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To what extent are second-order cone and positive semidefinite
cone alike?

June 5, 2009

Abstract. The cone of positive semidefinite matrices (Sn+) and second-order cone (Kn)

are both self-dual and special cases of symmetric cones. Each of them play an important

role in semidefinite programming (SDP) and second-order cone programming (SOCP),

respectively. It is known that an SOCP problem can be viewed as an SDP problem via

certain relation between Sn+ and Kn. Nonetheless, most analysis used for dealing SDP can

not carried over to SOCP due to some difference, for instance, the matrix multiplication

is associative for Sn+ whereas the Jordan product is not for Kn. In this paper, we try to

have a thorough study on the similarity and difference between these two cones which

provide theoretical for further investigation of SDP and SOCP.

Key words. Second-order cone, convex function, monotone function, positive semidefi-

nite matrix, spectral decomposition.

1 Introduction

The second-order cone(SOC) in Rn, also called Lorentz cone, is defined by

Kn = {x = (x1, x2) ∈ R×Rn−1 : ‖x2‖ ≤ x1}, (1)

where ‖ · ‖ denotes the Euclidean norm. If n = 1, let Kn denote the set of nonnegative

reals R+. For any x, y ∈ Rn, we write x �Kn y if x − y ∈ Kn; and write x �Kn y if

x − y ∈ int(Kn). In other words, we have x �Kn 0 if and only if x ∈ Kn and x �Kn 0 if

and only if x ∈ int(Kn). The relation �Kn is a partial ordering, but not a linear ordering

in Kn, i.e., there exist x, y ∈ Kn such that neither x �Kn y nor y �Kn x.

Let Sn be the set of n× n symmetirc matrices, we denote Sn+ the cone of all positive

semidefinite matrices. It is well known that the nonnegative orthant Rn
+, second-order

cone Kn, and positive semidefinite cone Sn+ are all self-dual, moreover, they all belong

to symmetric cones under Euclidean Jordan algebra. A Euclidean Jordan algebra is a

triple (V, ◦, 〈·, ·〉V), where (V, 〈·, ·〉V) is a finite dimensional inner product space over the

real field R and (x, y) 7→ x ◦ y : V×V→ V is a bilinear mapping satisfying the following

three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 := x ◦ x;
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(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y ∈ V.

In a Jordan algebra (V, ◦), x ◦ y is said to be the Jordan product of x and y. Note that

a Jordan product is not associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z may not hold in general.

We assume that there is an element e ∈ V such that x◦ e = x for all x ∈ V and call e the

unit element. Let ζ(x) be the degree of the minimal polynomial of x ∈ V, which can be

equivalently defined as ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
. Since

ζ(x) ≤ dim(V), the rank of (V, ◦) is well defined by q := max{ζ(x) : x ∈ V}. In a

Euclidean Jordan algebra A = (V, ◦, 〈·, ·〉V), we denote

K := {x2 : x ∈ V} (2)

by the set of squares. From [10, Theorem III.2.1], K is a symmetric cone. This means

that K is a self-dual closed convex cone, that is,

K = K∗ := {y ∈ V : 〈x, y〉 ≥ 0 ∀x ∈ K},

with nonempty interior int(K), and homogeneous, i.e. for any x, y ∈ int(K), there exists

an invertible linear transformation T : V→ V such that T (K) = K and T (x) = y.

Here are examples of symmetric cones. For V = Rn, let 〈·, ·〉V be the standard vector

inner product, namely,

〈x, y〉V :=
n∑
i=1

xiyi;

and the Jordan product be defined as

x ◦ y := (x1y1, x2y2, · · · , xnyn).

Then, K = Rn
+ is the cone of squares under this Euclidean Jordan algebra. For V = Rn,

we write x = (x1, x2) ∈ R × Rn−1. Let 〈·, ·〉V be the standard vector inner product and

the Jordan product be defined as

x ◦ y := (〈x, y〉, x1y2 + y1x2).

Then, the second-order cone Kn is the cone of squares under this Euclidean Jordan

algebra. For V = Sn, let 〈·, ·〉V be the trace inner product, namely,

〈X, Y 〉V := Trace(XY );

and the Jordan product defined as

X ◦ Y :=
1

2
(XY + Y X).

Then, the positive semedefinite cone Sn+ is the cone of squares under this Euclidean

Jordan algebra.

2



Although symmetric cone provide a unified framework for Rn
+,Kn and Sn+, there exist

some differences among them. To name a few, (i) there are some “convex” merit func-

tions associated with Rn
+ become “non-convex” when associated with Kn; (ii) different

conditions are required to guarantee the coerciveness of some merit functions. Usually

stronger conditions are required in Kn and Sn+ than in Rn
+. To see these, we illustrate

more as below. The Fischer-Burmeister (FB) merit function [8, 9]

ψ
FB

(a, b) :=
1

2

∣∣∣√a2 + b2 − (a+ b)
∣∣∣2

is known as convex. But the FB merit function associated with SOC

ψ
FB

(x, y) :=
1

2

∥∥(x2 + y2)1/2 − (x+ y)
∥∥2

is not convex, see [7, Example 3.5]. Another example is the function |(φ
FB

(a, b))+|2 where

(t)+ := max{0, t} ∀t ∈ R. In addition, the Mangasarian-Solodov merit function [15]

φ
MS

(a, b) := ab+
1

2α

{
[(a− αb)+]2 − a2 + [(b− αa)+]2 − b2

}
,

where α > 0 ( 6= 1) is a constant, has the following property [14, Lemma 6.2]:

If (a→ −∞) or (b→ −∞) or (a→∞ and b→∞), then |φ
MS

(a, b)| → ∞.

However, the MS merit function associated with SOC

φ
MS

(x, y) := x ◦ y +
1

2α

{
[(x− αy)+]2 − x2 + [(y − αx)+]2 − y2

}
,

where α > 0 ( 6= 1) is a constant, needs stronger condition to satisfy the same property

[17, Prop. 4.2]: If {xk} ⊂ V and {yk} ⊂ V are the sequences satisfying one of the

following conditions:

(i) λmin(xk)→ −∞;

(ii) λmin(yk)→ −∞;

(iii) λmin(xk), λmin(yk) > −∞, λmax(xk), λmax(yk)→ +∞ and xk

‖xk‖ ◦
yk

‖yk‖ 9 0,

then ‖φ
MS

(xk, yk)‖ → ∞. It is remarked in [17] that the condition xk

‖xk‖ ◦
yk

‖yk‖ 9 0 is

required in Kn and Sn+ cases, though not needed in Rn
+ case.

The above illustrations indicate that some properties associated with Rn
+, Kn and

Sn+ may vary or change a bit, even though these three cones all belong to symmetric

cones. These various properties, due to the different structures of Rn
+, Kn and Sn+, have

great effect in analyzing optimization problems involved symmetric cones. It is well-

known that the analysis for optimization problems involved Rn
+ cannot be employed in
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analyzing optimization problems involved Kn and Sn+ since Kn and Sn+ are no longer

polyhedral sets. What about any relation between Kn and Sn+? In fact, it is known

that an SOCP problem can be viewed as an SDP problem via certain relation between

Kn and Sn+, see [5, 19]. Nonetheless, most analysis techniques used in solution methods

for semidefinite programming (SDP) and semidefinite complementarity problem (SDCP)

cannot be carried over to second-order cone programming (SOCP) and second-order cone

complementarity programming (SOCCP) because the following (see [6]):

(i) (Kn, ◦) is not closed, whereas Sn+ is.

(ii) (Kn, ◦) is not associative, whereas Sn+ is.

However, every x = (x1, x2) ∈ R×Rn−1 has a spectral decomposition (see Section 2) while

every X ∈ Sn has a decomposition X = P TDP . This offers a parallel analysis concept

under the sense that we have spectral values (vectors) of x v.s. eigenvalues (eigenvectors)

of X. We want to know whether there any other similarities and difference between Kn
and Sn+, which is the main purpose of this paper.

In what follows and throughout the paper, 〈·, ·〉 denotes the Euclidean inner product

and ‖ ·‖ is the Euclidean norm. The notation “:=” means “define”. For any f : Rn → R,

∇f(x) denotes the gradient of f at x and ∇2f(x) denotes the Hessian matrix of f at

x. For any symmetric matrices A,B ∈ Rn×n, we write A � B (respectively, A � B) to

mean A−B is positive semidefinite (respectively, positive definite). At last, ‖A‖F is the

Frobenius norm of matrix A.

2 Preliminary

In this section, we recall some concepts of Euclidean Jordan algebra that will be used in

the subsequent analysis.

An element c ∈ V is said to be an idempotent if c2 = c. Two idempotents c and d

are said to be orthogonal if c ◦ d = 0. One says that {c1, c2, · · · , ck} is a complete system

of orthogonal idempotents if

c2j = cj, cj ◦ ci = 0 if j 6= i for all j, i = 1, 2, · · · , k and
k∑
j=1

cj = e.

An idempotent is said to be primitive if it is nonzero and cannot be written as the sum of

two other nonzero idempotents. We call a complete system of orthogonal primitive idem-

potents a Jordan frame. Then, we have the second version of the spectral decomposition

theorem.
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Theorem 2.1 [10, Theorem III.1.2] Suppose that A = (V, ◦, 〈·, ·〉V) is a Euclidean Jor-

dan algebra with rank q. Then for each x ∈ V, there exist a Jordan frame {c1, c2, · · · , cq}
and real numbers λ1(x), λ2(x), · · · , λq(x) such that x =

∑q
j=1 λj(x)cj.

The numbers λj(x) (counting multiplicities), which are uniquely determined by x, are

called the eigenvalues of x. In the sequel, we write the maximum eigenvalue and the

minimum eigenvalue of x as λmax(x) and λmin(x), respectively. Furthermore, the trace

and the determinant of x, denoted by tr(x) and det(x), respectively, are defined as

tr(x) :=
∑q

j=1 λj(x) and det(x) :=
∏q

j=1 λj(x).

By [10, Proposition III.1.5], a Jordan algebra (V, ◦) over R with a unit element e ∈ V
is Euclidean if and only if the symmetric bilinear form tr(x ◦ y) is positive definite.

Therefore, we may define an inner product 〈·, ·〉 on V by

〈x, y〉 := tr(x ◦ y), ∀x, y ∈ V.

In addition, we let ‖ · ‖V be the norm on V induced by the inner product 〈·, ·〉, i.e.,

‖x‖V :=
√
〈x, x〉 =

(
q∑
j=1

λ2
j(x)

)1/2

, ∀x ∈ V.

The Jordan product “◦” in Lorentz algebra is not associative, which is the main

reason of complication in the analysis of SOC. For each x = (x1, x2) ∈ R×Rn−1, define

the matrix Lx by

Lx :=

[
x1 xT2
x2 x1I

]
,

which can be viewed as a linear mapping from Rn to Rn with the following properties.

Property 2.1 (a) Lxy = x ◦ y and Lx+y = Lx + Ly for any y ∈ Rn.

(b) x ∈ Kn ⇐⇒ Lx � O and x ∈ int(Kn)⇐⇒ Lx � O.

(c) Lx is invertible whenever x ∈ int(Kn) with the inverse L−1
x given by

L−1
x =

1

det(x)

 x1 −xT2
−x2

det(x)

x1

I +
x2x

T
2

x1

 ,
where det(x) := x2

1 − ‖x2‖2 denotes the determinant of x.

We next recall from [11] that each x = (x1, x2) ∈ R×Rn−1 admits a spectral factor-

ization associated with Kn, of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x , (3)
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where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are the spectral values and the associated spectral vectors

of x, respectively, defined by

λi(x) = x1 + (−1)i‖x2‖,

u(i)
x =


1

2

(
1, (−1)i

x2

‖x2‖

)
, if x2 6= 0,

1

2

(
1, (−1)iw

)
, if x2 = 0,

(4)

for i = 1, 2, with w being any vector in Rn−1 satisfying ‖w‖ = 1. If x2 6= 0, the

factorization is unique.

For any function f : R→ R, we define a function on Rn associated with Kn (n ≥ 1)

by

f soc(x) := f(λ1(x))u(1)
x + f(λ2(x))u(2)

x , (5)

where λ1(x), λ2(x), u
(1)
x , u

(2)
x are the spectral values and vectors of x in (4). The cases of

f(x) = x1/2, x2 have some properties which are summarized as follows.

Property 2.2 For any x = (x1, x2) ∈ R × Rn−1, let λ1(x), λ2(x) and u
(1)
x , u

(2)
x be the

spectral values and the associated spectral vectors. Then, the following results holds.

(a) x ∈ Kn ⇐⇒ 0 ≤ λ1(x) ≤ λ2(x) and x ∈ int(Kn)⇐⇒ 0 < λ1(x) ≤ λ2(x).

(b) x2 = (λ1(x))2 · u(1)
x + (λ2(x))2 · u(2)

x ∈ Kn for any x ∈ Rn.

(c) If x ∈ Kn, then x1/2 =
√
λ1(x) · u(1)

x +
√
λ2(x) · u(2)

x ∈ Kn.

3 The convexity of function associated with SOC

The functions as below in Property 3.1 are all convex and usually employed as penalty

and barrier functions when solving SDP [1, 2]. In this section, we wish to know whether

such penalty and barrier functions are still convex in SOC case. Some of them were

studied in [1], however, we provide different proofs here.

Property 3.1 The following functions associated with Sn+ are convex.

(a) F1(X) = − ln(det(−X)) for all X ≺ O.

(b) F2(X) = − ln(det(I −X)) for all X ≺ O.

(c) F3(X) = tr(exp(X)) for all X ∈ Sn.

(d) F4(X) = tr(−X−1) for all X ≺ O.
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(e) F5(X) = tr((I −X)−1 ◦X) for all X ≺ I.

(f) F6(X) = ln(det(I + exp(X))) for all X ∈ Sn.

(g) F7(X) = tr

(
X + (X2 + 4I)1/2

2

)
for all X ∈ Sn.

Following are some tools that we will use in the proof of Proposition 3.1.

Lemma 3.1 For any nonzero vector x ∈ Rn, the matrix xxT is positive semidefinite.

Moreover, all eigenvalues of the matrix xxT are ‖x‖2 and 0 with multiplicity n− 1.

