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ANISOTROPIC PARABOLIC EQUATIONS WITH

VARIABLE NONLINEARITY

S. Antontsev and S. Shmarev

Abstract

We study the Dirichlet problem for a class of nonlinear parabolic
equations with nonstandard anisotropic growth conditions. Equa-
tions of this class generalize the evolutional p(x, t)-Laplacian. We
prove theorems of existence and uniqueness of weak solutions in
suitable Orlicz-Sobolev spaces, derive global and local in time
L∞ bounds for the weak solutions.

1. Introduction

1.1. Statement of the problem and assumptions. Let Ω ⊂ R
n be

a bounded simple-connected domain and 0 < T < ∞. We consider the
Dirichlet problem for the parabolic equation

(1.1)





ut−
∑

i

d

dxi

[
ai(z, u)|Diu|

pi(z)−2Diu+bi(z, u)
]
+d(z, u)=0 in QT ,

u = 0 on ΓT , u(x, 0) = u0(x) in Ω,

where z = (x, t) ∈ QT ≡ Ω × (0, T ], ΓT is the lateral boundary of the
cylinder QT , Di denotes the partial derivative with respect to xi and

df(z, v)

dxi

= Dif(z, v) +
∂f(z, v)

∂v
Div.
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The coefficients ai(z, u), bi(z, u) and d(z, u) may depend on z = (x, t),
u(z) and obey the following conditions:

(1.2) ai(z, r), bi(z, r), d(z, r) are Carathéodory functions

(defined for (z, r) ∈ QT ×R, measurable in z for every r ∈ R, continuous
in r for a.a. z ∈ QT ),

∀ (z, r) ∈ QT × R 0 < a0 ≤ ai(z, r) ≤ a1 <∞, a0, a1 = const,(1.3)

∀ (z, r) ∈ QT × R

∑

i

|bi(z, r)|
p′

i(z)
≤ b0|r|

λ + hb(z), p′i =
pi(z)

pi(z) − 1
,(1.4)

|d(z, r)| ≤ d0|r|
λ−1 + hd(z),

with positive constants b, d0, d1, d2, λ > 1, and

(1.5) hb(z) ∈ L1(QT ), hd(z) ∈ Lλ′

(QT ), λ′ =
λ

λ− 1
.

The exponents pi(z) are given continuous in QT functions such that

(1.6) pi(z) ⊂ (p−i , p
+
i ) ⊆ (p−, p+) ⊂ (1,∞),

with finite constants p±, p±i > 1. Moreover, it will be assumed through-
out the paper that the exponents pi(z) are continuous in QT with loga-
rithmic module of continuity:

(1.7) ∀ z, ζ ∈ QT , |z − ζ| < 1,
∑

i

|pi(z) − pi(ζ)| ≤ ω(|z − ζ|),

where

lim
τ→0+

ω(τ) ln
1

τ
= C < +∞.

1.2. Physical motivation and previous work. The paper addresses
the questions of existence and uniqueness of weak solutions to prob-
lem (1.1). The main feature of equation (1.1) is the variable character of
nonlinearity which causes a gap between the monotonicity and coercivity
conditions. Because of this gap, equations of the type (1.1) are usually
termed equations with nonstandard growth conditions. Equation (1.1)
can be viewed as a generalization of the evolutional p-Laplacian equation

(1.8) ut = div(|∇u|p−2∇u)

with the constant exponent of nonlinearity p ∈ (1,∞). During the last
decades equation (1.8) was intensively studied and was casted for the
role of a touchstone in the theory of nonlinear PDEs. There is extensive
literature devoted to equation (1.8). We limit ourselves by referring
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here to monographs [24], [36], papers [5], [9], [20], [29] and the review
paper [30] which provide an excellent insight to the theory of evolutional
p-Laplacian equations.

PDEs with variable nonlinearity are very interesting from the purely
mathematical point of view. On the other hand, their study is motivated
by various applications where such equations appear in the most natural
way. Equations of the type (1.1) and their elliptic counterparts appear
in the mathematical descriptions of motions of the non-newtonian flu-
ids [11], in particular, electro-rheological fluids which are characterized
by their ability to change the mechanical properties under the influence
of the exterior electro-magnetic field [27], [39], [40]. Most of the known
results concern the stationary models, see, e.g., [1], [2], [3]. Some prop-
erties of solutions of the system of modified nonstationary Navier-Stokes
equations describing electro-rheological fluids are studied in [4]. An-
other important application is the image processing where the anisotropy
and nonlinearity of the diffusion operator and convection terms are used
to underline the borders of the distorted image and to eliminate the
noise [6], [8], [21]. Many of the frequently discussed schemes of image
restoration lead to nonlinear elliptic and parabolic equations with lin-
ear growth in the diffusion operator; this situation corresponds to the
case p− = 1 and is not discussed in the present paper.

