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Abstract 

 

A classification of coating flows is presented to facilitate a fundamental approach to their study.  

Four categories are observed: free, metered, transfer and gravure coating flows.  They are all 

limited by free surface(s) which make their analysis difficult.  Various analytical approaches 

have been used and these are briefly reviewed in this paper. 
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_____________________________________________________________________________ 

 

1. Introduction. 

 

Coating flows are fluid flows which result in thin films of liquid forming onto surfaces.  Such 

flows occur naturally or are engineered for the manufacture of a variety of products such as wall 

paper and adhesive tapes, photographic and X-ray films, magnetic tapes for audio, video and 

computer use, electronic circuit boards, printing plates for papers, books and magazines, coated 

papers for printing etc....  With these products, the coated layer on the substrate is the functional  
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part, it is made of a liquid- solid or polymeric formulation of specific physical and rheological  

properties and it must be of a certain thickness and uniformity to fulfil the application for which 

it is designed.  Also, the speed at which the coated film is required differs depending on 

applications and controls the economics of the operation.  No one coating flow can operate to 

yield the wide range of film thickness - speeds required in practice without exhibiting non 

uniformity (instabilities) on the free surface, entraining air within the film or breaking altogether.  

Indeed, most coating flows have a narrow stable window of operation, not easily predictable, 

hence the reliance on experience when designing or operating coaters.  Inevitably, difficulties 

arise with new applications which require more strict specifications on quality.  Clearly a 

classification of the coating methods available and their flow analyses is useful in this context.  

This is the subject of this paper which draws on work carried out by the authors and other 

researchers in this important area of fluid mechanics where a-priori the fluids must be regarded 

as non-Newtonian. 

 

2. Classification 

 

Limiting the classification to coating flows leading to the continuous formation and deposition 

of a film onto a surface, we observe that this can be carried out in one or a combination of the 

following broad ways: 

 

 (i) withdrawal of liquid from a pool by a moving substrate, i.e. free coating   

   flow, 

  

 (ii) metering an excess amount of liquid in a flow geometry to form a film onto a 

moving   substrate, i.e. metered coating flow, 

 

 (iii) delivering the exact amount of liquid in a flow geometry to form a film and then  

  transferring it onto a moving  substrate, i.e. transfer coating flow, 

   

 



 (iv) allowing a moving substrate to wipe a proportion of a coating trapped in the cells of 

  a printed or gravure roller, i.e. print or gravure coating flow. 

 

These coating flows have been developed with the purpose of:- precision and independence of 

film thickness from the physical properties of the liquid and the speed of the substrate and - 

reduction of film thickness to lowest possible values whilst keeping the above requirements on 

precision and independence from operating conditions.  Types (i) to (iv) coating flows 

progressively  respond to these needs and are now examined further. 

 

3. Free Coating Flows 

 

This is a simple flow scheme which results from the withdrawal of liquid from a pool by a 

moving plane or a rotating cylinder, as illustrated in Fig. 1.  In both cases, all the operating 

variables play a part in controlling the thickness of the film formed, its stability and air 

entrainment.  Since the rotating roller flow is essentially an inclined plane in curvilinear 

coordinates, the angular withdrawal case is representative of a general free coating flow.  No 

complete solution of such a flow problem is available; approximations of the film thickness, ho, 

developed far upstream are obtained depending on the flow conditions which can be represented 

by the capillary (Ca= uw/) and Reynolds (Re =  uw ho/) numbers.     

 

Low Ca and negligible Re 

When surface tension effects are important and inertia is negligible, a one dimensional 

description of the flow is feasible [1-3] and produces estimates of the film thickness as: 

 

  216/1 )cos1(944.0*/  CahhT oo        (1) 

 

which are in agreement with experimental data [1,3]. In the above equation, h u gw* ( / )   1 2 is 

a characteristic film thickness obtained by balancing viscous and gravity forces.  

