
812 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998

Brief Contributions
Pfair Scheduling of Generalized

Pinwheel Task Systems

Sanjoy K. Baruah, Member, IEEE, and Shun-Shii Lin

Abstract—The scheduling of generalized pinwheel task systems is
considered. It is shown that pinwheel scheduling is closely related to
the fair scheduling of periodic task systems. This relationship is
exploited to obtain new scheduling algorithms for generalized pinwheel
task systems. When compared to traditional pinwheel scheduling
algorithms, these new algorithms are both more efficient from a run-
time complexity point of view, and have a higher density threshold, on
a very large subclass of generalized pinwheel task systems.

Index Terms—Generalized pinwheels, fairness, real-time scheduling,
density threshold.

———————— F ————————

1 INTRODUCTION

THE pinwheel scheduling problem was introduced by Holte et al.
[15] in the context of offline scheduling for satellite-based commu-
nication. The problem is defined as follows: Given a multiset {b1, b2,
º, bn} of positive integers, determine an infinite sequence (a schedule)
over the symbols {1, 2, 3, º, n} such that, for each i, 1 £ i £ n, any subse-
quence of bi consecutive symbols contains at least one i. Since its intro-
duction, this task model has been used to model the requirements
of a wide variety of real-time systems. For example, Han and Lin
[12] used pinwheel techniques to model distance-constrained
tasks; Hsueh et al. [17] extended this research to distributed sys-
tems. Baruah et al. [6] used pinwheel scheduling to construct static
schedules for sporadic task systems. Han and Shin [13], [14] ap-
plied pinwheel techniques to real-time network scheduling. Re-
cently, Baruah and Bestavros [4] modeled fault-tolerance and real-
time requirements of broadcast disks by generalizing the pinwheel
model.

For all of these applications, the original model of Holte et al.
[15] has been generalized as follows: Given a multiset {(a1, b1), (a2,
b2), º, (an, bn)} of ordered pairs of positive integers, determine an infinite
sequence over the symbols {1, 2, 3, º, n} such that, for each i, 1 £ i £ n,
any subsequence of bi consecutive symbols contains at least ai is. The ais
typically represent computation requirements of tasks, or the
amount of data to be transferred, and are, hence, often signifi-
cantly greater than one. Of course, any generalized pinwheel task
system {(a1, b1), (a2, b2), º, (an, bn)} can be transformed to the origi-
nal model in a straightforward manner by simply representing
each ordered pair (ai, bi) as a sequence of ai distinct bis. However,
such a transformation will result in a multiset of size a1 + a2 + º + an
integers; in general, this represents an exponential increase in the
size of the representation. As a consequence, the algorithms used
for scheduling pinwheel task systems represented in the original
model are not necessarily the most efficient ones for scheduling
generalized pinwheel task systems.

In this research, we address the issue of scheduling generalized
pinwheel task systems. We establish a close link between pinwheel
scheduling and recent research on the fair scheduling of periodic tasks
[3], [5], [7] and exploit this relationship to determine a new scheduling
strategy for generalized pinwheel task systems. Apart from proving
more efficient from a run-time complexity point of view, our approach
proves superior to algorithms currently used for scheduling pinwheel
task systems in terms of schedulability—the ability to schedule a large
class of pinwheel task systems—for generalized pinwheel task sys-
tems in which all the ai parameters are relatively large.

The rest of this paper is organized as follows. In Section 2, we
formally define generalized pinwheel task systems and briefly
review some of the previous results in pinwheel scheduling theory.
In Section 3, we review the recent research in fair scheduling of peri-
odic task systems, particularly the notions of proportionate progress
and pfairness. In Section 4, we present and prove correct Algorithm
Pinfair, an algorithm for scheduling generalized pinwheel task
systems that is directly based upon a fair scheduling algorithm. In
Section 5, we evaluate the behavior of Algorithm Pinfair by com-
paring it to other approaches to pinwheel scheduling.

2 PINWHEEL TASK SYSTEMS

Consider a shared resource that is to be scheduled in accordance
with the integral boundary constraint: For each integer t ≥ 0, the re-
source must be allocated to exactly one task (or remain unallocated)
over the entire time interval [t, t + 1). (We refer to this time interval
as time slot t.) For our purposes, a pinwheel task x is characterized
by a computation requirement x.a Œ N and a window size x.b Œ N, with
the interpretation that the task x expects to be allocated the shared
resource for at least x.a out of every x.b consecutive time slots. A pin-
wheel task system is a set of pinwheel tasks that share a single resource.

