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摘 要 

 

以視覺為基礎之即時指揮手勢追蹤系統 

 

莊謹萍 

 

隨著網路視訊的普及，網路攝影機品質日趨優良、價格也相對低廉，本研究

旨在提出一個「指揮者手勢追蹤系統」，代替鍵盤與滑鼠作為輸入單元，讓使用

者能透過視訊攝影機(Webcam)及個人電腦、運用基本的指揮動作，能夠即時追蹤

使用者手勢的軌跡與方向變化、偵測音樂節拍所在的時間點。 

本研究可分為兩個主要階段：第一階段為目標物追蹤，採用 CAMSHIFT 演算

法來實現物件追蹤。CAMSHIFT 演算法為平均位移演算法的改良，此演算法利用使

用者所感興趣的顏色機率分佈特性，經由平均位移迭代的方式，找出其機率分佈

圖的峰值，此峰值即為可能性最高之影像區塊並得到物體移動路徑。第二階段則

利用兩種方法計算：K-曲率法則以及垂直分量低點偵測。K-曲率法則利用物體移

動路徑各點之區率並計算找出其方向轉變；而垂直分量低點偵測則是找出物體移

動的垂直低點，將此低點定義為音樂的節拍點。 

本研究所開發之系統可以讓使用者自行選定偵測目標（如指揮棒）並準確偵

測移動的軌跡，將使用者的指揮動作上方向的改變，轉變成音樂檔的節拍事件，

其準確率平均可達 86.46%以上。  
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ABSTRACT 

A Vision-based Real-time Conductor Gesture  

Tracking System 

By Chin-ping Chuang 

In recent years, interaction between humans and computers is becoming more 

important. “Virtual Orchestra” is an Human Computer Interface (HCI) software which 

attempts to authentically reproduce a live orchestra using synthesized and sampled 

instruments sounds. Compared with the traditional HCIs, using vision-based gesture 

can provide a touch-free interface which is less bounding than mechanical instruments. 

In this research, we design a vision-based system that can track the hand motions of a 

conductor from webcam and extract musical beats from motions. 

The algorithm used is based on a robust nonparametric technique for climbing 

density gradients to find the mode of probability distributions. For each frame, the 

mean shift algorithm converges to the mode of the distribution. Then, the CAMSHIFT 

algorithm is used to track the moving objects in a video scene. After acquiring the 

target center point continuously, we can form the trajectory of moving target (such as 

baton, conductor’s hand…etc). By computing an approximation of k-curvature for the 

trajectory, and the angle between these two motion vectors, we can compute the point 

of the change of direction. 
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In this thesis, a system was developed for interpreting a conductor’s gestures and 

translating theses gestures into musical beats that can be explained as the major part of 

the music. This system does not require the use of active sensing, special baton, or 

other constraints on the physical motion of the conductor.  
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Chapter 1  

 

Introduction 

 

1.1 Overview of the Problem 

In recent years, with the rapid development of computer technology, the computer 

is being used in more applications and the computer processing power is growing. At 

this stage, the interaction between humans and computers becomes more and more 

important. A user interface, such as a GUI, is how a human interacts with a computer, 

and Human Computer Interaction (HCI) goes beyond designing screens and menus 

that are easier to use [1][2]. Many researchers tried to develop a new kind of HCI and 

there are many new HCI technologies used widely in face tracking, hand tracking, face 

recognition and gesture recognition field. 

“Virtual Orchestra”, as the name implies, is one of the HCI software which 

attempt to authentically reproduce a live orchestra using synthesized and sampled 

instruments sounds. We can describe the scenario as an example: If in concert a singer 

takes a tempo different from the rehearsal tempo, the Virtual Orchestra should adapt in 

real time based on the information providing by the system procedure [3]. Such a 
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system would offer increased usability in a public space, and it would also be a very 

useful training tool for student conductor. 

Keyboards and mice are the standard devices that people typically use to interact 

with a computer. These standard devices might be convenient for office work, but for 

some other areas better alternatives are needed. For instance, gestures are more natural 

and convenient to express our intention. In the area of conducting music, there exists a 

language of conducting gestures that enable a conductor to communicate with an 

orchestra. These gestures are more formal than gestures used in daily life but they are 

still very expressive in their own application domain, so they can become a very useful 

gesture input [4]. Using vision-based gesture as the inputs, we can provide a touch-free 

interface which is less bounding than mechanical instruments. 

1.2 Challenges 

Designing a system that can track the motions of an orchestra conductor and at the 

same time extract a musical beat and other information (such as volume) from those 

motion is not a trivial problem. While new interaction methods for digital music have 

became hot topics in today’s research community, much of the work has remained. 

Researchers have examined several different input devices to achieve our goal. Based 

on previous researches, these approaches can be classified into two categories: One is 

the “instrumented baton”, and the other is “vision-based system” [5]. 



3 

 

Within the “instrumented baton” approach, the researchers always use sensors to 

monitor body measures (such as heart rate, temperature) or use special batons fitted 

with infer-red sources to monitor their locations. But these instrumented batons are 

fatiguing in prolonged use, do not feel like "the real thing", and need to attach some 

special hardware. In order to reduce the device cost and provide the more approachable 

interface, the other vision-based approach is needed. 

These vision-based systems sense the motion of conductor’s baton and hand with 

video cameras. This kind of mechanism provides an advantage that the conductor or 

musician does not need to carry any other device or sensor. The conductor’s motion is 

captured from the video camera aiming at the conductor. What we are concerned are to 

detect human motions and extract musical beats correctly, furthermore, control the 

music playback via these information. 

In order to detect and track these objects correctly, the lighting environment needs 

to be build properly to make the baton and the conductor’s hands clearly visible. The 

conductor’s baton needs to be coated with some material whose color is different from 

the environment at the tip and the conductor needs to wear the special-colored glove to 

overcome environmental problem and deduce the processing complexity. So that we 

can assure the moving targets are uniformly bright against a reasonably contrasting 

background. 
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We can obtain the location of the baton’s tip or the centroid of the hand while we 

are tracking the baton or hands. In order to play the music dynamically, some special 

points (we called it “beat”) need to be mapped to parameters that generate the sound. It 

poses the question, “What is the way that a real musician interprets the conductor?” 

We tried to use heuristic rules to extract the main beat of an up-down movement or 

some features, such as the change of direction, to solve this problem. 

Another problem is the discrete sampling of the baton locations due to the limited 

frame-rate of the video sequence [6]. This procedure must run fast and efficiently with 

consuming as few system resources as possible, so that the object could be tracked in 

real time. 

1.3 Objectives 

In this thesis, we design an HCI system for interpreting a human conductor’s 

gestures and translating theses gestures into musical beats that can be explained as the 

major part of the music. This system enables conductors to conduct electronic music 

using natural gestures of a baton or hands which are acquired and translated by a video 

recognition system into beat and tempo control. It does not require any use of active 

sensing, special baton, or other constraints on the motion of the conductor. The goal of 

our work is using the technology to support these methods of multimedia interaction, 

and to encourage people exploring music more interactively. 
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1.4 Thesis Organization 

Following the Introductory chapter, Chapter 2 presents an overview of existing 

conductor gesture tracking system. We also discuss the performances of the previous 

methods. Chapter 3 describes our system framework and details the algorithms we 

proposed for conductor’s gesture tracking. Chapter 4 is the experimental result and 

discussions. Finally, conclusions and future works are given in Chapter 5. 
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Chapter 2  

 

Literature Review 

 

2.1 Key Terms in Music Conducting 

This section describes some music conducting terminologies for those users with 

no prior music experience. It is based on several conducting on-line course documents 

[7] and the use of Wikipedia encyclopedia [8][9]. 

2.1.1 Beat 

In written music, beats and notes are grouped into measures. The beat of the 

music is typically indicated with the conductor's right hand, with or without a baton. 

The hand traces a shape in the air in measure and indicates each beat with a change 

from downward to upward motion. The instant at which the beat occurs is usually 

indicated by a sudden click of the wrist or change in baton direction (as Figure 2.1). 

