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Abstract 

- 

In this paper, we present an O(1) time neural network with O(n’ + “> neurons and links to sort 
n data, E > 0. For large-size problems, it is desirable to have low-cost hardware solutions. In order 
to solve the sorting problem in constant time and with less hardware-cost, we adopt Leighton’s 
column sort [S] as the main architecture.. Then we use Chen and Hsieh’s neural network [3] with 
0(n3) complexity as the lowest-level sub-networks. By using recursive techniques properly, we 
are able to explore constant-time, low-complexity neural sorting networks. 
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- 

1. Introduction 

The primary objectives of parallel sorting algorithm are to minimize both sorting time 
and processors while arranging given items in a desired order. A neural network is a 
suitable architecture in some parallel algorithms because it can process the data 
simultaneously [4]. 

The problem of sorting n numbers with a fixed connected network has a long and 
rich history [l]. There are a number of neural networks proposed for related purposes. 
Chen and Hsieh [3] have constructed a neural sorting network with O(1) time complex- 
ity. Their network needs 0(n3> neurons and 0(n3) links to sort n numbers. Tseng and 
Wu [6] have derived a constant-time WTA (winner-take-all) neural network with 

* Corresponding author. Email: linss@ice.ntnu.edu.tw 
’ This work was supported by the National Science Council of R.O.C. under grant NSC-84-25 1 l-S-003-089. 

0925-23 I2/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved. 
PII SO925-23 12(96)00040-9 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Taiwan Normal University Repository

https://core.ac.uk/display/13372685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


290 S.-S. Lin, S.-H. Hsu/Neurocomputing 14 (1997) 289-299 

o(n’+=) neurons and O(n’+’ ) links, F > 0. The WTA network identifies the neuron 
with the maximum (or minimum) activation among a set of n neurons. Zwietering et al. 
[8] show that the minimal number of layers needed are 3 for sorting when using classical 
multilayered perceptrons with the hard-limiting response function. Wang [7] presents an 
analog sorting network to be capable of monotonic and bitonic sorting and suitable for 
hardware implementation. These investigations have showed light on the neural network 
approach to sorting. 

In [3], Chen and Hsieh’s sorting network needs O(n3) neurons and links. In [6], 
Tseng and Wu’s WTA network is nearly cost-optimal, but it can only find the maximum 
of n numbers. That is, it can not sort the n numbers. In this paper, we improve the 
results of both [3] and [6]. We derive an O(1) time neural sorting network which needs 
only O(n’+E) neurons and O(n’+‘) links, E > 0. 

The paper is organized as follows. In Section 2, the model of neural networks, Chen 
and Hsieh’s sorting network, and Leighton’s column sort are introduced. In Section 3, a 
constant-time, low-cost sorting network is proposed. The implementation issues for our 
network are discussed in Section 4. Finally, Section 5 concludes this paper. 

2. Basic terminologies and definitions 

2.1. The model of neural networks 

A neural network consists of a number of neurons and links. Neurons can be 
considered as the processing elements (PEs) in the network. A link is a data path 
between two neurons. Each neuron sends impulses to other neurons and receives 
impulses from other neurons. The basic operation of a neuron is depicted in Fig. 1, 
where x,.x*,... ,x,, are the values of input data that pass through the links, w, ,w2, . . . ,wn 
are weights on these links, f is the activation function in each neuron, y is the value of 
output data, and 6 is a constant, which represents a threshold value. All links are 

y = f( ~,i,i -8 ) 
i=l 

h W ,.*. . wn \ 
Xl x2 Xn 

Fig. I. The operation of a neuron. 



S.-S. Lin, S.-H. Hsu/Neurocomputing 14 (1997) 289-299 291 

s n-l 

selection layer 

rank layer 

x x 
2 

x 
n 

Fig. 2. The block diagram of the Chen and Hsieh’s sorting network. 

weighted, so that the values of data are multiplied by the weight on the link it passed 
through. 

2.2. Chen and Hsieh’s sorting network 

Our network uses Chen and Hsieh’s sorting network [3] as the lowest-level network. 
Therefore, we briefly introduce their network in this subsection. 