The ratio of the computation requirement of a task to its win-
dow size is referred to as the density of the task. The density of a
system of tasks is simply the sum of the densities of all the tasks in
the system. Observe that, for a task system to be schedulable, it is
necessary (although not sufficient) that the density of the system
not exceed one.

The issue of designing efficient scheduling algorithms for pin-
wheel task systems has been the subject of much research. Holte et
al. [16] presented an algorithm which schedules any pinwheel task
system of two tasks with density at most one. Lin and Lin [18]
have designed an algorithm which schedules any pinwheel task
system of three tasks with a density at most five-sixths (this algo-
rithm is optimal in the sense that there are three-task systems with
density 5/6 + e that are infeasible, for e arbitrarily small). When
the number of tasks is not restricted, Holte et al. [15] have a simple
and elegant algorithm for scheduling any pinwheel task system
with density at most one-half. Chan and Chin [8] have improved
this result and designed an algorithm for efficiently scheduling
any pinwheel system with a density at most 0.7.

3 PROPORTIONATE PROGRESS

A periodic task x is characterized by a period x.p Œ N and a compu-
tation requirement x.e Œ N, with the interpretation that the task x
expects to be allocated the processor for x.e units of time in every
interval {t | i ◊ x.p £ t < (i + 1) ◊ x.p}, for each i Œ N. Given an in-
stance F of n such periodic tasks, the (uniprocessor) periodic
scheduling problem [20] is concerned with attempting to schedule
these n tasks on a single processor so as to satisfy the constraints of
each task. Task preemption is permitted, but only at integral
boundaries as dictated by the integral boundary constraint.

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� S.K. Baruah is with the Department of Computer Science, University of Ver-
mont, Burlington, VT 05405. E-mail: sanjoy@cs.uvm.edu.

•� S.-S. Lin is with the Department of Information and Computer Education,
National Taiwan Normal University, 162 Hoping East Road, Sec. 1, Taipei,
Taiwan, 10610, R.O.C. E-mail: linss@ice.ntnu.edu.tw.

Manuscript received 6 June 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 102118.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Taiwan Normal University Repository

https://core.ac.uk/display/13372683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998 813

Liu and Layland have shown [20] that x e x p
x

. .2 7ŒÂ £
F

1 is a

necessary and sufficient condition for a system F of periodic tasks
to have a periodic schedule; furthermore, the earliest deadline first
scheduling algorithm (EDF) [10] has been proven an optimal
scheduling algorithm.

3.1 Temporal Fairness
The issue of fairness in resource-allocation and scheduling has re-
cently been attracting considerable attention [1], [2], [5]. Motivated
no doubt in part by applications, such as multimedia, which are
characterized by fairly “regular” resource requirements over ex-
tended intervals, attempts have been made to formalize and char-
acterize notions of temporal fairness. The concepts of proportionate
progress and pfairness were introduced in [5] (see also [7]) to quan-
titatively measure the fairness of a schedule. We briefly review
these ideas below:

We start with some conventions:

•� We adopt the standard notation of having [a, b) denote the
contiguous natural numbers a, a + 1, º, b - 1.

•� The real interval between time t and time t + 1 (including t,
excluding t+1) will be referred to as slot t, t Œ N.

•� We will consider an instance that involves one processor
and a set F of n tasks.

•� Each task x has two integer attributes—a period x.p and an
execution requirement x.e. We define the weight x.w of task x to
be the ratio x.e/x.p. Furthermore, we assume 0 < x.w £ 1.

A schedule S for instance F is a function from the natural numbers
{0, 1, 2, º} to F < {'}, with the interpretation that S(t) = x, x Œ F,
if the processor is allocated to task x for slot t, and S(t) = ' if the
processor is unallocated during time-slot t. With respect to a particular
schedule S (which should be clear from context), let allocatedx(t) be
defined as follows:

allocatedx t t t t S t x1 6 6 1 6= B= ¢ ¢ Œ ¢ =
def

 and 0, .

Schedule S is a periodic schedule if and only if

" Œ Œ ◊ = ◊i x i x i x p x e ix, : , : . .N F allocated 2 7 .