Proof. For any vector d ∈ Rn, we have dT (xxT )d = (dTx)(xTd) = (dTx)2 ≥ 0. Hence

xxT is positive semidefinite. Next we calculate the eigenvalues of the matrix xxT .

det
(
xxT − λI

)
=

∣∣∣∣∣∣∣∣∣∣∣

x2
1 − λ x1x2 x1x3 · · · x1xn
x2x1 x2

2 − λ x2x3 · · · x2xn
x3x1 x3x2 x2

3 − λ · · · x3xn
...

...
...

. . .
...

xnx1 xnx2 xnx3 · · · x2
n − λ

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

x2
1 − λ x2

2 x2
3 · · · x2

n

x2
1 x2

2 − λ x2
3 · · · x2

n

x2
1 x2

2 x2
3 − λ · · · x2

n
...

...
...

. . .
...

x2
1 x2

2 x2
3 · · · x2

n − λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
(x2

1 + x2
2 + · · ·+ x2

n)− λ
)
·

∣∣∣∣∣∣∣∣∣∣∣

1 x2
2 x2

3 · · · x2
n

1 x2
2 − λ x2

3 · · · x2
n

1 x2
2 x2

3 − λ · · · x2
n

...
...

...
. . .

...

1 x2
2 x2

3 · · · x2
n − λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
(x2

1 + x2
2 + · · ·+ x2

n)− λ
)
·

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

1 −λ 0 · · · 0

1 0 −λ · · · 0
...

...
...

. . .
...

1 0 0 · · · −λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
(x2

1 + x2
2 + · · ·+ x2

n)− λ
)
· (−λ)n−1.

This shows that all eigenvalues of the matrix xxT are ‖x‖2 and 0 with multiplicity n− 1.

2

7



Lemma 3.2 Let λ be an eigenvalue of the matrix M , then λ+ k is an eigenvalue of the

matrix (M + kI).

Lemma 3.3 [13, Theorem 7.7.6] Suppose that a symmetric matrix is partitioned as[
A B

BT C

]
, where A and C are square. Then this matrix is positive definite if and

only if A � O and C � BTA−1B.

Lemma 3.4 Suppose that a symmetric matrix is partitioned as a b
xT

‖x‖

b
x

‖x‖
cI + (a− c) xx

T

‖x‖2

 =

[
A B

BT C

]
, (6)

where a, b, c ∈ R, x ∈ Rn, I ∈ Rn×n. Then this matrix is positive definite if and only if

a > 0, c > 0 and a2 − b2 > 0.

Proof. From Lemma 3.3, this matrix is positive definite if and only if A � O and

C � BTA−1B. Since a ∈ R, a > 0 implies A � O On the other hand,

AC −BTB = a

(
cI + (a− c) xx

T

‖x‖2

)
− b2 xx

T

‖x‖2

= acI +
(
a2 − ac

) xxT
‖x‖2

− b2 xx
T

‖x‖2

= acI +
(
a2 − ac− b2

) xxT
‖x‖2

= M,

where we denote the whole matrix by M . From Lemma 3.1, we know that xxT is positive

semidefinite with only one nonzero eigenvalue ‖x‖2. From Lemma 3.2, all the eigenvalues

of the matrix M are ac+
a2 − ac− b2

‖x‖2
· ‖x‖2 = a2 − b2 and ac with multiplicity of n− 1,

which are all positive. This shows C � BTA−1B and the proof is complete. 2

Lemma 3.5 [11, Proposition 3.2]Let x = (x1, x2) ∈ R×Rn−1 and f : R→ R.

(a) If f(t) = exp(t), then

f soc(x) = exp(x) =

 exp(x1)

(
cosh(‖x2‖), sinh(‖x2‖) ·

x2

‖x2‖

)
, if x2 6= 0,

exp(x1)(1, 0), if x2 = 0,

where cosh(α) = (exp(α) + exp(−α))/2 and sinh(α) = (exp(α) − exp(−α))/2 for

α ∈ R.
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(b) If f(t) = ln(t) and x ∈ int(Kn), then

f soc(x) = ln(x) =


1

2

(
ln(x2

1 − ‖x2‖2), ln
(
x1 + ‖x2‖
x1 − ‖x2‖

)
· x2

‖x2‖

)
, if x2 6= 0,

ln(x1)(1, 0), if x2 = 0.

Property 3.2 Let S be a nonempty open convex set in Rn, and let f : S → R.

(1) (First-order condition) [3, Theorem 3.3.3] Suppose f is differentiable on S. Then

f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y ∈ S.

(2) (Second-order condition) [3, Theorem 3.3.7] Suppose f is twice differentiable on

S, that is, its Hessian or second derivative ∇2f(x) exists. Then f is convex if and

only if

∇2f(x) � O, ∀x ∈ S.

Property 3.3 [5, Proposition 4] For any f : R→ R, the following result hold:

(a) f soc is differentiable at an x = (x1, x2) ∈ R×Rn−1 with spectral values λ1, λ2 if and

only if f is differentiable at λ1, λ2. Moreover,

∇f soc(x) = f ′(x1)I

if x2 = 0, and otherwise

∇f soc(x) =

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2

 ,

where a =
1

2
(f ′(λ2) + f ′(λ1)) , b =

1

2
(f ′(λ2)− f ′(λ1)) and c =

f(λ2)− f(λ1)

λ2 − λ1

.

(b) f soc is differentiable if and only if f is differentiable.

Lemma 3.6 For any x = (x1, x2) ∈ R×Rn−1, we define w, z : Rn → Rn by

w = (w1, w2) = (w1(x), w2(x)) = w(x) := x2 + 4e,

z = (z1, z2) = (z1(x), z2(x)) = z(x) := (x2 + 4e)
1/2
.

(7)
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Then z(x) is differentiable. Moreover, ∇z(x) = LxL
−1
z , where L−1

z = (1/
√
w1)I if w2 = 0,

and otherwise

L−1
z =

 a b
wT2
‖w2‖

b
w2

‖w2‖
cI + (a− c)w2w

T
2

‖w2‖2


with

a =
1

2

(
1√
λ2(w)

+
1√
λ1(w)

)
,

b =
1

2

(
1√
λ2(w)

− 1√
λ1(w)

)
,

c =
2√

λ2(w) +
√
λ1(w)

.

Proof. We denote g(x) = (x)1/2, which implies z = w1/2 = g(w(x)). Since g(·) = (·)1/2 is

continuously differentiable on R++, by Property 3.3(b), its corresponding SOC-function

g(x) = (x)1/2 is continuously differentiable on int(Kn). Then, for w2 6= 0, Property 3.3(a)

and the chain rule give

∇z(x) = ∇w(x) · ∇g(w) = 2Lx ·
1

2
L−1
w1/2 = Lx · L−1

z ,

where ∇g(w) = 1
2
L−1
w1/2 is from [11, page 454]. The case for w2 = 0 is clear. Thus, the

proof is complete. 2

Now, we are in position to prove the convexity of following functions. Our main

method is to prove that the Hessian matrix of following functions are positive semidefinite.

Proposition 3.1 The following functions associated with SOC are all convex.

(a) f1(x) = − ln(det(−x)), for all x ≺Kn 0.

(b) f2(x) = − ln(det(e− x)), for all x ≺Kn e.

(c) f3(x) = tr(exp(x)), for all x ∈ Rn.

(d) f4(x) = tr(−x−1), for all x ≺Kn 0.

(e) f5(x) = tr((e− x)−1 ◦ x), for all x ≺Kn e.

(f) f6(x) = ln(det(e+ exp(x))), for all x ∈ Rn.

(g) f7(x) = tr

(
x+ (x2 + 4e)1/2

2

)
, for all x ∈ Rn.
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Proof. (a) f1(x) = − ln(det(−x)) = − ln(det(x)), from [7, Proposition 2.4], ln(det(x))

is concave for all x �Kn 0. This implies that f1(x) is convex for all x ≺Kn 0.

(b) Since f2(x) = f1(x− e), f2(x) is convex when x ≺Kn e.

(c) From Lemma 3.5(a), we have

f3(x) =

{
exp(x1) cosh(‖x2‖) if x2 6= 0,

exp(x1) if x2 = 0.

Case(1): x2 6= 0. Since Rn is a convex set, it suffices to show that ∇2f3(x) is positive

definite for all x ∈ Rn. From direct computation, we have

∇f3(x) =

[
2 exp(x1) cosh(‖x2‖)

2 exp(x1) sinh(‖x2‖)
x2

‖x2‖

]

= 2 exp(x1)

[
cosh(‖x2‖)

sinh(‖x2‖)
x2

‖x2‖

]
,

and

∂2f3

∂x2
1

= 2 exp(x1) cosh(‖x2‖),

∂2f3

∂x1∂x2

= 2 exp(x1) sinh(‖x2‖)
xT2
‖x2‖

,

∂2f3

∂x2∂x1

= 2 exp(x1) sinh(‖x2‖)
x2

‖x2‖
,

∂2f3

∂x2
2

= 2 exp(x1)

(
cosh(‖x2‖) x2

‖x2‖ · ‖x2‖ − sinh(‖x2‖) x2

‖x2‖

‖x2‖2
xT2 +

sinh(‖x2‖)
‖x2‖

I

)

= 2 exp(x1)

(
sinh(‖x2‖)
‖x2‖

I +

(
cosh(‖x2‖)−

sinh(‖x2‖)
‖x2‖

)
x2x

T
2

‖x2‖2

)
.

Therefore,

∇2f3(x) = 2 exp(x1) ·

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2


= 2 exp(x1) ·M,

where a = cosh(‖x2‖), b = sinh(‖x2‖) and c =
sinh(‖x2‖)
‖x2‖

. Since a > 0, c > 0 and

a2 − b2 = cosh2(‖x2‖) − sinh2(‖x2‖) = 1 > 0, from Lemma 3.4, we have M is positive

definite. Also notice that exp(x1) > 0, thus ∇2f3(x) is positive definite for all x ∈ Rn.

Case(2): x2 = 0. It is not hard to compute

∇2f3(x) =

[
2 exp(x1) 0T

0 O

]
,
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which is positive semidefinite. Hence f3(x) is convex for all x ∈ Rn.

(d) From direct computation, we have −x−1 =
−1

x2
1 − ‖x2‖2

(x1,−x2). Hence, f4(x) =

tr(−x−1) =
−2x1

x2
1 − ‖x2‖2

. Since int(−Kn) is a convex set, it suffices to show that ∇2f4(x)

is positive definite for all x ∈ int(−Kn). From direct computation, we have

∇f4(x) = −2


(x2

1 − ‖x2‖2)− 2x1x1

(x2
1 − ‖x2‖2)2

−x1(−2x2)

(x2
1 − ‖x2‖2)2


=

2

(x2
1 − ‖x2‖2)2

[
x2

1 + ‖x2‖2
−2x1x2

]
,

and

∂2f4

∂x2
1

=
2

(x2
1 − ‖x2‖2)4

(
(x2

1 − ‖x2‖2)2 · 2x1 − (x2
1 + ‖x2‖2) · 2(x2

1 − ‖x2‖2) · 2x1

)
=

−4

(x2
1 − ‖x2‖2)3

· x1(x
2
1 + 3‖x2‖2),

∂2f4

∂x1∂x2

=
2

(x2
1 − ‖x2‖2)4

(
(x2

1 − ‖x2‖2)2 · (−2xT2 )− (−2x1x
T
2 ) · 2(x2

1 − ‖x2‖2) · 2x1

)
=

4

(x2
1 − ‖x2‖2)3

(3x2
1 + ‖x2‖2)xT2 ,

∂2f4

∂x2∂x1

=
4

(x2
1 − ‖x2‖2)3

(3x2
1 + ‖x2‖2)x2,

∂2f4

∂x2
2

=
2

(x2
1 − ‖x2‖2)4

(
(x2

1 − ‖x2‖2)2 · (−2x1I)− (−2x1x2) · 2(x2
1 − ‖x2‖2) · (−2xT2 )

)
=

−4

(x2
1 − ‖x2‖2)3

· x1

(
(x2

1 − ‖x2‖2)I + 4x2x
T
2

)
.

Therefore,

∇2f4(x) =
4

(x2
1 − ‖x2‖2)3

·
[
A B

BT C

]
,

where

A = −x1(x
2
1 + 3‖x2‖2),

B = (3x2
1 + ‖x2‖2)xT2 ,

C = −x1

(
(x2

1 − ‖x2‖2)I + 4x2x
T
2

)
.

Since x ∈ int(−Kn), we have
4

(x2
1 − ‖x2‖2)3

> 0. From Lemma 3.3, it suffices to show

that A � O (here A is a scalar) and C � BTA−1B. First, A > 0 since x ≺Kn 0⇒ x1 < 0.
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Second, we show that C � BTA−1B.

AC −BTB = x2
1(x

2
1 + 3‖x2‖2)

(
(x2

1 − ‖x2‖2)I + 4x2x
T
2

)
−
(
3x2

1 + ‖x2‖2
)2
x2x

T
2

= (x2
1 − ‖x2‖2)

(
x2

1(x
2
1 + 3‖x2‖2)I − (5x2

1 − ‖x2‖2)x2x
T
2

)
= (x2

1 − ‖x2‖2) ·M,

where we denote the whole matrix by M . From Lemma 3.1, we know that xxT is positive

semidefinite with only one nonzero eigenvalue ‖x‖2. From Lemma 3.2, all the eigenvalues

of the matrix M are (x2
1 + 3‖x2‖2) with multiplicity n− 2 and

x2
1(x

2
1 + 3‖x2‖2)− (5x2

1 − ‖x2‖2) · ‖x2‖2

= x4
1 + 3x2

1‖x2‖2 − 5x2
1‖x2‖2 + ‖x2‖4

= (x2
1 − ‖x2‖2)2,

they are all positive. Thus, M � O. This implies AC − BTB is positive definite and

hence C � BTA−1B. Thus, f4(x) is (strictly) convex for all x ≺Kn 0.

(e) From direct computation, we have

(e− x)−1 ◦ x = (1− x1,−x2)
−1 ◦ (x1, x2)

=
1

(1− x1)2 − ‖ − x2‖2
(1− x1, x2) ◦ (x1, x2)

=
1

(1− x1)2 − ‖x2‖2
(
x1(1− x1) + ‖x2‖2, x1x2 + (1− x1)x2

)
=

1

(1− x1)2 − ‖x2‖2
(
x1 − x2

1 + ‖x2‖2, x2

)
.

