical yield ethanol from corn grain, which is 124.4 gallons/dry ton 

feedstock.84 The actual yield is somewhere between 60% and 90% of theoretical, and 

expected at 85%. 

Design strategies for this example using approaches available in the literature can be 

briefly described as follows. In traditional approach, the plant is designed with nominal 

values of θ, for example, θ1 = 2.87 and θ2 = 85%; then, equipment sizes are overdesigned 

to accommodate the higher throughput when θ2 = 90%. In the approaches to optimal 

design for fixed degree of flexibility, the plant operation must be feasible for any values 

of θ in the uncertain ranges 1.52 ≤ θ1 ≤ 6.40 and 60% ≤ θ2 ≤ 90%. Such design is 

conservative as the plant must be in operation in the whole ranges, which results in high 

capital cost and probably a negative revenue in operation in some scenarios (e.g., in 

scenarios θ1 > 5). In the approaches to design with optimal degree of flexibility, a 

flexibility index that is based on the bound and nominal value of θ is analyzed; 

expensive iterative calculation is usually required to construct a trade-off curve between 

values of a profit function and the flexibility index. 

Alternatively, a new design strategy is proposed in this research. The design need not 

being feasible at any value of θ. Instead, the plant is designed such that it is in operation 

only when economic efficiency is favored (e.g., profit function is positive) and product 

qualities are met. During the operation stage, if these conditions are not satisfied, part of 

the plant is idle or the whole plant is shutdown to avoid economic loss. Hence, the 

design has an optimum level of flexibility. From a mathematical viewpoint, for every 

value of θ, design variables are calculated if those operation conditions are satisfied; 

otherwise, design variables have trivial values (zeros). In addition, non-iterative 

calculation is desired to reduce calculation effort. The problem of biorefinery 

configuration design is suitable for this strategy because it is not uncommon for part or 
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whole plant to be idle for economic reasons. Conversely in other design problems (for 

instance, design of flexible heat exchanger networks), the priority strategy is operation 

feasibility at various θ scenarios.  

3.3.2 Problem statement 

In this research, the term flexibility implies the ability of a process to be operable 

(i.e., feasible and profitable) in various scenarios of uncertainties. If the process is 

operable at any value of uncertainty, it is fully flexible. If the process is operable at some 

realizations of uncertainty, it is partially flexible. Figure 11 shows a sketch of trade-off 

curve between the profit and flexibility level. As flexibility level increases, higher 

capital costs are needed because equipment sizes are increased and more pieces of 

equipment are employed to accommodate wider ranges of uncertainty values. Also, 

revenue of the process increases as its online time increases because it operates in 

additional scenarios. As a result, the profit – which is a combination of the capital cost 

and revenue – has a maximum value at a certain flexibility level. The problem objective 

is to obtain the design with the maximum profit. In other words, the problem is design 

with an optimal level of flexibility. 

The general problem, configuration design with an optimal level of flexibility, can be 

stated as follows. A superstructure of the flowsheet with modeling equations is given. 

Information on available rates, characteristics, and prices of feedstocks, utilities, 

products, and other raw materials is also given. Those inputs may contain uncertainty or 

predefined variations that are modeled as deterministic uncertainty, i.e., described in 

ranges or discrete sets with occurrence probabilities. The problem is then to design a 

configuration (i.e., determine equipment sizes) with a level of flexibility so as to 

maximize the expected value of profit which is derived from revenue and annualized 

capital costs. The process does not need to operate at any value of the inputs; instead, it 

is allowed to be idle in some scenarios if economics are not favored or if qualities are not 

met. Figure 12 summarizes the problem statement. 
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Figure 11. Trade-off curve of profit and flexibility. 

 

 

 

Figure 12. Schematic configuration design with an optimal level of flexibility. 

 

Particularly for the problem of biorefinery configuration design with an optimal level 

of flexibility, given information is: 

• Biomass (feedstock) availability, characteristics, and prices with 

uncertainty 

• Biofuel (and other byproducts) demand, specifications, and prices with 

uncertainty 
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• Utility and other raw materials (e.g., hydrogen, acid, enzyme, lime, etc.) 

availability and prices with uncertainty 

• Technical performances (yield, conversion, design equations) with 

uncertainty. 

The profit function is of the following form: 

[Profit] = [Product sale] – [Operating cost] – [Annualized capital cost]  (35) 

Product sale is the annual income from selling products, which is a function of 

product prices and rates. Operating cost includes annual costs of feedstocks, chemicals, 

utilities, and labor. This second term is a function of their prices and production rates. 

Annualized capital cost accounts for depreciation of the investment and depends on 

equipment sizes. 

3.4 Approach 

3.4.1 Disjunctive operation mode constraint 

The constraint f(d,z,x,θ) ≤ 0 has been referred to as a general form of all constraints 

involving in the formulations. Let classify those constraints into three following types: 

 Equalities:  g(d,z,x,θ) = 0  (36) 

 Flow rate bounds: LB ≤ zflow ≤ UB (37) 

 Other inequalities: h(d,z,x,θ) ≤ 0  (38) 

where LB and UB are lower bound and upper bound of flow rate zflow
 going through 

equipment (zflow is classified as control variables). 

Constraint 36 is a set of process-modeling equations (mass and energy balance, 

equilibrium, design equations, etc.). Constraint 37 exists because ranges of operating 

flowrates are limited by equipment sizes which are fixed in operation. Constraint 38 

represents other feasible conditions and specifications. 

The unique design strategy of this work is to determine the process configurations 

and equipment sizes such that the process is not in operation when it is not profitable or 

when qualities are not met. To formulate this strategy, the following set of constraints is 

proposed to replace Constraints 37 and 38: 

h(d,z,x,θ) ≤ M·(1 – y) (39) 
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LB·y ≤ zflow ≤ UB·y (40) 

where  M is a large scalar, called big-M, and y is a binary variable.  

If the equipment is in operation, then its associating flow rate zflow > 0. Constraint 40 

imposes y = 1; therefore, h(d,z,x,θ) ≤ 0 must be satisfied because of Constraint 39. 

Otherwise, if h(d,z,x,θ) ≤ 0 is not met, then y = 0 (because of Constraint 39) and zflow is 

forced to be 0 (because of Constraint 40). Solver will decide the operation mode, i.e., 

whether y = 0 or y = 1 to maximize the profit. 

They are described as disjunctive operation mode constraints. These constraints can 

be considered as a general form of hard constraints because they become hard 

constraints when y is assigned 1 (before the formulation is solved). Figure 13 shows an 

example that using disjunctive operation mode constraints results in an equal or higher 

profit.
 

 

Figure 13. Comparison of solutions from two design strategies: using conventional 

hard constraints (A) vs. using disjunctive operation mode constraints (B), at two 

scenarios a) idle is economically favored and b) operation is economically favored.  

 

3.4.2 Formulation  

The problem of design with optimal level of flexibility can be formulated as follows: 

  Problem P2.7: 
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, ,
1

max ( , , , )
p p

P

p p p p
d z x

p

w P d z x θ
=

⋅∑
  

(41)
 

 subject to  ( , , , ) 0,     1,...,p p pg d z x p Pθ = =  (42) 

  ( , , , ) (1 ),     1,...,p p p p ph d z x M y p Pθ ≤ ⋅ − =  (43) 

  flow
p p pLB y z UB y⋅ ≤ ≤ ⋅  (44) 

     ,  ,  p pd D z Z x X∈ ∈ ∈  

where wp is a weighting factor. It is usually a probability of occurrence or fractional 

length of time periods in multi-period design problems. 

When it comes to configuration design with optimal level of flexibility, Problem P2.7 

can be expanded to the following forms: 

  Problem P2.8: 

, 1 1

Max ( , ) ( , )
flow

j p

P J
flow

p p p p j j j
d z p j

w R z C dθ θ
= =

⋅ −∑ ∑
  

(45)
 

subject to 

Revenue function: 
T( , )flow flow

p p p p pR z zθ θ= ⋅
 

(46) 

Capital cost function: ( , )
scale
jbase

j j j j jC d d θθ θ= ⋅
  

(47)
 

Availability of raw materials: ( ) (1- ) ,     ,  flow
i p i ih z M y i I p P≤ ∀ ∈ ∈  (48) 

Product demand: ( ) (1- ) ,     ,  flow
k p k kh z M y k K p P≤ ∀ ∈ ∈  (49) 

Mass balance of equipment:  

   
'( , , , ) = 0 ,     ,  ' ,  ',  flow in flow out

j j jp j p jpg d z z j j J j j p Pθ ∀ ∈ ≠ ∈  (50) 

Mass balance between equipment (which defines the process structure): 

  
'( , ) = 0,     ,  ' ,  ',  flow in flow out

jp j pg z z j j J j j p P∀ ∈ ≠ ∈   (51) 

Equipment sizes in every scenario: ( , ) 0,     ,  flow
jp jpg d z j J p P= ∀ ∈ ∈   (52) 

Equipment sizes designed:  ,     ,j jpd d j J p P≥ ∀ ∈ ∈   (53) 

Disjunctive operation mode:LB UB  ,     ,  flow
jp jp jpy z y j J p P⋅ ≤ ≤ ⋅ ∀ ∈ ∈   (54) 
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Variable domains: 0,1 ,     ,  jpy j J p P= ∀ ∈ ∈   (55)  

 
,  0d z≥   (56) 

where ( , )flow
p p pR z θ  is a revenue function for scenario p of flow rate variables and 

parameters of raw materials, product, and operating costs; 

( , )j j jC d θ  is a capital-cost function of equipment j depending on variables of 

equipment sizes dj and parameters to scale capital costs at various sizes. 

P2.8 is a mixed-integer nonlinear programming problem. The nonlinearity results 

from the annualized capital cost term (a power function) in the objective function. 

Additionally, it results from the disjunctive operation mode constraints if the bounds (LB 

and UB) contain variables, for instance size dj of associating equipment. In most of the 

cases, a local optimal solution is also the global optimal solution. (In Lingo,85 it can be 

verified when upper and lower bounds are found matched in solution report.) 

3.4.3 Solution algorithm 

Figure 14 summaries the solution approach to configuration design with an optimum 

level of flexibility, which consists of the following steps:  

• Transformation of uncertainty models. As discussed in Section 3.3.1, input 

information with uncertainty is described in various forms. In this step, they 

are transformed into a discrete set of scenarios. If the variations are given in 

continuous ranges, the ranges are discretized into multiple segments. The 

segments with identical values can be combined into one scenario with 

summation of their occurrence probabilities. Similarly, if information is 

available in forms of continuous (long) time periods, they are discretized into 

multiple equal small periods of which each is assigned a scenario. (Note: This 

problem objective is flexibility, rather than scheduling.) 

• Formulation. The problem is formulated as Problem P2.8. It is a mixed-integer 

nonlinear program (MINLP). The nonlinear terms appear in the objective 

function. They may also appear in constraints if nonlinear models are used. If 
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all the constraints are linear, global optimum is likely obtained using 

conventional solution methods. 

 

 

Figure 14. Solution framework to configuration design with an optimum level of 

flexibility. 

 

• Solution of the formulation. The optimization program can be solved using 

optimization software for the (local) optimum solution. Whether the found 

solution is the global optimum might be verified in calculation reports. 

• Result analysis. The solution of the formulation is analyzed for a practical 

configuration. For example, if a part of the process is assigned idle in most of 
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scenarios that are expected not to occur in the near future, then that part needs 

not to be constructed at the beginning of the project. It helps to reduce initial 

capital cost and to avoid maintenance costs during the idle period. 

As a result, a flexible configuration with a maximum expected value of profit is 

obtained. Also, operation modes in every scenario of uncertainties are available in the 

solution.  

3.5 Case study 

3.5.1 Problem description 

In Chapter II, the case study of synthesizing lignocellulosic-biomass-to-alcohols 

pathways showed that mixed alcohol production via acid fermentation and ketonization 

is one of the most promising pathways. In this chapter, a case study of configuration 

design with an optimum level of flexibility, based on the mixed alcohol production 

pathway, is investigated to demonstrate the merits of the proposed approach. 

The problem is stated as follows. Given is information on raw materials and 

products, and a superstructure of processing units with technical performances for the 

conversion of lignocellulosic biomass to mixed alcohols. It is desired to determine the 

configuration and sizes of the main processing units that give a maximum expected 

value of profit. 

The information on raw materials (including two lignocellulosic sources and 

hydrogen) is availability, costs, and components compositions. There are two products: 

fuel-grade mixture of alcohols as the main product with given demand and prices, and 

lime as a value-added byproduct with given prices.  

The superstructure as shown in Figure 15 has an optional set of processing units 

(gasification, cogeneration, water-gas shift, and pressure-swing adsorption) to produce 

power, steam, and hydrogen from fermentation residue. If those units are not employed, 

the process must import the utilities and hydrogen from external sources and the 

fermentation residue is considered as waste with a charge of $22/tonne. For 

simplification in the superstructure, some raw materials (e.g., natural gas, fermentation 

nutrient source, steam for water-gas shift) and byproducts (e.g., water from vapor 
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compression system and crystallization, carbon dioxide from lime kiln, solid waste from 

gasification, steam and power from cogeneration, flue gas from PSA) are not considered 

in the model because they are accounted for in the operating cost of associating units. 

Detailed description of the process is available in Section 4.3.1.  

Input information is reported in Appendix A. The technical performances are yields, 

which are based on component rates (instead of total flow rates). Some of the input data 

have variations with probabilities of occurrence. 

 
 

Figure 15. A superstructure of the biomass-to-alcohols configurations. 

 

The capital and operating costs of processing units are modeled in the following 

forms: 

 Scaling factorCapital cost = (Capital-cost coefficient) (Size of the unit)⋅   (57)
 

 Operating cost = (Operating-cost coefficient) (Flow rate)⋅   (58)
 

where size of the unit is a characteristic size of the associating unit. For example, it is the 

pile volume in pretreatment unit or it is the total heat transfer area of latent heat 

exchangers in vapor compression system. Flow rate is a characteristic flow rate of 

associating units, for example, inlet wet biomass rates in the pretreatment and 

fermentation units (i.e., excluding lime, fresh water, nutrient rates). For this reason, one 

should not compare operating and capital costs based on the coefficient because the 

bases of characteristics sizes and flow rates are different. The lists of characteristic sizes 
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and flow rates of all the units are given in tables on pages 107 and 108. The operating-

cost coefficient as well as the operating cost of the cogeneration unit is negative in the 

model (i.e., making positive profit to the plant) because of credits from power and steam 

produced from this unit. 

3.5.2 Solution 

The solution starts with a transformation of models describing input variations. 

However, for simplification and a clearer presentation the variations are given in six 

scenarios with probabilities of occurrence (see Appendix A). 