That is, each task x is allocated exactly i ◊ x.e slots during its first i
periods, for all i.

Let us define the lag of a task x at time t with respect to sched-
ule S, denoted lag(S, x, t), as follows:

lag allocatedS x t x w t tx, , .1 6 1 6= ◊ -
def

.

The quantity x.w ◊ t represents the amount of time for which task x
should have been allocated the processor over [0, t).

Informally, a schedule displays proportionate progress
(equivalently, satisfies pfairness, or is pfair) if at all integer time
instants t and for all tasks x, the lag of task x at time t—the differ-
ence between the amount of time for which x should have been
allocated a processor and the amount of time for which it was allo-
cated a processor—is strictly less than 1 in absolute value. More
formally, schedule S is pfair if and only if

"x, t : x Œ F, t Œ N - 1 < lag(S, x, t) < 1.
That is, a schedule is pfair if and only if it is never the case that any
task x is overallocated or underallocated by an entire slot.

Pfairness is an extremely stringent form of fairness—indeed, it
has been shown [5] that no stronger fairness can be guaranteed
achievable for periodic task systems in general. (Consider a system
of n identical tasks, each with weight 1/n. The task that is sched-
uled at slot 0 has a lag (-1 + 1/n) at time 1, and the one scheduled
at slot n - 1 has a lag (1 - 1/n) at time (n - 1). By making n large,
these lags can be made arbitrarily close to -1 and +1, respectively.)
It was proven in [5] that pfair scheduling is a stronger requirement
than periodic scheduling, in that any pfair schedule is periodic.
The converse, however, is not generally true.

Equations (1) and (2) (below) further characterize the structure
of pfair schedules. With respect to a given task x, let earliest(x, j)
(resp., latest(x, j)) denote the earliest (resp., latest) slot during which
x may be scheduled for the jth time, j Œ N, in any pfair schedule.
We can easily derive closed-form expressions for earliest(x, j) and
latest(x, j):

earliest x j t t x w t j
j

x w
, min : : . .2 7 1 6 2 7= Œ ◊ + - + > - =

!

#
$#

N 1 1 1 . (1)

Similarly,

latest x j t t x w t j
j
x w

, max : : . .2 7 = Œ ◊ - < =
+�

"
##

-N 1
1

1. (2)

A slot t such that t = earliest(x, j) for some j is called an activa-
tion-slot for task x.

With respect to a particular schedule S,

•� Task x is contending at time t if it may receive the processor
without becoming overallocated; i.e., if

allocated earliestx t k x k t1 6 1 6= Ÿ £, .

•� For contending tasks, a pseudodeadline is defined: The
pseudodeadline of task x is the time by which x must be al-
located the processor if it is to not violate its lag constraints.
More formally, for contending task x at time t, the pseudo-
deadline

x d x tx. ,=
def

latest allocated 1 62 7 .

3.2 Algorithm PF
The concept of pfairness was introduced in [5], in the context of
constructing periodic schedules for a system of periodic tasks on
several identical processors—the multiprocessor periodic scheduling
problem [19]. The following theorem was proven there, by means of
some fairly involved network-flow constructions, and by using the
Integer Flow Theorem [11]:

THEOREM 1. A system of periodic tasks can be scheduled in a pfair man-
ner on m processors provided the weights of all the tasks sum to at
most m.

As a special case, we obtain the following corollary with respect
to uniprocessor systems:

COROLLARY 1.1. Every uniprocessor system of periodic tasks F for

which x w
x

.
ŒÂ £

F
14 9 holds has a pfair schedule.

In addition, an on-line scheduling algorithm—Algorithm PF—was
presented and proven correct. This algorithm has a nontrivial pri-

ority scheme that requires O x p
x

log(.)+Â 1
all 4 9 time to deter-

mine the m highest-priority tasks in the worst case. However, for
the uniprocessor case, Algorithm PF reduces to simply allocating
the processor at each time slot to the highest-priority contending
task according to the following pseudo-deadline based priority
rule:

contending task x has priority over contending task y iff x.d £ y.d—ties
broken arbitrarily.

Again with respect to the uniprocessor case, Algorithm PF can
be implemented using the heap-of-heaps data structure [21] in
O(log n) time per time slot, where n is the number of tasks.