Hence,

f5(x) = tr
(
(e− x)−1 ◦ x

)
= 2 · x1 − x2

1 + ‖x2‖2

(1− x1)2 − ‖x2‖2

= 2 · (‖x2‖2 − (x1 − 1)2) + (1− x1)

(1− x1)2 − ‖x2‖2

= 2 ·
(

1− x1

(1− x1)2 − ‖x2‖2
− 1

)
.

Let S = {x | x ≺Kn e, x ∈ Rn}. Since S is a convex set, it suffices to show that ∇2f5(x)

is positive definite for all x ∈ S. From direct computation, we have

∇f5(x) = 2


((1− x1)

2 − ‖x2‖2) · (−1)− (1− x1) · (−2(1− x1))

((1− x1)2 − ‖x2‖2)2

−(1− x1)(−2x2)

((1− x1)2 − ‖x2‖2)2


=

2

((1− x1)2 − ‖x2‖2)2

[
(1− x1)

2 + ‖x2‖2
2(1− x1)x2

]
,
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and

∂2f5

∂x2
1

=
2

((1− x1)2 − ‖x2‖2)4

( (
(1− x1)

2 − ‖x2‖2
)2 · (−2)(1− x1)

−
(
(1− x1)

2 + ‖x2‖2
)
· 2
(
(1− x1)

2 − ‖x2‖2
)
· (−2)(1− x1)

)
=

4

((1− x1)2 − ‖x2‖2)3
(1− x1)((1− x1)

2 + 3‖x2‖2),

∂2f5

∂x1∂x2

=
2

((1− x1)2 − ‖x2‖2)4

( (
(1− x1)

2 − ‖x2‖2
)2 · (−2xT2 )

− 2(1− x1)x
T
2 · 2

(
(1− x1)

2 − ‖x2‖2
)
· (−2)(1− x1)

)
=

4

((1− x1)2 − ‖x2‖2)3

(
3(1− x1)

2 + ‖x2‖2
)
xT2 ,

∂2f5

∂x2∂x1

=
4

((1− x1)2 − ‖x2‖2)3

(
3(1− x1)

2 + ‖x2‖2
)
x2,

∂2f5

∂x2
2

=
2

((1− x1)2 − ‖x2‖2)4

( (
(1− x1)

2 − ‖x2‖2
)2 · 2(1− x1)I

− 2(1− x1)x2 · 2
(
(1− x1)

2 − ‖x2‖2
)
· (−2xT2 )

)
=

4

((1− x1)2 − ‖x2‖2)3
(1− x1)

((
(1− x1)

2 − ‖x2‖2
)
I + 4x2x

T
2

)
.

Therefore,

∇2f5(x) =
4

((1− x1)2 − ‖x2‖2)3
·
[
A B

BT C

]
,

where

A = (1− x1)((1− x1)
2 + 3‖x2‖2),

B =
(
3(1− x1)

2 + ‖x2‖2
)
xT2 ,

C = (1− x1)
((

(1− x1)
2 − ‖x2‖2

)
I + 4x2x

T
2

)
.

Since x ∈ S, we have
4

((1− x1)2 − ‖x2‖2)3
> 0. From Lemma 3.3, it suffices to show that A � O (here A is a

scalar) and C � BTA−1B First, A > 0 since x ≺Kn e ⇒ 1 − x1 > 0. Second, we show

that C � BTA−1B.

AC −BTB = (1− x1)
2((1− x1)

2 + 3‖x2‖2)
((

(1− x1)
2 − ‖x2‖2

)
I + 4x2x

T
2

)
−
(
3(1− x1)

2 + ‖x2‖2
)2
x2x

T
2

=
(
(1− x1)

2 − ‖x2‖2
) (

(1− x1)
2((1− x1)

2 + 3‖x2‖2)I

− (5(1− x1)
2 − ‖x2‖2)x2x

T
2

)
=
(
(1− x1)

2 − ‖x2‖2
)
·M,
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where we denote the whole matrix by M . From Lemma 3.1, we know that xxT is positive

semidefinite with only one nonzero eigenvalue ‖x‖2. From Lemma 3.2, all the eigenvalues

of the matrix M are ((1− x1)
2 + 3‖x2‖2) with multiplicity n− 2 and

(1− x1)
2((1− x1)

2 + 3‖x2‖2)− (5(1− x1)
2 − ‖x2‖2) · ‖x2‖2

= (1− x1)
4 + 3(1− x1)

2‖x2‖2 − 5(1− x1)
2‖x2‖2 + ‖x2‖4

=
(
(1− x1)

2 − ‖x2‖2
)2
,

they are all positive. Thus, M is positive definite. This implies AC − BTB is positive

definite and hence C � BTA−1B. Thus, f5(x) is (strictly) convex for all x ≺Kn e.

(f) Similarly as (c), we consider following two cases:

Case(1): x2 6= 0. From Lemma 3.5(a), we have

e+ exp(x) =

(
1 + exp(x1) cosh(‖x2‖), exp(x1) sinh(‖x2‖)

x2

‖x2‖

)
.

Here we denote eα = exp(α),∀α ∈ R for convenience. Therefore,

det(e+ exp(x)) = (1 + ex1 cosh(‖x2‖))2 −
∥∥∥∥ex1 sinh(‖x2‖)

x2

‖x2‖

∥∥∥∥2

=
(
1 + ex1+‖x2‖

) (
1 + ex1−‖x2‖

)
,

and

f6(x) = ln(det(e+ exp(x)))

= ln
((

1 + ex1+‖x2‖
) (

1 + ex1−‖x2‖
))

= ln
(
1 + ex1+‖x2‖

)
+ ln

(
1 + ex1−‖x2‖

)
.

Since Rn is a convex set, it suffices to show that∇2f6(x) is positive definite for all x ∈ Rn.

From direct computation, we have

∇f6(x) =


ex1+‖x2‖

1 + ex1+‖x2‖
+

ex1−‖x2‖

1 + ex1−‖x2‖(
ex1+‖x2‖

1 + ex1+‖x2‖
− ex1−‖x2‖

1 + ex1−‖x2‖

)
x2

‖x2‖


=

 2− 1

1 + ex1+‖x2‖
− 1

1 + ex1−‖x2‖(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
x2

‖x2‖

 ,

15



and

∂2f6

∂x2
1

=
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2 ,

∂2f6

∂x1∂x2

=

(
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 −

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)
xT2
‖x2‖

,

∂2f6

∂x2∂x1

=

(
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 −

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)
x2

‖x2‖
,

∂2f6

∂x2
2

=

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
1

‖x2‖
I

+
1

‖x2‖2

(
‖x2‖

(
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)
x2

‖x2‖

−
(

1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
x2

‖x2‖

)
xT2

=
1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
I

+

((
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)

− 1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

))
x2x

T
2

‖x2‖2
.

Therefore,

∇2f6(x) =

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2

 ,
with

a =
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2 ,

b =
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 −

ex1−‖x2‖

(1 + ex1−‖x2‖)
2 ,

c =
1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
.
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From Lemma 3.4, it suffices to show that a > 0, c > 0 and a2 − b2 > 0. Note that a > 0

is obviously, now we proof c > 0 and a2 − b2 > 0. From direct computation, we have

c =
1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
=

ex1
(
e‖x2‖ − e−‖x2‖

)
‖x2‖ (1 + ex1+‖x2‖) (1 + ex1−‖x2‖)

> 0,

(8)

and

a2 − b2 = (a+ b)(a− b)

=
4 · e2x1

(1 + ex1+‖x2‖)
2

(1 + ex1−‖x2‖)
2

> 0,

where the last inequality in (8) is because of the property of exponential function. Thus

M is positive definite and ∇2f6(x) is positive definite for all x ∈ Rn.

Case(2): x2 = 0. From Lemma 3.5, we have e + exp(x) = (1 + ex1 , 0) . Therefore,

f6(x) = ln(det(e+ exp(x)) = 2 ln (1 + ex1) . It is not hard to compute that

∇2f6(x) =

 2ex1

(1 + ex1)2 0T

0 O

 ,
which is positive semidefinite Hence f6(x) is convex for all x ∈ Rn.

(g) Let w, z be defined as in (7) and λ1 = λ1(w), λ2 = λ2(w) for convenience. Then

f7(x) = tr

(
x+ z(x)

2

)
. From direct computation, we have w = (w1, w2) with w1 =

x2
1 + ‖x2‖2 + 4 and w2 = 2x1x2.

Case(1): w2 6= 0. Since Rn is a convex set, it suffices to show that ∇2f7(x) is positive

definite for all x ∈ Rn. Note that tr

(
x+ z(x)

2

)
= tr

(x
2

)
+tr

(
z(x)

2

)
, and ∇2tr

(x
2

)
=

0, we only consider the Hessian of tr

(
z(x)

2

)
. Moreover, we assume x1 ≥ 0. The case

x1 < 0 is similar as above, we omit here. Therefore, from direct computation, we have

λ1 = λ1(w) = w1 − ‖w2‖ = (x1 − ‖x2‖)2 + 4,

λ2 = λ2(w) = w1 + ‖w2‖ = (x1 + ‖x2‖)2 + 4,

and

∇x1(
√
λ1) =

x1 − ‖x2‖√
λ1

, ∇x2(
√
λ1) =

−(x1 − ‖x2‖)√
λ1

x2

‖x2‖
,

∇x1(
√
λ2) =

x1 + ‖x2‖√
λ2

, ∇x2(
√
λ2) =

x1 + ‖x2‖√
λ2

x2

‖x2‖
.

(9)
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By chain rule and Lemma 3.6, we have

∇f7(x) = ∇z(x) · ∇tr

(
z(x)

2

)
= Lx · L−1

z ·
[

1

0

]

=

[
x1 xT2
x2 x1I

]
· 1

2


1√
λ2

+
1√
λ1(

1√
λ2

− 1√
λ1

)
w2

‖w2‖



=
1

2

 x1

(
1√
λ2

+
1√
λ1

)
+

(
1√
λ2

− 1√
λ1

)
xT2w2

‖w2‖(
1√
λ2

+
1√
λ1

)
x2 + x1

(
1√
λ2

− 1√
λ1

)
w2

‖w2‖



=
1

2

 x1

(
1√
λ2

+
1√
λ1

)
+

(
1√
λ2

− 1√
λ1

)
‖x2‖(

1√
λ2

+
1√
λ1

)
x2 + x1

(
1√
λ2

− 1√
λ1

)
x2

‖x2‖



=
1

2


x1 + ‖x2‖√

λ2

+
x1 − ‖x2‖√

λ1(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
x2

‖x2‖

 .
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Using (9), we can compute

∂2f7

∂x2
1

=

√
λ2 − (x1 + ‖x2‖) · x1+‖x2‖√

λ2

λ2

+

√
λ1 − (x1 − ‖x2‖) · x1−‖x2‖√

λ1

λ1

=
4

λ2

√
λ2

+
4

λ1

√
λ1

,

∂2f7

∂x1∂x2

=

(√
λ2 − (x1 + ‖x2‖) · x1+‖x2‖√

λ2

λ2

−
√
λ1 − (x1 − ‖x2‖) · x1−‖x2‖√

λ1

λ1

)
xT2
‖x2‖

=

(
4

λ2

√
λ2

− 4

λ1

√
λ1

)
xT2
‖x2‖

,

∂2f7

∂x2∂x1

=

(
4

λ2

√
λ2

− 4

λ1

√
λ1

)
x2

‖x2‖
,

∂2f7

∂x2
2

=

(√
λ2 − (x1 + ‖x2‖) · x1+‖x2‖√

λ2

λ2

+

√
λ1 − (x1 − ‖x2‖) · x1−‖x2‖√

λ1

λ1

)
x2x

T
2

‖x2‖2

+

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
· 1

‖x2‖2

(
‖x2‖I −

1

‖x2‖
x2x

T
2

)
=

1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
I +

(
4

λ2

√
λ2

+
4

λ1

√
λ1

− 1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

))
x2x

T
2

‖x2‖2
.

Therefore,

∇2f7(x) =

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2

 ,
with

a =
4

λ2

√
λ2

+
4

λ1

√
λ1

,

b =
4

λ2

√
λ2

− 4

λ1

√
λ1

,

c =
1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
.
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From Lemma 3.4, it suffices to show that a > 0, c > 0 and a2 − b2 > 0. Note that a > 0

is obviously, now we proof c > 0 and a2 − b2 > 0. From direct computation, we have

c =
1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
=

√
λ1(x1 + ‖x2‖)−

√
λ2(x1 − ‖x2‖)

‖x2‖ ·
√
λ1λ2

> 0,

where the last inequality is because(√
λ1(x1 + ‖x2‖)

)2

−
(√

λ2(x1 − ‖x2‖)
)2

= 4
(
(x1 + ‖x2‖)2 − (x1 − ‖x2‖)2) > 0,

and

a2 − b2 = (a+ b)(a− b) =
64

λ1λ2

√
λ1λ2

> 0.

Thus M is positive definite and ∇2f7(x) is positive definite for all x ∈ Rn.

Case(2): w2 = 0. Since w2 = 2x1x2 = 0, we consider following two subcases:

Subcase(i): x2 = 0. From Lemma 3.6 and direct computation, we have

∇f7(x) = ∇z(x) · ∇tr

(
z(x)

2

)
= Lx · L−1

z ·
[

1

0

]
=

1
√
w1

[
x1 xT2
x2 x1I

]
·
[

1

0

]
=

1√
x2

1 + 4

[
x1

0

]
,

and

∇2f7(x) =

 4

(x2
1 + 4)3/2

0T

0 O

 .
Thus ∇2f7(x) is positive semidefinite for all x ∈ Rn.

Subcase(ii): x1 = 0. From Lemma 3.6 and direct computation, we have

∇f7(x) = ∇z(x) · ∇tr

(
z(x)

2

)
= Lx · L−1

z ·
[

1

0

]
=

1
√
w1

[
x1 xT2
x2 x1I

]
·
[

1

0

]
=

1√
‖x2‖2 + 4

[
0

x2

]
,
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and

∇2f7(x) =

 0 0T

0
1√

‖x2‖2 + 4
I − 1

(‖x2‖2 + 4)3/2
x2x

T
2

 .
Thus ∇2f7(x) is positive semidefinite for all x ∈ Rn and f7(x) is convex for all x ∈ Rn.