The problem can be then formulated in the following forms: 

  Problem 2.9: 

 

6 11
SCALE

1 1

1
max PROB revenue CAPCOEF msize

7
j

p p j j
p j= =

⋅ − ⋅∑ ∑
  

(59)
 

subject to 

2 3

1 1

PRICE prod COST supplyp kp kp ip ip
k i

revenue
= =

= ⋅ − ⋅ −∑ ∑

11 11 10

1 1 1

OPCOEF tflow 22 waste ,   for 1,...,6jp jp jpm
j j m

p
= = =

⋅ − =∑ ∑∑
  

(60)
 

Availability of raw materials: supply AVAIL  ,    for 1,...,3,  1,...,6ip ip i p≤ = =  (61) 

Compositions of raw materials: 

content FRACTION supply  ,   for 1,...,3,  1,...,10,  1,...,6ipm im ip i m p= ⋅ = = =  (62) 

Product demand: prod DEMAND  ,    for 1,2;  1,...,6kp kp k p≤ = =  (63) 

Total inlet flow rate of equipment: 
10

1

tflow   ,    for 1,...,11,  1,...,6IN
jp jpm

m

f j p
=

= = =∑  (64) 

Mass balance of equipment: 

10

' '
' 1

YIELD ,     for 1,...,11,  1,...,10,  1,...,6OUT IN
jpm jpm jpm m

m

f f j m p
=

= ⋅ = = =∑  (65) 

Mass balance between equipment: 
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- Raw materials – Pretreatment:

2

1
1

content  ,    for 1,...,10,  1,...,6IN
ipm pm

i

f m p
=

= = =∑   (66) 

- Pretreatment – Fermentation:1 2  ,    for 1,...,10,  1,...,6OUT IN
pm pmf f m p= = =   (67) 

- Fermentation – Vapor compression system & Gasification:

2 3  ,    for 4,...,10,  1,...,6OUT IN
pm pmf f m p= = =   (68) 

2 7 2+waste  ,    for 1,...,3,  1,...,6OUT IN
pm pm pmf f m p= = =   (69) 

70  ,    for 4,...,10,  1,...,6IN
pmf m p= = =   (70) 

30  ,    for 1,...,3,  1,...,6IN
pmf m p= = =   (71) 

- Vapor compression system – Crystallization:

3 4  , for 1,...,10,  1,...,6OUT IN
pm pmf f m p= = =  (72) 

- Crystallization – Ketonization:4 5  ,    for 1,...,10,  1,...,6OUT IN
pm pmf f m p= = =   (73) 

- Ketonization & Pressure swing adsorption – Hydrogenation & Lime kiln:  

 3 10 11 10 ,    for 1,...,6OUT IN
p pf f p= =   (74) 

 5 7 11 7 ,    for 1,...,6OUT IN
p pf f p= =   (75) 

 110  ,    for 1,...,6,  1,...,6,8,  and 9IN
pmf p m= = =   (76) 

5 6 10 6 3 6 6supply  ,    for 1,...,6OUT OUT IN
p p p pf f f p+ + = =   (77) 

5 6 11+  ,    for 1,...,6,  1,...,5 and 7,...,10OUT IN IN
pm pm pmf f f p m= = =   (78) 

10 6 3 5 5supply 0.055  ,    for 1,...,6OUT OUT
p p pf f p+ = =   (79) 

- Gasification – Cogeneration:7 8  ,    for 1,...,10,  1,...,6OUT IN
pm pmf f m p= = =   (80) 

- Cogeneration – Water-gas shift:8 9  ,    for 1,...,10,  1,...,6OUT IN
pm pmf f m p= = =   (81) 

- Water-gas shift – Pressure-swing adsorption:

9 10 ,    for 1,...,10,  1,...,6OUT IN
pm pmf f m p= = =   (82) 

- Hydrogenation – Main product: 1 6 9  ,    for 1,...,6OUT
p pprod f p= =   (83) 
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- Lime kiln – Byproduct: 2 11 10prod  ,   for 1,...,6OUT
p pf p= =   (84) 

Equipment sizes in every scenario: 

 size SIZECOEF tflow ,for 1,...,11,  1,...,6jp j jp j p= ⋅ = =   (85) 

Equipment sizes designed:
 
msize size  ,     for 1,...,11,  1,...,6j jp j p≥ = =   (86) 

Disjunctive operation mode constraints: 

 0.5 msize size 10,000  ,    for 1,...,11,  1,...,6jp j jp jpy y j p⋅ ⋅ ≤ ≤ ⋅ = =   (87) 

 10 msize  ,    for 1,...,11,  1,...,6jp jy j p≤ ⋅ = =   (88) 

Variable domains: 0,1 ,    for 1,...,11,  1,...,6jpy j p= = =   (89)  

, , msize , size , prod , supply , tflow 0,IN OUT
jpm jpm j j kp ip jpf f ≥   

for 1,...,3,  1,...,11,  1,2,  1,...,10,  1,...,6i j k m p= = = = =  (90) 

where i, j, k, m, and p are indices for raw materials, equipment, products, components, 

and scenarios, respectively; UPPERCASES notates given parameters (corresponding to 

θ) and lowercases are variables (corresponding to d, z, and x) to be determined; indices 

for processing units are numbered in the following order: (1) Pretreatment, (2) 

Fermentation, (3) Vapor compression system, (4) Crystallization, (5) Ketonization, (6) 

Hydrogenation, (7) Gasification, (8) Cogeneration, (9) Water-gas shift, (10) Pressure 

swing adsorption, and (11) Lime kiln. 

In the objective function, the total capital cost is divided by 7 to account for straight-

line 7-year depreciation with a discount rate of 0%. In the disjunctive operational mode 

constraints, equipment is forced to operate at least 50% of designed capacity; otherwise, 

it is not in operation. The upper limit is 100% of designed capacities, which is imposed 

by Constraint 86. Big-M is not needed in the inequality constraints of raw material 

availability (Constraint 61) and product demand (Constraint 63) in this particular case 

study because they are automatically satisfied when associating flow rates are zeros. The 

coefficients (which are 10,000 and 10) in the disjunctive operational mode constraints 

are arbitrary big numbers to impose y = 1 when size > 0 and y = 0 when msize = 0, 

respectively. 
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Lingo85 software version 10.0 was used to solve this optimization program. 

Formulation codes in Lingo are reported in Appendix B. A global optimum was found in 

207 seconds on a personal computer with the processor Intel Core i3 M350@2.27GHz 

and with 4.0 GB RAM. The global optimum was obtained with aid of the default built-in 

Global-Solver tool in Lingo 10.0. 

 

Figure 16. Designed flexible biorefinery with characteristic sizes. 

 

A detailed report of calculated variable values is attached in Appendix C. The result 

shows that all the processing units in the super structure are employed in the optimum 

design. Figure 16 depicts the design of the biorefinery with characteristic sizes of all the 

processing units. In the figure, the units and streams with dash lines are invested but not 

employed in all scenarios. The result (Table 4) also gives the operation modes in every 

scenario as follows: 

• Scenario 1 – This is the scenario with the highest occurrence probability 

(50%). All of the processing units are designed to operate at full capacities in 

this scenario. The plant only uses Biomass 2 (i.e., no Biomass 1) because 

Biomass 2 has significantly lower cost although it has higher content of 

lignin. The plant needs external hydrogen because hydrogen from processing 
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residue is not enough for the Ketone Hydrogenation unit. Let refer to this 

scenario as a base case. Other scenarios are compared to this scenario to 

clarify the difference of operation mode. 

• Scenario 2 – External hydrogen ($200/tonne) in this scenario is much 

cheaper than in Scenario 1 ($4,000/tonne). For economic reason, the plant 

uses only external source for the hydrogen demand. As a result, the residue 

processing section (including gasification, cogeneration, water-gas shift, and 

PSA) is idle. Other sections are in operation with full capacities. All 

fermentation residue (142 tonne/h) is discharged as waste. 

• Scenario 3 – The prices of the two biomass feedstocks are higher ($90 and 

$40 versus $30 and $5/wet tonne). These prices are too high for the plant to 

be profitable. Therefore, the whole plant is shutdown. In other words, the 

highest profit in this scenario is 0. (Note that in practice a plant still loses 

money if it is not in operation because of some fixed costs such as wages, 

debt interest, etc.) 

• Scenario 4 – The situation of this scenario is the limited availability of 

favorable Biomass 2. In addition to using all Biomass 2 availability, the plant 

intakes some amount of Biomass 1. The mixed feedstock has lower content 

of lignin which is a source for internally producing hydrogen. Total yield of 

the main product is higher. As a result, pretreatment and fermentation 

operates under capacities whereas the downstream processing units operate 

at limitation (full capacities). Furthermore, more external hydrogen is 

needed. 

• Scenario 5 – The fermentation yield is assumed dropped for some reason, 

e.g., the yield in a commercial-scale plant is lower than that in the laboratory 

scale. The results show that the plant production rate is reduced although 

pretreatment and fermentation operate at full capacities. The good point is 

that no external hydrogen is needed because demand of hydrogen in the 
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Ketone Hydrogenation unit is reduced and fermentation residue is more than 

enough (a small portion of the residue, 18 tonne/h, is discharged as waste). 

• Scenario 6 – Demand of all products is increased. For economic reasons, 

production rate should be increased because the operation is profitable as 

seen in Scenario 1. However, the production rate is kept as in Scenario 1 

because of capacity limitation of the designed sizes. Occurrence probability 

of Scenario 6 is lower than Scenario 1. Therefore, solver chooses the 

equipment sizes to be best suitable for Scenario 1. In other words, increasing 

equipment sizes is favored for operation in Scenario 6 but it is not favorable 

in a big picture considering all the scenarios. 

 

Table 4. Summary of the case study result. 

Operational mode Scenario 
 1 2 3 4 5 6 
Main processing chain On On Off On On On 
Residue processing chain On Off Off On On On 
Biomass 1 usage (tonne/h) 0 0 0 168 0 0 
Biomass 2 usage (tonne/h) 450 450 0 250 450 450 
External H2 usage (tonne/h) 0.41 2.11 0 0.60 0 0.41 
Sign of profit value + + 0 + + + 

 

In general, the result analysis shows that the operation in some scenarios is not 

optimum. If designers know for sure that a certain scenario will occur, the design will be 

different to suit that scenario. Because of uncertainty, however, the final design must 

accommodate all scenarios (i.e., be flexible) with an optimum of expected profit value. 

Although the design is not economical in Scenario 3, it is still worth building the plant 

because occurrence probability of Scenario 3 is very low (5%). 

3.6 Summary 

Input information for the design of chemical processes has uncertainty or variations. 

In the design stage, process designers must anticipate the changes of input, which may 
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occur in the operation stage and must decide on what strategies to respond. This is the 

problem of design with flexibility. 

The traditional approach, which employs overdesign factors, does not guarantee 

feasible operation and results in unnecessary additional costs. Developed systematic 

approaches are conservative, result in robust yet expensive design and non-profitable 

operation, or involve the issue of complicated flexibility analysis. 

This chapter proposes a new class of design problems with flexibility and a new 

formulation approach that is well suited for the design of flexible bio-refinery 

configurations. The design strategy is to build the most profitable plants that operate 

only when economic efficiency is favored and product qualities are met. If these 

conditions are not satisfied, part of the plant is idle or the whole plant is shutdown to 

avoid economic loss. Hence, the design has an optimum level of flexibility. The 

formulation approach is to include disjunctive operation mode constraints. The solution 

to the formulation is a mixed-integer nonlinear program and solvable for a global 

optimum in a regular optimization software. 

A case study of configuration design for the mixed-alcohol production pathway 

successfully demonstrated the merits of the proposed approach. The design shows its 

level of flexibility in operational modes in various scenarios of input changes. The 

expected profit value was maximized. 

This research has investigated the new concepts in deterministic flexibility problems. 

Future work is recommended to consider applicability of the proposed approach to 

stochastic flexibility problems and other process system engineering problems. 
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CHAPTER IV  

TECHNO-ECONOMIC ANALYSIS OF A LIGNOCELLULOSE-TO-

HYDROCARBONS PROCESS VIA THE CARBOXYLATE PLATFORM 

 

In Chapter II, a methodology to quickly synthesize and screen biorefinery pathways 

was developed. From a promising pathway, flexible conceptual biorefinery 

configurations that can accommodate uncertainty and variations of inputs were designed 

using the novel design strategy and solution approach in Chapter III. This chapter is a 

further step in the process of biorefinery design.  

In this chapter, a technical and economic analysis of a biofuel process was 

performed. Data were obtained from sources that are as much reliable as possible to the 

authors. The biofuel process has additional downstream units to convert mixed alcohols 

into hydrocarbon fuels. The ensuing sections are organized in a similar order to the 

sequence of the techno-economic analysis: (1) overview of the process, (2) technical 

analysis, (3) economic analysis, and (4) sensitivity analysis. 

4.1  Introduction 

Technologies for renewable fuels from biomass are being developed to reduce 

dependence on imported petroleum, decrease greenhouse gas emissions, and improve 

national security. Many biochemical and thermochemical pathways have been proven 

technically; however, high production costs have prevented many pathways from being 

economically viable without government subsidies. Figure 17 summarizes typical 

pathways to produce hydrocarbon fuels from biomass via alcohols.  

• The sugar-to-alcohol pathway represents industrial production of bioethanol from 

sugarcane in Brazil.  

• The starch-to-alcohol pathway uses amylase enzymes to produce intermediate 

sugars, which is exemplified by the corn-to-ethanol industry in the United States.  

• The lignocellulose-to-alcohol pathway uses cellulase enzymes to produce 

intermediate sugars, which is in the process of being commercialized. 
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• The thermochemical pathway gasifies biomass into syngas (CO + H2), which is 

then catalytically converted into methanol or ethanol.  

• The lignocellulose-to-alcohol pathways use mixed cultures of acid-forming 

micro-organisms to produce intermediate carboxylates (ammonium carboxylates 

in Path A, calcium carboxylates in Paths B and C), which are described as 

carboxylate platforms. Via pure-culture fermentation, the carboxylate platform is 

described by Agler et al.86  

The first three biochemical platforms require aseptic fermentations, which is 

expensive. Further, because of its recalcitrance to enzymatic hydrolysis, lignocellulose 

requires high cellulase loadings. The carboxylate pathways produce fuels and chemicals 

from biomass without encountering those problems.  

 

 

Figure 17. Pathways for converting biomass to hydrocarbon fuels. 

 

In terms of intermediate chemicals, the pathways shown in Figure 17 employ three 

platforms: sugar, carboxylate, and syngas. Holtzapple and Grand31a31 showed that the 

carboxylate and sugar platforms give the highest theoretical yield of lignocellulosic 

biomass to hydrocarbon fuels when the three platforms were compared using the same 

ideal biomass feedstock. The biomass composition was assumed to consist of 31.7% 
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lignin and 68.3% polysaccharides on an ash-free basis, which is similar to compositions 

found in hardwood biomass. The theoretical energy efficiency of the carboxylate 

platform is equal to that of the sugar platform and higher than that of the syngas 

platform. 

When producing hydrocarbons from alcohols, dehydration causes a mass loss of 

30% (isopropanol), 39% (ethanol), and 56% (methanol). The theoretical loss of energy is 

2% (isopropanol), 5% (ethanol), and 10% (methanol). Based on these examples, the 

pattern is clear: higher alcohols have greater retention of mass and energy when 

converted to hydrocarbons. The carboxylate platforms can produce higher alcohols 

(propanols and higher) than the other platforms. 