Figure 2.1  The conductor has to “write” in the air to create different beats [9]  
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2.1.2 Tempo 

Tempo, the Italian word for “time”, is the speed of the fundamental beat and 

should stay even from beat to beat. The tempo of a piece will typically be written at the 

start of a piece of music, and in modern music is usually indicated in beats per minute 

(BPM). The greater the tempo, the larger the number of beats that must be played in a 

minute is and, therefore, the faster a piece must be played. 

2.1.3 Dynamics (Volume) 

In music, dynamics normally refers to the softness or loudness a sound or note. It 

always be communicated by the size of the conducting gestures: the larger the shape, 

the louder the sound. Changes in dynamic may be signaled with hand that is not being 

used to indicate the beat: an upward motion indicates a crescendo and a downward 

motion indicates a diminuendo or decrescendo. In general, loud dynamic levels are 

conducted with larger beat patterns, and soft dynamic levels with small beat patterns. 

2.1.4 Other Musical Elements 

Time signatures are figures written on the score at the start of the composition. 

Each measure is assigned a meter that tells the musician how many rhythmic beats 

there are within the measure and what type of note equals one beat [3]. For instance, a 

measure with a  meter tells the musician there are two rhythmic beats in the measure 

(from the “2” in the numerator) and quarter notes are the fundamental beats for this 
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measure (from the “4” in the denominator). The number of beats per measure and the 

time signature usually stay the same from the start of a song to the end, but it may vary 

on different time signature. 

 
Figure 2.2  Two kinds of 2-beat conducting patterns [3] 
 (a) A legato style pattern (b) a staccato style pattern 

Every meter can have a range of conducting patterns depending on the style of the 

piece and the type of mood that the conductor is trying to present to the musicians and 

audience. The conductor may use flowing gestures as a means of expressing the legato 

style. Alternatively, a piece like a “march” that is in the same meter as the legato piece 

would be conducted in a much more angular manner which we called it staccato style. 

These two terms legato and staccato indicate how much silence is to be left between 

notes played one after another. 

2.2 Reviews of Conductor Gesture Tracking Systems 

There are many approaches to design a system which can understand a human 

conductor gesture [10]. In this section, we classified these systems into two categories 
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in conductor’s gesture tracking. The reviews of instrumented baton will be introduced 

in Section 2.2.1, and the other categories of vision-based conductor’s gesture tracking 

systems will be mentioned in Section 2.2.2. 

2.2.1 Instrumented Batons 

Some approaches introduce special instrumented batons as the input of the system. 

Max Mathews, who is called one of the fathers of computer music, created the first 

conductor’s gesture tracking system. His system, Radio Baton, consisted of two batons 

that omitted radio waves from their tips and a plate which was equipped with antennas 

to receive the signals emitted by the batons [11]. 

Buchla Lightning Baton Series (see Figure 2.3) is another instrumented baton that 

senses the position and movement of wands and transforms this information to MIDI 

signals to control musical instrumentation more expressively [12]. The baton has been 

used in many systems, which is like Adaptive Conductor Follower [13] and Personal 

Orchestra [14]. 

Figure 2.3  Radio Baton (left) and Buchla Lightning II (right) [14]  
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Besides using Lightning Baton as an input, Adaptive Conductor Follower [13] 

provided three methods of tracking and predicting tempo at beat analysis stage. The 

most important achievement of the system was that it produced the first attempt using 

Neural Networks for recognition purpose. In the Extraction of Conducting Gestures in 

3D Space [16], it included two Lightning batons to track the baton’s movement in 3D 

space and extracted information including tempo, dynamic, beat pattern and beat style. 

Teresa Marrin Nekra et al. presented Digital Baton in 1997 [17]. They developed 

an input device which included acceleration sensors to measure baton’s movement and 

other pressure sensors to obtain the every finger pressure values of the hand holding 

the baton with an infrared LED at the tip of the baton. A position-sensitive photodiode 

was placed behind a camera lens to track position of the infrared LED. But there was 

no beat information was derived from the input to control the tempo of the piece. In 

1998, they created the Conductor’s Jacket system [18][19] used a multitude of sensors 

built into a jacket to record physiological and motion data. The Conductor’s Jacket 

consisted of four muscle tension (EMG) sensors, heart rate and respiration monitor, 

temperature sensor, and skin response sensor (see Figure 2.4(a)). 

Tommi Ilmonen et al. created a system to track conducting gestures with neural 

networks and it was part of a system DIVA (see Figure 2.4(b)) to extract rhythm data 

from conductor’s movements [20][21]. It used magnetic motion tracker as the input to 
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collect positional information and used the neural networks to classify and predict 

beats. But the system has some limitations: The system only understand the standard 

conducting techniques, so users must have some prior knowledge about conducting. 

Figure 2.4   (a) Conducting an orchestra with the Conductor's Jacket system [10]  
  (b) The magnetic sensors for motion tracking at DIVA [21] 

In 2002, Jan Borchers et al. designed the Personal Orchestra system [14] using a 

Buchla Lightning baton [12]. Users can interact not with a synthetic, but an original 

audio/video recording of a real orchestra. A beat was detected each time the baton 

changed from going down to going up and vertical coordinates of the left hand was 

dynamic indicators. Its audio stretching algorithm which rendered audio and video at 

variable speed without time-stretching artifacts, such as pitch changes, made a notable 

contribution in further systems. Moreover, it did not contain complex rules to extract 

beats and tempo. So the system could be a more general system for those users with 

little or no conducting experience. It is also the first system that allows users to control 

an audio/video recording in real time, using natural conducting gestures. 

(a) (b)
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2.2.2 Vision-based Conductor Gesture Tracking Systems 

 In 1989, Morita et al. built a system, A Computer Music System that Follows a 

Human Conductor. This system tracked either a white marker attached to the baton or 

the hand wearing a white glove, using a CCD camera and special feature extraction 

hardware that passed two-dimensional position values to a PC. The computer derived 

tempo and volume information from upper and lower turning points of the trajectory. It 

is the first project to use a CCD camera as an input device [22]. 

Light Baton created in 1992 by Graziano Bertini et al. was another system using a 

CCD camera and the baton with a LED light on its tip [22]. The position of the baton 

was analyzed by a special image acquisition board and the playback of pre-recorded 

score is adjusted in terms of tempo and intensity of notes. 

Michael T. Driscoll [3] proposed A Machine Vision for Capture and Interpretation 

of an Orchestra Conductor’s Gestures in his master thesis in 1999. This work involves 

the design and implementation of a real-time Vision-based HCI that analyzes and 

interprets a music conductor's gestures to detect the beat. It used several basic image 

processing methods, such as rapid RGB color thresholding, multiple contour extraction, 

and center of mass calculations to understand the time location of beats. But there were 

performance constraint due to the insufficient time resolution of the system. This issue 

might create a “choppy" response by the Virtual Orchestra. 
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In 2000, Jakub Segen et al. created their Virtual Dance and Music system [24] and 

Visual Interface for Conducting Virtual Orchestra [25]. It used two synchronized 

cameras to acquire a 3D trajectory of the baton and beats were placed at the locally 

lowest trajectory points. It aloes presented an simple scenario in beat following: If the 

music sequencer had already played all notes corresponding to the current beat, the 

sequencer should wait until the user conducted the next beat, and if the user had 

already conducted the next beat before the music sequencer finished playing the notes 

corresponding to the last beat, the sequencer should increase the tempo slightly to 

catch up with the conductor. 

Declan Murphy et al. presented a conducting gesture recognition system which 

was able to control the tempo of an audio file playback through standard conducting 

movements in 2003 [29]. It worked with one or two cameras as input sources for front 

and side view of the conductor. Computer vision techniques were then used to extract 

position and velocity of the tip of the baton or of the conductor’s right hand. 