2

4 Equalities and Inequalities associated with SOC

Property 4.1 Let A,B ∈ Sn.

(a) If B � O, then λi(A) ≤ λi(A+B) for all i = 1, 2, · · · , n.

(b) λi(A) + λmin(B) ≤ λi(A+B) ≤ λi(A) + λmax(B) for all i = 1, 2, · · · , n.

(c) If A � O, B � O, then
∑n

i=1 λi(A)λn−i+1(B) ≤
∑n

i=1 λi(AB) ≤
∑n

i=1 λi(A)λi(B)

for all i = 1, 2, · · · , n.

(d) If A � O, B � O, then
λ2
i (AB)

λmax(A)λmax(B)
≤ λi(A)λi(B) ≤ λ2

i (AB)

λmin(A)λmin(B)
for all

i = 1, 2, · · · , n.

(e) If λi(A) and λi(B) are both arranged in increasing or decreasing order, then(
n∑
i=1

(λi(A)− λi(B))2

)1/2

≤ ‖A−B‖F .

Proof. These are all well-known results in matrix analysis, see [4, 13, 18]. In particular,

part(b) is known as Weyl’s Theorem. 2

Proposition 4.1 Let x = (x1, x2), y = (y1, y2) ∈ R×Rn−1.

(a) If y �Kn 0, then λi(x) ≤ λi(x+ y) for all i = 1, 2.

(b) λi(x) + λ1(y) ≤ λi(x+ y) ≤ λi(x) + λ2(y), for all i = 1, 2.

(c) If x �Kn 0, y �Kn 0, then λ1(x)λ2(y) + λ2(x)λ1(y) ≤ tr(x ◦ y) ≤ λ1(x)λ1(y) +

λ2(x)λ2(y).

(d) When n = 2, if x �Kn 0, y �Kn 0, then
λ2
i (x ◦ y)

λ2(x)λ2(y)
≤ λi(x)λi(y) ≤ λ2

i (x ◦ y)

λ1(x)λ1(y)
for

all i = 1, 2.
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(e) If λi(x) and λi(y) are both arranged in increasing or decreasing order, then(
2∑
i=1

(λi(x)− λi(y))2

)1/2

≤ ‖x− y‖V.

Proof. (a) First, we prove λ1(x + y) ≥ λ1(x). From direct computation and triangle’s

inequality, we have

λ1(x+ y)− λ1(x) = (x1 + y1 − ‖x2 + y2‖)− (x1 − ‖x2‖)
= y1 − ‖x2 + y2‖+ ‖x2‖
≥ y1 − (‖x2‖+ ‖y2‖) + ‖x2‖
= y1 − ‖y2‖
≥ 0,

where the last inequality is because of y �Kn 0. Second, we prove λ2(x + y) ≥ λ2(x).

From direct computation and triangle’s inequality, we have

λ2(x+ y)− λ2(x) = (x1 + y1 + ‖x2 + y2‖)− (x1 + ‖x2‖)
= y1 + ‖x2 + y2‖ − ‖x2‖
≥ y1 + (‖x2‖ − ‖y2‖)− ‖x2‖
= y1 − ‖y2‖
≥ 0.

(b) See [1, Prop. 3.1].

(c) See [7, Prop. 2.3].

(d) We prove the inequality by separating to four parts. First, we prove
λ2

1(x ◦ y)

λ2(x)λ2(y)
≤

λ1(x)λ1(y). Since x �Kn 0, y �Kn 0, we have λ1(x) = x1−|x2| > 0, λ2(x) = x1 + |x2| > 0,

λ1(y) = y1 − |y2| > 0 and λ2(y) = y1 + |y2| > 0. Thus,

λ2
1(x ◦ y)

λ2(x)λ2(y)
≤ λ1(x)λ1(y)⇐⇒ λ2

1(x ◦ y) ≤ det(x) det(y).

From direct computation, we have

det(x) det(y)− λ2
1(x ◦ y)

= (x2
1 − |x2|2) · (y2

1 − |y2|2)− (x1y1 + x2y2 − |x1y2 + y1x2|)2

= 2(x1y1 + x2y2) · |x1y2 + y1x2|
≥ 0,

where the last inequality is due to x1y1 > |x2y2| > −x2y2. Second, we prove
λ2

2(x ◦ y)

λ2(x)λ2(y)
≤

λ2(x)λ2(y). Since λ2(x ◦ y) = x1y1 + x2y2 + |x1y2 + y1x2| > 0, we have

λ2
2(x ◦ y)

λ2(x)λ2(y)
≤ λ2(x)λ2(y)⇐⇒ λ2(x ◦ y) ≤ λ2(x)λ2(y).
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From direct computation, we have

λ2(x)λ2(y)− λ2(x ◦ y)

= (x1 + |x2|) · (y1 + |y2|)− (x1y1 + x2y2 + |x1y2 + y1x2|)
= x1|y2|+ y1|x2| − |x1y2 + y1x2|+ |x2y2| − x2y2

≥ 0.

Third, we prove λ2(x)λ2(y) ≤ λ2
2(x ◦ y)

λ1(x)λ1(y)
. Since λ1(x) > 0 and λ1(y) > 0,

λ2(x)λ2(y) ≤ λ2
2(x ◦ y)

λ1(x)λ1(y)
⇐⇒ det(x) det(y) ≤ λ2

2(x ◦ y).

From direct computation, we have

λ2
2(x ◦ y)− det(x) det(y)

= (x1y1 + x2y2 + |x1y2 + y1x2|)2 − (x2
1 − |x2|2) · (y2

1 − |y2|2)
= 2

(
(x1y2 + y1x2)

2 + (x1y1 + x2y2) · |x1y2 + y1x2|
)

≥ 0.

Final, we prove λ1(x)λ1(y) ≤ λ2
1(x ◦ y)

λ1(x)λ1(y)
. Since λ1(x ◦ y) = x1y1 + x2y2 − |x1y2 + y1x2|

and (x1y1 + x2y2)
2− |x1y2 + y1x2|2 = (x2

1− x2
2)(y

2
1 − y2

2) > 0, therefore, λ1(x ◦ y) > 0 and

λ1(x)λ1(y) ≤ λ2
1(x ◦ y)

λ1(x)λ1(y)
⇐⇒ λ1(x)λ1(y) ≤ λ1(x ◦ y).

From direct computation, we have

λ1(x ◦ y)− λ1(x)λ1(y) = x1|y2|+ y1|x2| − |x1y2 + y1x2|+ x2y2 − |x2y2|. (10)

Here we consider two cases:

Case(1): x2y2 ≥ 0. Obviously, (10) is equal to 0, which is our desired result.

Case(2): x2y2 < 0. Without loss of generality, we assume x2 > 0, y2 < 0. If x1y2 +y1x2 ≥
0, from (10) we have

λ1(x ◦ y)− λ1(x)λ1(y) = −x1y2 + y1x2 − (x1y2 + y1x2) + x2y2 + x2y2

= 2y2(x2 − x1)

≥ 0.

Otherwise,

λ1(x ◦ y)− λ1(x)λ1(y) = −x1y2 + y1x2 + (x1y2 + y1x2) + x2y2 + x2y2

= 2x2(y2 + y1)

≥ 0.
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Hence we have λ1(x ◦ y)− λ1(x)λ1(y) ≥ 0.

(e) To see this, we calculate

2∑
i=1

(λi(x)− λi(y))2 = λ2
1(x) + λ2

2(x) + λ2
1(y) + λ2

2(y)− 2(λ1(x)λ1(y) + λ2(x)λ2(y))

= 2(x2
1 + ‖x2‖2) + 2(y2

1 + ‖y2‖2)− 4(x1y1 + ‖x2‖‖y2‖)
≤ 2(x2

1 + ‖x2‖2) + 2(y2
1 + ‖y2‖2)− 4(x1y1 + 〈x2, y2〉)

= 2
(
‖x‖2 + ‖y‖2 − 2〈x, y〉

)
= ‖x− y‖2V,

where the inequality is due to Cauchy’s inequality. Thus, the proof is complete. 2

Remark: Unlike Property 4.1(d) for matrix case, Proposition 4.1(d) does not hold for

general n ≥ 3. We give a counterexample below.

Example 4.1 Let x =

 3

−1

2

 and y =

 4

1

1

, then x �Kn 0, y �Kn 0. From direct

computation, we have x ◦ y =

 13

−1

11

. It is easy to verify that λ1(x) = 3−
√

5, λ2(x) =

3+
√

5, λ1(y) = 4−
√

2, λ2(y) = 4+
√

2, λ1(x◦y) = 13−
√

122 and λ2(x◦y) = 13+
√

122.

Therefore,
λ2

1(x ◦ y)

λ1(x)λ1(y)
; 1.93 < 1.97 ; λ1(x)λ1(y).

Property 4.2 (a) If A � O, then det(A) = exp(tr(lnA)).

(b) If A � O,B � O, then det(A+B)1/n ≥ det(A)1/n + det(B)1/n for any n ∈ N.

(c) If A � O, then det(A)1/m = min

{
tr(AB)

m
: B � O and det(B) = 1

}
.

(d) If A � O,B � O, then det(A+B) ≥ det(A) with equality if and only if B = O.

(e) If A � O,B � O and A − B � O, then detA ≥ detB with equality if and only if

A = B.

Proof. Again, these are all well-known results in matrix analysis, see [4, 13, 18]. In

addition, part(b) is known as Minkowski inequality. 2

Proposition 4.2 (a) If x �Kn 0, then det(x) = exp(tr(ln x)).
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(b) If x �Kn 0, y �Kn 0, then det(x + y)1/n ≥ 41/n

2

(
det(x)1/n + det(y)1/n

)
for any

n ∈ N, n ≥ 2.

(c) If x �Kn 0, then det(x)1/2 = min

{
tr(x ◦ y)

2
: y �Kn 0 and det(y) = 1

}
.

(d) If x �Kn 0, y �Kn 0, then det(x+ y) ≥ det(x) with equality if and only if y = 0.

(e) If x �Kn 0, y �Kn 0 and x− y �Kn 0, then det(x) ≥ det(y) with equality if and only

if x = y.

Proof. (a) From Lemma 3.5(b) and the definition of tr(x), we have det(x) = exp(tr(ln x))

for all x �Kn 0.

(b) See [12, Prop. 3.2].

(c) Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn. Note that
tr(x ◦ y)

2
= x1y1 +

x2y2 + · · ·+ xnyn. Consider the minimization problem

min : x1y1 + x2y2 + · · ·+ xnyn
s.t. y1 > 0

y2
1 − (y2

2 + · · ·+ y2
n) = 1.

Use the method of Lagrange multiplier, we can change the minimization problem to

system of equations: 

y1 > 0

x1 = 2λy1

x2 = −2λy2
...

xn = −2λyn
y2

1 − (y2
2 + · · ·+ y2

n) = 1

(11)

Solve (11) by substitution, we have λ =

√
x2

1 − (x2
2 + · · ·+ x2

n)

2
=

det(x)1/2

2
and y1 =

x1

det(x)1/2
, yi =

−xi
det(x)1/2

for i = 2, · · · , n. Therefore, the optimal solution is det(x)1/2,

which is the desired result.

(d) Let x = (x1, x2), y = (y1, y2) ∈ R × Rn−1. Since x �Kn 0, y �Kn 0, we have

x1 > ‖x2‖, y1 ≥ ‖y2‖ and

x1y1 ≥ ‖x2‖‖y2‖ ≥ |〈x2, y2〉|. (12)

Note that the first equality hold in (12) if and only if y1 = ‖y2‖ = 0, i.e. y = 0. Therefore,

det(x+ y)− det(x) = (x1 + y1)
2 − ‖x2 + y2‖2 − (x2

1 − ‖x2‖2)
= 2(x1y1 − 〈x2, y2〉)
≥ 0,
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where the last equality hold in if and only if y = 0.

(e) Since x �Kn 0, y �Kn 0 and x− y �Kn 0, we have x1 > ‖x2‖, y1 > ‖y2‖ and

x1 + y1 > ‖x2‖+ ‖y2‖,
x1 − y1 ≥ ‖x2 − y2‖ ≥ ‖x2‖ − ‖y2‖.

(13)

Therefore,

det(x)− det(y) = (x2
1 − ‖x2‖2)− (y2

1 − ‖y2‖2)
= (x1 + y1)(x1 − y1)− (‖x2‖+ ‖y2‖)(‖x2‖ − ‖y2‖)
≥ 0,

where the last equality hold in if and only if x = y. 2

Remark: The inequality in Property 4.2(b) is the famous Minkowski inequality in matrix

analysis. However, such inequality has slightly different form when it is extended to SOC

case as shown in Proposition 4.2(b). More specifically, it is not true that

det(x+ y)1/n ≥
(
det(x)1/n + det(y)1/n

)
∀x �Kn 0, y �Kn 0.

On the other hand, the formula in Property 4.2(c) does not hold for general m 6= 2, when

it is considered in SOC case as seen in Proposition 4.2(c). In fact, when m = 2, we have

the minimization problem

min :
2

m
(x1y1 + x2y2 + · · ·+ xnyn)

s.t. y1 > 0

y2
1 − (y2

2 + · · ·+ y2
n) = 1.

Using same method, we can get the optimal solution
2

m
det(x)1/2 6= det(x)1/m.

5 Final Remarks

In this paper, we have investigated: to what extent are positive semidefinite cone and

second-order cone like? We show that they share many similarities, but still have some

differences. We believe that such study will be helpful for designing solution methods

for SDP and SOCP. There have some interesting directions to be explored along this

topic. It is well known that the adjoint X∗ of a symmetric matrix X plays an important

role in matrix analysis. In fact, there are many matrix inequalities and matrix equations

which involve X∗. What is the corresponding role of x∗ (adjoint of x) in SOC case? On

the other hand, two matrices A and B are said to be similar if there exists an invertible

matrix S such that A = S−1BS. Such concept is crucial in the classification of matrices.

Can we define analogous concept of similarity of two vectors x and y associated with

SOC? We leave these as future research topics.
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To what extent are second-order cone and positive semidefinite
cone alike?