A key feature of the carboxylate platform is the fermentation, which employs a 

mixed culture of acid-forming microorganisms to convert biomass components 

(carbohydrates, proteins, fats) to carboxylate salts. The process does not require aseptic 

conditions, which lowers capital costs and improves operability. The microorganisms 

produce their own enzymes – a type of consolidated bioprocessing – which reduces 

operating costs compared to traditional enzymatic pathways. Depending on the choice of 

buffer, the salts are ammonium carboxylates (buffered by NH4HCO3) or calcium 

carboxylate (by CaCO3). Via Pathway A (Figure 17), ammonium carboxylates are 

processed by esterification and hydrogenolysis, which produces a mixture of primary 

alcohols. Because there is almost no carbon loss from biomass to final products, this 

pathway has a high theoretical overall alcohol yield. Via Pathway B (acid springing), the 

calcium carboxylates are converted to the corresponding carboxylic acids. From the 

acids, mixed alcohols are produced by esterification and hydrogenolysis. Via Pathway C, 

calcium carboxylates are thermally converted into ketones, which subsequently are 

hydrogenated into a mixture of secondary alcohols. In the latter route, the overall alcohol 

yield is lower than that of the former, but it does not demand as much hydrogen.  

Biomass-to-fuel pathways via the carboxylate platform have been researched and 

developed for 20 years in Dr. Mark Holtzapple’s research group at the Department of 
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Chemical Engineering, Texas A&M University. The technologies have been further 

developed and licensed by Terrabon, Inc. under the trademarked name MixAlcoTM. 

Previous work on MixAlcoTM process economics includes a study by Holtzapple et 

al.87 who estimated the economics of the calcium carboxylate platform (Pathway C) 

using municipal solid waste or sugarcane bagasse as feedstocks. For the dewatering 

process, they employed water extraction with amines and multi-effect evaporation. Lau 

et al.88 evaluated the production of ethanol from sweet sorghum via the acid springing 

platform (Pathway B) using various scenarios of plant location, capacity, and incentives. 

Granda et al.60 analyzed the process economics of the ammonium carboxylate pathway 

(Pathway A) using municipal solid waste as feedstock in different scenarios of hydrogen 

sources and prices. 

This chapter performs a techno-economic analysis for the lignocellulose-to-

hydrocarbons pathways using the calcium carboxylate platform (Pathway C) with vapor-

compression dewatering, which is a version of the MixAlcoTM process. Pham et al.89 

performed a similar techno-economic analysis at a different plant capacity. Compared to 

previous efforts, this work emphasizes process synthesis, integration, and analysis with 

simulation in Aspen Plus,90 equipment cost estimation from Aspen Process Economic 

Analyzer,91 and the most updated experimental data and cost basis. 

4.2  Approach 

The techno-economic analysis was performed in five key steps as shown in Figure 

18.  

• Development of process flow diagrams: From experimental data on key 

conversion and separation steps, designs for a plant at commercial scale were 

developed. All equipment necessary for conversion, separation, transportation, 

treatment, and storage is identified. 

• Simulation and calculation of mass and energy balance: Process simulation 

software Aspen Plus90 was used to simulate the process. Some biofuel 

components (e.g., lignin, xylan, xylose) are not available in the Aspen Plus 

database. They were added to the simulator in a user-defined database, called 
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Inhouse Database (INHSPCD) in Aspen Plus, using estimated properties from 

NREL.92,93 A few reactions (for example, pretreatment, waste treatment) and 

separation (filtration, drying, crystallization) were difficult to simulate in Aspen 

Plus and therefore were treated as a “black box” simulation. Mass balances of 

these units were given from experimental data or estimated by heuristics. As a 

result of this step, flow rates of every stream, utility demand, and energy 

generation were available in the simulation results. 

• Process integration: In this integration step, the process design was modified to 

minimize overall consumptions of resources: chemicals, fresh water, external 

energy demand, make-up solvent, etc. Two types of process integration problems 

were performed: (1) heat integration of heat exchanger networks using pinch 

analysis to target simultaneously the minimal heating and cooling utility 

demand94 and (2) recycle water and other chemicals to minimize fresh usage.95 

After the targets were identified, integrated heat exchanger networks and recycle 

strategies were synthesized so the overall consumption of fresh resources was 

close to the target values, subject to the constraint that the processes be practical 

and readily controlled. The integration results were then used to update the 

simulation models, mass balance, and energy balance. 

• Equipment sizing and costs: Most of the simulation models in Aspen Plus 

calculated the equipment size, which were detailed enough to estimate equipment 

costs in Aspen PEA software.91 For unconventional equipment that is not 

available in Aspen PEA, their costs were obtained from vendor quotes or 

estimated from the literature. For example, some equipment common in biofuel 

process – but not found in the software – are bale transport and unwrapping 

conveyers, truck scales, belt filters, clarifiers, and large digestion tanks. A good 

source of literature references for such equipment is the techno-economic 

analysis reports of NREL.23,27,96 If an equipment cost is referred to the literature, 

the reference cost is scaled to appropriate capacity with scaling exponents 
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reported by Wallas97,98 and is updated to year 2010 dollars using the Chemical 

Engineering’s Plant Cost Index.99 

• Project economic and sensitivity analysis: The estimated equipment costs 

account for equipment only, i.e., the costs of equipment materials and 

fabrication. Other project costs (e.g., equipment installation, instruments and 

piping, construction, building, contingency) were assumed proportional to the 

equipment costs by predefined factors. For biochemical processing equipment, 

the factors are employed from the NREL method.23 For traditional chemical 

processing equipment, the factors are employed from the Lang method.98 Cash 

flow analysis was performed to evaluate project economics in a base case. After 

that, sensitivity analysis was performed to investigate how the project economics 

were sensitive to technical performance (e.g., yields, concentrations, capacity, 

heat transfer coefficient, temperature approach of latent heat exchangers) and 

economic assumptions (e.g., raw material prices, after-tax discount rate, cost 

estimation uncertainty). 

 

 

Figure 18. Major steps of the techno-economic analysis. 

 

Development of process flow diagrams 

Simulation and calculation of mass and energy 

Process integration 

Equipment sizing and costs 

Project economic and sensitivity analysis 
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These are five essential steps; however, a biofuel techno-economic analysis is not 

limited to these steps. In addition, the following issues must be considered: 

• Plant capacity, location, and logistic systems to collect biomass feedstock 

• Type of feedstock 

• Life cycle assessment and greenhouse gas emission 

• Technology alternatives of key conversion steps 

These issues are out of the scope this work, but they are interesting topics for future 

work. 

4.3 Technical analysis  

4.3.1 Process description 

Figure 19 depicts biomass-to-hydrocarbons via the MixAlcoTM process. To make 

hydrocarbon fuels, the MixAlcoTM process has the following steps: (1) pretreatment with 

lime, (2) fermentation with a mixed culture of acid-forming microorganisms to obtain 

carboxylate salts, (3) dewatering with a high-efficiency vapor-compression evaporator, 

(4) thermal conversion of salts to ketones, (5) hydrogenation of the ketones to mixed 

alcohols, and (6) oligomerization of alcohols to hydrocarbons using zeolite catalysts. 

The biomass feedstock must contain a source of energy and a source of nutrients. 

Examples of energy sources include sorghum, bagasse, municipal solid waste, office 

paper, paper fines, rice straw, water hyacinths, pineapple waste, and aloe-vera pulp. 

Examples of nutrient sources include food scraps, sewage sludge, or manure. In addition, 

chemical nutrients (e.g., urea, ammonia, ammonium bicarbonate) can be added to supply 

essential minerals. In this techno-economic analysis, forage sorghum and manure are 

used as the feedstock in a recommended ratio of 80:20 sorghum:manure.100 Sorghum is 

an energy crop that has been well studied and developed at Texas A&M University. 

If the biomass has significant lignin content, it is pretreated with lime, which can be 

recycled using downstream processes. In the fermentation, the nutrient source is mixed 

with the pretreated biomass. From the ketonization reactor, calcium carbonate is 

recycled to buffer the fermentation, which produces a broth of mixed calcium 

carboxylates. In the descumming and dewatering unit, the broth is concentrated to obtain 
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solid salts, which are then thermally converted into ketones and calcium carbonate in the 

ketonization unit. Then, the ketones are hydrogenated into mixed alcohols. Potential 

sources of hydrogen include fermentation broth, gasified fermentation residue, reformed 

methane, and water electrolysis. In the base case, hydrogen is recovered in the plant 

from fermentation gas and shifted syngas. The recovered hydrogen is sufficient to meet 

the demands of ketone and olefin hydrogenation. To make hydrocarbons, the mixed 

alcohols are dehydrated and oligomerized to produce olefins, n-paraffins, iso-paraffins, 

and aromatics with boiling ranges of gasoline and kerosene depending upon reaction 

conditions employed in the oligomerization reactor. The light fraction can be used for 

gasoline and the heavy fraction used as jet fuel. To improve product quality, the olefins 

can be saturated. 

  

 

Figure 19. Simplified process block diagram of the analyzed MixAlcoTM process 

(Pathway C). 

 

In one process option, the undigested fermentation residues (about 20% of the 

biomass feed) is gasified and processed via cogeneration, steam-gas shift, and pressure-

swing adsorption (PSA) units to generate steam, power, and hydrogen for the plant. 
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Using Pathway C, hydrogen from gasified biomass residue and fermentation gas are 

sufficient to supply the hydrogen needs of the plant. 

In the MixAlcoTM process, the fermentation broth contains 2 – 6% salts, which is 

concentrated using vapor-compression and crystallization units. The recovered distilled 

water is recycled to the fermentation and pretreatment. Water entering with the biomass 

feed is purged as distilled water, which can be sold as a by-product. 

Pretreatment and Fermentation 

In principle, any chemical or physical pretreatment method can be used in the 

MixAlcoTM process; however, lime pretreatment is the best choice for purposes of mass 

integration, reactor design, and operation. Recycled lime from the lime kiln is assumed 

to contribute 65% of lime demand in the pretreatment with the 35% make-up lime 

purchased from external vendors. Using lime, the pretreatment can be performed in 

simple inexpensive pile reactors.31 Pile pretreatment integrates with fermentation piles in 

a round-robin system, in which biomass solids are held in the same pile for both 

pretreatment and fermentation. Although the residence time of pretreatment (6 weeks) 

and fermentation (up to 8 weeks) is long, the round-robin system results in steady 

flowrate and product concentration in the broth. 

Using a mixed culture of microorganisms is the key feature of the MixAlcoTM 

process. These microorganisms not only digest carbohydrates, but also proteins and fats. 

For food wastes, this advantage gives a significantly higher overall yield than other 

common fermentation methods. The MixAlcoTM process does not require sterilization or 

external enzymes, which reduces capital and operating costs. Consequently, reactors do 

not require stainless steel, and can be constructed using low-cost materials (e.g., concrete 

or plastic) that support piles or submerged fermentation. Holtzapple et al.87 discuss the 

design of submerged fermentation ponds. 

Figure 20 depicts a pile reactor. Shredded biomass is piled up on 1-meter-thick 

gravel bed which is used to filter water draining from the pile. The water is pumped back 

to the top. Underneath the gravel layer is a geo-membrane layer to isolate the system 

from surrounding soil. The pile, which is up to 30 m high, can be used for pretreatment 



 

 

and fermentation. In pretreatment mode, air is blown through a scrubber

carbon dioxide and discharged 

must be covered by a geo

conditions. To remove odors, fermentation gases are discharged through a biofilter.

 

Figure 

Figure 21. Round-robin operation (darker boxes represent older fermenting piles)

and fermentation. In pretreatment mode, air is blown through a scrubber

and discharged to the bottom of the pile. In fermentation mode, the pile 

geo-membrane and air is not introduced to maintain anaerobic 

To remove odors, fermentation gases are discharged through a biofilter.

Figure 20. Pretreatment and fermentation pile reactor. 

robin operation (darker boxes represent older fermenting piles)
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and fermentation. In pretreatment mode, air is blown through a scrubber to remove 

. In fermentation mode, the pile 

membrane and air is not introduced to maintain anaerobic 

To remove odors, fermentation gases are discharged through a biofilter. 

 

 

 

robin operation (darker boxes represent older fermenting piles). 
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The pretreatment and fermentation piles are in batch operation with a total residence 

time of up to 11 weeks. In contrast, the downstream sections operate in continuous 

mode. The pretreatment and fermentation configuration was designed to operate in a 

round-robin system to minimize fluctuation of outlet fermentation concentration and 

flow rate. Figure 21 delineates a round-robin system of six pile reactors. A reactor can be 

in pretreatment mode and later in fermentation mode. At a given time, one of the 

reactors is being loaded or unloaded, one is in pretreatment mode, and the other four are 

in fermentation mode but at different extents of conversion. Reactor 2 is the oldest and 

Reactor 5 is the newest fermentation. Although solid biomass does not move, water flow 

is countercurrent with fermentation maturity. Fresh water is pumped to the oldest 

fermenting pile, circulated internally, and pumped to the next newer pile. As a result, the 

most dilute broth contacts the most digested biomass and the most concentrated broth 

contacts the freshest biomass. This countercurrent arrangement allows for both high 

product concentrations and conversions.  

Dewatering 

In the base-case scenario, calcium carboxylate concentration in the fermentation 

broth is assumed to be 5% weight. Other components (e.g., dissolved carbon dioxide, 

microorganisms, undigested biomass, and other unknowns) are impurities and must be 

removed along with water. To purify the carboxylate salts, the broth is degassed by 

stripping, descummed using flocculant, evaporated with vapor compression, and 

crystallized (Figure 22). 

 

 

Figure 22. Simplified process block of the descumming and dewatering unit. 
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Figure 23. A parallel configuration of multi-effect vapor-compression evaporator. 

 

The key to efficiently vaporizing water is the novel design and optimized operating 

conditions of the vapor-compression unit. Figure 23 is a simplified process flow diagram 

of the vapor-compression unit. At high pressure (8 bars), the descummed broth is 

preheated by countercurrent exchange of heat from product streams (which contain 

condensed water), and then is evenly split into many stages. The figure shows six stages, 

but there can be tens of stages in practical plants. In this work, six stages were chosen. In 

every stage, the inlet streams pass through a valve and a heater to be adjusted to 

saturation conditions. After that, they enter latent heat exchangers and use heat from the 

condensing vapor of an adjacent stage to vaporize water from the fermentation broth. 

The vapor from the first stage is compressed to a higher temperature and pressure, and 

then is saturated so it readily condenses and transfers heat to the last stage. In Figure 23, 

the pressure profile of the latent heat exchangers increases from left to right. With this 

profile, vapor from the right adjacent stage has higher temperature than the salt solution 

in the left adjacent stage; hence, heat transfer occurs. Using copper plates with a 

hydrophobic coating to promote dropwise condensation, an extremely high overall heat 
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transfer coefficient of 240 kW/(m2·K) (42,200 Btu/(h·ft2
·F)) was achieved using ∆T = 0.2 

K at the laboratory scale.101,102 This allows a very small temperature approach of only 

0.20 K (0.36oF) while maintaining a high heat flux of 48 kW/m2. As a result, the 

compression ratio of the compressor is small, which saves both associated capital and 

operating costs. The net energy consumption of this vapor compression unit is only 1.45 

kWh per m3 (18.8 MBtu/1,000 gallons) of water vaporized, equal to 0.14% of the latent 

heat vaporization of the same amount of water. 

Ketonization 

The solid salts are sent to a dryer to remove residual moisture (Figure 24). At high 

temperatures (430oC) in the ketonization reactor, calcium carboxylates are thermally 

converted into ketones and calcium carbonate  

R-COO Ca COO-R' � R-CO-R' + CaCO3  

where R and R' represent hydrocarbon groups. The reactor is kept under vacuum (30 mm 

Hg) which reduces residence time to avoid decomposing the produced ketones. The 

ketone vapor is quickly removed from the reactor, quenched, and condensed. Part of the 

calcium carbonate is directly recycled to the fermentors and the remaining portion is 

converted into quick lime (CaO) in a kiln. The quick lime is recycled to the pretreatment 

reactors. Unlike conventional lime kilns that are fed coarse limestone, this kiln processes 

fine calcium carbonate powder; thus, some processing steps (grinding, drying) are not 

needed. 