In Section 2.2.1, we mentioned about T. Marrin and J. Borchers who involved in 

this field several years. They worked with Eric Lee to design another museum exhibit 

for the Children’s Museum in 2004. The final system was called You’re the Conductor 

[26]. Instead of employing a Buchla Lightning baton for input, a rugged baton-like 

device was developed, which was mainly a light source and could stand heavy use. 
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Movement of baton was translated into playback speed and volume, so that children 

for all ages could use the system. If the child started moving the baton faster or slower, 

the orchestra sped up or slowed down, respectively, and if the child stopped moving 

the baton, the orchestra slowed to a halt. Compared with Personal Orchestra, it used a 

real-time, high-quality time stretching algorithm for polyphonic audio and allowed the 

system to respond more instantaneously and accurately to user input. 

Figure 2.5   (a) Declan Murphy using his conducting system [29] 
(b) You’re the Conductor exhibit at Children’s Museum of Boston [26] 

 R. Behringer presented another system Conducting Digitally Stored Music by 

Computer Vision Tracking in 2005 [6]. At this stage, Computer vision methods are 

used to track the motion of the baton and to deduce musical parameters (volume, pitch, 

expression) for the time synchronized replay of previously recorded music notation 

sequences. Combined with acoustic signal processing, this method can provide the 

automatic playing which the conductor conducts both this instrument as well as the 

human musicians. 

In 2007, Terence Sim et al. presented a vision-based, interactive music playback 

(a) (b)
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system, called VIM, which allows anyone, even untrained musicians, to conduct music 

[31]. Because of the assumption above, they did not recognize any specific musical 

gestures which mean any kind of motion will suffice and used a webcam to capture the 

movements. This system applied the Intel OpenCV Library as a useful programming 

tool, to decide the speed and area of the moving object. This system also provided 

some visualization to project colorful patterns that respond to the user. 

2.2.3 Summary of Conductor Gesture Tracking Systems 

 This section presents a summarized description of all systems described in this 

chapter in table format [10] (see Table 2.1). To simplify our expression, we usually 

have the name of the latest system as the representative of the entire series which were 

created by the same research group unless there are major changes between two 

systems. 
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Table 2.1 The summary of the conductor gesture tracking system 

Year Name Authors Input Device Tracked Info. Control Var. Output Features 

1989 Computer Music 
System that 
Follows a Human 
Conductor 

Hideyuki 
Morita, Shuji 
Hashimoto, 
Sadamu Ohteru 

CCD camera, 
White glove 
Baton with marker 
 

Baton 2D position, 
Trajectory, 
 

Tempo, 
Dynamics 

Prerecorded 
MIDI 

Computer vision 
system 

1991 Radio Baton Max Mathews two radio-wave batons, 
a plate with antennas 
 

2 batons positions 
above the plate 

Tempo, 
Dynamics, 
Voice balance 

Prerecorded 
MIDI 

First baton conducting 
system for computers, 
Limit: small work area 

1992 Light Baton Bertini 
Graziano, 
Paolo Carosi 

CCD camera 
Baton with LED 

Baton 2D position, 
 

Tempo, 
Dynamics, 

Prerecorded 
MIDI 

Use image acquisition 
board to get the baton 
position  

1991-
1996 

Buchla Lightning 
Series 

Buchla and 
Associates 

Batons with tiny 
infrared transmitters 

Batons’ coordinates
(four values total) 

MIDI notes 32 voice 
synthesizer 

Expensive commercial 
equipments 

1992-
1995 

Conductor 
Follower 

Bennett Brecht, 
Guy Garnett 

Buchla Lightning Baton,
Mattel Power Gloves 

Baton 2D position, 
 

Tempo, 
Dynamics, 

Prerecorded 
MIDI 

First system to use 
neural network for beat 
analysis 

        



17 

 

Table 2.1 The summary of the conductor gesture tracking system (Cont.) 

Year Name Authors Input Device Tracked Info. Control Var. Output Features 

1995-
1996 

Extraction of 
Conducting Gestures 
in 3D Space 

Forret Tobey, 
Ichiro Fujinaga 

Two Buchla 
Lightning Batons 
 

Baton 3D 
position, 
 

Tempo, 
Dynamics, 
Beat 
patterns, 
Beat style, 

Prerecorded 
MIDI 

First system to acquire 
3D position 
coordinates 
 
 

1996 Digital Baton Teresa Marrin, 
Joseph Paradiso 

Digital Baton Pressure, 
Acceleration 
LED coordinates, 

Tempo, 
Dynamics, 
 

Prerecorded 
MIDI 

Combined several 
sensors onto one baton 

1998 Conductor’s Jacket Teresa Marrin, 
Rosalind Picard 

Physiology sensors,
Motion sensors 

Muscle tension, 
Breath speed,  
Heart rate, 
Skin response 

Tempo, 
Dynamics, 
Articulation, 
Vibrato…etc

Prerecorded 
MIDI 

Record the gestural 
motion and musical 
gesture, but Jacket is 
weird 

1999 Conductor Following 
with Artificial Neural 
Network 

Tommi Ilmonen, 
Tapio Takala 

Data dress suit with 
6-dof sensors 
( motion trackers ) 

3D positional 
information for 
the body 

Tempo, 
Dynamics, 
Vibrato…etc.

Prerecorded 
MIDI, 
3D graphics 

ANN analysis system 
with 6-dof positional 
sensors 

1999 A Machine Vision 
System of an 
Conductor’s Gestures 

Michael T. Discoll 1 video camera Right hand 2D 
position 
 

Tempo, 
 

Prerecorded 
MIDI, 

Use basic IP methods 
to extract the hand’s 
position. 
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Table 2.1 The summary of the conductor gesture tracking system (Cont.) 

Year Name Authors Input Device Tracked Info. Control Var. Output Features 

2000 Visual Interface for 
Conducting Virtual 
Orchestra 

Jakub Segen 
Senthil Kumar  
Joshua Gluckman 

2 video cameras Right hand 3D 
position 

Tempo, 
Dynamics, 

Synchronized 
prerecorded MIDI / 
Video 

Do synchronization 
between music and 
video 

2002 Personal Orchestra Jan O. Borchers, 
Wolfgang Samminger, 
Max Mühlhäuser 

Buchla Lightning 
Baton 

Right hand 2D 
position 
 

Tempo, 
Dynamics, 
…etc. 

Synchronized 
prerecorded Audio / 
Video 

No recognition of 
beat patterns, just up 
or down movements 

2003 Conducting Audio 
Files via Computer 
Vision 

Declan Murphy, 
Tue Haste Anderson, 
Kristoffer Jensen 

1 or 2 CMOS 
cameras 
(direct / profile) 

Right hand 3D 
position 

Tempo Prerecorded Audio,
3D graphics 

Robust and easy 
obtainable hardware 

2004 You’re the Conductor Eric Lee, 
Teresa Marrin, 
Jan O. Borchers 

Infrared, rugged 
baton-like device 

Right hand 2D 
position 

Tempo, 
Dynamics, 
…etc. 

Synchronized 
prerecorded Audio / 
Video 

The input device 
could stand heavy 
use 

2005 Conducting Digitally 
Stored Music by 
Computer Vision 
Tracking 

ReinHold Behringer CMOS camera Right hand 2D 
position 

Tempo, 
Dynamics, 
Pitch, 
Expression 

Synchronized 
prerecorded Audio 

Is more Intuitive, and 
provide more 
applications which 
can be implemented 

2007 VIM: Vision for 
Interactive Music 

Terence Sim, 
Dennis Ng, etc 

A simple webcam Hand 2D 
position 

Tempo, 
Dynamics, 

Synchronized 
prerecorded MIDI 

Using the Intel 
OpenCV as a tool. 
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2.3 Backgrounds on Object Tracking 

In general, many previously approaches for motion detection and tracking are 

conceptually ambiguous. According to the articles written by W. Hu et al. [33] and W. 

Yao [34], we can classify these two issues and introduce them separately in Section 

2.3.1 and 2.3.2. 

2.3.1 Motion Detection 

Identifying moving objects from a video sequence is a fundamental and critical 

task in many computer-vision applications. Motion detection aims at detecting regions 

corresponding to moving objects from the rest of an image. Detecting moving regions 

provides a focus of attention for later processes such as tracking procedure. Here we 

introduce basic methods as examples: background subtraction, temporal differencing, 

and optical flow. 