 

 



 

(b) Intermediate Ca and Re 

 

When inertia forces are introduced, the model equations become non linear two dimensional and 

simplifications become necessary to produce solutions to the problem.  The simplest approach is 

to consider first order inertia terms only as was done by Soroka and Tallmadge [4] and later by 

Tharmalingham and Wilkinson [5] to obtain corrections to the above equation. The predictions 

so obtained however are still limited and apply to Ca <1. A more comprehensive inclusion of 

inertia effects was carried out by Esmail and coworkers [6,7] who used the thin film 

approximation in the continuity and Navier-Stokes equations:        

   

  ux + vy =  O.            (2) 

    

   sin)(uu x gupvu yyxy         (3) 

 

        cosgvpO yyy         (4) 

 

subject to the following boundary conditions at the moving wall and the free surface: 

 

  u (x, o) = v (x, o)  =  O          (5) 
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Using the direct method of Galerkin, Esmail and Hummel [6] transformed these equations into a 

single differential equation which they integrated from the constant film region where h = ho to 

the static meniscus (xs, hs) where the balances of forces was assumed to be: 
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Typical results of the numerical integration for vertical withdrawal are presented in [6] where the 

dependence of To on Re and Ca is replaced by an equivalent To (, Ca) with  =  ( / 4 g)1/3 a 

fluid property number which essentially describes the effect of Re since    (Re/Ca)2/3.  Thus at 

fixed , large Ca leads to high Re whereas at fixed Ca, large  correponds to high Re.  A 

branching of the curves To (, Ca) is observed as Ca and  are increased showing the limiting 

effect of inertia on the thickness of the films formed. The more viscous flow (Re ~ 0) exhibits a 

large constant To(~ 0.8), the rapid flow (Re > 10) exhibits a smaller constant To (~ 0.5).  A good 

agreement with experimental data is observed for a wide range of Ca (up to 50) and Re (up to 

10).  This theory gives a significant improvement to predictions obtained with eqn. (1). Another 

important observation is that the effect of the angle,  on film thickness is not simply correcting 

for the effect of gravity on bulk flow.  As this angle varies, the shape of the coating meniscus 

varies greatly and this must have an effect on the film thickness  [6,7].  This theory however 

does not provide a limit to coating flow which is observed at high Reynolds numbers. 

 

(c) Large Re free coating   

Cerro and Scriven [8] have examined this limiting flow behaviour using a rapid flow analysis 

based on an integral momentum balance written across the film thickness from 0 to h as: 
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with parabolic velocity distributions upstream in the static meniscus region and downstream 

where the film thickness levels to a constant value.  Solving the resulting equations as an initial 

value problem, they obtain a limit for vertical withdrawal as: 

 

  To = 0.5439           (9) 

          

Campanella and Cerro [9] extended this analysis to angular (roll) withdrawal and established 

bounds for To as: 
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These criteria fit in with the experimental data of Tharmalingham and Wilkinson [5] and 

Gutfinger and Tallmadge [10].  All the theories developed above can be extended to purely non-

Newtonian viscous behaviour [11-15].  Although much progress has been made in the analysis 

of free coating, there still is a need for a unified theory capable of predicting film thickness for 

the entire range of stable operating conditions.  Computer based solutions using finite element 

methods are now feasible. 

 

4. Metered Coating Flows 

 

Here a boundary is put in place to reduce the extent of flow as shown in Fig. 2a,b,c.  Clearly for 

a given substrate speed and fluid we can reduce the thickness of the emerging film by reducing 

the gap between the boundary and the moving substrate but also by allowing the boundary to 

move in opposite direction to the substrate.  We have now arrived at reverse roll coating (Fig.2b) 

where the moving boundary in the shape of a roller is convenient.  We may also drive the 

moving boundary in the same direction as the substrate thus splitting the emerging flow into two 

films as in forward roll coating depicted in Fig.2c.  No other means are available to reduce the 

film thickness further except that a vacuum may be applied upstream of the boundary or across it 

if it were porous to reduce the pressure flow contribution. All these geometries show a feed 

region upstream of the flow and a film(s) formation region downstream.  Upstream where the 

regions are narrow, a lubrication flow may be assumed and 
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expresses the variation of the pressure gradient, in the direction, x, of flow with gap, h, between 

the boundaries and volumetric flow rate, q, across; u1 and u2 are the velocities of the stationary 

or moving walls.  In blade type metered flow u2 would be zero; in reverse roll coating u2 would 

assume a negative value.  A general expression for q is: 