June 5, 2009

Abstract. The cone of positive semidefinite matrices (Sn+) and second-order cone (Kn)

are both self-dual and special cases of symmetric cones. Each of them play an important

role in semidefinite programming (SDP) and second-order cone programming (SOCP),

respectively. It is known that an SOCP problem can be viewed as an SDP problem via

certain relation between Sn+ and Kn. Nonetheless, most analysis used for dealing SDP can

not carried over to SOCP due to some difference, for instance, the matrix multiplication

is associative for Sn+ whereas the Jordan product is not for Kn. In this paper, we try to

have a thorough study on the similarity and difference between these two cones which

provide theoretical for further investigation of SDP and SOCP.

Key words. Second-order cone, convex function, monotone function, positive semidefi-

nite matrix, spectral decomposition.

1 Introduction

The second-order cone(SOC) in Rn, also called Lorentz cone, is defined by

Kn = {x = (x1, x2) ∈ R×Rn−1 : ‖x2‖ ≤ x1}, (1)

where ‖ · ‖ denotes the Euclidean norm. If n = 1, let Kn denote the set of nonnegative

reals R+. For any x, y ∈ Rn, we write x �Kn y if x − y ∈ Kn; and write x �Kn y if

x − y ∈ int(Kn). In other words, we have x �Kn 0 if and only if x ∈ Kn and x �Kn 0 if

and only if x ∈ int(Kn). The relation �Kn is a partial ordering, but not a linear ordering

in Kn, i.e., there exist x, y ∈ Kn such that neither x �Kn y nor y �Kn x.

Let Sn be the set of n× n symmetirc matrices, we denote Sn+ the cone of all positive

semidefinite matrices. It is well known that the nonnegative orthant Rn
+, second-order

cone Kn, and positive semidefinite cone Sn+ are all self-dual, moreover, they all belong

to symmetric cones under Euclidean Jordan algebra. A Euclidean Jordan algebra is a

triple (V, ◦, 〈·, ·〉V), where (V, 〈·, ·〉V) is a finite dimensional inner product space over the

real field R and (x, y) 7→ x ◦ y : V×V→ V is a bilinear mapping satisfying the following

three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 := x ◦ x;
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(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y ∈ V.

In a Jordan algebra (V, ◦), x ◦ y is said to be the Jordan product of x and y. Note that

a Jordan product is not associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z may not hold in general.

We assume that there is an element e ∈ V such that x◦ e = x for all x ∈ V and call e the

unit element. Let ζ(x) be the degree of the minimal polynomial of x ∈ V, which can be

equivalently defined as ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
. Since

ζ(x) ≤ dim(V), the rank of (V, ◦) is well defined by q := max{ζ(x) : x ∈ V}. In a

Euclidean Jordan algebra A = (V, ◦, 〈·, ·〉V), we denote

K := {x2 : x ∈ V} (2)

by the set of squares. From [10, Theorem III.2.1], K is a symmetric cone. This means

that K is a self-dual closed convex cone, that is,

K = K∗ := {y ∈ V : 〈x, y〉 ≥ 0 ∀x ∈ K},

with nonempty interior int(K), and homogeneous, i.e. for any x, y ∈ int(K), there exists

an invertible linear transformation T : V→ V such that T (K) = K and T (x) = y.

Here are examples of symmetric cones. For V = Rn, let 〈·, ·〉V be the standard vector

inner product, namely,

〈x, y〉V :=
n∑
i=1

xiyi;

and the Jordan product be defined as

x ◦ y := (x1y1, x2y2, · · · , xnyn).

Then, K = Rn
+ is the cone of squares under this Euclidean Jordan algebra. For V = Rn,

we write x = (x1, x2) ∈ R × Rn−1. Let 〈·, ·〉V be the standard vector inner product and

the Jordan product be defined as

x ◦ y := (〈x, y〉, x1y2 + y1x2).

Then, the second-order cone Kn is the cone of squares under this Euclidean Jordan

algebra. For V = Sn, let 〈·, ·〉V be the trace inner product, namely,

〈X, Y 〉V := Trace(XY );

and the Jordan product defined as

X ◦ Y :=
1

2
(XY + Y X).

Then, the positive semedefinite cone Sn+ is the cone of squares under this Euclidean

Jordan algebra.
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Although symmetric cone provide a unified framework for Rn
+,Kn and Sn+, there exist

some differences among them. To name a few, (i) there are some “convex” merit func-

tions associated with Rn
+ become “non-convex” when associated with Kn; (ii) different

conditions are required to guarantee the coerciveness of some merit functions. Usually

stronger conditions are required in Kn and Sn+ than in Rn
+. To see these, we illustrate

more as below. The Fischer-Burmeister (FB) merit function [8, 9]

ψ
FB

(a, b) :=
1

2

∣∣∣√a2 + b2 − (a+ b)
∣∣∣2

is known as convex. But the FB merit function associated with SOC

ψ
FB

(x, y) :=
1

2

∥∥(x2 + y2)1/2 − (x+ y)
∥∥2

is not convex, see [7, Example 3.5]. Another example is the function |(φ
FB

(a, b))+|2 where

(t)+ := max{0, t} ∀t ∈ R. In addition, the Mangasarian-Solodov merit function [15]

φ
MS

(a, b) := ab+
1

2α

{
[(a− αb)+]2 − a2 + [(b− αa)+]2 − b2

}
,

where α > 0 ( 6= 1) is a constant, has the following property [14, Lemma 6.2]:

If (a→ −∞) or (b→ −∞) or (a→∞ and b→∞), then |φ
MS

(a, b)| → ∞.

However, the MS merit function associated with SOC

φ
MS

(x, y) := x ◦ y +
1

2α

{
[(x− αy)+]2 − x2 + [(y − αx)+]2 − y2

}
,

where α > 0 ( 6= 1) is a constant, needs stronger condition to satisfy the same property

[17, Prop. 4.2]: If {xk} ⊂ V and {yk} ⊂ V are the sequences satisfying one of the

following conditions:

(i) λmin(xk)→ −∞;

(ii) λmin(yk)→ −∞;

(iii) λmin(xk), λmin(yk) > −∞, λmax(xk), λmax(yk)→ +∞ and xk

‖xk‖ ◦
yk

‖yk‖ 9 0,

then ‖φ
MS

(xk, yk)‖ → ∞. It is remarked in [17] that the condition xk

‖xk‖ ◦
yk

‖yk‖ 9 0 is

required in Kn and Sn+ cases, though not needed in Rn
+ case.

The above illustrations indicate that some properties associated with Rn
+, Kn and

Sn+ may vary or change a bit, even though these three cones all belong to symmetric

cones. These various properties, due to the different structures of Rn
+, Kn and Sn+, have

great effect in analyzing optimization problems involved symmetric cones. It is well-

known that the analysis for optimization problems involved Rn
+ cannot be employed in
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analyzing optimization problems involved Kn and Sn+ since Kn and Sn+ are no longer

polyhedral sets. What about any relation between Kn and Sn+? In fact, it is known

that an SOCP problem can be viewed as an SDP problem via certain relation between

Kn and Sn+, see [5, 19]. Nonetheless, most analysis techniques used in solution methods

for semidefinite programming (SDP) and semidefinite complementarity problem (SDCP)

cannot be carried over to second-order cone programming (SOCP) and second-order cone

complementarity programming (SOCCP) because the following (see [6]):

(i) (Kn, ◦) is not closed, whereas Sn+ is.

(ii) (Kn, ◦) is not associative, whereas Sn+ is.

However, every x = (x1, x2) ∈ R×Rn−1 has a spectral decomposition (see Section 2) while

every X ∈ Sn has a decomposition X = P TDP . This offers a parallel analysis concept

under the sense that we have spectral values (vectors) of x v.s. eigenvalues (eigenvectors)

of X. We want to know whether there any other similarities and difference between Kn
and Sn+, which is the main purpose of this paper.

In what follows and throughout the paper, 〈·, ·〉 denotes the Euclidean inner product

and ‖ ·‖ is the Euclidean norm. The notation “:=” means “define”. For any f : Rn → R,

∇f(x) denotes the gradient of f at x and ∇2f(x) denotes the Hessian matrix of f at

x. For any symmetric matrices A,B ∈ Rn×n, we write A � B (respectively, A � B) to

mean A−B is positive semidefinite (respectively, positive definite). At last, ‖A‖F is the

Frobenius norm of matrix A.

2 Preliminary

In this section, we recall some concepts of Euclidean Jordan algebra that will be used in

the subsequent analysis.

An element c ∈ V is said to be an idempotent if c2 = c. Two idempotents c and d

are said to be orthogonal if c ◦ d = 0. One says that {c1, c2, · · · , ck} is a complete system

of orthogonal idempotents if

c2j = cj, cj ◦ ci = 0 if j 6= i for all j, i = 1, 2, · · · , k and
k∑
j=1

cj = e.

An idempotent is said to be primitive if it is nonzero and cannot be written as the sum of

two other nonzero idempotents. We call a complete system of orthogonal primitive idem-

potents a Jordan frame. Then, we have the second version of the spectral decomposition

theorem.
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Theorem 2.1 [10, Theorem III.1.2] Suppose that A = (V, ◦, 〈·, ·〉V) is a Euclidean Jor-

dan algebra with rank q. Then for each x ∈ V, there exist a Jordan frame {c1, c2, · · · , cq}
and real numbers λ1(x), λ2(x), · · · , λq(x) such that x =

∑q
j=1 λj(x)cj.

The numbers λj(x) (counting multiplicities), which are uniquely determined by x, are

called the eigenvalues of x. In the sequel, we write the maximum eigenvalue and the

minimum eigenvalue of x as λmax(x) and λmin(x), respectively. Furthermore, the trace

and the determinant of x, denoted by tr(x) and det(x), respectively, are defined as

tr(x) :=
∑q

j=1 λj(x) and det(x) :=
∏q

j=1 λj(x).

By [10, Proposition III.1.5], a Jordan algebra (V, ◦) over R with a unit element e ∈ V
is Euclidean if and only if the symmetric bilinear form tr(x ◦ y) is positive definite.

Therefore, we may define an inner product 〈·, ·〉 on V by

〈x, y〉 := tr(x ◦ y), ∀x, y ∈ V.

In addition, we let ‖ · ‖V be the norm on V induced by the inner product 〈·, ·〉, i.e.,

‖x‖V :=
√
〈x, x〉 =

(
q∑
j=1

λ2
j(x)

)1/2

, ∀x ∈ V.

The Jordan product “◦” in Lorentz algebra is not associative, which is the main

reason of complication in the analysis of SOC. For each x = (x1, x2) ∈ R×Rn−1, define

the matrix Lx by

Lx :=

[
x1 xT2
x2 x1I

]
,

which can be viewed as a linear mapping from Rn to Rn with the following properties.

Property 2.1 (a) Lxy = x ◦ y and Lx+y = Lx + Ly for any y ∈ Rn.

(b) x ∈ Kn ⇐⇒ Lx � O and x ∈ int(Kn)⇐⇒ Lx � O.

(c) Lx is invertible whenever x ∈ int(Kn) with the inverse L−1
x given by

L−1
x =

1

det(x)

 x1 −xT2
−x2

det(x)

x1

I +
x2x

T
2

x1

 ,
where det(x) := x2

1 − ‖x2‖2 denotes the determinant of x.

We next recall from [11] that each x = (x1, x2) ∈ R×Rn−1 admits a spectral factor-

ization associated with Kn, of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x , (3)
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where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are the spectral values and the associated spectral vectors

of x, respectively, defined by

λi(x) = x1 + (−1)i‖x2‖,

u(i)
x =


1

2

(
1, (−1)i

x2

‖x2‖

)
, if x2 6= 0,

1

2

(
1, (−1)iw

)
, if x2 = 0,

(4)

for i = 1, 2, with w being any vector in Rn−1 satisfying ‖w‖ = 1. If x2 6= 0, the

factorization is unique.

For any function f : R→ R, we define a function on Rn associated with Kn (n ≥ 1)

by

f soc(x) := f(λ1(x))u(1)
x + f(λ2(x))u(2)

x , (5)

where λ1(x), λ2(x), u
(1)
x , u

(2)
x are the spectral values and vectors of x in (4). The cases of

f(x) = x1/2, x2 have some properties which are summarized as follows.

Property 2.2 For any x = (x1, x2) ∈ R × Rn−1, let λ1(x), λ2(x) and u
(1)
x , u

(2)
x be the

spectral values and the associated spectral vectors. Then, the following results holds.

(a) x ∈ Kn ⇐⇒ 0 ≤ λ1(x) ≤ λ2(x) and x ∈ int(Kn)⇐⇒ 0 < λ1(x) ≤ λ2(x).

(b) x2 = (λ1(x))2 · u(1)
x + (λ2(x))2 · u(2)

x ∈ Kn for any x ∈ Rn.

(c) If x ∈ Kn, then x1/2 =
√
λ1(x) · u(1)

x +
√
λ2(x) · u(2)

x ∈ Kn.

3 The convexity of function associated with SOC

The functions as below in Property 3.1 are all convex and usually employed as penalty

and barrier functions when solving SDP [1, 2]. In this section, we wish to know whether

such penalty and barrier functions are still convex in SOC case. Some of them were

studied in [1], however, we provide different proofs here.

Property 3.1 The following functions associated with Sn+ are convex.

(a) F1(X) = − ln(det(−X)) for all X ≺ O.

(b) F2(X) = − ln(det(I −X)) for all X ≺ O.

(c) F3(X) = tr(exp(X)) for all X ∈ Sn.

(d) F4(X) = tr(−X−1) for all X ≺ O.
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(e) F5(X) = tr((I −X)−1 ◦X) for all X ≺ I.

(f) F6(X) = ln(det(I + exp(X))) for all X ∈ Sn.

(g) F7(X) = tr

(
X + (X2 + 4I)1/2

2

)
for all X ∈ Sn.

Following are some tools that we will use in the proof of Proposition 3.1.

Lemma 3.1 For any nonzero vector x ∈ Rn, the matrix xxT is positive semidefinite.

Moreover, all eigenvalues of the matrix xxT are ‖x‖2 and 0 with multiplicity n− 1.

Proof. For any vector d ∈ Rn, we have dT (xxT )d = (dTx)(xTd) = (dTx)2 ≥ 0. Hence

xxT is positive semidefinite. Next we calculate the eigenvalues of the matrix xxT .

det
(
xxT − λI

)
=

∣∣∣∣∣∣∣∣∣∣∣

x2
1 − λ x1x2 x1x3 · · · x1xn
x2x1 x2

2 − λ x2x3 · · · x2xn
x3x1 x3x2 x2

3 − λ · · · x3xn
...