(1) Background Subtraction  

It is a popular method for motion detection, especially under those situations with 

a relatively static background. It detects moving regions in an image by identifying 

moving objects within the current image and the reference background image. But it is 

highly dependent on changes in dynamic scenes derived from lighting and extraneous 

events. Therefore, an active construction and updating of the background model are 

indispensable to reduce the influence of these changes. 
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(2) Temporal Differencing 

Temporal differencing makes use of the pixel-wise differences between two or 

three consecutive frames in an image sequence to extract moving regions. Temporal 

differencing is very adaptive to dynamic environments, but it may not work well for 

extracting all relevant pixels. That is, there may be holes left inside moving entities. 

(3) Optical Flow 

Optical-flow-based algorithms was used to calculate the optical flow field from a 

video sequence attempt to find correlations between adjacent frames, generating a 

vector field showing where each pixel or region in one frame moved to in the next 

frame. Typically, the motion is represented as vectors originating and terminating at 

locations in consecutive video sequences. However, most optical-flow-based methods 

are computationally complex and sensitive to noise, and they cannot be applied to 

streams in real time without specialized hardware. 

2.3.2 Motion Tracking 

The tracking algorithms usually have some intersection with motion detection 

during processing. Although there are many researches trying to deal with the motion 

tracking problem, existing techniques are still not robust enough for stable tracking. 

Tracking methods are divided into four major categories: region-based tracking, active 

contour-based tracking, feature-based tracking, and model-based tracking. 
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(1) Region-Based Tracking 

Region-based tracking algorithms track objects according to variations of the 

image regions corresponding to moving objects. In these algorithms, the background 

image is maintained dynamically, and motion regions are detected by subtracting the 

background from the current image. They work well in scenes containing only a few 

objects, but they may not handle occlusion between objects reliably. So they cannot 

satisfy the requirements in a cluttered background or with multiple moving objects. 

(2) Active Contour-Based Tracking 

Active contour-based tracking algorithms track objects by representing their 

outlines as bounding contours and updating these contours dynamically in successive 

frames. In contrast to region-based algorithms, these algorithms describe objects more 

simply and more effectively and reduce computational complexity. Even under partial 

occlusion, these algorithms may track objects continuously. However, a difficulty is 

that they are highly sensitive to the initialization of tracking, making it more difficult 

to start tracking automatically. 

(3) Feature-Based Tracking 

Feature-based tracking algorithms do the objects tracking by extracting elements, 

clustering them into higher level features and then matching the features between 

images. These are lots of features that can help us in tracking objects, like edges, 
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corners, color distribution, skin tone and human eyes. However, the recognition rate of 

objects based on 2D image features is low, and the stability of dealing effectively with 

occlusion is generally poor. 

(4) Model-Based Tracking 

Model-based tracking algorithms track objects by matching projected object 

models, produced with prior knowledge, to image data. The models are constructed 

off-line with manual measurement, or other computer vision techniques. Compared 

with other tracking algorithms, the algorithms can obtain better results even under 

occlusion (including self-occlusion for humans) or interference between nearby image 

motions. Ineluctably, model-based tracking algorithms have some disadvantages such 

as the necessity of constructing the models, high computational cost, etc. 
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Chapter 3  

 

Vision-based Conductor Gesture Tracking 

 

3.1 Overview 

Most of conductor gesture tracking systems presented before focused on technical 

issues and did not mention how to organize a framework to build a complete HCI. The 

framework we present here is based on tracking the target that user defined, and the 

output must be the timing of musical beat after we analyzed. Inspired by face tracking 

approaches to track the center of our target, the position data must be detected via a 

real-time algorithm. After acquiring the successive position data, our algorithm was 

formulated to detect the time point when the target changed its direction. Our proposed 

framework can be divided into two independent modules, CAMSHIFT tracking and 

beat detection and analysis module. The diagram of our system is shown in 1Figure 3.1, 

and the details of these two modules will be discussed in Section 3.2 and 3.3. 

(1) CAMSHIFT Tracking Module 

We created the ROI (Region of Interest) probability map using the 1D histogram 

from the Hue channel in Hue Saturation Value (HSV) color system that corresponds to 
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projecting standard RGB color space. Then we computed Histogram Back-projection 

algorithm to calculate the ROI probability map. The major consideration is the correct 

rate in detecting the moving target, which is a critical issue to the following module. 

(2) Beat Detection and Analysis Module 

Our system used the movement of the target that we detected in the last module to 

determine the change of direction. After selecting the WAV file and other parameters, 

we also display the beat detection result in the visualization waveform of WAV file and 

calculate the precision and recall rate. 

 

 
Figure 3.1  Diagram of the framework we proposed 

CAMSHIFT 

Tracking 

Module 

Beat Detection 

and Analysis 

Module 
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This system was designed in this way so that all algorithms within one module can 

be changed at will, without affecting the functionality of the other module. 

3.2 User-defined Target Tracking Using CAMSHIFT 

User-defined target tracking module is the first stage of the system we proposed, 

which separates the target from the background and extracts position information. In 

our system, we applied the CAMSHIFT (Continuously Adaptive Mean Shift) Algorithm 

[35][36],which is an efficient and simple colored object tracker, as the kernel of this 

module. 

The target area from the user are sampled by mouse, so the target can be user’s 

head/hand, baton and other objects which color are different from the background. 

Using the Histogram Back-projection method, we can measure the characteristics of 

target which we are interested in to build ROI probability model which is also the first 

step of the. At the same time, color distribution derived from video change over time, 

so we utilize the Mean Shift algorithm to calculate the center of mass of the color 

probability within its 2D window of calculation, re-centers the window, then calculates 

the area for the next window size, until convergence (or until the mean location moves 

less than a threshold which means there is no significant shift). The details are 

described in as follows. 
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3.2.1 The CAMSHIFT Algorithm 

In the latest years, the tracking algorithm of the Continuously Adaptive Mean 

Shift Algorithm is being concerned because of its practicability and robustness. For 

object tracking, CAMSHIFT is an adaptation of the Mean Shift algorithm which is a 

robust non-parametric technique that climbs the gradient of a probability distribution 

to find the mode (peak) of the distribution [37].  

The primary difference between CAMSHIFT and the Mean Shift algorithm is that 

CAMSHIFT uses continuously adaptive probability distributions (That is, distributions 

may be recomputed at each frame) while Mean Shift is based on static distributions, 

which are not updated unless the target experiences significant changes in shape, size 

or color [36]. 

For each video frame, the raw image is converted to a probability distribution 

image via a color histogram model of the color being tracked. We use the zeroth and 

first-order moments of target color probability model to compute the centroid of an 

area of high probability which is the main idea in the Mean Shift algorithm. So, the 

center and size of the color object are found via the mean shift algorithm operating. 

The current size and location of the tracked object are reported and used to set the size 

and location of the search window in the next frame. This process is repeated for 

continuous tracking [35].  
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The procedure can be summarized in the following steps [35]: 

Figure 3.2  CAMSHIFT Algorithm 

Because CAMSHIFT uses the color feature to track the moving object, the change 

of the color feature is very small when the object is moving. So it is a robust method. 

Moreover, much time is economized because the moving object is searched around the 

position where the object possibly appears. So CAMSHIFT also has real time feature. 

3.2.2 Color Space Used for ROI Probability Model 

The ROI probability model, also called probability distribution image (PDF), can 

be determined by methods which associate a pixel value with a probability that the 

given pixel belongs to the target. In order to create the probability distribution image of 

the desired color, we first create a model using a color histogram. 

The color model that we capture from an image stream is within the standard Red, 

1. Set the region of interest (ROI) of the probability distribution 
image (PDF) to the entire image. 

2. Select an initial location of the Mean Shift search window. 

3. Calculate a color probability distribution of the region centered at 
the Mean Shift search window. 

4. Iterate Mean Shift algorithm to find the centroid of the probability 
image. Store the zeroth moment (distribution area) and centroid 
location. 