Chen and Hsieh’s neural sorting network consists of two layers: rank layer and 
selection layer. Its block diagram is shown in Fig. 2, where (x, ,x2,. . . , x,> is the input 
list and (sO,s,, . . . , s,_ ,) is the output list. The rank layer is composed of n modules 
K,,K 2,. . . ,K,. Module Ki computes the rank of input xi. We know the positions of 
each xi in the sorted list after their ranks are derived. The selection layer is composed of 
n modules L,,L,, . . . , L,. Module Li selects one xi such that the correct data are 
selected as the i-th output. The modules Li are also connected to the inputs. By passing 
these two layers, the outputs nodes sa,s,, . . . ,s,_ , constitute the sorted list. 

Chen and Hsieh’s neural network can sort n numbers in O(1) time, but it has 0(n3) 
links and neurons. In this paper, we will improve the 
links, where E > 0. 

result to O(n’+ ‘1 neurons and 

-6 15 121 

14 4 71 

10 1 13 / 

3 16 9’ 

17 8 5 II 2 J 0 

(a) 

0 6 12‘ 

I 7 13 

2 8 14 

3 9 I5 

4 10 16 

5 11 17 
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Fig. 3. A 6 X 3 matrix (a) before, and (b) after column sorting. 
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Fig. 4. The transpose and untranspose permutations in step 2 and step 4. 

2.3. Leighton’s column sort 

In order to derive a low-cost neural sorting network, we adopt a novel scheme - 
Leighton’s column sort [5]. Column sort is a generalization of odd-even merge sort. Let 
Q be an r. s matrix of numbers, where r. s = n, s I r, and r 2 2( s - 1j2. Initially, each 
entry of the matrix contains one of the n numbers to be sorted. After completion of the 
algorithm, the i, j entry (0 I i < r - 1, 0 I j I s - 1) of Q will contain the p-th sorted 
number (0 I p s n - l>, where p = i + j. r. That is, the sorted elements are put in a 
column-major-ordering fashion. An example is shown in Fig. 3. 

Column sort has eight steps. In steps 1, 3, 5, and 7, the numbers within each column 
are sorted. In steps 2, 4, 6, and 8, the entries of the matrix are permuted. The 
permutation in step 2 corresponds to a “transpose” operation of the matrix. The 
permutation in step 4 is the inverse of that in step 2. Fig. 4 shows the operations of step 
2 and step 4. The permutation in step 6 corresponds to an (r/2)-shift of the matrix. The 
permutation in step 8 is the inverse of that in step 6. The shift and unshift permutations 
in step 6 and step 8 are shown in Fig. 5. The - x’s denote arbitrarily small dummy 
elements, and the x’s denote arbitrarily large dummy elements. 

3. A new low-cost neural sorting network 

In this section, we present a low-cost O(l)-time neural sorting network that is based 
upon Leighton’s eight-step column sort [5] and Chen and Hsieh’s neural sorting network 
[3]. By using the recursion technique, we are able to reduce the number of links and 
neurons to O(rz’ + &), where E > 0. 

We show the block diagram of our network in Fig. 6, where ( x,,x2,. . . ,x,) is the 
input list and (u, ,v2 , . . . ,u,) is the sorted output result. That is, u, I u2 I . . . s u,. We 
let r.s=n, slr,and rz2(s-1j2, ~21. 

Step 6 (shill) 
Ic,o[ - 

Step 8 (unsbifi) 

[-m d j P] 
-03 e k 91 
-m f I r 

Fig. 5. The shift and unshift permutations in step 6 and step 8. 
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Fig. 6. ‘Ihe block diagram of our network. 

We implement the eight-step column sort [5] by using these sub-networks B,,, and 
links between them, 1 I i I 4, 1 I j I S. Each sub-network Bij sorts its input-list and 
outputs the sorted values. The links between these sub-networks perform the column-sort 
operations which include transpose, untranspose, shift and unshift. Fig. 7 shows these 
operations in detail. It is clear that if all the sub-networks sort their inputs in constant 
time, the whole sorting network will take O(1) time. Our network is a recursive scheme. 
We use Chen and Hsieh’s network [3] as the lowest-level sub-networks. Now let us take 
into account the depth of the recursive construction. 

Case 1. No recursion. 
Here we use Chen and Hsieh’s @l&time neural sorting network as all B,,, 1 I i I 4, 

1 <j s s. Chen and Hsieh’s sorting network can sort r data in O(1) time by using 
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Fig. 7. The eight-step column sort. 