...
...

. . .
...

xnx1 xnx2 xnx3 · · · x2
n − λ

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

x2
1 − λ x2

2 x2
3 · · · x2

n

x2
1 x2

2 − λ x2
3 · · · x2

n

x2
1 x2

2 x2
3 − λ · · · x2

n
...

...
...

. . .
...

x2
1 x2

2 x2
3 · · · x2

n − λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
(x2

1 + x2
2 + · · ·+ x2

n)− λ
)
·

∣∣∣∣∣∣∣∣∣∣∣

1 x2
2 x2

3 · · · x2
n

1 x2
2 − λ x2

3 · · · x2
n

1 x2
2 x2

3 − λ · · · x2
n

...
...

...
. . .

...

1 x2
2 x2

3 · · · x2
n − λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
(x2

1 + x2
2 + · · ·+ x2

n)− λ
)
·

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0

1 −λ 0 · · · 0

1 0 −λ · · · 0
...

...
...

. . .
...

1 0 0 · · · −λ

∣∣∣∣∣∣∣∣∣∣∣
=
(
(x2

1 + x2
2 + · · ·+ x2

n)− λ
)
· (−λ)n−1.

This shows that all eigenvalues of the matrix xxT are ‖x‖2 and 0 with multiplicity n− 1.

2
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Lemma 3.2 Let λ be an eigenvalue of the matrix M , then λ+ k is an eigenvalue of the

matrix (M + kI).

Lemma 3.3 [13, Theorem 7.7.6] Suppose that a symmetric matrix is partitioned as[
A B

BT C

]
, where A and C are square. Then this matrix is positive definite if and

only if A � O and C � BTA−1B.

Lemma 3.4 Suppose that a symmetric matrix is partitioned as a b
xT

‖x‖

b
x

‖x‖
cI + (a− c) xx

T

‖x‖2

 =

[
A B

BT C

]
, (6)

where a, b, c ∈ R, x ∈ Rn, I ∈ Rn×n. Then this matrix is positive definite if and only if

a > 0, c > 0 and a2 − b2 > 0.

Proof. From Lemma 3.3, this matrix is positive definite if and only if A � O and

C � BTA−1B. Since a ∈ R, a > 0 implies A � O On the other hand,

AC −BTB = a

(
cI + (a− c) xx

T

‖x‖2

)
− b2 xx

T

‖x‖2

= acI +
(
a2 − ac

) xxT
‖x‖2

− b2 xx
T

‖x‖2

= acI +
(
a2 − ac− b2

) xxT
‖x‖2

= M,

where we denote the whole matrix by M . From Lemma 3.1, we know that xxT is positive

semidefinite with only one nonzero eigenvalue ‖x‖2. From Lemma 3.2, all the eigenvalues

of the matrix M are ac+
a2 − ac− b2

‖x‖2
· ‖x‖2 = a2 − b2 and ac with multiplicity of n− 1,

which are all positive. This shows C � BTA−1B and the proof is complete. 2

Lemma 3.5 [11, Proposition 3.2]Let x = (x1, x2) ∈ R×Rn−1 and f : R→ R.

(a) If f(t) = exp(t), then

f soc(x) = exp(x) =

 exp(x1)

(
cosh(‖x2‖), sinh(‖x2‖) ·

x2

‖x2‖

)
, if x2 6= 0,

exp(x1)(1, 0), if x2 = 0,

where cosh(α) = (exp(α) + exp(−α))/2 and sinh(α) = (exp(α) − exp(−α))/2 for

α ∈ R.
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(b) If f(t) = ln(t) and x ∈ int(Kn), then

f soc(x) = ln(x) =


1

2

(
ln(x2

1 − ‖x2‖2), ln
(
x1 + ‖x2‖
x1 − ‖x2‖

)
· x2

‖x2‖

)
, if x2 6= 0,

ln(x1)(1, 0), if x2 = 0.

Property 3.2 Let S be a nonempty open convex set in Rn, and let f : S → R.

(1) (First-order condition) [3, Theorem 3.3.3] Suppose f is differentiable on S. Then

f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y ∈ S.

(2) (Second-order condition) [3, Theorem 3.3.7] Suppose f is twice differentiable on

S, that is, its Hessian or second derivative ∇2f(x) exists. Then f is convex if and

only if

∇2f(x) � O, ∀x ∈ S.

Property 3.3 [5, Proposition 4] For any f : R→ R, the following result hold:

(a) f soc is differentiable at an x = (x1, x2) ∈ R×Rn−1 with spectral values λ1, λ2 if and

only if f is differentiable at λ1, λ2. Moreover,

∇f soc(x) = f ′(x1)I

if x2 = 0, and otherwise

∇f soc(x) =

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2

 ,

where a =
1

2
(f ′(λ2) + f ′(λ1)) , b =

1

2
(f ′(λ2)− f ′(λ1)) and c =

f(λ2)− f(λ1)

λ2 − λ1

.

(b) f soc is differentiable if and only if f is differentiable.

Lemma 3.6 For any x = (x1, x2) ∈ R×Rn−1, we define w, z : Rn → Rn by

w = (w1, w2) = (w1(x), w2(x)) = w(x) := x2 + 4e,

z = (z1, z2) = (z1(x), z2(x)) = z(x) := (x2 + 4e)
1/2
.

(7)
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Then z(x) is differentiable. Moreover, ∇z(x) = LxL
−1
z , where L−1

z = (1/
√
w1)I if w2 = 0,

and otherwise

L−1
z =

 a b
wT2
‖w2‖

b
w2

‖w2‖
cI + (a− c)w2w

T
2

‖w2‖2


with

a =
1

2

(
1√
λ2(w)

+
1√
λ1(w)

)
,

b =
1

2

(
1√
λ2(w)

− 1√
λ1(w)

)
,

c =
2√

λ2(w) +
√
λ1(w)

.

Proof. We denote g(x) = (x)1/2, which implies z = w1/2 = g(w(x)). Since g(·) = (·)1/2 is

continuously differentiable on R++, by Property 3.3(b), its corresponding SOC-function

g(x) = (x)1/2 is continuously differentiable on int(Kn). Then, for w2 6= 0, Property 3.3(a)

and the chain rule give

∇z(x) = ∇w(x) · ∇g(w) = 2Lx ·
1

2
L−1
w1/2 = Lx · L−1

z ,

where ∇g(w) = 1
2
L−1
w1/2 is from [11, page 454]. The case for w2 = 0 is clear. Thus, the

proof is complete. 2

Now, we are in position to prove the convexity of following functions. Our main

method is to prove that the Hessian matrix of following functions are positive semidefinite.

Proposition 3.1 The following functions associated with SOC are all convex.

(a) f1(x) = − ln(det(−x)), for all x ≺Kn 0.

(b) f2(x) = − ln(det(e− x)), for all x ≺Kn e.

(c) f3(x) = tr(exp(x)), for all x ∈ Rn.

(d) f4(x) = tr(−x−1), for all x ≺Kn 0.

(e) f5(x) = tr((e− x)−1 ◦ x), for all x ≺Kn e.

(f) f6(x) = ln(det(e+ exp(x))), for all x ∈ Rn.

(g) f7(x) = tr

(
x+ (x2 + 4e)1/2

2

)
, for all x ∈ Rn.
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Proof. (a) f1(x) = − ln(det(−x)) = − ln(det(x)), from [7, Proposition 2.4], ln(det(x))

is concave for all x �Kn 0. This implies that f1(x) is convex for all x ≺Kn 0.

(b) Since f2(x) = f1(x− e), f2(x) is convex when x ≺Kn e.

(c) From Lemma 3.5(a), we have

f3(x) =

{
exp(x1) cosh(‖x2‖) if x2 6= 0,

exp(x1) if x2 = 0.

Case(1): x2 6= 0. Since Rn is a convex set, it suffices to show that ∇2f3(x) is positive

definite for all x ∈ Rn. From direct computation, we have

∇f3(x) =

[
2 exp(x1) cosh(‖x2‖)

2 exp(x1) sinh(‖x2‖)
x2

‖x2‖

]

= 2 exp(x1)

[
cosh(‖x2‖)

sinh(‖x2‖)
x2

‖x2‖

]
,

and

∂2f3

∂x2
1

= 2 exp(x1) cosh(‖x2‖),

∂2f3

∂x1∂x2

= 2 exp(x1) sinh(‖x2‖)
xT2
‖x2‖

,

∂2f3

∂x2∂x1

= 2 exp(x1) sinh(‖x2‖)
x2

‖x2‖
,

∂2f3

∂x2
2

= 2 exp(x1)

(
cosh(‖x2‖) x2

‖x2‖ · ‖x2‖ − sinh(‖x2‖) x2

‖x2‖

‖x2‖2
xT2 +

sinh(‖x2‖)
‖x2‖

I

)

= 2 exp(x1)

(
sinh(‖x2‖)
‖x2‖

I +

(
cosh(‖x2‖)−

sinh(‖x2‖)
‖x2‖

)
x2x

T
2

‖x2‖2

)
.

Therefore,

∇2f3(x) = 2 exp(x1) ·

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2


= 2 exp(x1) ·M,

where a = cosh(‖x2‖), b = sinh(‖x2‖) and c =
sinh(‖x2‖)
‖x2‖

. Since a > 0, c > 0 and

a2 − b2 = cosh2(‖x2‖) − sinh2(‖x2‖) = 1 > 0, from Lemma 3.4, we have M is positive

definite. Also notice that exp(x1) > 0, thus ∇2f3(x) is positive definite for all x ∈ Rn.

Case(2): x2 = 0. It is not hard to compute

∇2f3(x) =

[
2 exp(x1) 0T

0 O

]
,
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which is positive semidefinite. Hence f3(x) is convex for all x ∈ Rn.

(d) From direct computation, we have −x−1 =
−1

x2
1 − ‖x2‖2

(x1,−x2). Hence, f4(x) =

tr(−x−1) =
−2x1

x2
1 − ‖x2‖2

. Since int(−Kn) is a convex set, it suffices to show that ∇2f4(x)

is positive definite for all x ∈ int(−Kn). From direct computation, we have

∇f4(x) = −2


(x2

1 − ‖x2‖2)− 2x1x1

(x2
1 − ‖x2‖2)2

−x1(−2x2)

(x2
1 − ‖x2‖2)2


=

2

(x2
1 − ‖x2‖2)2

[
x2

1 + ‖x2‖2
−2x1x2

]
,

and

∂2f4

∂x2
1

=
2

(x2
1 − ‖x2‖2)4

(
(x2

1 − ‖x2‖2)2 · 2x1 − (x2
1 + ‖x2‖2) · 2(x2

1 − ‖x2‖2) · 2x1

)
=

−4

(x2
1 − ‖x2‖2)3

· x1(x
2
1 + 3‖x2‖2),

∂2f4

∂x1∂x2

=
2

(x2
1 − ‖x2‖2)4

(
(x2

1 − ‖x2‖2)2 · (−2xT2 )− (−2x1x
T
2 ) · 2(x2

1 − ‖x2‖2) · 2x1

)
=

4

(x2
1 − ‖x2‖2)3

(3x2
1 + ‖x2‖2)xT2 ,

∂2f4

∂x2∂x1

=
4

(x2
1 − ‖x2‖2)3

(3x2
1 + ‖x2‖2)x2,

∂2f4

∂x2
2

=
2

(x2
1 − ‖x2‖2)4

(
(x2

1 − ‖x2‖2)2 · (−2x1I)− (−2x1x2) · 2(x2
1 − ‖x2‖2) · (−2xT2 )

)
=

−4

(x2
1 − ‖x2‖2)3

· x1

(
(x2

1 − ‖x2‖2)I + 4x2x
T
2

)
.

Therefore,

∇2f4(x) =
4

(x2
1 − ‖x2‖2)3

·
[
A B

BT C

]
,

where

A = −x1(x
2
1 + 3‖x2‖2),

B = (3x2
1 + ‖x2‖2)xT2 ,

C = −x1

(
(x2

1 − ‖x2‖2)I + 4x2x
T
2

)
.

Since x ∈ int(−Kn), we have
4

(x2
1 − ‖x2‖2)3

> 0. From Lemma 3.3, it suffices to show

that A � O (here A is a scalar) and C � BTA−1B. First, A > 0 since x ≺Kn 0⇒ x1 < 0.
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Second, we show that C � BTA−1B.

AC −BTB = x2
1(x

2
1 + 3‖x2‖2)

(
(x2

1 − ‖x2‖2)I + 4x2x
T
2

)
−
(
3x2

1 + ‖x2‖2
)2
x2x

T
2

= (x2
1 − ‖x2‖2)

(
x2

1(x
2
1 + 3‖x2‖2)I − (5x2

1 − ‖x2‖2)x2x
T
2

)
= (x2

1 − ‖x2‖2) ·M,

where we denote the whole matrix by M . From Lemma 3.1, we know that xxT is positive

semidefinite with only one nonzero eigenvalue ‖x‖2. From Lemma 3.2, all the eigenvalues

of the matrix M are (x2
1 + 3‖x2‖2) with multiplicity n− 2 and

x2
1(x

2
1 + 3‖x2‖2)− (5x2

1 − ‖x2‖2) · ‖x2‖2

= x4
1 + 3x2

1‖x2‖2 − 5x2
1‖x2‖2 + ‖x2‖4

= (x2
1 − ‖x2‖2)2,

they are all positive. Thus, M � O. This implies AC − BTB is positive definite and

hence C � BTA−1B. Thus, f4(x) is (strictly) convex for all x ≺Kn 0.

(e) From direct computation, we have

(e− x)−1 ◦ x = (1− x1,−x2)
−1 ◦ (x1, x2)

=
1

(1− x1)2 − ‖ − x2‖2
(1− x1, x2) ◦ (x1, x2)

=
1

(1− x1)2 − ‖x2‖2
(
x1(1− x1) + ‖x2‖2, x1x2 + (1− x1)x2

)
=

1

(1− x1)2 − ‖x2‖2
(
x1 − x2

1 + ‖x2‖2, x2

)
.