5. For the following frame, center the search window at the mean 
location found in Step 4 and set the window size to a function of 
the zeroth moment. Go to Step 3. 
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Green, and Blue (RGB) color model. However, the RGB color model is influenced by 

illumination easily. Hence, we adopt the Hue Saturation Value (HSV) color model to 

the RGB one, because of its hue (color) separated from saturation (how concentrated 

the color is) and from brightness. The RGB color model is additive, defining a color in 

terms of the combination of primaries, whereas the HSV color model encapsulates the 

information about a color in terms that are more familiar to humans. Figure 3.3 shows 

the RGB and HSV color model respectively. Descending V axis in Figure 3.3 (b) gives 

us smaller hexcone corresponding to smaller (darker) RGB subcube in Figure 3.3 (a). 

  

 

 

 

Figure 3.3 RGB color cube (left) and HSV color hexcone (right) 

The formula from the RGB color model to the HSV one is described below: 

 H

π
3 0

b r
max r, g, b min r, g, b if g max r, g, b

π
3 2

b r
max r, g, b min r, g, b if b max r, g, b

π
3 4

b r
max r, g, b min r, g, b if r max r, g, b

 (3.1)  

S
max r, g, b minx r, g, b

max r, g, b  (3.2)  

V max r, g, b  (3.3)  
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Where H, S and V represent hue, saturation and luminescent components in HSV 

color model, the r, g, b represents red, green and blue component in RGB color model. 

To generate the PDF, an initial histogram is computed from the initial ROI of the 

filtered image. We create our color models by taking 1D histogram from the H (Hue) 

channel in HSV space. When sampling is complete, the histogram is used as a lookup 

table, to convert incoming video pixels to a corresponding probability of ROI image. 

When using real cameras with discrete pixel values, a problem can occur when 

using HSV space. When brightness is low (V near 0), saturation is also low (S near 0). 

Hue value becomes quite noisy, since in such a small hexcone, the small number of 

discrete hue pixels cannot adequately represent slight changes in RGB. To overcome 

this problem, we simply ignore hue pixels that have very low brightness values. In our 

system, we set minimum brightness value of target as the lower threshold of brightness 

value at first. Users also can adjust these two threshold values by themselves. 

Figure 3.4   (a) The Original image and ROI  
(b) The Probability Map with Vmin = 0  
(c) The Probability Map with Vmin = 108 
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3.2.3 Histogram Back-projection 

Histogram Back-projection is used to answer the question "Where are the colors 

that belong to the object we are looking for (the target)?" The back-projection of the 

target histogram with any consecutive video frame can generate a probability image 

where the value of each pixel characterizes probability that the input pixel belongs to 

the histogram that was used. 

Suppose we have a target image and try to locate it in a crowded image. We use 

the 1D Hue histogram of the target image we calculate in the last section. Given that 

m-bin histograms are used, we define the n image pixel locations x …  and 

q …  are the histogram value of the elements. We also define a function c:

1 … m  that associates to the pixel at location x  and the histogram bin index c x . 

The unweighted histogram is computed as:  

qu δ c xi
* ‐u

n

i 1

 (3.4)  

, where δ x  is the unit impulse function.  

Using the formula above, we can derive the unweighted histogram, which is also 

the probability distribution image (PDF) q of the target. 

The formula of histogram normalization is as: 

p min
255

max q q , 255
…

 (3.5)  
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we tracked, and Figure 3.6 (e)(f) are the probability Image of (b)(c) respectively. 

 

 
Figure 3.6    
(a) Original Image and ROI (b) A Tracked Frame #1 (c) A Tracked Frame #2 
(d) The trajectory of ROI (e) Probability Image of #1 (f) Probability Image of #2 

3.2.4 Mass of Center Calculation 

Image moments is a global image descriptor and have been applied the shape 

analysis of binary image before. The moments in one image sum over all pixels, so the 

moment are robust against small pixel value changes. The centroid, mean location, 

within the search window of the discrete probability image computed found using 

moments [35].  

Given I(x, y) is the intensity of the discrete probability image at (x, y), the Mean 

Shift location can be found as follows: 

(1) Compute the zeroth order moment 

M I x, y  (3.6)  

(a) (b) (c)

(d) (e) (f)
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(2) Find the first order moment for x and y 

M x I x, y  (3.7)  

M y I x, y  (3.8)  

(3) Compute the mean search window location 

Center of Mass
M
M ,

M
M  (3.9)  

where Mmn denotes the mth and nth moments in x and y directions. By definition, M00 is 

the area of a two dimensional object. Using these Equations, we can descend the pixel 

data to an object position. 

The target of the area in the image is reflected by the moments. The color 

probability distribution is discrete gray image whose maximum is 255, therefore the 

relation of the size of search window S and 255 is 

Search window size 2
M
256 (3.10)  

We also need to set the ratio of window width and length according to the 

interested probability distribution in search window. For our object tracking, we set the 

window width to S and window length to S , where height and width are the 

height and width value of target selected by user. 
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3.3 Beat Detection and Analysis 

After extracting the target location by user-defined target tracking module, the 

next step is the beat detection and analysis module. Compared with the exactly hand 

sign language recognition, the detection of beat events for analyzing a musical time 

patterns and tempo does not have to be so accurate [39]. Compared with slight posture 

or hands movement in the hand sign language represents an independent and important 

meaning, only salient features like beat transition point of hand motion are the most 

important information in the conducting gesture. 

 (a)

(c) 
(b) 

Figure 3.7  The trajectories and the approximated directions of each conducting pattern. (solid 
line - trajectory, dashed line - motion direction, red circle- direction change point)  

Figure 3.7 illustrates the representative features which are called as direction 

change points (red circle) of each musical time pattern. During the detection of these 

points (DCP), we can detect the beat event more easily. That is, we can calculate the 

motion of consecutive extracted target region and generates the gesture features, 

direction change point, which is the point of sudden motion direction changes. 
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In order to measure every DCP happened exactly, we compute an approximation 

of k-curvature, which is defined by the angle between the two vectors [P(i-k), P(i)] and 

[P(i), P(i+k)], where k is a constant and P(i)=(x(i), y(i)) is the list of trajectory points. 

When the angle between these two vectors is less than the threshold we defined, we 

can imply the change of direction point which is also a beat event in conducting 

gesture. 

Figure 3.8 Another representative of conducting patterns 

Based on another conducting style [25], the beat always occurs at locally lowest 

points which we called local-minimum points of trajectory. A typical 2-beat, 3-beat and 

4-beat conducting pattern is shown in Figure 3.8. A beat event is defined to be a local 

minimum of the vertical component of target’s trajectory. We evaluate the trajectory of 

the target and seek a local minimum of its vertical component, y t . Thus, we obtain 

the current timing of beat and tempo of the playing music via these two methods. 

3.3.1 K-curvature Algorithm 

The k-curvature algorithm was proposed in [40] and this method was used in 

chain-code corner detection field widely. In this thesis, we use this method to measure 
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the angle between two consecutive motion vectors. The details of this algorithm are 

described as follow [41]: 

A point pi one the curve is defined in terms of the chain-code corner vectors vi as  

p p v   

, where p0 is the initial point on the trajectory and vj is a vector from the set {(1, 0), (1, 

1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1) }. The k-curvature θ  at pi is given by 

θ cos
V · V
V V

  

, where V ∑ w v  and V ∑ w v . We chose the weight w  to be 1. 

For this case, the angle is illustrated in Figure 3.9. 

 

 
Figure 3.9  Angle measured by the k-curvature algorithm 

 

More specifically, we define the object trajectory as a time sequential list P, 

P x , y , x , y , x , y , … x , y , where t is the frame number we finished 

tracking and θ is the angle we want to measure . We also defined two vectors:  
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V x x , y y  (3.11)  

V x x , y y  (3.12)  

 V  ·  V 0 0° 90°

 V  ·  V 0 θ 90°

 V  ·  V 0 180° 90°

 (3.13)  

So we can compute the inner product of  V  and V  ,  V  ·  V , to decide the angle 

between these two vectors. Because we cannot get the trajectory information at future 

time, what we can do is to decide whether the point x , y  is a direction change 

point or not at frame t. That means we need to allow the detecting delay k. To deuce 

the impact of detecting delay, we use 1 as the K factor in this thesis. 