 

Figure 24. Simplified block diagram of the ketonization and lime kiln unit. 
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Ketone hydrogenation 

In this conversion step (Figure 25), the ketone carbonyl groups react with hydrogen 

to form alcohol groups in an exothermic reaction:  

R-CO-R' + H2 � R-CH(OH)-R'  

The reaction is performed at high pressure (55 bars) and at isothermal (130oC) 

conditions. The optimal design was found to be three CRTRs in series.103 In each CSTR, 

liquid ketones, solid Raney nickel catalyst, and hydrogen bubbles are well mixed. The 

heat of reaction is recovered by a pump-around system. Hydrogen is fed to every CSTR 

in 20% excess to maximize the ketone conversion. The net demand of hydrogen is 

0.0225 kg H2/kg mixed alcohol (25.0 SCF per gallon of mixed alcohols) or 0.00687 kg 

H2/kg dry ash-free biomass (1.30 SCF per dry ash-free pound of biomass). The produced 

mixture of secondary alcohols can be directly used as a transportation oxygenated fuel 

like bioethanol, but it has higher energy content (net heating values are 34.6 and 26.8 

MJ/kg, respectively). 

 

 

Figure 25. Simplified block diagram of ketone hydrogenation, dehydration & 

oligomerization, and olefin hydrogenation units. 
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In the same reactor, the produced olefins are oligomerized as shown in the following 

simplified reaction:  

CmH2m + CnH2n � Cm+nH2m+2n  (92) 

Depending upon the specific reaction conditions (time, pressure, temperature), the 

products are very complex and include olefins, n-paraffins, iso-paraffins, aromatics, and 

cyclics. Water dissolved in the hydrocarbon products is removed in a drying unit using a 

salt filter. 

Olefin hydrogenation 

To improve fuel quality, the olefins can be hydrogenated to make corresponding 

paraffins (Figure 25). Similar to the design of the ketone hydrogenation, this conversion 

unit employs CSTRs in series with Raney nickel catalyst. The carbon double-bond C=C 

is saturated to stabilize the hydrocarbon product:  

CxH2x + H2 � CxH2x+2  (93) 

In this step, the net demand of hydrogen is 0.0139 kg H2/kg hydrocarbon fuels (15.4 

SCF per gallon of hydrocarbon fuel) or 0.0034 kg H2/kg dry ash-free biomass (0.64 SCF 

per dry ash-free pound of biomass). Out of the reactor, the mixed hydrocarbons are 

distilled into C8– and C9+ fractions. The light fraction and heavy components can be used 

as blending components for gasoline and jet fuel, respectively.  

Hydrogen source 

Hydrogen is required to produce alcohols and saturate hydrocarbons. Two scenarios 

of hydrogen sources were analyzed.  

In the first scenario, hydrogen is produced by gasifying undigested biomass from the 

fermentors. The investment includes not only gasification, but also cogeneration, steam-

gas shift, and pressure-swing adsorption (PSA, next section) to supply hydrogen, steam, 

and power for the plant. Figure 26 shows the gasification and cogeneration processes in 

this scenario. First, the small amount of the biomass suspended in the pretreatment liquor 

is recovered in filtration. Then, that filtered biomass is mixed with fermentation residue 

and dried in a rotary dryer using flue-gas heat. After drying, the moisture content in the 

biomass is about 10%. In the next step, the dried biomass is gasified to generate syngas 
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and byproduct char. Energy from the hot syngas is used to make high-pressure steam, 

which is expanded in a steam turbine to generate power. 

 

 

Figure 26. Simplified block diagram of gasification and cogeneration unit. 

 

 

Figure 27. Schematic of the atmospheric biomass gasifier. 

 

Figure 27 shows the gasifier, a fluidized-bed followed by two cyclones that 

effectively remove particulates (char, ash) from the syngas.104 Atmospheric-pressure air, 
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and low-cost cyclones. The capital cost of this gasifier is only 25% of commercial 

pressurized gasifiers that use steam.104 There are multiple uses for the char recovered 

from the cyclones: (1) add to soil to sequester carbon and improve fertility, (2) sell to 

coal-fired power plants to provide “green” fuels, and (3) burn at the plant to recover 

alkaline ash that can be used to replace lime in the pretreatment. 

In the second scenario, hydrogen is not produced in the plant but is purchased from 

external sources, such as pipelines or oil refineries. In this scenario, the gasification and 

cogeneration unit is retained to use biomass residues to generate steam and power, but an 

additional combustion chamber is installed after the cyclones to completely burn the 

syngas and produce more steam and power. 

Steam-gas shift and pressure-swing adsorption 

This section is only needed when hydrogen is produced in the plant (as described in 

Scenario 1). More hydrogen is made using the shift reaction between steam and carbon 

monoxide:  

H2O + CO � H2 + CO2  (94) 

Because of the compositional characteristics of the syngas, a one-stage shift is 

sufficient for high conversion and low residence time. The hydrogen-rich syngas, along 

with fermentation gas, is passed through molecular sieve beds in the pressure-swing 

adsorption unit, which purifies hydrogen. Both of these technologies are well developed. 

4.3.2 Maximal theoretical yields 

Theoretical yields in biofuel processes can be simply calculated from the 

stoichiometry of the representative reactions; however, identification of representation 

reactions is difficult in some cases. The ensuing equations are representative reactions of 

the key conversion steps of the carboxylate platform. In practice, because of the mixed-

culture fermentation, there are no pure intermediate chemicals. Instead, there are many 

chemicals with the same functional groups at each conversion step. Nonetheless, the 

lowest molecular weight chemicals are used to represent intermediates so the maximal 

theoretical yields can be determined. For example, acid acetic is considered as the only 

intermediate in the acid-forming fermentation products, acetone is the only intermediate 
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ketone, and isopropanol is the only intermediate alcohol. The final product was 

represented by a compound that has the physical properties close to the real final product 

(e.g., octane, C8H18, is used to represent gasoline). 

If feedstock is assumed pure cellulose (C6H10O5), the ideal conversions follow: 

• Fermentation: 2 C6H10O5 + 2 H2O + 3 CaCO3 � 3 Ca(CH3COO)2 + 3 CO2  

  + 3 H2O (95) 

• Thermal conversion:    Ca(CH3COO)2          �     CH3COCH3 +  CaCO3 (96) 

• Ketone Hydrogenation:  CH3COCH3  +   H2  �     CH3CHOHCH3 (97) 

• Dehydration:                         CH3CHOHCH3 �     CH3CH=CH2  + H2O  (98) 

• Oligomerization:                   8 CH3CH=CH2 �  3 C8H16  (99) 

• Olefin hydrogenation:     C8H16       +    H2     �     C8H18  (100) 

The overall reaction is 16 C6H10O5  + 33 H2 � 9 C8H18 + 24 CO2 + 32 H2O  (101) 

where the molecular weights of cellulose and gasoline (C8H18) are 162 and 114 kg/kmol 

respectively. The mass yield of the final product is 

9 114
0.396

16 162

× =
×

 tonne of gasoline per tonne of cellulose.  (102) 

Assuming the specific gravity of the gasoline is 0.74 tonne/m3, the theoretical 

volumetric yield of the final product is:  

3

3

tonne gasoline m gallon
0.396 264 141

tonne cellulose 0.74 tonne m
× × = gallons of gasoline per tonne 

of cellulose.  (103) 

The overall reaction shows that about 25% of the carbon is lost as carbon dioxide in 

the fermentation step. Other theoretical yield losses result from oxygen removal as 

carbon dioxide and water produced in the fermentation and dehydration steps. 

The maximal theoretical yields from specific biomass feedstocks are lower than 141 

gallons per tonne because there is no practical biomass feedstock containing pure 

cellulose. (Note: Waste office paper has a composition of 87.4% cellulose, 8.4% 

hemicellulose, 2.3% lignin, and 1.9% ash,105 which is very close to pure cellulose.) In 

addition, in the carboxylate platform, the optimal biomass feedstocks consist of 80% 

carbohydrate source and 20% nutrient source. In this analysis, the plant uses forage 
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sorghum (77.1% carbohydrates, 15.2% lignin, and 7.7% ash) for carbohydrate source 

and manure (48.0% carbohydrate, 16.6% lignin, and 35.4% ash) for nutrient source in a 

ratio of 80:20 respectively. The maximal theoretical yield of the plant is 

4 77.1% 1 48.0%
141 101

5

× + ×× = gallons of gasoline per dry tonne of biomass    (104) 

Lignin and ash are not fermentable and all carbohydrates are assumed to be cellulose. 

 

Table 5. Key process performances.  

Unit Parameter Value 

Pretreatment Make-up lime demand 
Total lime loading 
Reaction time 

0.054 g CaO/g biomass 
0.15 g CaO/g biomass 
6 weeks 

Fermentation Conversion 
Selectivity 
VSLR 
LRT 
Product concentration 
Reaction time 
Substrate concentration 

0.8 g digested/g volatile solids fed 
0.62 g carboxylic acids/g volatile solids digested 
3.00 g VS/(L liquid · day) 
28 days 
40 g acids/L liquid 
32 days 
10% 

Dewatering Carboxylate recovery 
Heat transfer coefficient 
Temperature approach 
Cost of latent heat 
exchangers 

95% 
240 kW/(m2

·K) 
0.20 K 
$155/m2 

Ketonization Conversion 
Yield 

99.5% 
0.583 g ketones/g carboxylic acids 

Ketone 
hydrogenation 

Conversion 98.4% 

Dehydration & 
Dimerization 

Light hydrocarbon yield 
Heavy hydrocarbon yield 

0.6 g light hydrocarbon/g alcohols 
0.2 g heavy hydrocarbon/g alcohols 

Olefin 
hydrogenation 

Conversion 98.4% 

Gasification & 
Cogeneration 

Gasification temperature 
Solid-to-air ratio 

760oC 
0.625 

Steam-gas shift 
& PSA 

Steam-gas shift temperature 
Hydrogen recovery 

254oC 
95% 

The whole plant Gasoline yield 
Jet fuel yield 

57 gallons/dry-ash-free tonne biomass 
19 gallons/dry-ash-free tonne biomass 
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4.3.3 Process performance 

Table 5 summarizes key process performance parameters used to calculate mass and 

energy balances in the base case. The performance of units in the main route (i.e., 

excluding units that process fermentation residue), has been proven at the laboratory 

scale. A yield of more than 70 gal hydrocarbon fuel per tonne of municipal solid waste 

was reportedly achieved at the demonstration scale.106 The performances of residue-

processing units were typical values from literature discussed above. In this techno-

economic analysis, these performances are assumed to be achieved in commercial scale 

of the nth plant.  

The pretreatment unit consumes a significant amount of lime, most of which is 

available from recycle. In fermentation, the mass of carboxylic acid products is half the 

mass of volatile solids fed. The long residence time of pretreatment and fermentation 

requires large piles, which have a volume of 600,000 m3 each. In a practical plant, the 

yield losses result from by-products (see previous section), but also incomplete chemical 

conversions and partial recovery of main products in separation steps. The final 

products, hydrocarbon fuels, are fractions of gasoline and jet fuel produced in a ratio of 

3:1. 

4.3.4 Process simulation 

In Aspen Plus simulations of biofuel processes, physical properties of some key 

biomass components and biochemical reactions are not available from standard software 

databases. Most of them are unconventional compounds and their properties are difficult 

to estimate using available property prediction methods.Wooley and Putsche92 at NREL 

has built a database of some biofuel components that are present in lignocellulose-to-

ethanol processes. The components are cellulose, glucose, xylan, xylose, lignin, zymo 

(bacterium), cellulase (enzyme), soluble solids, and gypsum. The authors collected their 

physical properties from the literature and estimated missing ones when necessary. The 

properties were coded in appropriate format to be recognized as an in-house database107 

by Aspen Plus and are called whenever needed. 
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Based on the key performance data (Table 5) from experiments, the entire process 

was simulated in Aspen Plus to calculate detailed mass and energy balances. Table 6 

summarizes the types of Aspen Plus models used to simulate key processing units. In 

general, the conversion steps with well-defined reaction stoichiometry and yields 

(hydrogenation and dehydration) were simulated by the RStoic model. The RGibbs 

model simulated the conversions in which multiple reactants randomly react in the same 

types of reactions to yield multiple products with the same functional groups 

(ketonization and dimerization). 

 

Table 6. Aspen Plus models for key processing units. 

Processing units Aspen Plus models Calculated parameters 

Pretreatment reactor RStoic Heat of dissolving lime in water 
Fermentation reactors RStoic Heat of reactions 
Latent heat exchangers HeatX Heat transfer area 
Ketonization reactor RGibbs Yields and heat of reactions 
Hydrogenation reactors RStoic Heat of reactions 
Dehydration reaction RStoic Heat of reactions 
Dimerization reaction RGibbs Yields and heat of reactions 
Drum dryer Flash Heating utility consumption 

 

 

 

Figure 28. Simulation of the fermentation unit in Aspen Plus. 
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The pretreatment and fermentation reactions are difficult to simulate because of their 

complexity. The RStoic model was used to simulate partially what happened in the 

reactors. For the pretreatment, only the heat of dissolving quick lime in water was 

estimated; lignin degradation was treated as a “black box,” i.e., no simulation was done. 

For fermentation, the experimental yields and assumed mechanism were used to 

calculate the conversion of intermediate reactions in a preprocessing step without aid 

from Aspen Plus; then, the reactions with calculated conversions were simulated by the 

RStoic model in Aspen Plus to reproduce the yields and estimate energy balance. Figure 

28 shows the simulated process of the fermentation section in Aspen Plus.  

Other processing units that are difficult to simulate in Aspen Plus (for example, 

waste treatment, filtration, drying, crystallization) were treated as “black boxes.” Mass 

balances of these units were available from experimental data or estimated by heuristics. 

4.3.5 Process integration 

In the simulation, the heat exchanger network was integrated by identifying 

opportunities to save heating and cooling utility consumption. Pinch analysis94 was 

applied to determine the savings target. Figure 29 depicts a grand composite curve of the 

heat exchanger network. Below the pinch point is no curve, which indicates that if the 

network is ideally integrated, no cooling utility is needed and the heating utility 

consumption is significantly reduced. Table 7 shows the reduction is 60% as compared 

to the scenario of no-integration or heat recovery. However, in a practical design, some 

hot and cold streams should not be integrated to avoid a complex control system, even 

though it is possible. For example, process streams through condenser, reboiler, and heat 

exchangers used to finely tune temperatures were not considered in the integration. So, 

the expected integration needs some more cooling and heating utility, which are reported 

in the last column of Table 7. 

Water balance is another process integration problem in biochemical processes. As 

in other biochemical platforms, the carboxylate platform demands a large amount of 

water in the fermentors. Water needs to be removed from the main fermentation 

products in followed-up separation units. In other biochemical platforms, the recovered 
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water is usually treated to meet the required fermentation conditions. In contrast, water 

in the carboxylate platform is distilled by energy-saving vapor compression. The high 

quality of vaporized water and low quality requirements for fermentation broth allows 

water recycling without treatment, which slightly reduces production costs (Table 8) and 

significantly makes the process more sustainable. In net balance, the plant generates 

surplus distilled water, which is about equal to the moisture content in the biomass 

feedstock. 