EXAMPLE 1. Consider a system of two periodic tasks x1.e = 6, x1.p =
10 and x2.e = 3, x2.p = 9, which are to be scheduled on a sin-
gle processor. The initial portion of the schedule generated
for this task system by Algorithm PF is given below (an ini-
tial trace of the computations performed by Algorithm PF

814 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998

on this task system is given in Table 1—the reader wishing a
deeper understanding of Algorithm PF is encouraged to
work through this trace):

slot: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
task: 1 2 1 1 2 1 1 2 1 2 1 1 2 1 '

slot: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
task: 1 2 1 1 2 1 1 2 1 2 1 1 2 1 '

The reader may verify that this schedule has indeed been
generated according to Algorithm PF. (For example, at time t
= 10, allocatedx2

10 4() = , while 10 3 32¥ =x w. . ; hence,

lag(, ,) .S x2 10 0 6= - .

Since earliest x x w(,) .2 24 4 12= = , x2 is not contending at

this time. However, allocatedx1
10 6() = , while

earliest(,) .x x w1 16 6 10= = ;

hence, x1 is contending at t = 10, and

x d x x w1 1 16 7 1 11 67 1 11. (,) . .= = - = - =latest .)

4 PFAIR SCHEDULING OF PINWHEEL TASKS

Given a system of pinwheel tasks G, with each task x characterized
by computation requirement x.a and window size x.b, our goal
here is to use Algorithm PF to generate a schedule for G. Since
Algorithm PF uses the weight of the tasks to make scheduling
decisions, it is necessary to first define a weight x.w to each task x,
based upon the values of x.a and x.b.

Consider the following pinwheel scheduling algorithm:

Algorithm Pinfair(G), where G is a system of pinwheel tasks.
Step 1: For each x Œ G, define a weight x.w as follows:

x w
x a

x b
.

.
.

¨
+ 1

.

Step 2: If x w
x

.
ŒÂ >

G
1 return failure.

Step 3: Schedule G using Algorithm PF.

THEOREM 2. Any system of pinwheel tasks G satisfying

x w
x

.
Œ
Â £

G

1 (3)

(where x.w is as defined in Algorithm Pinfair) can be successfully
scheduled by Algorithm Pinfair.

PROOF. Observe first that, if the condition of the theorem (3) is
satisfied, then Algorithm Pinfair reduces to Algorithm PF

with task weights as defined in Step 1. In the remainder of
this proof, we therefore study the behavior of Algorithm PF
on a task system in which the task weights are as defined in
Step 1. Hence, let x.w = (x.a + 1)/x.b for each task x. From the
perspective of meeting the pinwheel condition, the “worst”
case that can occur during the scheduling of the task system
using Algorithm PF is for task x to get scheduled for the jth
time at the earliest possible slot and for the next x.a alloca-
tions to x to occur as late as possible. In that case, there will
be exactly x.a allocations to x over the interval between time-
instants (earliest(x, j) + 1) and (latest(x, j + x.a) + 1). In order
to ensure that Algorithm PF schedules task x for at least x.a
of every x.b consecutive slots, it suffices to ensure that the
size of this interval never exceeds x.b, for any j Œ N. That is,
for all j,

latest(x, j + x.a) + 1 - (earliest(x, j) + 1) £ x.b.

Notice that

latest earliestx j x a x j

j x a
x w

j
x w

j
x w

x a
x w

j
x w

j
x w x b

j
x w x w x a x b

x b j x w j x w

x b

, . ,

.
. .

.
.

. .

.)

. . .)

.

+ + - -

=
+ +�

"
##

-

!

#
$#

-

= +
+�

"
##

-

!

#
$#

-

=
�

"
##

+ -
�

"
##

- = +

£ - + - £

=

2 7 2 7

1 6

1 1

1
1

1
1

1 1

1 1 1

 (By the assumption that

 (Since

Hence, choosing x.w = (x.a + 1)/x.b in Step 1 of Algorithm
Pinfair will ensure that Algorithm PF will schedule task x at
least x.a times in any interval of size x.b. o