Hence,

f5(x) = tr
(
(e− x)−1 ◦ x

)
= 2 · x1 − x2

1 + ‖x2‖2

(1− x1)2 − ‖x2‖2

= 2 · (‖x2‖2 − (x1 − 1)2) + (1− x1)

(1− x1)2 − ‖x2‖2

= 2 ·
(

1− x1

(1− x1)2 − ‖x2‖2
− 1

)
.

Let S = {x | x ≺Kn e, x ∈ Rn}. Since S is a convex set, it suffices to show that ∇2f5(x)

is positive definite for all x ∈ S. From direct computation, we have

∇f5(x) = 2


((1− x1)

2 − ‖x2‖2) · (−1)− (1− x1) · (−2(1− x1))

((1− x1)2 − ‖x2‖2)2

−(1− x1)(−2x2)

((1− x1)2 − ‖x2‖2)2


=

2

((1− x1)2 − ‖x2‖2)2

[
(1− x1)

2 + ‖x2‖2
2(1− x1)x2

]
,
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and

∂2f5

∂x2
1

=
2

((1− x1)2 − ‖x2‖2)4

( (
(1− x1)

2 − ‖x2‖2
)2 · (−2)(1− x1)

−
(
(1− x1)

2 + ‖x2‖2
)
· 2
(
(1− x1)

2 − ‖x2‖2
)
· (−2)(1− x1)

)
=

4

((1− x1)2 − ‖x2‖2)3
(1− x1)((1− x1)

2 + 3‖x2‖2),

∂2f5

∂x1∂x2

=
2

((1− x1)2 − ‖x2‖2)4

( (
(1− x1)

2 − ‖x2‖2
)2 · (−2xT2 )

− 2(1− x1)x
T
2 · 2

(
(1− x1)

2 − ‖x2‖2
)
· (−2)(1− x1)

)
=

4

((1− x1)2 − ‖x2‖2)3

(
3(1− x1)

2 + ‖x2‖2
)
xT2 ,

∂2f5

∂x2∂x1

=
4

((1− x1)2 − ‖x2‖2)3

(
3(1− x1)

2 + ‖x2‖2
)
x2,

∂2f5

∂x2
2

=
2

((1− x1)2 − ‖x2‖2)4

( (
(1− x1)

2 − ‖x2‖2
)2 · 2(1− x1)I

− 2(1− x1)x2 · 2
(
(1− x1)

2 − ‖x2‖2
)
· (−2xT2 )

)
=

4

((1− x1)2 − ‖x2‖2)3
(1− x1)

((
(1− x1)

2 − ‖x2‖2
)
I + 4x2x

T
2

)
.

Therefore,

∇2f5(x) =
4

((1− x1)2 − ‖x2‖2)3
·
[
A B

BT C

]
,

where

A = (1− x1)((1− x1)
2 + 3‖x2‖2),

B =
(
3(1− x1)

2 + ‖x2‖2
)
xT2 ,

C = (1− x1)
((

(1− x1)
2 − ‖x2‖2

)
I + 4x2x

T
2

)
.

Since x ∈ S, we have
4

((1− x1)2 − ‖x2‖2)3
> 0. From Lemma 3.3, it suffices to show that A � O (here A is a

scalar) and C � BTA−1B First, A > 0 since x ≺Kn e ⇒ 1 − x1 > 0. Second, we show

that C � BTA−1B.

AC −BTB = (1− x1)
2((1− x1)

2 + 3‖x2‖2)
((

(1− x1)
2 − ‖x2‖2

)
I + 4x2x

T
2

)
−
(
3(1− x1)

2 + ‖x2‖2
)2
x2x

T
2

=
(
(1− x1)

2 − ‖x2‖2
) (

(1− x1)
2((1− x1)

2 + 3‖x2‖2)I

− (5(1− x1)
2 − ‖x2‖2)x2x

T
2

)
=
(
(1− x1)

2 − ‖x2‖2
)
·M,
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where we denote the whole matrix by M . From Lemma 3.1, we know that xxT is positive

semidefinite with only one nonzero eigenvalue ‖x‖2. From Lemma 3.2, all the eigenvalues

of the matrix M are ((1− x1)
2 + 3‖x2‖2) with multiplicity n− 2 and

(1− x1)
2((1− x1)

2 + 3‖x2‖2)− (5(1− x1)
2 − ‖x2‖2) · ‖x2‖2

= (1− x1)
4 + 3(1− x1)

2‖x2‖2 − 5(1− x1)
2‖x2‖2 + ‖x2‖4

=
(
(1− x1)

2 − ‖x2‖2
)2
,

they are all positive. Thus, M is positive definite. This implies AC − BTB is positive

definite and hence C � BTA−1B. Thus, f5(x) is (strictly) convex for all x ≺Kn e.

(f) Similarly as (c), we consider following two cases:

Case(1): x2 6= 0. From Lemma 3.5(a), we have

e+ exp(x) =

(
1 + exp(x1) cosh(‖x2‖), exp(x1) sinh(‖x2‖)

x2

‖x2‖

)
.

Here we denote eα = exp(α),∀α ∈ R for convenience. Therefore,

det(e+ exp(x)) = (1 + ex1 cosh(‖x2‖))2 −
∥∥∥∥ex1 sinh(‖x2‖)

x2

‖x2‖

∥∥∥∥2

=
(
1 + ex1+‖x2‖

) (
1 + ex1−‖x2‖

)
,

and

f6(x) = ln(det(e+ exp(x)))

= ln
((

1 + ex1+‖x2‖
) (

1 + ex1−‖x2‖
))

= ln
(
1 + ex1+‖x2‖

)
+ ln

(
1 + ex1−‖x2‖

)
.

Since Rn is a convex set, it suffices to show that∇2f6(x) is positive definite for all x ∈ Rn.

From direct computation, we have

∇f6(x) =


ex1+‖x2‖

1 + ex1+‖x2‖
+

ex1−‖x2‖

1 + ex1−‖x2‖(
ex1+‖x2‖

1 + ex1+‖x2‖
− ex1−‖x2‖

1 + ex1−‖x2‖

)
x2

‖x2‖


=

 2− 1

1 + ex1+‖x2‖
− 1

1 + ex1−‖x2‖(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
x2

‖x2‖

 ,
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and

∂2f6

∂x2
1

=
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2 ,

∂2f6

∂x1∂x2

=

(
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 −

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)
xT2
‖x2‖

,

∂2f6

∂x2∂x1

=

(
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 −

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)
x2

‖x2‖
,

∂2f6

∂x2
2

=

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
1

‖x2‖
I

+
1

‖x2‖2

(
‖x2‖

(
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)
x2

‖x2‖

−
(

1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
x2

‖x2‖

)
xT2

=
1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
I

+

((
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2

)

− 1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

))
x2x

T
2

‖x2‖2
.

Therefore,

∇2f6(x) =

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2

 ,
with

a =
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 +

ex1−‖x2‖

(1 + ex1−‖x2‖)
2 ,

b =
ex1+‖x2‖

(1 + ex1+‖x2‖)
2 −

ex1−‖x2‖

(1 + ex1−‖x2‖)
2 ,

c =
1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
.
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From Lemma 3.4, it suffices to show that a > 0, c > 0 and a2 − b2 > 0. Note that a > 0

is obviously, now we proof c > 0 and a2 − b2 > 0. From direct computation, we have

c =
1

‖x2‖

(
1

1 + ex1−‖x2‖
− 1

1 + ex1+‖x2‖

)
=

ex1
(
e‖x2‖ − e−‖x2‖

)
‖x2‖ (1 + ex1+‖x2‖) (1 + ex1−‖x2‖)

> 0,

(8)

and

a2 − b2 = (a+ b)(a− b)

=
4 · e2x1

(1 + ex1+‖x2‖)
2

(1 + ex1−‖x2‖)
2

> 0,

where the last inequality in (8) is because of the property of exponential function. Thus

M is positive definite and ∇2f6(x) is positive definite for all x ∈ Rn.

Case(2): x2 = 0. From Lemma 3.5, we have e + exp(x) = (1 + ex1 , 0) . Therefore,

f6(x) = ln(det(e+ exp(x)) = 2 ln (1 + ex1) . It is not hard to compute that

∇2f6(x) =

 2ex1

(1 + ex1)2 0T

0 O

 ,
which is positive semidefinite Hence f6(x) is convex for all x ∈ Rn.

(g) Let w, z be defined as in (7) and λ1 = λ1(w), λ2 = λ2(w) for convenience. Then

f7(x) = tr

(
x+ z(x)

2

)
. From direct computation, we have w = (w1, w2) with w1 =

x2
1 + ‖x2‖2 + 4 and w2 = 2x1x2.

Case(1): w2 6= 0. Since Rn is a convex set, it suffices to show that ∇2f7(x) is positive

definite for all x ∈ Rn. Note that tr

(
x+ z(x)

2

)
= tr

(x
2

)
+tr

(
z(x)

2

)
, and ∇2tr

(x
2

)
=

0, we only consider the Hessian of tr

(
z(x)

2

)
. Moreover, we assume x1 ≥ 0. The case

x1 < 0 is similar as above, we omit here. Therefore, from direct computation, we have

λ1 = λ1(w) = w1 − ‖w2‖ = (x1 − ‖x2‖)2 + 4,

λ2 = λ2(w) = w1 + ‖w2‖ = (x1 + ‖x2‖)2 + 4,

and

∇x1(
√
λ1) =

x1 − ‖x2‖√
λ1

, ∇x2(
√
λ1) =

−(x1 − ‖x2‖)√
λ1

x2

‖x2‖
,

∇x1(
√
λ2) =

x1 + ‖x2‖√
λ2

, ∇x2(
√
λ2) =

x1 + ‖x2‖√
λ2

x2

‖x2‖
.

(9)
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By chain rule and Lemma 3.6, we have

∇f7(x) = ∇z(x) · ∇tr

(
z(x)

2

)
= Lx · L−1

z ·
[

1

0

]

=

[
x1 xT2
x2 x1I

]
· 1

2


1√
λ2

+
1√
λ1(

1√
λ2

− 1√
λ1

)
w2

‖w2‖



=
1

2

 x1

(
1√
λ2

+
1√
λ1

)
+

(
1√
λ2

− 1√
λ1

)
xT2w2

‖w2‖(
1√
λ2

+
1√
λ1

)
x2 + x1

(
1√
λ2

− 1√
λ1

)
w2

‖w2‖



=
1

2

 x1

(
1√
λ2

+
1√
λ1

)
+

(
1√
λ2

− 1√
λ1

)
‖x2‖(

1√
λ2

+
1√
λ1

)
x2 + x1

(
1√
λ2

− 1√
λ1

)
x2

‖x2‖



=
1

2


x1 + ‖x2‖√

λ2

+
x1 − ‖x2‖√

λ1(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
x2

‖x2‖

 .
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Using (9), we can compute

∂2f7

∂x2
1

=

√
λ2 − (x1 + ‖x2‖) · x1+‖x2‖√

λ2

λ2

+

√
λ1 − (x1 − ‖x2‖) · x1−‖x2‖√

λ1

λ1

=
4

λ2

√
λ2

+
4

λ1

√
λ1

,

∂2f7

∂x1∂x2

=

(√
λ2 − (x1 + ‖x2‖) · x1+‖x2‖√

λ2

λ2

−
√
λ1 − (x1 − ‖x2‖) · x1−‖x2‖√

λ1

λ1

)
xT2
‖x2‖

=

(
4

λ2

√
λ2

− 4

λ1

√
λ1

)
xT2
‖x2‖

,

∂2f7

∂x2∂x1

=

(
4

λ2

√
λ2

− 4

λ1

√
λ1

)
x2

‖x2‖
,

∂2f7

∂x2
2

=

(√
λ2 − (x1 + ‖x2‖) · x1+‖x2‖√

λ2

λ2

+

√
λ1 − (x1 − ‖x2‖) · x1−‖x2‖√

λ1

λ1

)
x2x

T
2

‖x2‖2

+

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
· 1

‖x2‖2

(
‖x2‖I −

1

‖x2‖
x2x

T
2

)
=

1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
I +

(
4

λ2

√
λ2

+
4

λ1

√
λ1

− 1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

))
x2x

T
2

‖x2‖2
.

Therefore,

∇2f7(x) =

 a b
xT2
‖x2‖

b
x2

‖x2‖
cI + (a− c) x2x

T
2

‖x2‖2

 ,
with

a =
4

λ2

√
λ2

+
4

λ1

√
λ1

,

b =
4

λ2

√
λ2

− 4

λ1

√
λ1

,

c =
1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
.
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From Lemma 3.4, it suffices to show that a > 0, c > 0 and a2 − b2 > 0. Note that a > 0

is obviously, now we proof c > 0 and a2 − b2 > 0. From direct computation, we have

c =
1

‖x2‖

(
x1 + ‖x2‖√

λ2

− x1 − ‖x2‖√
λ1

)
=

√
λ1(x1 + ‖x2‖)−

√
λ2(x1 − ‖x2‖)

‖x2‖ ·
√
λ1λ2

> 0,

where the last inequality is because(√
λ1(x1 + ‖x2‖)

)2

−
(√

λ2(x1 − ‖x2‖)
)2

= 4
(
(x1 + ‖x2‖)2 − (x1 − ‖x2‖)2) > 0,

and

a2 − b2 = (a+ b)(a− b) =
64

λ1λ2

√
λ1λ2

> 0.

Thus M is positive definite and ∇2f7(x) is positive definite for all x ∈ Rn.

Case(2): w2 = 0. Since w2 = 2x1x2 = 0, we consider following two subcases:

Subcase(i): x2 = 0. From Lemma 3.6 and direct computation, we have

∇f7(x) = ∇z(x) · ∇tr

(
z(x)

2

)
= Lx · L−1

z ·
[

1

0

]
=

1
√
w1

[
x1 xT2
x2 x1I

]
·
[

1

0

]
=

1√
x2

1 + 4

[
x1

0

]
,

and

∇2f7(x) =

 4

(x2
1 + 4)3/2

0T

0 O

 .
Thus ∇2f7(x) is positive semidefinite for all x ∈ Rn.

Subcase(ii): x1 = 0. From Lemma 3.6 and direct computation, we have

∇f7(x) = ∇z(x) · ∇tr

(
z(x)

2

)
= Lx · L−1

z ·
[

1

0

]
=

1
√
w1

[
x1 xT2
x2 x1I

]
·
[

1

0

]
=

1√
‖x2‖2 + 4

[
0

x2

]
,
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and

∇2f7(x) =

 0 0T

0
1√

‖x2‖2 + 4
I − 1

(‖x2‖2 + 4)3/2
x2x

T
2

 .
Thus ∇2f7(x) is positive semidefinite for all x ∈ Rn and f7(x) is convex for all x ∈ Rn.