 

 

Figure 29. Grand composite curve for heat integration of the heat exchanger network. 

 

 

Figure 30. Recycle of water and chemicals. 
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Table 7. Utility consumption in targeted and expected scenarios of heat integration. 

Utility No integration Targeted integration Expected integration 

Heating utility (GJ/h)  1,720 726 616 
Cooling utility (GJ/h)  994 0 110 

 

 

Recycling lime and calcium carbonate is another advantage of the carboxylate 

platform compared to other biochemical platforms, which allows lime pretreatment to be 

applied very effectively. The pretreatment unit requires 1.5 tonnes of lime for every 10 

dry tonne biomass fed (Table 5). The calcium flows through the pretreatment, 

fermentation, descumming, and dewatering units along with the main products, and is 

finally recovered in the ketonization unit as calcium carbonate. Part of the calcium 

carbonate is directly recycled to the fermentors as buffer. The remaining calcium 

carbonate is conveyed to the lime kiln (Figure 30) to produce lime, which is recycled to 

the pretreatment unit. As a result, a significantly smaller amount of make-up lime is 

needed (Table 5) and operating costs were significantly reduced (Table 8). 

 

Table 8. Savings from the recycle of chemicals. 

Chemicals Fresh 
water 

Fresh calcium 
carbonate (CaCO3) 

Fresh lime 
(CaO) 

Consumption without recycle (tonne/h) 1,840 45.7 30.2 
Consumption with recycle (tonne/h) 0 0 10.7 
Reduction (%) 100 100 65 
Prices ($/tonne) 0.13 66 70 
Saved costs ($MM/year) 1.91 24.1 10.9 
Saved costs ($/gal product) 0.016 0.198 0.090 

 

4.3.6 Energy efficiency analysis 

The maximal theoretical energy efficiency of cellulose-to-gasoline conversion via 

the carboxylate platform is 89.4%. It can be derived from the overall reaction (see 
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Section 3.2) given the higher heating values of cellulose (17.6 MJ/kg),108 hydrogen 

(141.8 MJ/kg),90 and gasoline (as C8H18, 47.9 MJ/kg.)90  

For the analyzed plant, 80% of the biomass feedstock is forage sorghum (77.1% 

carbohydrates, 15.2% lignin, and 7.7% ash) and the remaining 20% is manure (48.0% 

carbohydrates, 16.6% lignin, and 35.4% ash). With the higher heating value of lignin 

(29.5 MJ/kg),109 and ash (assume 0 MJ/kg), the higher heating value of the feedstock is 

17.1 MJ/kg. The maximal theoretical energy efficiency of the plant is calculated to be 

81.0%. 

 

 

Figure 31. Energy balance of the plant. 

 

In the above calculations of the two maximal theoretical energy efficiencies, it was 

assumed that the process had no input source of energy other than the biomass and 

hydrogen. To operate the process in practical plants, more energy inputs are needed in 

the form of chemicals, heating utility, and electricity. All sources of energy inputs for the 

analyzed plant are summarized in Figure 31. For biomass, chemicals, and hydrocarbon 

fuel, the energy loads are based on higher heating values at the standard condition (i.e., 

sensible heating values are negligible). The total input energy and energy contained in 

the products are is 1,206 MW and 535 MW, respectively. The energy efficiency of the 

plant is therefore 44.4%. 
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4.4 Economic analysis 

4.4.1 Analysis procedure and basis 

The economic analysis starts by estimating purchased equipment costs in Aspen 

Icarus Process Evaluator,91 which are based on the equipment size. Some equipment 

sizes (e.g., compressor power, heat exchanger area, distillation column diameter and 

height) were reported in the simulation results in Aspen Plus whereas others (e.g., sizes 

of crystallizer, drum dryer, and clarifier) were estimated by using reliable heuristics and 

assumptions.97,98 If package quotes were available from the literature or vendors, those 

quotes were used instead of estimating the costs from individual pieces of equipment. 

Scaling factors for estimating equipment costs at various capacities are referred to 

NREL,23 which in turn took most of the scaling factors from Wallas.97 These scaling 

factors are summarized in Table 9 and are defined as follows: 

Equipment cost B	=	(Equipment cost A)	× �Capacity B

Capacity A
�

Scaling factor
 (105) 

After that, other relevant costs to build the plant were estimated as factors of the 

purchased equipment cost. For pretreatment, fermentation, and support units (waste 

water treatment, storage, and utilities), this work employs the modified factor method of 

NREL23 (which is suitable to aqueous-based processes. This modification has a five- 

fold higher contingency factor than the original NREL method. Lang factors98 for fluid 

processing were applied for other units, which are similar to chemical and petrochemical 

processes. The factor values of those two methods are compared in Table 10. The total 

capital investment costs are 3.5 and 6 times the purchased equipment costs, using the 

modified NREL method and the Lang factor, respectively. The main difference comes 

from the installation factors. 

Subsequently, cash flow and financial models were constructed to evaluate the 

project economics. The basis and assumptions of the base-case models are presented in 

Table 11. The federal income tax rate, the depreciation method and period were 

recommended by NREL after a review on Modified Accelerated Cost Recovery System 

(MACRS)110 issued by Internal Revenue Service. No subsidies or incentives were 

applied. 
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After the financial model for the base case was built, the minimum product selling 

price (MPSP) was determined. It is the hydrocarbon fuel price that results in a net 

present value of zero in the cash flow with a predefined after-tax discount rate. To 

simplify the economic analysis, the gasoline and jet fuel prices were assumed to be 

identical. 

Finally, to perform sensitivity analysis, the following key parameters in the 

simulation and financial models were varied: fermentor operating conditions, overall 

yield, plant capacity, sources of hydrogen supply, prices of feedstock and raw chemicals, 

and after-tax discount rate of the cash flow. 

Table 9. Scaling factors to estimate equipment costs at various sizes. 

Equipment type Installation 
factors 

Scaling 
factor 

Scaling base 

Agitators: CS; SS 1.3; 1.2 a 0.51 d Flow 
Blenders 1.3 a 0.49 b Flow 
Blowers 1.4 a 0.59 b Flow 
Centrifuges, CS 1.3 a 0.67 b Flow 
Clarifiers, thickeners 1.51 c 0.60 c Flow 
Columns, distillation, CS; SS 3.0; 2.1 a 0.62 b Diameter squared 
Compressors, motor driven 1.3 a 0.69 b Flow 
Conveyers and elevators 1.4 a 0.60 c Flow 
Crystallizers 1.9 a 0.37 b Flow 
Dryers 1.4 a 0.40 b Flow 
Evaporators, thin film, CS 2.5 a 0.54 b Flow 
Filters, belt press 1.25 c 0.60 c Solid flow 
Filters, pneumapress 3.34 c 0.60 c Solid flow 
Heat exchangers, shell-tube 2.1 a 0.44 b Heat transfer area 
Pumps, centrifugal, CS 2.8 a 0.79 d Flow 
Reactors, kettle 2.1 a 0.54 b Flow 
Reactors, multi-tubular, SS 1.6 a 0.56 b Flow 
Shredders, 1.38 c 0.60 c Flow 
Tanks, field erected, CS 1.4 c 0.57 b Flow 
Truck scale 2.47 c 0.60 c Flow 
Vessels, pressure, CS 1.7 a 0.51 d Flow 

Note: a. Wallas,97 
    b. Peters et al.98 
    c. Aden et al.23 
    d. Garrett.111 
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Table 10. Factors in estimation of project costs. 

Lang method a Modified NREL method b 
Cost items Factor Cost items Factor 

Direct cost 
  Purchased equipment 
  Equipment installation 
  Instrumentation & control 
  Piping 
  Electrical systems 
  Buildings 
  Yard improvements 
  Service facilities 
Total direct costs 

 
100 
47 
36 
68 
11 
18 
10 
70 

360 

Direct cost 
  Purchased equipment 
  Installation 
  Ware house 
  Site development 
 
 
 
 
Total direct costs 

 
100 
70 c  
2.55 

15.3 
 
 
 
 

188 
Indirect costs 
  Engineering and supervision 
  Construction expenses 
  Legal expenses 
  Contractor’s fees 
  Contingency 
Total indirect costs 

 
33 
41 
4 

11 
44 

144 

Indirect costs 
  Prorateable costs 
  Field expenses 
  Office & construction 
  Contingency 
  Other 
Total indirect costs 

 
18.8 
18.8 
47.0 
28.2 
18.8 

132 
Fixed capital investment (FCI) 504 FCI 320 
Working capital investment (WCI=15%FCI) 89 WCI = 10% FCI 32 
Total capital investment (TCI) 593 TCI 352 

Note: a. Peters et al.,98 
b. Aden et al.23 
c. In the NREL report,23 this cost item ranges from 20 from 200 depending on 

types of equipment (see Table 9 for details), 70 is the mean value. 
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Table 11. Basis and assumptions of the financial models for the base case. 

Parameters Values 

Plant life 
General plant depreciation 
Steam generation unit depreciation 
Financing 
After-tax discount rate 
Income tax rate 
Dollar year value 
Subsidy 

20 years 
200% DDB for 7 years 
150% DB for 20 years 
100% equity 
10% 
39% 
2010 
No 

Plant capacity 
 
Construction period 
Start-up time 
Revenues  
Variable Costs  
Fixed Costs 
Operating season 

160 dry tonnes/h of forage sorghum (8.1% ash) and 
  40 dry tonnes/h of manure (35.4% ash) 
1.5 years 
6 months 
50%  
75%  
100% 
8,000 hours per year 

Delivered prices of raw materials:  
Forage sorghum 
Manure 

 
$60/dry tonne 
$10/dry tonne 

Hydrogen source From the processing of fermentation residue 
 

 

4.4.2 Base-case economic analysis 

For the base-case plant in which all the parameter values shown in Tables 1 and 7 

were applied, the fixed capital investment (FCI) is $331 MM. Figure 32 shows how the 

capital is distributed in the plant. The steam-gas shift and PSA units contribute most to 

the FCI followed by gasification and cogeneration, dewatering unit, and ketonization. 

The high capital costs of water-gas shift, PSA, and gasification indicate that producing 

hydrogen from fermentation residue is expensive. Most of the dewatering costs come 

from the expensive crystallization equipment. Because of the low-cost pile design, 

pretreatment and fermentation require only 7.2% of the investment. 
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Figure 32. Breakdown of the fixed capital investment (FCI) for the base case. 

 

Table 12. Variable operating costs. 

Cost items Rate Price Annual cost Unit cost 
$1,000/yr $/gal product 

Feedstock 
  Forage sorghum 
  Manure 

 
160 tonne/h 
40 tonne/h 

 
$60/tonne 
$10/tonne 

 
76,800 
3,200 

 
0.630 
0.026 

Chemicals 
  Lime 
  Ethanol 
  Flocculant 
  Iodoform 

 
10.7 tonne/h 
9.47 tonne/h 
208 kg/h 
7.17 kg/h 

 
$70/tonne 
$2.2/tonne 
$991/tonne 
$25/kg 

 
6,006 

167 
1,650 
1,434 

 
0.049 
0.001 
0.014 
0.012 

Utility 
  High-pressure steam 
  Low-pressure steam 
  Natural gas 
  Electricity 
  Cooling water 
Boiler water 

 
14.1 tonne/h 
476.3 tonne/h 
1.6×103 m3/h 
6.58 MW 
18,838 m3/h 
117 m3/h 

 
$10.1/tonne 
$5.50/tonne 
$0.113/m3 
$0.062/kWh 
$0.013/m3 
$0.13/m3 

 
1,142 

20,955 
1,469 
3,244 
1,959 

121 

 
0.009 
0.173 
0.012 
0.027 
0.017 
0.001 

Waste disposal 32.5 tonne/h $18/tonne 4,681 0.038 
 

7.8%

14.1%

12.5%

8.6%

17.6%

19.9%

7.4%

5.1%

7.0%

Pretreatment & Fermentation (7.8%)

Dewatering (14.1%)

Ketonization (12.5%)

Ketone hydrogenation (8.6%)

Gasification & cogeneration (17.6%)

Steam-gas shift & PSA (19.9%)

Dehydration & dimerization (7.4%)

Olefin hydrogenation (5.1%)

WWT - Storage - Utility (7.0%)
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Variable and fixed operating costs are presented in Tables 12 and 13. The variable 

operating cost is dominated by the main feedstock cost ($60/tonne forage sorghum), 

followed by the cost of low-pressure steam that is primarily consumed by the 

crystallizer. The key contribution of the fixed operating costs is maintenance-related 

costs, which were estimated as a factor of the capital costs. 

The MPSP of the base case was estimated to be $1.83 per gallon hydrocarbon fuels 

at an after-tax discount rate of 10%. Table 14 shows the components of this selling price. 

The biomass feedstock is the highest cost component; it contributes 36% to the MPSP. It 

implies that using low-cost waste feedstocks will significantly reduce the product cost. 

Other high-cost components are capital depreciation (13.2%), utilities (12.2%), and 

maintenance (11.9%). It indicates the significant contributions of the capital investment 

and the low-pressure steam consumption to the selling price. 

 

Table 13. Fixed operating costs. 

Cost items Annual cost 
($1,000/yr) 

Calculation (*) 

Labor 
Direct wage and benefits (DW&B) 
Direct salary and benefits (DS&B) 
Operating supplies and services 
Technical assistance to manufacturing 
Control laboratory 

 
4,481 

672 
269 
747 
409 

 
For operators 
15% of DW&B 
6% of DW&B 
$52,000/(operator/shift)-year 
$57,000/(operator/shift)-year 

Maintenance 
Wage and benefits (MW&B) 
Salaries and benefits (MS&B) 
Materials and services 
Maintenance overhead 

 
11,576 
2,894 

11,576 
579 

 
4.5% of FCI 
25% of MW&B 
100% of MW&B 
5% of MW&B 

Operating overhead 
General plant overhead 
Mechanical department services 
Employee relations department 
Business service 

 
1,393 

471 
1,158 
1,452 

 
7.1% of DW, DS, MW, MS, & B 
2.4% of DW, DS, MW, MS, & B 
5.9% of DW, DS, MW, MS, & B 
7.4% of DW, DS, MW, MS, & B 

(*) Followed the instruction of Seider et al.112 
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Table 14. Cost components of MPSP in the base case. 

Cost component Contribution 
$/gallon of product Percentage (%) 

Biomass 0.656 35.8 
Chemicals and waste disposal 0.114 6.3 
Utility 0.237 12.9 
Labor  0.054 2.9 
Maintenance  0.218 11.9 
Operating overhead 0.037 2.0 
Average capital depreciation 0.241 13.2 
Average income tax 0.140 7.7 
Average return on investment (ROI) 0.134 7.3 
Total 1.832 100.0 

 

 

 

Figure 33. Historical monthly prices of crude oil, gasoline, and jet fuel (EIA, 2011).113 
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Economic viability of biofuel processes depends on how the biofuel competes with 

petroleum-derived fuels. During the 10-year period from January 2001 to January 2011, 

Figure 33 tracks the historical monthly spot prices (FOB) of conventional gasoline and 

kerosene-type jet fuel (at U.S. Gulf coast) produced from crude oil (priced at Cushing, 

Oklahoma). Petroleum refineries sell gasoline and jet fuel at $1.83/gal when the crude 

oil price is about $65 – $70 per barrel. 