3.3.2 Local-Minimum Algorithm 

Figure 3.8 also confirms the fact that a beat always directly corresponds with a 

downward-to-upward change in direction. While the y-axis data can be searched for a 

change in direction from downward-to-upward movement, the x-axis data we collected 

can be completely ignored.  

We assume the situation that the y-axis scale increases from top to bottom. So, if 

the y-axis waveforms are rising, subtracting the previous y position value from the 

current y position value produces a negative value. If the waveform is unchanging, the 

result is zero. If the waveform is falling, this produces a positive value. Mathematically, 

this can be expressed as: 
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sign t 1  if y t y t 1 0
1 if y t y t 1 0  (3.14)  

According to the reference scale used, a maximum is characterized by a change 

from a negative to a positive . Using similar idea, a minimum is characterized 

by a change from a positive to a negative . Since the beat directly corresponds 

with the minima, the system only has to search for a change in  from positive 

to negative. A minimum cannot be detected until the first rising point after the minima 

has been acquired, so a slight delay will always be present. 
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Chapter 4  

 

Experimental Results and Discussions 

 

4.1 Overviews 

We designed a conductor gesture tracking system to help users training their 

conducting gesture. This system which realizes the algorithms described in the 

previous chapter will track the target and detect the beat event to calculate the relative 

correction rates.  

Figure 4.1  A snapshot of our conductor gesture tracking system 
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Figure 4.1 shows a snapshot of our conductor gesture tracking system. In our 

experiments, the video inputs are captured from the Logitech QuickCam webcam with 

the resolution of 320×240 pixels and the music files are sampled from compact discs, 

10 constant-speed songs with different Beats per Minute (BPM). The BPMs of the 

music are from 60 to 124 beats per minute and the lengths of music are from 54s to 85s. 

All the software of our real-time conductor’s gesture tracking system is run on a 

personal computer with 1G RAM. The software includes the CodeGear C++ Builder 

2007 and Windows XP Home SP2. The throughput obtained is from 5-8 frames per 

second. In section 4.2 and 4.3, we will explain our experimental procedure and 

demonstrate the results and analysis afterward. 

Combined with Figure 3.1 and Figure 4.1, we can figure out the relation between 

the processing procedure and user interface demonstration in Figure 4.2. Our system 

tracks a target from an image sequence and provides a robust tracking result. However, 

computer vision-based tracking is extremely difficult in an unconstrained environment, 

and many situations may affect the accuracy of tracking such as interfering with other 

objects with the same color in the background, variety of illuminant condition, too 

small tracking targets. In order to simplify tracking we assume there is no other object 

with the same color to interfere with the system. 

After choosing the tracking target, our system starts producing probability map at 
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Right-UP column of our system UI. Upon the probability map image, we also can see 

the centroid and rectangle region of the target we tracked via CAMSHIFT Algorithm. 

At the same time, we can see the trajectory of the target and DCPs at Right-Bottom 

column of our system UI.  

 
Figure 4.2  Experimental Flowchart 

To demonstrate the beat events in real-time, we drew the time information when 

beat events happened on the WAV form data of music file. We defined the correct 

interval is Correct_Time RT Correct_Time RT, where T is the time we 

detected beat events, Correct_Time  which came from the ground truth (via 

calculation at different BPM or men-make file) is the correct time of beat event i and 

the RT is based on reaction time we will mention later. If the time of beat event we 

detected is in the correct interval we defined, we called it a correct beat detection. 
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4.2 Experimental Results 

We use Precision, Recall and F-measure rate to evaluate the correctness of the 

experiment output. In an Information Retrieval scenario, Precision is the fraction of the 

documents retrieved that are relevant to the user's information need and Recall is the 

fraction of the documents that are relevant to the query that are successfully retrieved 

[8]. With similar thought, we can define Precision, Recall more specifically. 

Precision Rate
#of correct beat we detected

# of beat we detected  (4.1)  

Recall Rate
#of correct beat we detected

# of correct beat from ground truth  (4.2)  

That means, Recall parameter denotes the percentage of correct detection by the 

detection algorithm with respect to the overall beat events and the Precision is the 

percentage of correct detection with respect to the overall declared beat events.  

Precision and Recall usually trade off against each other. As precision goes up, 

recall usually goes down (and vice versa). In order to take these two parameters into 

account, we use F-measure to combine precision and recall. 

F
1 α precision recall

α precision recall
 (4.3)  

And F1-measure combines recall and precision with an equal weight as follows: 

F
2 precision recall

precision recall  (4.4)  

We experiment our system using the same video and audio inputs with these two 
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methods, K-Curvature and Local-Minimum algorithm, respectively. In K-Curvature 

algorithm, there exists a factor θ, the degree between two consecutive motion vectors, 

to control in K-Curvature algorithm. Therefore, we compute our experiment twice with 

two different factors, θ 60°  and  θ 90° , for comparison purpose. 

The experiment contains two parts: Music-based and Vision-based evaluations. 

The ground truth for Music-Based evaluation was determined by the constant BPM of 

music. If BPM =80, the time interval between two consecutive beats should be 0.75s 

and the continuous beat point series should be { 0.00, 0.75, 1.50, 2.25, …} until the 

music ends. The ground truth for the Vision-based evaluation was determined by 

men-make file whose time interval may not be so as stable as the Music-based one. 

In Vision-based evaluations, we set the ground truth manual when we saw the beat 

events (the time point of direction change); in music-based evaluation, we conducted 

when we heard the beat events. Because people always need some time to react the 

visual or sound stimulus, it is overconstrained to limit the time point of beat event we 

detected must be exactly match with the ground truth. So we need to join the idea of 

reaction time (RT), which is usually defined as the time that an observer might be 

asked to press a button as soon as a light or sound appears. In the Master thesis of 

Lain [42], mean RT is 351±44 milliseconds to detect visual stimuli, whereas for 

sound it is 256±41 milliseconds.  
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Table 4.1 The overall experimental results with different methods 

Methods 

Music-Based Evaluation 
(RT=256) 

Vision-Based Evaluation 
(RT=351) 

Precision Recall F1-measure Precision Recall F1-measure

K-Curvature 
°  

90.59 84.43 87.34 89.18 84.03 86.46 

K-Curvature 
°  

85.43 92.97 89.02 84.69 92.67 88.48 

Local Minimum 95.91 86.98 91.21 93.70 85.30 89.29 

 Table 4.1 shows the overall experimental results using different methods. Figure 

4.3 and Figure 4.4 show the F1-measures in two different evaluations. In Music-based 

evaluation, the lowest F1-measure is 78.29% and highest F1-measure is 96.31%. The 

lowest and highest F1-measure is 77.26% and 94.81% in Vision-based evaluation. 

We further analyze the vision-based evaluation more specifically: Compared with 

the F1-measure rate in θ 60° and θ 90°, we find that the F1-measure at  θ

90° is higher than the F1-measure at θ 60°. When θ 60°, the range that precision 

rate decreased is higher than the range that the recall rate increased. Also, there is no 

significant impact between the BPM (the music speed) and F1-measure and we can 

handle the music whose BPM is between 60 and 120 without any further support. 

Moreover, the Reaction Time (RT) can be adjusted dynamically based on the reacting 

ability of user. If we set RT more widely, it can help to raise the recall and precision 

rate efficiently, but it may decrease the accuracy of the system. 
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The following Table 4.2, Table 4.3 and Table 4.4 show the precision rates, recall 

rates and F1-measure in every test sequence respectively.  

Table 4.2 The precision, recall rates and F1-measures using K-Curvature ( °) 

Sequence 
No. 