EXAMPLE 2. Consider a system of two pinwheel tasks x1.a = 5, x1.b

= 10 and x2.a = 2, x2.b = 9, which are to be scheduled on a
single processor. To schedule this pinwheel system, Algo-

rithm Pinfair will compute a weight x1.w = (5 + 1)/10 and

x2.w = (2 + 1)/9, and call Algorithm PF on the periodic task
system with tasks of weights 0.6 and 0 3. , respectively. But,
this is exactly the system considered in Example 1; hence,
the schedule generated there (reproduced below) is also a

pinwheel schedule for pinwheel tasks x1 and x2:

TABLE 1
PARTIAL TRACE OF THE COMPUTATIONS PERFORMED BY ALGORITHM PF

ON THE EXAMPLE TASK SYSTEM OF EXAMPLE 1

Slot 0 1 2 3 4 5 º
task 1 2 1 1 2 1 º
t ◊ x1.w 0 0.6 1.2 1.8 2.4 3 º
k tx1 allocated ()

1
= 0 1 1 2 3 3 º

lag(S, x1, t) 0 -0.4 0.2 -0.2 -0.6 0 º
earliest(x1, k1) 0 1 1 3 5 5 º
x1.d = latest(x1, k1) 1 3 3 4 6 6 º
t ◊ x2.w 0 1/3 2/3 1 4/3 5/3 º
k tx2 allocated ()

2
= 0 0 1 1 1 2 º

lag(S, x2, t) 0 1/3 -1/3 0 1/3 -1/3 º
earliest(x2, k2) 0 0 3 3 3 6 º
x2.d = latest(x2, k2) 2 2 5 5 5 8 º

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998 815

slot: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
task: 1 2 1 1 2 1 1 2 1 2 1 1 2 1 '

slot: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
task: 1 2 1 1 2 1 1 2 1 2 1 1 2 1 '

The reader may verify that every interval of 10 contiguous
slots in this schedule contains at least five 1s, and that every
interval of nine contiguous slots contains at least two 2s.

5 EVALUATION

The “best” currently known algorithm for pinwheel scheduling is
the Sxy scheduler of Chan and Chin [8]. In this section, we compare
the performance of Algorithm Pinfair as a scheduling algorithm for
generalized pinwheel task systems with the performance of Sxy.

5.1 Density Threshold
The density threshold of a scheduling algorithm is defined to be the
largest number w such that any pinwheel task system with density
at most w can be successfully scheduled by this algorithm. The
seminal paper on pinwheel scheduling [15] presented a pinwheel
scheduling algorithm with a density threshold of one-half. Chan
and Chin [9], [8] subsequently improved this bound, designing a
series of algorithms with successively better density bounds, cul-

minating finally in one—Sxy—with a density threshold of 0.7 [8].

This threshold is achieved on a task system G with bmin = 3, where

b x bxmin min { . }= Œ

def

G . The density threshold increases with increas-

ing bmin; Chan and Chin conjecture [8, p. 764] that the density

threshold approaches (in fact, exceeds) 0.82 as bmin Æ •.
When density threshold is the metric, Algorithm Pinfair com-

pares rather poorly with Scheduler Sxy:

LEMMA 1. Algorithm Pinfair has a density threshold of 1/2.

PROOF. Algorithm Pinfair assigns a weight of 1 to a task x1 with x1.a
= 1 and x1.b = 2; therefore, it will fail to schedule any pin-
wheel task system {x1, x2}, where x2.a = 1, x2.b = d for any d Œ N.
The density threshold of Algorithm Pinfair is, therefore, no
more than one-half.

It follows from Theorem 3 (below) that the density
threshold is at least one-half. Hence, the lemma. o

This poor performance of Algorithm Pinfair for unrestricted
generalized pinwheel task systems is not very surprising, since it
has been explicitly designed for a specific kind of task system—
those where all the computation requirements (the x.a parameters)
are not too small. When this is true, the density threshold of Algo-
rithm Pinfair improves considerably:

THEOREM 3. Algorithm Pinfair successfully schedules any pinwheel task

system G with density at most amin/(amin + 1), where

a x axmin min { . }= Œ

def

G .

PROOF. Let r denote the density of G. Then

x a
x b

x a x a
x b

x a a
x b

a

x x

x

.
.

. .
.

.
.

.min
min

+
=

+

£
+

= +

Œ Œ

Œ

Â Â

Â

1 1 1

1 1
1 1

G G

G

2 7

2 7 2 7r

From Theorem 2, it follows that, in order for Algorithm
Pinfair to successfully schedule G, it is sufficient that

1 1 1 1 1 1

1

+ £ ∫ £ +

∫ £ +

a a

a a

min min

min min .