4.5 Optimization and sensitivity analysis  

4.5.1 Optimization of yield and fermentation operating conditions 

Process economics are strongly affected by the practical overall yield of the plant, 

which is controlled by fermentor operating parameters: volatile solid loading rates 

(VSLR), liquid residence times (LRT), and carboxylate product concentration. These 

parameters along with other relevant terms are defined as follows: 

Volatile solid fed (VS) = Dry biomass – Ash in biomass (106) 

Conversion = 
VS digested

VS fed
 (107) 

Selectivity = 
Total carboxylate produced (based on weight of acids)

VS digested
 (108) 

Overall yield = 
Total volume of hydrocarbon fuel produced

Dry biomass weight fed
 (109) 

Volatile solids loading rate (VSLR) = 
Weight of VS fed

Total liquid volume in all fermentors	·	time
 (110) 

Liquid residence time (LRT) = 
Total liquid in all fermentors

Flow rate of liquid out of fermentor train
 (111) 

Fermentation concentration = 
Total carboxylate produced (based on acid weight)

Flow rate of liquid out of fermentor train
 (112) 

Fermentation time = 
Dry biomass weight in all fermentors

Dry biomass rate
 (113) 

Substrate concentration = 
Dry biomass weight in all fermentors

Dry biomass weight	+ Liquid weight in all fermentors
 (114) 
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In this sensitivity analysis, VSLR, LRT, and fermentation product concentration 

were considered as independent variables. All others were calculated accordingly (yield, 

selectivity, fermentation time, total carboxylate produced, VS fed, VS digested, and rates 

of liquid) or specified as unchanged inputs (dry biomass, ash content, conversion, and 

substrate concentration). Table 5 reports their values in the base case. 

The overall yield is proportional to total acids produced in the fermentation, which 

assumes that individual yields of all other steps are fixed. From the equations above, the 

overall yield relates to the three independent variables as follows: 

Overall yield ~
Fermentation product concentration

VSLR·LRT
 (115) 

This relation indicates that overall yield favors higher fermentation product 

concentration and lower multiplication of VSLR and LRT. 

In fact, the three parameters (VSLR, LRT, and fermentation product concentration) 

interact as documented in previous work.114-117 The interactions were predicted using the 

Continuum Particle Distribution Model (CPDM). However, to investigate the effect of 

operating ranges on process economics in this work, the parameters were arbitrarily 

varied in predefined ranges (Table 15). 

 

Table 15. Ranges of fermentation operation parameters. 

Parameter Unit Base case Investigated range 

Fermentation product concentration g acids/L 40 10 – 60 
Volatile solids loading rate (VSLR) g/(L·day) 3.0 3 – 10 
Liquid residence time (LRT) day 28 5 – 30 

 

 

To perform the sensitivity analysis, the MPSP was estimated in a number of 

scenarios of various combinations of the three independent parameters. Because the 

parameters affect fermentation outlet flow rates and compositions, mass and energy 

balance of the whole plant were changed in every scenario. The capital and operating 

costs were updated accordingly before the MPSP was recalculated. 
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Figure 34. Minimum product selling prices with respect to multiplication of volatile 

solid loading rate and liquid residence time at various concentrations of carboxylic acids 

in fermentation broth (forage sorghum cost $60/dry tonne, after-tax discount rate 10%, 

hydrogen produced from gasification of fermentation residue, plant capacity 200 dry 

tonne/h, plant life 20 years). 

 

Figure 34 shows the calculation results that cover the whole parameter ranges. Some 

characteristics follow: 

• For constant fermentation product concentration, MPSP is linear with 

VSLR·LRT. The MPSP decreases as VSLR·LRT decreases. The reason is 

VSLR·LRT is inversely proportional to yield (as discussed above) and MPSP is 

generally smaller at higher yields. The value of VSLR·LRT can be reduced until 
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the yield is equal to the theoretical yield. In Figure 34, the yield (in percentage) is 

defined as 

Yield (%) = 
Practical overall yield

Theoretical overall yield
×100% (116) 

• Straight lines of constant fermentation product concentration (solid lines) 

converge to one point outside the operable region, which is the upper part of the 

100% yield curve (dashed curve). 

• For constant yield (along the dashed lines), MPSP decreases as the fermentation 

product concentration increases. In the investigated ranges, the increased 

concentration results in lower fermentation costs because of reduced 

fermentation time (with constant yield) and lower dewatering costs because less 

water must be vaporized. In Figure 34, yields of 40, 50, 60, 70, 80, 90, and 100% 

are reported. 

Figure 34 can be used to predict quickly the overall yield and MPSP, given the 

fermentation operating parameters (VSLR, LRT, and product concentration). In a 

reverse problem, it can be used to indicate what fermentation parameters are required to 

reach a desired yield or MPSP. The result shows that the minimum MPSP in the 

investigated ranges is $1.42/gal, which would be achieved at an acid concentration of 60 

g/L and a VSLR·LRT of 98 g/L (with a yield of 100%). 

4.5.2 Vapor compression system 

The vapor-compression system (Figure 23) is the key dewatering unit that 

concentrates the calcium carboxylate solution in an energy-efficient way. There is a need 

to optimize the operating conditions and perform sensitivity analysis because (1) the 

system is highly integrated with the fermentation and (2) although excellent performance 

has been achieved at the laboratory scale, it has not yet been demonstrated at commercial 

scale. This section investigates the effects of temperature approach, fouling, and 

fabrication costs of the latent heat exchangers on the MPSP. Table 16 shows the 

parameter ranges. 
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Table 16. Ranges of latent heat exchanger parameters. 

Parameter Notation Unit Base case Investigated 
range 

Temperature approach ∆T K 0.20 0.20 – 3.0 
Heat transfer coefficient U kW/(m2

·K) 240 10 – 300 
Equipment cost C $/m2 155 0 – 400 

 

Temperature approach 

Temperature approach is the temperature difference (∆T) between vaporizing salt 

solution and condensing vapor in a stage of the latent heat exchangers. It is related to 

heat transfer in the ensuing equation: 

Q = q·A = U·A·∆T       (117)  

where Q = heat transfer (kW), q = heat flux (kW/m2), ∆T = temperature approach (K),  

U =  overall heat transfer coefficient (kW/(m2
·K)), and A = heat transfer area (m2). 

For 0.203-mm-thick copper plates with lead-containing Ni-P-PTFE hydrophobic 

coatings, saturated steam pressure of 722 kPa, and forced convective saturated liquid,102 

experimentally found that U depends on ∆T in non-fouling conditions as follows: 

U = 61.1(∆T)–0.915  (118)  

Therefore, 

q = 61.1(∆T)0.085        (119)  

Q = 61.1·A·(∆T)0.085        (120)  

In traditional heat exchangers, higher ∆T is favored because heat transfer area is lower, 

which reduces equipment costs. However, this latent heat exchanger is limited by the 

rate that liquid droplets shed from the surface. As a consequence, heat flux is nearly 

independent of ∆T, which is indicated by the near-zero exponent in Equation 119 and 

shown by the continuous curve in Figure 35. 

As ∆T increases, the designed outlet temperature of the vapor compressor must 

increase, which requires higher compressor outlet pressure, capacity, capital, and 

operating costs. As ∆T decreases, the designed area of latent heat exchangers must 

increase to maintain the heat transfer (see Equation 120), which requires higher capital 
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costs of the heat exchangers. In the design of the vapor-compression system, the 

compression costs dominate at high ∆T and the heat exchanger costs dominate at low 

∆T. A trade-off between these costs was found at ∆T = 0.02 K as shown by the minimum 

in the continuous curve in Figure 36.  

 

 

Figure 35. Heat flux of latent heat exchangers with respect to temperature approach 

at clean and various values of the fouling factor. 

 

Fouling 

In practical operation, the overall heat transfer coefficient of the latent heat 

exchangers decreases over time between maintenance services. The effect of fouling on 

the overall heat transfer coefficient is assumed to follow Equation 121.  
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where U' is the fouling overall heat transfer coefficient and m is the fouling factor (e.g., 

m = 2 means overall heat transfer coefficient is reduced twice due to fouling). Figure 35 

depicts the heat flux at some values of m. 

With fouling, the heat transfer is 

' ' ' 'Q U A T= ⋅ ⋅ ∆  (122)  

where A' is fouling heat transfer area and ∆T' is the fouling temperature approach.  

 

 

Figure 36. Minimum product selling price with respect to temperature approach at 

clean condition and various fouling expectation of the latent heat exchangers. 

 

In an operating plant, heat transfer area is not changed (i.e., A = A'). To maintain heat 

transfer (i.e., Q = Q') and avoid reducing vaporization rate as overall heat transfer 

coefficient decreases from fouling, the latent heat exchangers must be designed with 

surplus area (i.e., oversized) and heat flux is lowered. (Note: Increasing ∆T without 
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oversizing does not maintain heat transfer because the heat flux is nearly independent of 

∆T as discussed in the previous section). 

In the base case, let A0 be the ideal heat transfer area (i.e., the designed value if no 

fouling occurs). The heat exchangers are oversized by a factor of n. 

A' = n·A0 (123)  

To maintain heat transfer right after maintenance service is performed (i.e., the heat 

exchangers are clean), ∆T must be adjusted to a small value such that heat flux reduces 

by n times as compared to the ideal design. 

q' = q0/n (124)  

where q' is fouling heat flux and q0 is ideal heat flux. Over time, ∆T increases during 

operation to keep q constant. 

For example, in an ideal scenario where no fouling occurs, the system always 

operates at the base-case condition where q0 = 53.3 kW/m2 and ∆T = 0.2 K. To cope 

with fouling in a practical scenario, if heat transfer areas are oversized by two times (i.e., 

n = 2), the system initially operates at ∆T = 10–5 K (see Figure 36) to keep q = q0/2 = 

26.6 kW/m2. Over time as fouling develops, ∆T must increase to keep q constant at this 

value, which is represented by the horizontal straight operating line in Figure 35. When 

∆T is near 1 K, the production cost significantly increases (see Figure 36) because 

compression energy consumption is higher; therefore, the system should be shut down to 

clean the heat exchangers.  (Note: It is not necessary to manipulate ∆T directly.  It 

assumes a value that is necessary to condense the vapor processed by the compressor; 

hence, ∆T is a dependent variable determined by independently selecting the compressor 

speed.)  

For higher oversizing factors, the operation period of the system is longer. However, 

the MPSP must be higher to account for the costs of larger heat exchangers. Figure 36 

shows the MPSP for various values of the oversizing factor n. 

Cost of latent heat exchangers 

Because this technology (dropwise condensation in latent heat exchanger with an 

extremely high heat transfer coefficient of 240 kW/(m2
·K) has not been applied at a 
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commercial scale, the coating cost of the plates is uncertain. In the base case, the 

equipment cost (C) is assumed to be $155/m2 of heat transfer area. This sensitivity 

analysis investigates a wide range of costs from $100 to $400/m2 (Figure 37) assuming 

∆T = 0.20 K. 

 

 

 

Figure 37. Minimum product selling price with respect to purchased cost of latent heat 

exchangers at various values of overall heat transfer coefficient U (kW/(m2
·K)) at ∆T = 

0.2 K. 

At high U, the change of C does not increase MPSP much. For example, at U = 200 

kW/(m2
·K), the MPSP increases by only $0.04/gal as C increases four times, from $100 

to $400/m2. However, at low U, an increase of C significantly affects the MPSP. For 

example, at U = 30 kW/(m2
·K), the MPSP increases by $0.24/gal for the same four-fold 

increase of C. The dependence of the MPSP on U and C follows this equation: 
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MPSP = 
0.011847

U	0.8061 C + 1.8072   (125) 

4.5.3 Sources of hydrogen  

The results of the base-case economic analysis shown in Section 4.4.2 reveal that the 

cost of producing hydrogen from fermentation residue is expensive. In a design in which 

hydrogen is available from an external source (e.g., nearby petroleum refinery) and the 

fermentation residue is gasified only for steam and power, the MPSP will be lower if the 

external hydrogen is inexpensive. However, if the external hydrogen price is expensive, 

then it is better to produce hydrogen from fermentation residues. Sensitivity analysis of 

MPSP with respect to external hydrogen prices (Figure 38) shows that the break-even 

point is $2.44/kg of external hydrogen. 

 

 

Figure 38. Plot of MPSP versus external hydrogen prices for the case of no 

hydrogen production. 
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than $1.89/gal if natural gas price is less than $14.2/GJ. In the calculation of this case, it 

was assumed the relationship between hydrogen price and natural gas price is linear.31 

In other words, the plant is economically favored to produce hydrogen from 

fermentation residue when external hydrogen and natural gas prices are higher than 

$2.44/kg and $14.2/GJ, respectively. Otherwise, if those prices are lower than these 

break points, buying hydrogen or investing in a natural gas reformer is more economical. 

 

 

Figure 39. Sensitivity analysis of the key factors on minimum product selling price. 

 

4.5.4 Other sensitivity analyses 

Figure 39 shows the sensitivity of the minimum selling price to the following key 

parameters: after-tax discount rate or return on investment (ROI), overall yields, fixed 

capital investment, external hydrogen prices, and key raw material prices. If investors 

expect an ROI of 20% or 25%, the product fuel must be sold for $2.23 or $2.47/gal 

hydrocarbon, respectively. For an increase of FCI by 50%, the product selling price is 

$2.06/gal hydrocarbon. A decrease of overall yields by 10% results in a selling price of 
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$2.03/gal hydrocarbon. If the lime kiln is not employed and pretreatment is fully fed 

with purchased fresh lime, the selling price increases by $0.11/gal hydrocarbon. By 

investing in a lime kiln to process the calcium carbonate from ketonization and buying 

external lime at $120/tonne for make-up demand, the MPSP increases by $0.08/gal 

hydrocarbon. In the worst-case scenario of manure price, the selling price is not affected 

much. Unlike the main biomass (sorghum), free manure does not reduce the 

hydrocarbon selling price significantly. 

 

 

Figure 40. Minimum selling prices and fixed capital investment versus plant capacities 

using biomass at various prices (sorghum) and $10/dry tonne (manure). Hydrogen is 

produced by gasification. 

 

Table 14 shows that feedstock costs have high impacts on product price. Figure 40 

depicts the effect of feedstock price on the hydrocarbon selling prices. This sensitivity 

analysis was done for energy sorghum. For other feedstocks with the same volatile solids 

content as sorghum (91.9% weight), the results are identical. Some feedstocks (e.g., 

municipal solid waste, food waste) may come with tipping fees whereas sorghum does 
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not. If such feedstock is delivered for free to the plant gate (i.e., tipping fee is assumed to 

just cover collecting, sorting, and transporting costs) and the plant uses internal 

hydrogen, the MPSP is only $1.20/gal hydrocarbon at the base-case capacity (Figure 39). 

In a reasonable scenario where biomass is available for free at the plant gate and external 

hydrogen is supplied at $1/kg (the current price based on natural gas costing $5.21/GJ or 

$5.50/MMBtu), the MPSP of hydrocarbon fuels is $0.99/gal hydrocarbon, as shown in 

Figure 39. 

Figure 40 shows the hydrocarbon selling prices and fixed capital investment with 

respect to capacity for a plant at various prices of biomass. The FCI curve is represented 

by a function of capacity to a power of 0.63. At capacities of 300 tonne/h or more and 

biomass cost of $60/tonne, the MPSP approaches $1.65/gal hydrocarbon. 