BPM 

Music-Based Evaluation 
(RT=256) 

Vision-Based Evaluation 
(RT=351) 

Precision Recall F1-measure Precision Recall F1-measure

1 60 89.91 97.01 93.33 86.37 93.94 90.00 
2 65 81.69 87.81 84.64 79.32 84.86 82.00 
3 68 89.14 96.30 92.58 77.38 85.00 81.05 
4 79 75.21 82.40 78.64 77.60 86.14 81.65 
5 88 90.29 92.89 91.57 87.12 89.51 88.30 
6 93 87.17 94.84 90.84 87.17 95.99 91.37 
7 100 84.07 93.66 88.60 88.00 97.20 92.37 
8 103 86.66 98.39 92.16 86.29 98.16 91.84 
9 120 83.28 88.79 85.95 89.81 97.02 93.28 
10 124 86.82 97.64 91.92 87.80 98.83 92.99 

Table 4.3 The precision, recall rates and F1-measures using K-Curvature ( °) 

Sequence 
No. 

BPM 

Music-Based Evaluation 
(RT=256) 

Vision-Based Evaluation 
(RT=351) 

Precision Recall F1-measure Precision Recall F1-measure

1 60 94.73 87.06 90.74 89.54 83.33 86.33 
2 65 93.32 91.76 92.53 82.44 81.31 81.87 
3 68 90.48 88.89 89.68 78.45 78.33 78.39 
4 79 78.31 78.28 78.29 82.74 83.52 83.13 
5 88 94.12 84.27 88.92 91.02 81.27 85.87 
6 93 84.17 79.76 81.91 89.36 85.14 87.20 
7 100 86.25 85.45 85.85 91.68 90.19 90.93 
8 103 97.80 87.59 92.41 90.62 87.13 88.84 
9 120 94.24 82.18 87.80 98.65 86.86 92.38 
10 124 92.48 79.06 85.24 97.27 83.22 89.70 
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Table 4.4 The precision, recall rates and F1-measures using Local-Minimum 

Sequence 
No. 

BPM 

Music-Based Evaluation 
(RT=256) 

Vision-Based Evaluation 
(RT=351) 

Precision Recall F1-measure Precision Recall F1-measure

1 60 99.40 86.57 92.54 92.17 81.31 86.40 
2 65 99.62 89.61 94.35 87.03 78.44 82.51 
3 68 97.79 90.94 94.24 79.67 75.00 77.26 
4 79 85.51 79.40 82.34 88.70 82.40 85.43 
5 88 100.00 92.89 96.31 94.69 88.02 91.23 
6 93 91.12 82.54 86.62 98.26 89.56 93.71 
7 100 92.86 86.86 89.76 98.25 91.60 94.81 
8 103 99.24 89.89 94.33 98.50 89.20 93.62 
9 120 95.88 84.07 89.59 100.00 88.64 93.98 
10 124 97.68 87.02 92.05 99.68 88.84 93.95 

Figure 4.3 and Figure 4.4 shows the Vision-based evaluation results in chart 

forms. We will discuss the reasons of failed detection in vision-based evaluation in the 

next section. 

 

Figure 4.3  F-measure results of Vision-Based Evaluation using K-curvature algorithm 
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Figure 4.4  F-measure results of Vision-Based Evaluation using local-minimum algorithm 
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produced a false negative where there is a beat event at that moment.  

Table 4.5 The False Positive and False Negative Error Rates 

Type of Error 
Method 

False Positive False Negative 

Non-beat but detected duplicate detected beats but not detected 

K-Curvature 
°  

4.72% 6.10% 15.97% 

K-Curvature 
°  

5.37% 9.93% 7.34% 

Local Minimum 4.79% 1.51% 14.70% 

When the false positive errors occurred, we need to separate the errors into two 

kinds of situations: detected the beat events when there was no beat event and detected 

the beat events when the correct beat event was already detected. We detected non-beat 

events falsely due to the trajectory of user including some non-beat change of direction. 

The duplicate detection always occurred due to the tracking lost when the target left 

the scene or the vibration of the target. This kind of situation might be solved by the 

design of dynamic beats filter to eliminate those successive wrong beats while the time 

interval between two consecutive beats is too close.  

The false negative errors always occurred if  θ 60°(in K-Curvature algorithm) 

or in Local-Minimum algorithm. It is due to the frame lost because of the performance 

of the program. If we can increase the maximum frame rates we processed, this kind of 

mistake might be solved.  
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Chapter 5  

 

Conclusion and Future Work 

 

5.1 Conclusion 

In this thesis, we have presented an efficient real-time target tracking system for 

conductor gesture tracking based on CAMSHIFT algorithm. Also, in order to extract 

beat events of trajectory of the trajectory of the target, we used K-Curvature algorithm 

and Local-Minimum algorithm to interpret different kinds of conductor gesture. 

The major part of our framework is based on CAMSHIFT algorithm which is a very 

simple, computationally efficient colored object tracker. It is usable as a visual 

interface and it can be incorporated into our system that provides the conductor gesture 

tracking. The CAMSHIFT algorithm handles computer-vision problems as follows: 

 Irregular object motion: CAMSHIFT scales its search window to object size 

thus naturally handling perspective–included motion irregularities, so it is suitable 

for our purpose to detect the change of direction. 

 Distracters: CAMSHIFT ignores objects outside its search window so other 

objects do not affect CAMSHIFT’s tracking. 
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 Lighting Variation: Using only hue from the HSV color space and ignoring 

pixels with high/low brightness gives CAMSHIFT wide lightness tolerance. 

In other words, we design an HCI system for interpreting a conductor’s gestures 

and translating theses gestures into musical beats that can be explained as the major 

part of the music. This system does not require the use of active sensing, special baton, 

or other constraints on the physical motion of the conductor. Thus, this framework can 

also be used for human analysis and many other applications such as interactive virtual 

worlds that allow user to interact with computer systems. 

5.2 Future Work 

Since CAMSHIFT relies on color distribution alone, errors in color (color lighting, 

dim illumination, too much illumination…etc) will cause errors in tracking procedure. 

More sophisticated trackers use multiple modes such as feature tracking and motion 

analysis to compensate for this, but more complexity would undermine the original 

design criterion for CAMSHIFT. Other possible improvements include: 

 Improve tempo following: the current system cannot react to some complex and 

subtle movement of professional conductor, not only for the direction change. We 

can replace our beat detection and analysis module with some more sophisticated 

gesture recognition algorithms, so that we can adjust our module according to the 

different level of users conducting skill. 
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 Include time stretching algorithm: time stretching algorithm is the process of 

changing the speed or duration of an audio signal without affecting its pitch. 

While our system can adjust the music playback speed according to the beat event, 

it can help users to understand the conducting speed he/she performed. 

 New application area: we can use our framework to several different areas in 

interface with vision and some other multimedia. We not also can estimate the 

accuracy of beat events for conducting gesture, but also the movement of the 

dancer. Based on the previous future work, we can design another system for a 

dancer whose routine is no longer constrained by the tempo of a recording and the 

music would spontaneously react to his/her movements. 

In conclusion, since the system we proposed is a framework which combines the 

video and audio processing areas, the applications of this technology can help us to 

examine unexplored area in interfaces with music and other multimedia. We can build 

an “interactive karaoke” system where a user could sing a song along to a recording, 

but have the recording adjusting to the user’s tempo. Some other applications can be 

implemented following these rules, including conductor training, live performance and 

music synthesis control, and so forth. We hope that the flexible and interchangeable 

modules would make the further researches easier in the future.   



52 

 

 

References 

 

[1] T. T. Hewett, et al., "ACM SIGCHI Curricula for Human-Computer Interaction", 
ACM Press, New York, NY, 1992, ACM Order Number: 608920. 

[2] B. A. Myers, "A Brief History of Human-Computer Interaction Technology", 
Interactions, vol. 5, pp. 44-54, 1998. 

[3] M.T. Driscoll, "A Machine Vision System for Capture and Interpretation of 
Orchestra Conductor’s Gestures", M. S. Degree Thesis, May, 1999.  

[4] E. Lee, I. I. Grüll, H. Kiel and J. Borchers, "Conga: A Framework for Adaptive 
Conducting Gesture Analysis", NIME '06: Proceedings of the 2006 Conference on 
New Interfaces for Musical Expression, pp. 260-265, 2006. 