2 74 9 2 74 9
2 74 94 9

r r

r

o

Thus, the density threshold rapidly increases with amin (for amin
= 4, the density threshold is at least 0.8; for amin = 5, it is ≥ 0.825; for
amin = 9, it is ≥ 0.9), asymptotically approaching unity with in-
creasing amin. (Recall that Chan and Chin conjecture [14, p. 764]
that the density threshold of Scheduler Sxy is close to 0.82 as bmin Æ
•; hence, for amin ≥ 5, the density threshold of Algorithm Pinfair
exceeds the (conjectured) threshold of Scheduler Sxy.)

5.2 Run-Time Complexity
Steps 1 and 2 of Algorithm Pinfair together take time linear in the
size of the input task system G.

For task systems described in the original model of Holte et al.

[15], Chan and Chin’s Scheduler Sxy has a preprocessing time of

O(n2), where n =
def

G . However, it is not clear that Sxy can be
adapted to generalized pinwheel task systems such that the pre-
processing time is polynomial in the number of tasks in G.

As has been discussed in Section 3, Algorithm PF can be im-
plemented to run in O(log n) time per slot. Step 3 of Algorithm
Pinfair, therefore, takes O(log n) time per slot. The approach of
Chan and Chin [8] specifically aimed to implement their scheduler
in constant time per slot (their scheduler was, thus, a “Fast On-
Line Scheduler” or a FOLS [15]), but required O(n) processors in
order to do so.

5.3 Extension to Multiprocessors
The definition of the generalized pinwheel scheduling problem
may be extended to multiple processors in an obvious manner:
Given a multiset {(a1, b1), (a2, b2), º, (an, bn) of ordered pairs of positive
integers and a positive integer m, determine an infinite sequence of m-
subsets over the symbols {1, 2, 3, º, n} such that, for each i, 1 £ i £ n,
any subsequence of bi consecutive m-subsets has at least ai m-subsets that
contain the symbol i. The interpretation is that there are m identical
copies of the resource available and that no task may use more
than one copy of the resource at any time.

Algorithm PF was initially defined in the context of multiproc-
essor scheduling of periodic task systems [5]. Using Algorithm PF,
and techniques essentially identical to the ones used in this paper,
a multiprocessor variant of Algorithm Pinfair can be defined,
which schedules any pinwheel task system G on m processors,
provided

x w m
x

.
Œ
Â £

G

,

where x.w is as defined by Algorithm Pinfair. Equivalently, given a

generalized pinwheel task system G, x w
x

.
ŒÂ G

 processors are

sufficient for scheduling the system by using (the multiprocessor
variant of) Algorithm Pinfair.

6 CONCLUSIONS

When initially introduced, pinwheel tasks were each characterized
by a single parameter—a window size. They have since been gener-
alized to enhance their expressive power as a modeling tool, by
incorporating a second parameter—a computation requirement.
While the expressive power of the model has been significantly
increased as a result of this generalization, not too much research
has gone into the design of scheduling algorithms explicitly built
for this new model. In this paper, we have presented and proved
correct Algorithm Pinfair, a scheduling algorithm that

816 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 7, JULY 1998

1)� is extremely efficient in terms of runtime complexity—tak-
ing O(n) preprocessing time and O(log n) time per slot in
scheduling a system of n pinwheel tasks,

2)� has a superior density threshold to previously known algo-
rithms for the subclass of generalized pinwheel task systems
when all the computation requirements are relatively large,
and

3)� generalizes in a straightforward manner to multiple-
processor platforms.

ACKNOWLEDGMENTS

This work has been partially supported by the U.S. National Sci-
ence Foundation (grants CCR-9796028 and CCR-9704206) and the
National Science Council of China (grant NSC-87-2213-E-003-001).

REFERENCES
[1]� M. Ajtai, J. Aspnes, M. Naor, Y. Rabani, L. Schulman, and O.

Waarts, “Fairness in Scheduling,” Proc. Sixth Ann. ACM-SIAM
Symp. Discrete Algorithms, pp. 477-485, Jan. 1995.

[2]� A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan, “Guaranteeing
Fair Service to Persistent Dependent Tasks,” SIAM J. Computing,
vol. 28, no. 4, pp. 1,168-1,189, Aug. 1998.