S.-S. Lin, S.-H. Hsu/Neurocomputing 14 (1997) 289-299 295 

0(r3) neurons and links. The input list (x, ,x2,. . . , xn) is divided into s sublists. Each 
sublist has r elements. In order to satisfy the condition of column sort: s I r and r 2% 2 

(s - 1)2, we let r = 2s2. In this case, n = r. s = 2s3. That is, s = (TZ/~)“/~) and 

r = 2(n/2) (2/3) Each B.. sorts its sublist individually and outputs the sorted values. . 
After the operations of Bit., these sorted values become the inputs of Bi+ , j. As the block 
diagram of Fig. 6 shows, the outputs u,,u2,. . . ,u,,, are sorted after four sort stages and 
four permutation stages have been done. Since Chen and Hsieh’s sorting network takes 

O(1) time, so does our network. The number of neurons and links in each Bjj is O(r3). 

So the total neurons and links in our network are O(4. s. r3) = O(n713) = O(n2.33) < 

O(n3). This O(TZ~.~~) result is better than that of Chen and Hsieh’s network which needs 
O(n3) neurons and links to sort n numbers. We call this network “Case 1” network. 

Case 2. Recursively construct once. 

The “Case 1” network derived above can be used recursively as Bij shown in Fig. 6. 
Now each Bij has r = 2s2 inputs and contains O(r713) neurons and links. The total 

number of neurons and links in the whole network is O(4. s . r713) = 0(n’7’3”‘2”~) 

n’i3) = O(n”19) = 0(n’.89). We call this network “Case 2” network. 

Case 3. Recursively construct k times. 
As we showed, the “Case 2” network needs O(TZ’,~~) neurons and links. We can 

further apply the recursion in our network. Assume the “recursively construct k times” 
network needs O(n’k> neurons and links. We have the following lemma: 

Lemma 1. The “recursively construct k times” network needs O(n”l) neurons and 

links, where ak = 1 + 2(2/3)k’ ‘, k = 0,1,2,. . . 

Proof. We can use the “recursively construct k - 1 times” network as all B,, in the 

“recursively construct k times” network. Now each Bij has r = 2s2 inputs and 

contains 0( T”“- 1) neurons and links. The total number of neurons and links in the whole 
network are O(4. s ,.a”- I) = 0(4. (n/2)(‘/3) 2 . (n/2)‘2/3)“& I) = 0(n(2/3)uL-, +(I I.%)) 

= O(n”k). From this, we know that ak = (2/3)a,_, + l/3 and a0 = 7/3. For k = 0, 

a0 = 1 + 2(2/3)” ’ = 1 + 4/3 = 7/3, the statement is true. Now assume the result is 
true for k = m - 1, i.e., a,,,_ , = 1 + 2(2/3)(m- I)+’ = 1 + 2(2/3)m. When k = m, a, = 

(2/3)a,_ , + l/3 = (2/3)(1 + 2(2/3)“) + l/3 = 1 + 2(2/3)m+ ‘. By using the mathe- 
matic induction, we have proved Lemma 1. 0 

Table 1 
Connection comtdexities of our network for small k 

Recursion times k Connection complexity 

0 Oh”3 II = O(n2-33) 

1 O(n 17/g) = O(p9) 

2 0(~43/*7) I 0(~159) 

3 O(n 113.81)~ o(,$ 40) 

4 0(~3’W*43) = o(,,’ 26) 

5 &857/7*9) = 0(,&‘8) 

- 
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Fig. 8. The relation between r’ and n. 

The result uk = 1 + 2. (2/3jk’ ’ means that if we recursively construct the network 
k times, we need 0( n’~) = 0( n’+2(2/3)‘* ‘> neurons and links. Table 1 shows the 
connection complexities of this scheme for small k. At this moment, an O(1) time 
neural sorting network with O(n”‘) neurons is derived, where E = 2 . (2/3jk’ ’ > 0. 

4. Implementation of our network 

In the previous section, we assume that the problem size n is of the form: 2s3 for 
some integer S, where s 2 1. In most situations, n does not fit this form. That is, there 
does not exist an integer s such that 2s3 = n justly. We let n’ = 2. [(n/2)(“3)]3 be a 
proper value that is the smallest number which is greater than or equal to n and has the 
form. 

n (Roblem size) 

10 + 

, L; 
k (Recursion times) 

. 