 

   q  =  u1 h1 + u2 h2         (13) 

        

Pressure conditions at the points limiting the feed region are necessary to solve the above 

equations. The problem is that these positions xi and xe and the pressures at them, are not known 

and further approximations have to be made to obtain an analytical solution.  Two scenarios 

arise:  

 

(i) When the coating flow lends itself to plausible conditions, such as in blade coating (Fig. 2a) 

where the flow length is known, we may assume the whole region underneath the blade to be 

governed by the above equation and that pressures at the extremities are zero.  Such a model, 

used by Middleman [16], gives a dimensionless film thickness which is function of the geometry 

of the system only and is compatible with experiment data.  A solution which accounts for the 

effect of speed, viscosity and surface tension can be sought by allowing the pressure downstream 

to be set by the coating meniscus formed, i.e. 

 

  p  (xe)   =  - /rc           (14) 

         

with the radius of curvature, rc, related to the dimensions at exit of the flow.  For blade coating, 

it would approximate to: 

 

  rc = h (xe) - h1           (15) 

          

and a solution to eqn. (12) can be expressed as: 
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h1 the film thickness formed, being the only unknown.   

 

(ii) When the flow geometry does not help to approximate xi and xe, p (xi) and p (xe) as in two- 

roll coating operations where the separation meniscus does not detach from the solid boundary, 

solutions are sought by assuming first that the feed region extends far upstream (xi    - ) and 

that p (xi) is known.  Also, the pressure downstream p (xe) can be assumed to be nil or  =  - /rc 

(with an appropriate rc) as was done for blade coating above.  In forward roll coating for 

example, Fig. 2c,  the radius of curvature can be approximated by: 

 

  rc  =  ½ ( h (xe) - h1 - h2)         (17) 

        

and a solution to eqn. (12) is: 
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where h1, h2 and xe are all unknown.  More equations are needed to locate xe and these are given 

by assuming that at xe, the velocity is zero and the flow splits such as du/dy (xe) = 0 (Prandtl-

Hopkins separation conditions  [17]).  Many analyses of metered coating flows have been carried 

out along these lines.  For forward roll coating, a dimensionless total flow rate,  = (u1h1 + u2 

h2)/1 2  ho (u1+u2), of about 1.30 and a flux distribution, h1/ h2 = (u1/u2)0.5 are predicted and 

describe the trend of the experimental data (Benkreira, Wilkinson and Edwards [18] ).  For 

reverse roll coating, the above analytical treatment yields a dimensionless flow rate,  = u2 h2/ho 

(u2 - u1) of about 0.65 consistent with experimental data at low speed ratio u1/u2 (Benkreira, 

Wilkinson and Edwards [19] ). 

 

 



Inspite of the fair agreement with experimental data the whole approach described above is 

flawed; it ignores the regions either side of the feed region, particularly downstream where the 

film is actually forming and where the lubrication approximation is not valid as explained by 