4.6 Summary 

This techno-economic analysis for producing hydrocarbon fuel from lignocellulose 

via the carboxylate platform was performed by using extensive sources of published data 

and employing computers for simulation and cost estimation. The following technical 

advantages of the carboxylate platform were identified: no sterility, no external enzymes, 

and low capital cost of pretreatment and fermentation. The plant is highly integrated to 

overcome common challenges in biorefineries, such as lime consumption in 

pretreatment, calcium carbonate consumption for buffering, water removal for 

concentrating fermentation product, and hydrogen supplies. 

The economic analysis shows that the effects of fermentation operating parameters 

on process economics can be generalized (Figure 34). This result can be used to quickly 

estimate the MPSP given any value of the operating parameters. Alternatively, it can 

quickly target the required parameters to achieve a desired selling price. The economic 

analysis also shows that the temperature approach of latent heat exchangers is preferred 

to be as small as 0.20 K. The analysis identified inexpensive feedstock and replacing the 

crystallizer were keys to significantly lowering the cost.  
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The process does not need external hydrogen, but it is more economic if external 

hydrogen is available for less than $2.44/kg, which occurs when natural gas is below 

$14.2/GJ ($15.0/MMBtu). 

The base case with reasonable expectation on technical performances and feedstock 

cost ($60/dry tonne biomass) requires an MPSP of $1.83/gal hydrocarbon fuel ($1.25/gal 

equivalent ethanol) at an after-tax discount rate of 10%. In particular, the minimum 

selling prices of hydrocarbon fuels can be around $1.20/gal ($0.82/gal equivalent 

ethanol) if municipal solid waste is available for free at the plant gate (200 tonne/h plant, 

with internal hydrogen production). 

4.7 Legal disclaimer 

MixAlcoTM is a registered trademark of Terrabon, Inc. Unless otherwise noted, 

inclusion of such trademark in this document does not imply support or endorsement by 

Terrabon, Inc. Except as expressly referenced in this dissertation, the information, 

estimates, projections, calculations, and assertions expressed in this dissertation have not 

been endorsed, approved, or reviewed by any unaffiliated third party, including 

Terrabon, Inc., and are based on the authors’ own independent research, evaluation, and 

analysis. The views and opinions of the authors expressed herein do not state or reflect 

those of such third parties, and shall not be construed as the views and opinions of such 

third parties. 
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CHAPTER V  

CONCLUSIONS 

 

This research developed a complete package of novel tools to systematically design a 

biorefinery from given feedstocks and desired biofuels. The following tools were 

proposed. 

At first in a synthesis stage, conceptual pathways of converting the feedstocks to the 

biofuels were synthesized using forward-backward branching approach along with 

matching and interception steps (Chapter II). This approach can systematically lead to 

not only familiar pathways but also novel pathways based on known and feasible 

technologies.  

The pathways were then quickly screened and evaluated to globally identify the most 

economically promising ones in an optimization stage. Application of Bellman’s 

Principle of Optimality (Chapter II) was proposed to significantly reduce the evaluation 

effort.  

After that, the optimal conceptual pathways were assessed in more details. Based on 

the found pathways, flexible biorefinery configurations were constructed using a novel 

perspective on design strategy (Chapter III). Operation of partial or whole plant is in idle 

mode if operating economic efficiency is not favored. This strategy well suits what a 

plant should be operated in practice in such economic conditions. The new concept can 

be also applied in another context, e.g., process design with optimum strategy of quality 

control, where a process is designed such that an off-spec product is discarded (while 

production is still online). 

Finally, detailed design and economic evaluation of the biorefinery configuration 

was performed (Chapter IV). Although the technical and economic analyses with 

reliable data were done for the production of hydrocarbon fuels from lignocellulosic 

biomass via carboxylate platform, the devised framework can be applied to a broad 

range of biofuel processes. The chapter discussed practical sources of information to 

perform a techno-economic analysis of a biofuel process, how to simulate a biofuel 
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process in a process simulation software, and other common technical and economic 

issues in the design problem of the nth biofuel plant. 

All the developed tools were demonstrated in case studies. In general, this research 

has proposed highly applicable tools and used chemical engineering fundamentals to 

systematically solve pressing problems in the area of renewable energy. 
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APPENDIX A 

INPUT DATA FOR THE CASE STUDY OF BIOREFINERY DESIGN WITH AN 

OPTIMUM LEVEL OF FLEXIBILITY 

 

Table 17. Input data for raw material composition (%). 

Index Name CELLULOSE XYLAN LIGNIN HYDROGEN WATER 
1 Biomass 1 35 7.5 7.5 0 50 
2 Biomass 2 25 10 15 0 50 
3 Hydrogen 0 0 0 100 0 

Table 18. Input data for raw material availabilities (tonne/h). 

Index Name Scenario 
1 2 3 4 5 6 

1 Biomass 1 300 300 300 300 300 300 
2 Biomass 2 450 450 450 250 450 450 
3 Hydrogen 3 3 3 3 3 3 

Table 19. Input data for raw material costs ($/tonne). 

Index Name Scenario 
1 2 3 4 5 6 

1 Biomass 1 30 30 90 30 30 30 
2 Biomass 2 5 5 40 5 5 5 
3 Hydrogen 4,000 200 4,000 4,000 4,000 4,000 

Table 20. Input data for product demand (tonne/h). 

Index Name Scenario 
1 2 3 4 5 6 

1 Mixed alcohols 60 60 60 60 60 120 
2 Lime 30 30 30 30 30 60 

Table 21. Input data for product prices ($/tonne). 

Index Name Scenario 
1 2 3 4 5 6 

1 Mixed alcohols 686 686 686 686 686 686 
2 Lime 70 70 70 70 70 70 
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Table 22. Input data for  capital costs of equipment. 

Index Equipment CAPCOEF SCALE SIZECOEF Characteristic size 

1 Pretreatment 15.21 0.682 9.00 Total pile volume (1,000 m3) 

2 Fermentation 90.99 0.668 9.00 Total pile volume (1,000 m3) 

3 Vapor compression system 2,714 0.612 0.11 Total latent heat transfer area (1,000m2) 

4 Crystallization 1,274 0.612 0.80 Water vaporization rate (tonne/h) 

5 Ketonization 3,064 0.544 0.43 Carboxylate salt rate (tonne/h) 

6 Hydrogenation 3,863 0.538 0.30 Ketone rate (tonne/h) 

7 Gasification 1,643 0.694 1.50 Inlet solid rate (tonne/h) 

8 Cogeneration 170.8 0.694 6.80 Inlet gas rate (tonne/h) 

9 Water-gas shift 4,596 0.694 0.57 Inlet carbon monoxide rate (tonne/h) 

10 Pressure swing adsorption 798.6 0.694 62.0 Inlet gas rate (tonne/h) 

11 Lime kiln 78.44 0.600 1.80 Calcium carbonate rate (tonne/h) 
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Table 23. Data for operating costs of equipment. 

Index Equipment OPCOEF Characteristic flow rate (tonne/h) 

1 Pretreatment 38 Wet biomass rate 

2 Fermentation 74 Wet biomass rate 

3 Vapor compression system 71 Salt solution (excluding contaminants) rate from fermentation 

4 Crystallization 67 Salt solution (excluding contaminants) rate from fermentation 

5 Ketonization 27.9 Salt solution (excluding contaminants) rate from fermentation 

6 Hydrogenation 20.6 Ketone rate 

7 Gasification 201 Inlet solid rate 

8 Cogeneration -12.7 Inlet gas rate 

9 Water-gas shift 8.8 Inlet carbon monoxide rate 

10 Pressure swing adsorption 0.8 Inlet gas rate 

11 Lime kiln 46 Calcium carbonate rate 
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Table 24. Yield matrices (Scenario 1/Scenario 5 if yield is varied). 

 Inlet components 

Outlet components CELLULOSE XYLAN LIGNIN CARBO KETONE HYDRO SYNGAS WATER ALCOHOL LIME 

E
q

u
ip

m
e

n
t 1

: P
re

tr
e

a
tm

e
n

t 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 0 

E
q

u
ip

m
e

n
t 2

: F
e

rm
e

n
ta

tio
n 

CELLULOSE 0.5 / 0.6 0 0 0.5 / 0.4 0 0 0 0 0 0 
XYLAN 0 0.4/0.52 0 0.6/0.48 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 
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Table 24 continued. 

 Inlet components 

Outlet components CELLULOSE XYLAN LIGNIN CARBO KETONE HYDRO SYNGAS WATER ALCOHOL LIME 

E
q

u
ip

m
e

n
t 3

: V
a

p
or

 c
o

m
p

re
ss

io
n

 s
ys

te
m

 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 0.3 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 

E
q

u
ip

m
e

n
t 4

: C
ry

st
a

lli
za

tio
n

 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 0 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 
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Table 24 continued. 

 Inlet components 

Outlet components CELLULOSE XYLAN LIGNIN CARBO KETONE HYDRO SYNGAS WATER ALCOHOL LIME 

E
q

u
ip

m
e

n
t 5

: K
e

to
n

iz
a

tio
n 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 0 0.46 0 0.30 0 0 0.24 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 

E
q

u
ip

m
e

n
t 6

: H
yd

ro
g

en
a

tio
n 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 0 0 0 0 1 0 
HYDRO 0 0 0 0 0 0 0 0 1 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 
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Table 24 continued. 

 Inlet components 

Outlet components CELLULOSE XYLAN LIGNIN CARBO KETONE HYDRO SYNGAS WATER ALCOHOL LIME 

E
q

u
ip

m
e

n
t 7

: G
a

si
fic

a
tio

n
 

CELLULOSE 0 0 0 0 0 0 0.4 0 0 0 
XYLAN 0 0 0 0 0 0 0.4 0 0 0 
LIGNIN 0 0 0 0 0 0 0.4 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 

E
q

u
ip

m
e

n
t 8

: C
o

g
e

n
e

ra
tio

n 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 

 



 

 

113 

Table 24 continued. 

 Inlet components 

Outlet components CELLULOSE XYLAN LIGNIN CARBO KETONE HYDRO SYNGAS WATER ALCOHOL LIME 

E
q

u
ip

m
e

n
t 9

: W
a

te
r-

g
a

s 
sh

ift
 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 0.60 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 

E
qu

ip
m

en
t 1

0:
 P

re
ss

ur
e 

sw
in

g 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0.05 0.95 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 
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Table 24 continued. 

 Inlet components 

Outlet components CELLULOSE XYLAN LIGNIN CARBO KETONE HYDRO SYNGAS WATER ALCOHOL LIME 

E
q

u
ip

m
e

n
t 1

1
: L

im
e

 k
iln

 

CELLULOSE 1 0 0 0 0 0 0 0 0 0 
XYLAN 0 1 0 0 0 0 0 0 0 0 
LIGNIN 0 0 1 0 0 0 0 0 0 0 
CARBO 0 0 0 1 0 0 0 0 0 0 
KETONE 0 0 0 0 1 0 0 0 0 0 
HYDRO 0 0 0 0 0 1 0 0 0 0 
SYNGAS 0 0 0 0 0 0 1 0 0 0 
WATER 0 0 0 0 0 0 0 1 0 0 
ALCOHOL 0 0 0 0 0 0 0 0 1 0 
LIME 0 0 0 0 0 0 0 0 0 1 
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APPENDIX B 

LINGO MODEL FOR THE CASE STUDY OF BIOREFINERY DESIGN WITH 

AN OPTIMUM LEVEL OF FLEXIBILITY 

 

SETS: 
! Three raw materials: two lignocellulosic sources and external H2;
 RAW /1..3/; 
! Two products: mixed alcohols and Lime;   
 PRODUCT /1..2/;  
! Ten main components;  

COMPONENT /CELLULOSE, XYLAN, LIGNIN, CARBOX, KETONE , HYDRO, 
SYNGAS, WATER, ALCOHOL, LIME/; 

! Eleven processing units. See the end of the model  for the list of 
equipment with assigned indices;  
 EQUIPMENT /1..11/: CAPCOEF, SCALE, MSIZE, SIZECOEF , OPCOEF;  
! Six scenarios;  
 SCENARIO /1..6/: PROB; 
 
! Derived sets from two sets;  
 RAW_SCENARIO (RAW, SCENARIO): COST, SUPPLY, AVAIL;  
 PRODUCT_SCENARIO (PRODUCT, SCENARIO): PRICE, DEMAN D, PROD; 
 EQUIPMENT_SCENARIO (EQUIPMENT, SCENARIO): SIZE, TF LOW, Y; 
 
! Derived sets from three sets;  
 RAW_COMP (RAW, COMPONENT): FRACTION; 
 RAW_SCEN_COMP (RAW, SCENARIO, COMPONENT): CONTENT;  

EQUI_SCEN_COMP (EQUIPMENT, SCENARIO, COMPONENT): FIN, FOUT, 
WASTE; 

EQUI_SCEN_COMP_COMP (EQUIPMENT, SCENARIO, COMPONENT, COMPONENT): 
YIELD; 

ENDSETS 
 
DATA: 
! Data are imported from a spreadsheet;  

CAPCOEF, OPCOEF, SCALE, SIZECOEF, PROB, COST, AVAIL , PRICE, 
DEMAND, FRACTION, YIELD = @OLE('Data.xlsx'); 

! Results are exported to a spreadsheet;  
@OLE('Data.xlsx') = Y, TFLOW, SIZE, MSIZE, SUPPLY, PROD , FIN, 
FOUT; 

ENDDATA 
 
! Maximum profit ($1,000/year);  
MAX = @SUM(SCENARIO(p): PROB(p)*(  ! Expected value of revenue;  
  8* @SUM(PRODUCT(k):PRICE(k,p)*PROD(k,p)) ! Sale income;  
 -8* @SUM(RAW(i):COST(i,p)*SUPPLY(i,p))  ! Raw materials costs;  
   - @SUM(EQUIPMENT(j):OPCOEF(j)*TFLOW(j,p)) ! Operating costs;  
   -22*8* @SUM(EQUIPMENT(j): @SUM(COMPONENT(m): WASTE(j,p,m))))) ! Waste;  
    - @SUM(EQUIPMENT(j):CAPCOEF(j)*MSIZE(j)^SCALE(j))/7; !Capital costs;  
 
! Raw availability;  
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 @FOR(RAW_SCENARIO: SUPPLY <= AVAIL); 
! Production limitation;  
 @FOR(PRODUCT_SCENARIO: PROD <= DEMAND); 
! Mass balance through equipment;  

@FOR(EQUI_SCEN_COMP(j,p,m): 
FOUT(j,p,m)= @SUM(COMPONENT(n):FIN(j,p,n)*YIELD(j,p,n,m))); 

! Total inlet flow rate;  
@FOR(EQUIPMENT_SCENARIO(j,p): 
TFLOW(j,p)= @SUM(COMPONENT(m):FIN(j,p,m))); 

! Mass balance between equipment (define process st ructure);  
 @FOR(SCENARIO(p):  
 ! Raw contents;    
  @FOR(RAW_COMP(i,m): 

CONTENT(i,p,m) = FRACTION (i,m)*SUPPLY(i,p));  
 ! Raw - Pretreatment;  
  @FOR(COMPONENT(m): @SUM(RAW(i)|i#LE#2:  

CONTENT(i,p,m)) = FIN(1,p,m)); 
 ! Pretreatment - Fermentation;  
  @FOR(COMPONENT(m): FOUT(1,p,m) = FIN(2,p,m)); 
 ! Fermentation - Vapor compression system & Gasific ation;  
  @FOR(COMPONENT(m)|m#GE#4:  FOUT(2,p,m) = FIN(3,p,m)); 