0 1 2 3 4 5 

Fig. 9. The decreasing effect of problem size n = IO’, where i = 1. . .8. 
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It is easy to show that the connection complexity of sorting n numbers is equal to the 
connection complexity of sorting n’ numbers in our network. However, we should stop 
applying the recursion, if the recursion will not take advantage any more. This occurs 
when n I 54. That is, r’= 2.[(r/2) (‘i3)13 > n when n I 54, where r = 2s’ = 2 . 
[(n/2>“/3’12. See Table 2 for a depiction. Fig-8 shows the relation between r’ and n. 
Therefore, we use Chen and Hsieh’s sorting network [3] directly when n I 54. 

It is clear that the recursion times k get a restriction with a specific n. The practical 
implementation of our network is show in Table 2. For example, if we want to sort 
n = lo8 numbers, we can recursively construct the network k (= 3) times, and its depth 
is 1280 layers. The depth of our network can be derived as follows. In Case 1, our 
network uses Chen and Hsieh’s networks as B,,. Since the depth of Chen and Hsieh’s 
network is 5, the depth of “Case 1” network’s depth is 4. 5 = 20. “Case 2” network 
uses “Case 1” networks in B,,, so it’s depth is 4.20 = 80. A “recursively construct k 
times” network uses b, layers, where b, = b,_ , . 4, b, = 20. Therefore, b, = 20 . 4k = 
5 . qk’ ‘. Fig. 9 shows the decreasing effect of problem size n as the recursion times 
increase, where n = lo’, i = 1 . . .8. 

5. Conclusion 

In the past, neural networks were used to solve problems about pattern recognition, 
artificial intelligence, and so on. Today, many researchers use neural networks to solve 
general problems, to name just a few, the WTA problem [6], sorting [3] or NP-complete 
problems [2]. To successfully apply neural networks to solve these problems, we must 
reduce the hardware-cost of the networks used. Our study goes toward this goal by 
presenting a low-cost neural sorting network. Since the sequential time complexity for 
sorting is O(nlog n), it is interest to know whether there exists an O(l)-time neural 
network with O( nlog n) neurons and links. This problem remains open. It is well known 
that sorting is of fundamental importance in computer science. Sorting also finds 
applications in the solution of a huge number of complex problems. We hope that this 
paper will prompt researchers to study related problems such as the selection problem, 
the minimum(maximum)-finding problem, the integer sorting problem. 

Acknowledgements 

We thank the anonymous reviewers for their helpful comments on an earlier version 
of the paper. 

References 

[I] S.G. Akl, The Design und Anulysis of’Parulle1 Algorithms (Prentice-Hall International Editions, 1989). 

[2] S. Bhide, N. John, and M.R. Kabuka, A Boolean neural network approach for the traveling salesman 

problem, IEEE Truns. Cornput. 42( 10) ( 1993) I 27 1 - 1278. 



S.-S. Lin, S.-H. Hsu/Neurocomputing 14 (1997) 289-299 299 

[3] W. Chen and K. Hsieh, A neural sorting network with O( 1) time complexity, Informutinn Processing 

Letters 45(6) ( 1993) 309-3 13. 

(41 M. Chester, Neurcrl Networks: A Tutorial (Prentice-Hall, 1993). 

[5] T. Leighton, Tight bounds on the complexity of parallel sorting, /EEE Truns. Comput. C-344) ( 1985) 

344-354. 

[6] Y. Tseng and J. Wu, On a constant-time, low-complexity winner-take-all neural network, IEEE Truns. 

Comput. 44(4) (I 995) l-3. 

[7] J. Wang, Analysis and design of an analog sorting network, IEEE Trans. Neural Networks 6(4) (1995) 

962-97 I. 
[8] P.J. Zwietering, E.H.L. Aarts, and J. Wessels, The minimal number of layers of a perceptron that sorts, J. 

Purullel Distributed Comput 20 (I 994) 380-387. 

Shun-Shii Lin received the B.S. degree in Computer Engineering from the National 
Chiao-Tung University in 1981, the MS. degree and the Ph.D. in Computer Science 
and Information Engineering from the National Taiwan University, Taiwan, ROC, in 
1985 and 1990, respectively. In 1986, He joined the National Taiwan Normal 
University, Taiwan, ROC, where he is now the department head of information and 
computer education. His current research interests include VLSI routing, real-time 
scheduling, parallel algorithms and neural computing. 

Shen-Hsuan Hsu received the B.S. degree in Applied Mathematics from the 
National Sun-Yet-Sen University, Taiwan, ROC in 1994. He is now a graduate 
student at the department of information and computer education, National Taiwan 
Normal University, Taiwan, ROC. His research interests include neural computing 
and parallel algorithms. 