[3]� S. Baruah, “Fairness in Periodic Real-Time Scheduling,” Proc. 16th
Real-Time Systems Symp., pp. 200-209, Pisa, Italy, 1995.

[4]� S. Baruah and A. Bestavros, “Timely and Fault-Tolerant Data
Access from Broadcast Disks: A Pinwheel-Based Approach,” Proc.
Workshop Databases: Active & Real-Time, pp. 45-49, Rockville, Md.,
Nov. 1996.

[5]� S. Baruah, N. Cohen, G. Plaxton, and D. Varvel, “Proportionate
Progress: A Notion of Fairness in Resource Allocation,” Algorith-
mica, vol. 15, no. 6, pp. 600-625, June 1996. Extended Abstract in
Proc. 1993 ACM Ann. Symp. Theory of Computing.

[6]� S. Baruah, L. Rosier, and D. Varvel, “Static and Dynamic Sched-
uling of Sporadic Tasks for Single-Processor Systems,” Proc. Third
Euromicro Workshop Real-time Systems, June 1991.

[7]� S. Baruah, J. Gehrke, and G. Plaxton, “Fast Scheduling of Periodic
Tasks on Multiple Resources,” Proc. Ninth Int’l Parallel Processing
Symp., pp. 280-288. IEEE CS Press, Apr. 1995. Extended version
available via anonymous ftp from ftp.cs.utexas.edu as Technical
Report TR–95–02.

[8]� M.Y. Chan and F. Chin, “Schedulers for the Pinwheel Problem
Based on Double-Integer Reduction,” IEEE Trans. Computers, vol. 41,
no. 6, pp. 755-768, June 1992.

[9]� M.Y. Chan and F. Chin, “Schedulers for Larger Classes of Pin-
wheel Instances,” Algorithmica, vol. 9, no. 5, pp. 425-462, 1993.

[10]� M. Dertouzos, “Control Robotics: The Procedural Control of Physi-
cal Processors,” Proc. IFIP Congress, pp. 807-813, 1974.

[11]� L. Ford and D. Fulkerson, Flows in Networks. Princeton, N.J.:
Princeton Univ. Press, 1962.

[12]� C.C. Han and K.J. Lin, “Scheduling Distance-Constrained Real-
Time Tasks,” Proc. Real-Time Systems Symp., pp. 300-308, Dec. 1992.

[13]� C.C. Han and K.G. Shin, “A Polynomial Time Optimal Synchro-
nous Bandwidth Allocation Scheme for the Time-Token MAC
Protocol,” Proc. IEEE INFOCOM ’95, pp. 875-882, Apr. 1995.

[14]� C.C. Han and K.G. Shin, “Real-Time Communication in FieldBus
Multiaccess Networks,” Proc. Real-Time Technology and Applications
Symp., pp. 86-95, May 1995.

[15]� R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The
Pinwheel: A Real-Time Scheduling Problem,” Proc. 22nd Hawaii
Int’l Conf. System Science, pp. 693-702, Kailua-Kona, Hawaii, Jan.
1989.

[16]� R. Holte, L. Rosier, I. Tulchinsky, and D. Varvel, “Pinwheel Sched-
uling with Two Distinct Numbers,” Theoretical Computer Science,
vol. 100, no. 1, pp. 105-135, 1992.

[17]� C.W. Hsueh, K.J. Lin, and N. Fan, “Distributed Pinwheel Sched-
uling with End-to-End Timing Constraints,” Proc. Real-Time Sys-
tems Symp., pp. 172-181, Dec. 1995.

[18]� S.S. Lin and K.J. Lin, “A Pinwheel Scheduler for Three Distinct
Numbers with a Tight Schedulability Bound,” Algorithmica, vol. 19,
no. 4, pp. 411-426, 1997.

[19]� C. Liu, “Scheduling Algorithms for Multiprocessors in a Hard
Real-Time Environment,” JPL Space Programs Summary 37-60, vol. II,
pp. 28-37, 1969.

[20]� C. Liu and J. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[21]� A. Mok, “Task Management Techniques for Enforcing ED Sched-
uling on a Periodic Task Set,” Proc. Fifth IEEE Workshop Real-Time
Software and Operating Systems, pp. 42-46, Washington, D.C., May
1988.