@FOR(COMPONENT(m)|m#LT#4:  FOUT(2,p,m) = FIN(7,p,m) + 
WASTE(2,p,m)); 

  @FOR(COMPONENT(m)|m#GE#4:   0 = FIN(7,p,m)); 
  @FOR(COMPONENT(m)|m#LT#4:   0 = FIN(3,p,m)); 
 ! Vapor compression system - Crystallization;  
  @FOR(COMPONENT(m): FOUT(3,p,m) = FIN(4,p,m)); 
 ! Crystallization - Ketonization;  
  @FOR(COMPONENT(m): FOUT(4,p,m) = FIN(5,p,m)); 

! Ketonization & Pressure swing absorption - Hydrog enation & Lime 
kiln;  

  FOUT(5,p,10) = FIN (11,p,10); 
  FOUT(5,p,7) = FIN (11,p,7); 
  @FOR(COMPONENT(m)|(m#LE#9)#AND#(m#NE#7): 0 = FIN (11,p, m)); 
  FOUT(5,p,6) + FOUT (10,p,6) + SUPPLY(3,p) = FIN(6 ,p,6); 
  @FOR(COMPONENT(m)|m#NE#6: FOUT(5,p,m) = FIN(6,p,m) +  

FIN (11,p,m)); 
  FOUT (10,p,6) + SUPPLY(3,p) = 0.055*FOUT(5,p,5);  

! H2 consumption; 
 ! Gasification - Cogeneration;  
  @FOR(COMPONENT(m): FOUT(7,p,m) = FIN(8,p,m)); 
 ! Cogeneration - Water-gas shift;  
  @FOR(COMPONENT(m): FOUT(8,p,m) = FIN(9,p,m)); 
 ! Water-gas shift - Pressure swing absorption;  
  @FOR(COMPONENT(m): FOUT(9,p,m) = FIN(10,p,m)); 
 ! Final products;  
  PROD(1,p) = FOUT(6,p,9); 
  PROD(2,p) = FOUT(11,p,10); 
 ); 
! Sizing contraints;  
 @FOR(EQUIPMENT_SCENARIO(j,p):  
 ! Sizes in a scenario;  
  SIZE(j,p)=SIZECOEF(j)*TFLOW(j,p); 
 ! Designed sizes;  



117 

 

 

  MSIZE(j) >= SIZE(j,p); 
 ! Operational mode;  
  0.5*Y(j,p)*MSIZE(j) <= SIZE(j,p); 
  SIZE(j,p) <= 10000*Y(j,p); 
  Y(j,p) <= 10*MSIZE(j); 
  @BIN(Y(j,p)); 
 ); 
END 
 
! List of equipment: 
    Index Name 
 1.  Pretreatment 
 2.  Fermentation 
 3.  Vapor compression system 
 4.  Crystallization 
 5.  Ketonization 
 6.  Hydrogenation 
 7.  Gasification 
 8.  Cogeneration 
 9.  Water-gas shift 
 10.  Pressure swing absorption 
 11.  Lime kiln; 
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APPENDIX C 

SOLUTIONS FOR THE CASE STUDY OF BIOREFINERY DESIGN WITH AN 

OPTIMUM LEVEL OF FLEXIBILITY 

 

 

Figure 41. A snapshot of the Lingo solver status report for the case study. 
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Table 25. Results on raw materials, products, and waste (tonne/h). 

Raw materials and products Scenarios 
Name Index 1 2 3 4 5 6 

Raw materials name        
Lignocellulosic biomass 1 1 0 0 0 168 0 0 
Lignocellulosic biomass 2 2 450 450 0 250 450 450 
Hydrogen 3 0.41 0.41 0 0.60 0 0.41 

Product name        
Mixed alcohols 1 40.4 40.4 0 40.4 32.3 40.4 
Lime 2 19.8 19.8 0 19.8 15.8 19.8 

Waste  0 142 0 0 18 0 

 

 

Table 26. Results on operational mode (Y). 

Processing units Scenarios 

Name Index 1 2 3 4 5 6 

Pretreatment 1 1 1 0 1 1 1 
Fermentation 2 1 1 0 1 1 1 
Vapor compression system 3 1 1 0 1 1 1 
Crystallization 4 1 1 0 1 1 1 
Ketonization 5 1 1 0 1 1 1 
Hydrogenation 6 1 1 0 1 1 1 
Gasification 7 1 0 0 1 1 1 
Cogeneration 8 1 0 0 1 1 1 
Water-gas shift 9 1 0 0 1 1 1 
Pressure swing absorption 10 1 0 0 1 1 1 
Lime kiln 11 1 1 0 1 1 1 
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Table 27. Results on total flow rate (TFLOW). 

Processing units Scenarios 

Name Index 1 2 3 4 5 6 

Pretreatment 1  450   450  0  418   450   450  
Fermentation 2  450   450  0  418   450   450  
Vapor compression system 3  308   308  0  292   292   308  
Crystallization 4  151   151  0  146   134   151  
Ketonization 5  83   83  0  83   67   83  
Hydrogenation 6  40   40  0  40   32   40  
Gasification 7  142  0 0  126   140   142  
Cogeneration 8  57  0 0  50   56   57  
Water-gas shift 9  57  0 0  50   56   57  
Pressure swing absorption 10  34  0 0  30   34   34  
Lime kiln 11  45   45  0  45   36   45  
 

 

Table 28. Results on sizes (SIZE and MSIZE). 

Processing units Size in every scenarios Design 
size Name Index 1 2 3 4 5 6 

Pretreatment 1  4,050  4,050 0  3,764   4,050  4,050  4,050  
Fermentation 2 4,050  4,050  0 3,764  4,050  4,050   4,050  
Vapor compression system 3  34   34  0  32   32   34   34  
Crystallization 4  121   121  0  117   107   121   121  
Ketonization 5  36   36  0  36   29   36   36  
Hydrogenation 6  12   12  0  12   10   12   12  
Gasification 7  213  0 0  189   211   213   213  
Cogeneration 8  386  0 0  342   382   386   386  
Water-gas shift 9  32  0 0  29   32   32   32  
Pressure swing absorption 10 2,109  0 0 1,873  2,089  2,109   2,109  
Lime kiln 11  81   81  0  81   65   81   81  
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Table 29. Results on inlet components flow rate (FIN). 

Index Equipment Scenario Components Total 
   CELLULOSE XYLAN LIGNIN CARBOX KETONE HYDRO SYNGAS WATER ALCOHOL LIME   

1 Pretreatment 1 112.5 45 67.5 0 0 0 0 225 0 0 450 
   2 112.5 45 67.5 0 0 0 0 225 0 0 450 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 121.4 38 50.1 0 0 0 0 209 0 0 418 
   5 112.5 45 67.5 0 0 0 0 225 0 0 450 
   6 112.5 45 67.5 0 0 0 0 225 0 0 450 
2 Fermentation 1 112.5 45 67.5 0 0 0 0 225 0 0 450 
   2 112.5 45 67.5 0 0 0 0 225 0 0 450 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 121.4 38 50.1 0 0 0 0 209 0 0 418 
   5 112.5 45 67.5 0 0 0 0 225 0 0 450 
   6 112.5 45 67.5 0 0 0 0 225 0 0 450 
3 Vapor 

compression 
system  

1 0 0 0 83.25 0 0 0 225 0 0 308 
 2 0 0 0 83.25 0 0 0 225 0 0 308 
 3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 83.25 0 0 0 209 0 0 292 
   5 0 0 0 66.6 0 0 0 225 0 0 292 
   6 0 0 0 83.25 0 0 0 225 0 0 308 
4 Crystallization 1 0 0 0 83.25 0 0 0 67.5 0 0 151 
   2 0 0 0 83.25 0 0 0 67.5 0 0 151 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 83.25 0 0 0 62.7 0 0 146 
   5 0 0 0 66.6 0 0 0 67.5 0 0 134 
   6 0 0 0 83.25 0 0 0 67.5 0 0 151 
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Table 29 continued. 

Index Equipment Scenario Components Total 
   CELLULOSE XYLAN LIGNIN CARBOX KETONE HYDRO SYNGAS WATER ALCOHOL LIME   

5 Ketonization 1 0 0 0 83.25 0 0 0 0 0 0 83 
   2 0 0 0 83.25 0 0 0 0 0 0 83 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 83.25 0 0 0 0 0 0 83 
   5 0 0 0 66.6 0 0 0 0 0 0 67 
   6 0 0 0 83.25 0 0 0 0 0 0 83 
6 Hydrogenation 1 0 0 0 0 38.3 2.11 0 0 0 0 40 
   2 0 0 0 0 38.3 2.11 0 0 0 0 40 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 38.3 2.11 0 0 0 0 40 
   5 0 0 0 0 30.6 1.68 0 0 0 0 32 
   6 0 0 0 0 38.3 2.11 0 0 0 0 40 
7 Gasification 1 56.25 18 67.5 0 0 0 0 0 0 0 142 
   2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 60.68 15.0 50.1 0 0 0 0 0 0 0 126 
   5 49.52 23.4 67.5 0 0 0 0 0 0 0 140 
   6 56.25 18 67.5 0 0 0 0 0 0 0 141 
8 Cogeneration 1 0 0 0 0 0 0 56.7 0 0 0 57 
   2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 50.3 0 0 0 50 
   5 0 0 0 0 0 0 56.2 0 0 0 56 
   6 0 0 0 0 0 0 56.7 0 0 0 57 
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Table 29 continued. 

Index Equipment Scenario Components Total 
   CELLULOSE XYLAN LIGNIN CARBOX KETONE HYDRO SYNGAS WATER ALCOHOL LIME   

9 Water-gas 
shift  

1 0 0 0 0 0 0 56.7 0 0 0 57 
 2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 50.3 0 0 0 50. 
   5 0 0 0 0 0 0 56.2 0 0 0 56 
   6 0 0 0 0 0 0 56.7 0 0 0 57 

10 Pressure 
swing 
absorption 

1 0 0 0 0 0 0 34.0 0 0 0 34 
 2 0 0 0 0 0 0 0 0 0 0 0 
 3 0 0 0 0 0 0 0 0 0 0 0 
 4 0 0 0 0 0 0 30.2 0 0 0 30 
   5 0 0 0 0 0 0 33.7 0 0 0 34 
   6 0 0 0 0 0 0 34.02 0 0 0 34 

11 Lime kiln 1 0 0 0 0 0 0 25.2 0 0 19.8 45 
   2 0 0 0 0 0 0 25.2 0 0 19.8 45 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 25.2 0 0 19.8 45 
   5 0 0 0 0 0 0 20.1 0 0 15.8 36 
   6 0 0 0 0 0 0 25.2 0 0 19.8 45 
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Table 30. Results on outlet component flow rates (FOUT). 

Index Equipment Scenario Components Total 
   CELLULOSE XYLAN LIGNIN CARBOX KETONE HYDRO SYNGAS WATER ALCOHOL LIME   

1 Pretreatment 1 112.5 45 67.5 0 0 0 0 225 0 0 450 
   2 112.5 45 67.5 0 0 0 0 225 0 0 450 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 121.4 38 50.1 0 0 0 0 209 0 0 418 
   5 112.5 45 67.5 0 0 0 0 225 0 0 450 
   6 112.5 45 67.5 0 0 0 0 225 0 0 450 
2 Fermentation 1 56.25 18 67.5 83.25 0 0 0 225 0 0 450 
   2 56.25 18 67.5 83.25 0 0 0 225 0 0 450 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 60.68 15 50.1 83.25 0 0 0 209 0 0 418 
   5 67.5 23 67.5 66.6 0 0 0 225 0 0 450 
   6 56.25 18 67.5 83.25 0 0 0 225 0 0 450 
3 Vapor 

compression 
system  

1 0 0 0 83.25 0 0 0 67.5 0 0 151 
 2 0 0 0 83.25 0 0 0 67.5 0 0 151 
 3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 83.25 0 0 0 62.7 0 0 146 
   5 0 0 0 66.6 0 0 0 67.5 0 0 134 
   6 0 0 0 83.25 0 0 0 67.5 0 0 151 
4 Crystallization 1 0 0 0 83.25 0 0 0 0 0 0 83 
   2 0 0 0 83.25 0 0 0 0 0 0 83 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 83.25 0 0 0 0 0 0 83 
   5 0 0 0 66.6 0 0 0 0 0 0 67 
   6 0 0 0 83.25 0 0 0 0 0 0 83 
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Table 30 continued. 

Index Equipment Scenario Components Total 
   CELLULOSE XYLAN LIGNIN CARBOX KETONE HYDRO SYNGAS WATER ALCOHOL LIME   

5 Ketonization 1 0 0 0 0 38.3 0 25.2 0 0 19.8 83 
   2 0 0 0 0 38.3 0 25.2 0 0 19.8 83 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 38.3 0 25.2 0 0 19.8 83 
   5 0 0 0 0 30.6 0 20.1 0 0 15.8 67 
   6 0 0 0 0 38.3 0 25.2 0 0 19.8 83 
6 Hydrogenation 1 0 0 0 0 0 0 0 0 40.4 0 40 
   2 0 0 0 0 0 0 0 0 40.4 0 40 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 0 0 40.4 0 40 
   5 0 0 0 0 0 0 0 0 32.3 0 32 
   6 0 0 0 0 0 0 0 0 40.4 0 40 
7 Gasification 1 0 0 0 0 0 0 56.7 0 0 0 57 
   2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 50.3 0 0 0 50 
   5 0 0 0 0 0 0 56.2 0 0 0 56 
   6 0 0 0 0 0 0 56.7 0 0 0 57 
8 Cogeneration 1 0 0 0 0 0 0 56.7 0 0 0 57 
   2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 50.3 0 0 0 50 
   5 0 0 0 0 0 0 56.2 0 0 0 56 
   6 0 0 0 0 0 0 56.7 0 0 0 57 
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Table 30 continued. 

Index Equipment Scenario Components Total 
   CELLULOSE XYLAN LIGNIN CARBOX KETONE HYDRO SYNGAS WATER ALCOHOL LIME   

9 Water-gas 
shift  

1 0 0 0 0 0 0 34.0 0 0 0 34 
 2 0 0 0 0 0 0 0 0 0 0 0 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 30.2 0 0 0 30 
   5 0 0 0 0 0 0 33.7 0 0 0 34 
   6 0 0 0 0 0 0 34.0 0 0 0 34 

10 Pressure-
swing 
absorption 

1 0 0 0 0 0 1.70 32.3 0 0 0 34 
 2 0 0 0 0 0 0 0 0 0 0 0 
 3 0 0 0 0 0 0 0 0 0 0 0 
 4 0 0 0 0 0 1.51 28.7 0 0 0 30 
   5 0 0 0 0 0 1.68 32.0 0 0 0 34 
   6 0 0 0 0 0 1.70 32.3 0 0 0 34 

11 Lime kiln 1 0 0 0 0 0 0 25.2 0 0 19.8 45 
   2 0 0 0 0 0 0 25.2 0 0 19.8 45 
   3 0 0 0 0 0 0 0 0 0 0 0 
   4 0 0 0 0 0 0 25.2 0 0 19.8 45 
   5 0 0 0 0 0 0 20.1 0 0 15.8 36 
   6 0 0 0 0 0 0 25.2 0 0 19.8 45 
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