Taylor  [20] and Pearson [21].  In principle, the film formation region which extends from xe to 

xs (the real separation point) should be analysed assuming a full 2D free surface flow analysis 

and matched at xe with the lubrication portion of the flow.  Pitts and Greiller [22] initiated this 

approach and produced an approximate solution of the biharmonic equation, for the symmetrical 

forward roll coating using the full traction boundary conditions on the free surface which they 

approximated to a parabola.  Pitts and Greiller's predictions for the position of the separation 

point where in satisfactory agreement with their experimental data.  This procedure was also 

used by Williamson [23] who solved the biharmonic equation numerically when the separation 

interface is expressed by a polynominal in the symmetrical forward roll coating.  Further 

developments have been made with the advent of fast computers and efficient numerical 

algorithms as indicated by the work of Coyle, Macosko and Scriven [24].  Closer agreement with 

experimental data has been achieved by this approach which reproduces for example the film 

split ratio h1/h2 = (u1/u2)0.65 measured by Benkreira et al.[19].  More importantly, such an 

approach is essential for stability analyses which rely on accurately predicted free surface 

position and profile [25]. 

 

5. Transfer Coating Flows 

 

In this system, a uniform film flow per unit width, q, is transferred onto a moving substrate.  At 

any substrate velocity, uw, the film thickness on the substrate, hw ( = q/uw), can be controlled to 

any desired value by varying q.  This operating scheme is attractive since it removes the 

dependency of film thickness on operating variables, the substrate speed in particular.  However, 

it relies on a uniform and controlled film flow, q, being provided.  Coating flows which fall in 

this category originate from slots or extrusion dies, curtains or slides and single and multiple 

rolls coaters.  In all cases, the range of q and uw which can be achieved must be limited by the 

onset of free surface instabilities and/or air entrainment on the final film.  The design of the 

interfacing unit between the film flow supplied and the final film formed controls the operating 



range.  It is this interfacing unit which we refer to as a transfer coating flow unit, examples of 

which we now examine. 

 

(a) roller based transfer coating 

 

Here the uniform film flow orginates from a roll coating operation and is controlled by a free 

coating flow (single roll) or a metering coating flow (pair of rollers as in forward or reverse roll 

coating).  The transfer flow is carried out in a "kiss" contact mode to ensure almost complete 

transfer (Fig. 3a).  The tension applied on the substrate and the wrap angle are additional 

parameter and they, together with the operating variables controlling, q, must fix the range of the 

stable film thicknesses which can be formed.  No work in this area has been reported and it is 

presumed in practice that if the film flow q is stable, the final film also will be stable and free 

from air. 

 

(b) slide coating 

 

Here a uniform film flows over an inclined surface prior to meeting a moving substrate (Fig. 3b).  

Because the film flow is entrained, two coating meniscus are formed, one of them connecting 

two contact (solid-liquid-air) lines.  The resulting coating bead controls stability and air 

entrainment and is clearly very difficult to predict in terms of the flow within it.  Vacuum 

pressure can be used as an external controlling variable to pin the lower meniscus and retard the 

onset of air entrainment. Also known as bead coating, this transfer coating flow forms a 

continuous film only when the speed of the moving substrate lies within a certain range [ uw,min, 

uw,max].  The experimental work of Tallmadge, Weinberger and Faust [26] defines the upper 

speed limit uw,max as that at which the amount of fluid bridging the gap between the slide and 

the substrate is not sufficient to maintain a bead and a uniform film.  In practice, this manifests 

itself with a thin bead and a film which splits into two streams at uw,max.  More streams appear 

when the uw > uw,max and air is sucked in.  At the lower limit, the film narrows, the liquid is 

unable to bridge the gap and at the limit, uw,min it drips off the slide without touching the web.  

Clearly, the volumetric  



 

flow rate of liquid feeding the transfer flow must control these limits; the gap, the angle between 

the slide and the web, the vacuum applied and the physical properties of the fluid may also have 

an effect.  The experiments of Tallmadge et al [26] show that the flow rate has  a primary 

influence and gap the least effect.  Their data can be expressed as: 

 

  uw,max     q0.8  0.3 ho
0.15         (19) 

 

Guttoff and Kendrick [27] observed that compared with atmospheric operation, a small vacuum 

increased the limit of coatability and allowed the production of thinner films.  Higher vacuums it 

must be noted gave little further decrease in film thickness. Also observed by Guttoff and 

Kendrick is that the maximum velocities with no bead vacuum are identical to the plunging tape 

air entrainment velocities [28,29] and that polymeric solutions showed wider limits of coatability 

because of their larger elongational viscosities. 