2

4 Equalities and Inequalities associated with SOC

Property 4.1 Let A,B ∈ Sn.

(a) If B � O, then λi(A) ≤ λi(A+B) for all i = 1, 2, · · · , n.

(b) λi(A) + λmin(B) ≤ λi(A+B) ≤ λi(A) + λmax(B) for all i = 1, 2, · · · , n.

(c) If A � O, B � O, then
∑n

i=1 λi(A)λn−i+1(B) ≤
∑n

i=1 λi(AB) ≤
∑n

i=1 λi(A)λi(B)

for all i = 1, 2, · · · , n.

(d) If A � O, B � O, then
λ2
i (AB)

λmax(A)λmax(B)
≤ λi(A)λi(B) ≤ λ2

i (AB)

λmin(A)λmin(B)
for all

i = 1, 2, · · · , n.

(e) If λi(A) and λi(B) are both arranged in increasing or decreasing order, then(
n∑
i=1

(λi(A)− λi(B))2

)1/2

≤ ‖A−B‖F .

Proof. These are all well-known results in matrix analysis, see [4, 13, 18]. In particular,

part(b) is known as Weyl’s Theorem. 2

Proposition 4.1 Let x = (x1, x2), y = (y1, y2) ∈ R×Rn−1.

(a) If y �Kn 0, then λi(x) ≤ λi(x+ y) for all i = 1, 2.

(b) λi(x) + λ1(y) ≤ λi(x+ y) ≤ λi(x) + λ2(y), for all i = 1, 2.

(c) If x �Kn 0, y �Kn 0, then λ1(x)λ2(y) + λ2(x)λ1(y) ≤ tr(x ◦ y) ≤ λ1(x)λ1(y) +

λ2(x)λ2(y).

(d) When n = 2, if x �Kn 0, y �Kn 0, then
λ2
i (x ◦ y)

λ2(x)λ2(y)
≤ λi(x)λi(y) ≤ λ2

i (x ◦ y)

λ1(x)λ1(y)
for

all i = 1, 2.

21



(e) If λi(x) and λi(y) are both arranged in increasing or decreasing order, then(
2∑
i=1

(λi(x)− λi(y))2

)1/2

≤ ‖x− y‖V.

Proof. (a) First, we prove λ1(x + y) ≥ λ1(x). From direct computation and triangle’s

inequality, we have

λ1(x+ y)− λ1(x) = (x1 + y1 − ‖x2 + y2‖)− (x1 − ‖x2‖)
= y1 − ‖x2 + y2‖+ ‖x2‖
≥ y1 − (‖x2‖+ ‖y2‖) + ‖x2‖
= y1 − ‖y2‖
≥ 0,

where the last inequality is because of y �Kn 0. Second, we prove λ2(x + y) ≥ λ2(x).

From direct computation and triangle’s inequality, we have

λ2(x+ y)− λ2(x) = (x1 + y1 + ‖x2 + y2‖)− (x1 + ‖x2‖)
= y1 + ‖x2 + y2‖ − ‖x2‖
≥ y1 + (‖x2‖ − ‖y2‖)− ‖x2‖
= y1 − ‖y2‖
≥ 0.

(b) See [1, Prop. 3.1].

(c) See [7, Prop. 2.3].

(d) We prove the inequality by separating to four parts. First, we prove
λ2

1(x ◦ y)

λ2(x)λ2(y)
≤

λ1(x)λ1(y). Since x �Kn 0, y �Kn 0, we have λ1(x) = x1−|x2| > 0, λ2(x) = x1 + |x2| > 0,

λ1(y) = y1 − |y2| > 0 and λ2(y) = y1 + |y2| > 0. Thus,

λ2
1(x ◦ y)

λ2(x)λ2(y)
≤ λ1(x)λ1(y)⇐⇒ λ2

1(x ◦ y) ≤ det(x) det(y).

From direct computation, we have

det(x) det(y)− λ2
1(x ◦ y)

= (x2
1 − |x2|2) · (y2

1 − |y2|2)− (x1y1 + x2y2 − |x1y2 + y1x2|)2

= 2(x1y1 + x2y2) · |x1y2 + y1x2|
≥ 0,

where the last inequality is due to x1y1 > |x2y2| > −x2y2. Second, we prove
λ2

2(x ◦ y)

λ2(x)λ2(y)
≤

λ2(x)λ2(y). Since λ2(x ◦ y) = x1y1 + x2y2 + |x1y2 + y1x2| > 0, we have

λ2
2(x ◦ y)

λ2(x)λ2(y)
≤ λ2(x)λ2(y)⇐⇒ λ2(x ◦ y) ≤ λ2(x)λ2(y).
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From direct computation, we have

λ2(x)λ2(y)− λ2(x ◦ y)

= (x1 + |x2|) · (y1 + |y2|)− (x1y1 + x2y2 + |x1y2 + y1x2|)
= x1|y2|+ y1|x2| − |x1y2 + y1x2|+ |x2y2| − x2y2

≥ 0.

Third, we prove λ2(x)λ2(y) ≤ λ2
2(x ◦ y)

λ1(x)λ1(y)
. Since λ1(x) > 0 and λ1(y) > 0,

λ2(x)λ2(y) ≤ λ2
2(x ◦ y)

λ1(x)λ1(y)
⇐⇒ det(x) det(y) ≤ λ2

2(x ◦ y).

From direct computation, we have

λ2
2(x ◦ y)− det(x) det(y)

= (x1y1 + x2y2 + |x1y2 + y1x2|)2 − (x2
1 − |x2|2) · (y2

1 − |y2|2)
= 2

(
(x1y2 + y1x2)

2 + (x1y1 + x2y2) · |x1y2 + y1x2|
)

≥ 0.

Final, we prove λ1(x)λ1(y) ≤ λ2
1(x ◦ y)

λ1(x)λ1(y)
. Since λ1(x ◦ y) = x1y1 + x2y2 − |x1y2 + y1x2|

and (x1y1 + x2y2)
2− |x1y2 + y1x2|2 = (x2

1− x2
2)(y

2
1 − y2

2) > 0, therefore, λ1(x ◦ y) > 0 and

λ1(x)λ1(y) ≤ λ2
1(x ◦ y)

λ1(x)λ1(y)
⇐⇒ λ1(x)λ1(y) ≤ λ1(x ◦ y).

From direct computation, we have

λ1(x ◦ y)− λ1(x)λ1(y) = x1|y2|+ y1|x2| − |x1y2 + y1x2|+ x2y2 − |x2y2|. (10)

Here we consider two cases:

Case(1): x2y2 ≥ 0. Obviously, (10) is equal to 0, which is our desired result.

Case(2): x2y2 < 0. Without loss of generality, we assume x2 > 0, y2 < 0. If x1y2 +y1x2 ≥
0, from (10) we have

λ1(x ◦ y)− λ1(x)λ1(y) = −x1y2 + y1x2 − (x1y2 + y1x2) + x2y2 + x2y2

= 2y2(x2 − x1)

≥ 0.

Otherwise,

λ1(x ◦ y)− λ1(x)λ1(y) = −x1y2 + y1x2 + (x1y2 + y1x2) + x2y2 + x2y2

= 2x2(y2 + y1)

≥ 0.
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Hence we have λ1(x ◦ y)− λ1(x)λ1(y) ≥ 0.

(e) To see this, we calculate

2∑
i=1

(λi(x)− λi(y))2 = λ2
1(x) + λ2

2(x) + λ2
1(y) + λ2

2(y)− 2(λ1(x)λ1(y) + λ2(x)λ2(y))

= 2(x2
1 + ‖x2‖2) + 2(y2

1 + ‖y2‖2)− 4(x1y1 + ‖x2‖‖y2‖)
≤ 2(x2

1 + ‖x2‖2) + 2(y2
1 + ‖y2‖2)− 4(x1y1 + 〈x2, y2〉)

= 2
(
‖x‖2 + ‖y‖2 − 2〈x, y〉

)
= ‖x− y‖2V,

where the inequality is due to Cauchy’s inequality. Thus, the proof is complete. 2

Remark: Unlike Property 4.1(d) for matrix case, Proposition 4.1(d) does not hold for

general n ≥ 3. We give a counterexample below.

Example 4.1 Let x =

 3

−1

2

 and y =

 4

1

1

, then x �Kn 0, y �Kn 0. From direct

computation, we have x ◦ y =

 13

−1

11

. It is easy to verify that λ1(x) = 3−
√

5, λ2(x) =

3+
√

5, λ1(y) = 4−
√

2, λ2(y) = 4+
√

2, λ1(x◦y) = 13−
√

122 and λ2(x◦y) = 13+
√

122.

Therefore,
λ2

1(x ◦ y)

λ1(x)λ1(y)
; 1.93 < 1.97 ; λ1(x)λ1(y).

Property 4.2 (a) If A � O, then det(A) = exp(tr(lnA)).

(b) If A � O,B � O, then det(A+B)1/n ≥ det(A)1/n + det(B)1/n for any n ∈ N.

(c) If A � O, then det(A)1/m = min

{
tr(AB)

m
: B � O and det(B) = 1

}
.

(d) If A � O,B � O, then det(A+B) ≥ det(A) with equality if and only if B = O.

(e) If A � O,B � O and A − B � O, then detA ≥ detB with equality if and only if

A = B.

Proof. Again, these are all well-known results in matrix analysis, see [4, 13, 18]. In

addition, part(b) is known as Minkowski inequality. 2

Proposition 4.2 (a) If x �Kn 0, then det(x) = exp(tr(ln x)).
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(b) If x �Kn 0, y �Kn 0, then det(x + y)1/n ≥ 41/n

2

(
det(x)1/n + det(y)1/n

)
for any

n ∈ N, n ≥ 2.

(c) If x �Kn 0, then det(x)1/2 = min

{
tr(x ◦ y)

2
: y �Kn 0 and det(y) = 1

}
.

(d) If x �Kn 0, y �Kn 0, then det(x+ y) ≥ det(x) with equality if and only if y = 0.

(e) If x �Kn 0, y �Kn 0 and x− y �Kn 0, then det(x) ≥ det(y) with equality if and only

if x = y.

Proof. (a) From Lemma 3.5(b) and the definition of tr(x), we have det(x) = exp(tr(ln x))

for all x �Kn 0.

(b) See [12, Prop. 3.2].

(c) Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn. Note that
tr(x ◦ y)

2
= x1y1 +

x2y2 + · · ·+ xnyn. Consider the minimization problem

min : x1y1 + x2y2 + · · ·+ xnyn
s.t. y1 > 0

y2
1 − (y2

2 + · · ·+ y2
n) = 1.

Use the method of Lagrange multiplier, we can change the minimization problem to

system of equations: 

y1 > 0

x1 = 2λy1

x2 = −2λy2
...

xn = −2λyn
y2

1 − (y2
2 + · · ·+ y2

n) = 1

(11)

Solve (11) by substitution, we have λ =

√
x2

1 − (x2
2 + · · ·+ x2

n)

2
=

det(x)1/2

2
and y1 =

x1

det(x)1/2
, yi =

−xi
det(x)1/2

for i = 2, · · · , n. Therefore, the optimal solution is det(x)1/2,

which is the desired result.

(d) Let x = (x1, x2), y = (y1, y2) ∈ R × Rn−1. Since x �Kn 0, y �Kn 0, we have

x1 > ‖x2‖, y1 ≥ ‖y2‖ and

x1y1 ≥ ‖x2‖‖y2‖ ≥ |〈x2, y2〉|. (12)

Note that the first equality hold in (12) if and only if y1 = ‖y2‖ = 0, i.e. y = 0. Therefore,

det(x+ y)− det(x) = (x1 + y1)
2 − ‖x2 + y2‖2 − (x2

1 − ‖x2‖2)
= 2(x1y1 − 〈x2, y2〉)
≥ 0,
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where the last equality hold in if and only if y = 0.

(e) Since x �Kn 0, y �Kn 0 and x− y �Kn 0, we have x1 > ‖x2‖, y1 > ‖y2‖ and

x1 + y1 > ‖x2‖+ ‖y2‖,
x1 − y1 ≥ ‖x2 − y2‖ ≥ ‖x2‖ − ‖y2‖.

(13)

Therefore,

det(x)− det(y) = (x2
1 − ‖x2‖2)− (y2

1 − ‖y2‖2)
= (x1 + y1)(x1 − y1)− (‖x2‖+ ‖y2‖)(‖x2‖ − ‖y2‖)
≥ 0,

where the last equality hold in if and only if x = y. 2

Remark: The inequality in Property 4.2(b) is the famous Minkowski inequality in matrix

analysis. However, such inequality has slightly different form when it is extended to SOC

case as shown in Proposition 4.2(b). More specifically, it is not true that

det(x+ y)1/n ≥
(
det(x)1/n + det(y)1/n

)
∀x �Kn 0, y �Kn 0.

On the other hand, the formula in Property 4.2(c) does not hold for general m 6= 2, when

it is considered in SOC case as seen in Proposition 4.2(c). In fact, when m = 2, we have

the minimization problem

min :
2

m
(x1y1 + x2y2 + · · ·+ xnyn)

s.t. y1 > 0

y2
1 − (y2

2 + · · ·+ y2
n) = 1.

Using same method, we can get the optimal solution
2

m
det(x)1/2 6= det(x)1/m.

5 Final Remarks

In this paper, we have investigated: to what extent are positive semidefinite cone and

second-order cone like? We show that they share many similarities, but still have some

differences. We believe that such study will be helpful for designing solution methods

for SDP and SOCP. There have some interesting directions to be explored along this

topic. It is well known that the adjoint X∗ of a symmetric matrix X plays an important

role in matrix analysis. In fact, there are many matrix inequalities and matrix equations

which involve X∗. What is the corresponding role of x∗ (adjoint of x) in SOC case? On

the other hand, two matrices A and B are said to be similar if there exists an invertible

matrix S such that A = S−1BS. Such concept is crucial in the classification of matrices.

Can we define analogous concept of similarity of two vectors x and y associated with

SOC? We leave these as future research topics.
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