[5] D. Murphy, “Tracking a Conductor's Baton” , Søren I. Olsen, Editor, Proceedings 
of the 12th Danish Conference on Pattern Recognition and Image Analysis, 
volume 2003/05 of DIKU technical report series, pp. 59-66, Copenhagen, 
Denmark, August 2003. 

[6] R. Behringer, "Conducting Digitally Stored Music by Computer Vision Tracking", 
AXMEDIS '05: Proceedings of the First International Conference on Automated 
Production of Cross Media Content for Multi-Channel Distribution, pp. 271, 
2005.  

[7] The Church of Jesus Christ of Latter Day Saints. Conducting Course. 

[8] Wikipedia, The free Encyclopedia, http://en.wikipedia.org 

[9] M. Lambers, "How Far is Technology from Completely Understanding a 
Conductor?”, 4th Twente Student Conference on IT, Enschede, January 30, 2006. 

[10] Paul Kolesnik, "A Conducting Gesture Recognition, Analysis and Performance 
System", M. S. Degree Thesis, McGill University, June, 2004.  



53 

 

[11] R. Boulanger and M. Mathews, “The 1997 Mathews Radio-baton and 
Improvisation Modes”, Proceedings of the 1997 International Computer Music 
Conference, pp.395-398, Thessaloniki, Greece, 1997. 

[12] Buchla Lightning II. <http://www.buchla.com> 

[13] B. Brecht and G. Garnett, “Conductor Follower” , Proceedings of the 1995 
International Computer Music Conference, pp. 185-186, Banff, Canada, 1995, 
Available: http://cnmat.berkeley.edu/publication/conductor_follower. 

[14] J. Borchers, W. Samminger and M. Mühlhäuser, "Personal Orchestra: Conducting 
Audio/Video Music Recordings", Proceedings of the Second International 
Conference on WEB Delivering of Music (WEDELMUISC’02), 2002. 

[15] Carmine Cascaito and Marcelo M. Wanderley, “Lessons from Long Term 
Gestural Controller Users”, in Proceedings of the 4th International Conference on 
Enactive Interfaces (ENACTIVE'07), pp. 333-336, Grenoble, France, 2007. 

[16] F. Tobey and Ichiro Fujinaga, "Extraction of Conducting Gestures in 3D Space", 
Proceedings of the 1996 International Computer Music Conference, pp. 305-307, 
San Francisco, 1996. 

[17] T. Marrin and J. Paradiso, “The Digital Baton: a Versatile Performance 
Instrument”, Proceedings of the 1997 International Computer Music Conference, 
pp.313-316, Thessaloniki, Greece, 1997.  

[18] T. Marrin and R. Picard, “The Conductor's Jacket: a Device for Recording 
Expressive Musical Gestures”, Proceedings of the 1998 International Computer 
Music Conference, pp.215-219, Ann Arbor, MI, 1998. 

[19] T. Marrin, "Inside the Conductor's Jacket: Analysis, Interpretation and Musical 
Synthesis of Expressive Gesture", Ph.D. Dissertation, MIT Media Lab, February, 
2000. 

[20] T. Ilmonen, “Tracking Conductor of an Orchestra Using Artificial Neural 
Networks”, M. S. Degree Thesis, Helsinki University of Technology, Espoo, 
Finland, 1999. 

[21] T. Ilmonen and T. Takala, "Conductor Following with Artificial Neural 
Networks", Proceedings of the 1999 International Computer Music Conference, 
pp. 367-370, Beijing, China, October, 1999. 



54 

 

[22] H. Morita, "A Computer Music System that Follows a Human Conductor," 
Computer, vol. 24, pp. 44-53, 1991. 

[23] Light Baton. < http://web.tiscali.it/pcarosi/Lbs.htm> 

[24] J. Segen, A. Majumder, and J. Gluckman, "Virtual Dance and Music Conducted 
by a Human Conductor", Eurographics, vol. 19(3), EACG, 1999. 

[25] J. Segen, S. Kumar and J. Gluckman, "Visual Interface for Conducting Virtual 
Orchestra", Proceedings of the 15th International Conference on Pattern 
Recognition (ICPR’00), vol.1, pp. 276-279, 2000. 

[26] E. Lee, T. Marrin and J. Borchers, "You're the Conductor: A Realistic Interactive 
Conducting System for Children", NIME '04: Proceedings of the 2004 
Conference on New Interfaces for Musical Expression, pp. 68-73, Hamamatsu, 
Japan, June 3-5, 2004. 

[27] E. Lee, M. Wolf and J. Borchers, "Improving Orchestral Conducting Systems in 
Public Spaces: Examining the Temporal Characteristics and Conceptual Models 
of Conducting Gestures", Proceedings of the CHI 2005 Conference on Human 
Factors in Computing Systems, pp. 731-740, Portland, Oregon, April 2-7, 2005. 

[28] E. Lee and J. Borchers, "The Role of Time in Engineering Computer Music 
Systems", NIME '05: Proceedings of the 2005 Conference on New Interfaces for 
Musical Expression, pp. 204-207, Vancouver, Canada, May 26-28, 2005. 

[29] D. Murphy, T. H. Andersen, and K. Jensen, “Conducting Audio Files via 
Computer Vision”, Gesture-Based Communication in Human-Computer 
Interaction: Selected Revised Papers from the 5th International Gesture 
Workshop, volume 2915 of LNAI, pp. 529-540, Genoa, Italy, April, 2003. 

[30] D. Murphy, “Live Interpretation of Conductors' Beat Patterns” , Proceedings of 
the 13th Danish Conference on Pattern Recognition and Image Analysis, 
Copenhagen, Denmark, pp. 111-120, 2004. 

[31] T. Sim, D. Ng, and R. Janakiraman, "VIM: Vision for Interactive Music", 
Proceedings of IEEE Workshop on Applications of Computer Vision (WACV '07), 
pp.32-32, February, 2007. 

[32] K. C. Ng, "Music via Motion: Transdomain Mapping of Motion and Sound for 
Interactive Performances", Proceedings of the IEEE, vol.92, no.4, pp. 645-655, 
April, 2004. 



55 

 

[33] W. Hu, T. Tan, L. Wang and S. Maybank, "A survey on visual surveillance of 
object motion and behaviors", IEEE Transactions on Systems, Man, and 
Cybernetics, Part C: Applications and Reviews, vol. 34, pp. 334-352, 2004. 

[34] Wen-Han Yao, "Mean-Shift Object Tracking Based On A Multi-blob Model", M. 
S. Degree Thesis, National Tawan Chiao Tung University, June, 2006.  

[35] G. Bradski, "Computer vision face tracking for use in perceptual user interface", 
Intel Technology Journal, vol. 2nd Quarter, 1998. 

[36] G. John Allen, Y. D. Richard Xu and S. Jin Jesse, "Object Tracking Using 
CamShift Algorithm and Multiple Quantized Feature Spaces", Inc. Australian 
Computer Society, vol.36, 2004. 

[37] Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature 
space analysis", IEEE Transactions on Pattern Analysis and Machine Intelligence, 
24(5):603-619, May, 2002. 

[38] Xia Liu, "Research of the Improved Camshift Tracking Algorithm", International 
Conference on Mechatronics and Automation, ICMA 2007, pp. 968-972, 2007. 

[39] Hongmo Je, Jiman Kim and Daijin Kim, "Vision-Based Hand Gesture 
Recognition for Understanding Musical Time Pattern and Tempo", The 33rd 
Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 
2371-2376, , Taipei, Taiwan, November 5-8, 2007. 

[40] W.S. Rutkowski, A. Rosenfeld, "A comparison of corner-detection techniques for 
chain-coded curves", TR-623. Computer Science Center, University of Maryland, 
1978. 

[41] T. Peli, "Corner extraction from radar images", 1988 International Conference on 
Acoustics, Speech, and Signal Processing. ICASSP-88, pp. 1216-1219 vol.2, 
1988. 

[42] Huang-Yu Lian, "The Effects of Human Factors on Reaction Speed to Visual and 
Auditory Signals ", M. S. Degree Thesis, National Kaohsiung First University of 
Science and Technology, Kaohsiung, Taiwan, 2000. 

 