 

(c) slot coating 

 

Here the film flow q is delivered by a slot (Fig. 3c.) and then transferred onto a moving 

substrate.  The coating bead which forms has two meniscii both attached to the slot edges unlike 

slide coating where the upper meniscus is "free".  Lee and Liu [30] developed the similarity with 

slide coating and showed that below a critical capillary number Cac, both flows behave similarly.  

Above Cac, they observed that the same thickness can be coated at much higher speed so that 

uw,max is much higher than for slide coating.  Their data indicate that above Cac, slot coating 

produces film with minimum thickness about 60 to 70% of the gap size independently of web 

speed and liquid properties.  

 

(d) die coating 

 



In order to widen the limit of coatability, a die instead of a slot can be used.  In such a design 

(Fig. 3d.), the liquid is given greater contact with the web and both the geometry of the die and a 

vacuum upstream can be manipulated to control flow in the bead and increase uw,max. 

6. Gravure or Print Coating Flows 

 

The operation uses a roller with a pattern which is either chemically or mechanically engraved 

on it.  Typical patterns are the quadrangular, trihelical and pyramidal with cell volume per unit 

area of about 10-50x10-6 m3/m2 and a wetted area coverage of 0.80-0.90 m2/m2 of  roller 

surface.  These cells are flooded with liquid and wiped by a blade pressed against the rotating 

roller.  The ensuing liquid is then transferred directly onto the substrate (direct gravure) as 

illustrated in Fig. 4 or onto a transfer roll which applies the coating to the substrate (indirect or 

offset gravure coating). The applied blade load and the hydrodynamic pressure generated by the 

liquid underneath the blade control the thickness of the film formed over the filled gravure cells.  

Clearly, gravure coating flow describes the situation where these  loads are such that the blade 

wipes clean the periphery of the roller leaving only the gravure cells filled with liquid.  Benkreira 

and Patel [31] described the loading conditions required for gravure coating; their data show that 

higher volume factor are helpful but that true gravure coating is not easily achieved. The transfer 

of the liquid from the cells to the moving substrate was also studied experimentally by Benkreira 

and Patel [32] and their findings suggests that about 1/3 of the cell volume is transferred as a 

film at large speeds regardless of speed ratios (between the moving web and gravure roller).  At 

low speeds, there appears to be a maximum in the film thickness curves for the trihelical and 

pyramidal cell configurations suggesting that larger films are formed  i.e. these cells empty better 

at low speeds.  The reverse is observed with the quadrangular geometry where a minimum 

occurs at low speeds.  At present no theory is available to explain these findings and further 

work is required.  Note that in our classification, gravure coating could also fall in the transfer 

coating flow category since a film is formed as a result of liquid transferring from the cells to the 

substrate. 

 

7. Conclusion 

 



This brief review suggests that coating flows can be classified for the purpose of analysis.  

Common features appear throughout but the challenging task is to develop a fundamental model 

for film formation which can be adapted to all coating flows.  Other features not yet completely 

resolved concern flow instabilities and air entrainment as well as the effect of non-Newtonian 

behaviour.  With all these aspects, coating flows have now become an important area of research 

in fluid mechanics [33-35]. 
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Fig. 1. Free coating flows formed by (a) a rotating cylinder and (b) an inclined plane 

 

Fig. 2. Metered coating flows formed by (a) blade coating (b) reverse roll coating and  

  (c) forward roll coating. 

 

Fig. 3. Transfer coating flows formed by (a) kiss coater, (b) slide coater, (c) slot coater 

  (d) die coater. 

 

Fig. 4. Gravure or print coating. 

 

 

 

 