To the best of our knowledge, the reported results on the solvability
of parabolic equations of the type (1.1) concern the equations with lin-
ear growth at infinity whose solutions are understood as elements of the
space L2

(
0, T ;BV (Ω) ∩ L2(Ω)

)
, see, e.g., [7], [8], [21]. In our assump-

tions on the structure of the equation, the weak solutions possess better
regularity and belong to Orlicz-Sobolev spaces W 1,p(·)(QT ) (the rigor-
ous definition is given in Section 2 below). Moreover, it is proved in [18]
that the gradient of the solution to the evolutional p(x, t)-Laplacian sat-
isfy the Meyer-type estimate: the gradient is integrable with the expo-
nent p(z)(1 + δ), δ > 0, instead of p(z) as is prompted by the equation.
It is known also that the solutions of equation (1.1) may extinct in a
finite time [15], [17], a property typical for the solutions of the fast dif-
fusion equation. In contrast to the case of the fast diffusion equation
with constant exponents of nonlinearity, the variable nonlinearity makes
that this property may persist even if the equation eventually transforms
into the linear one. It is worth mentioning here the papers [31], [32],
[33] devoted to the study of similar effects in solutions of equations with
singularly perturbed coefficients and exponents of nonlinearity.
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Parabolic equations with variable nonlinearity of the type

ut = div
(
|u|γ(x,t)∇u

)
+ F (x, t, u,∇u)

are studied in papers [12], [16]. This class of equations generalizes the
famous porous media equation (PME) to the case of variable exponents
of nonlinearity. It is shown in [12] that the weak solutions of this equa-
tion display many of the properties intrinsic to the solutions of PME.
However, the methods used in the study of solvability of such equations
are specific for the generalized PME and can not be directly applied to
equations of the type (1.1) which are nonlinear with respect to Diu.

Stationary counterparts of equation (1.1) and the generalized PME
were studied by many authors. We refer here to [13], [14], [37] for a
review of the relevant results.

1.3. Organization of the paper and description of results. The
paper is organized as follows. In Section 2 we introduce the function
spaces of Orlicz-Sobolev type and present a brief description of their
main properties. In our conditions on the regularity of the data, the
smooth functions are dense in these spaces, which allows us to construct
a solution using the sequence of Galerkin’s approximations.

The main existence result for problem (1.1) is stated in Theorem 3.1.
We prove that problem (1.1) has at least one global weak solution if the
growth conditions (1.4) and (1.6) are fulfilled with 2 ≤ λ=max{2, p−−δ}
for some δ > 0. The assertion remains true if λ = max{2, p−}, but
under the additional condition of smallness of the data u0, hd and hb

in the corresponding norms. The case λ > max{2, p−} is studied in
Theorem 3.2. We show that in this range of exponents, and with the
functions hb, hd satisfying (1.5), problem (1.1) has a local in time solution
if the parameters λ, p− and n are subject to the conditions

max{2, p−} < λ < p−
(

1 +
2

n

)
,

max

{
1,

2n

2 + n

}
< p−,

p−
(

1 +
2

n

)
<

np−

n− p−
if n > p−.

(1.9)

The proofs of these assertions do not require monotonicity of the
term d(z, u). The monotonicity of the diffusion part of the equation is
used to prove the convergence of Galerkin’s approximations. In Section 7
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we briefly discuss the possibility of extension of the existence results to
the case of homogeneous Neumann boundary condition.

Section 4 is devoted to derivation of L∞ bounds for the solutions of
problem (1.1). We assume that the functions hd, hb are subject to the
stronger restrictions

|d(z, r)| ≤ d0|r| + hd,

|bi(z, r)| ≤ b0|r| + hb,
hb, hd ∈ L1(0, T ;L∞(Ω)).(1.10)

Under these assumptions we prove in Theorem 4.1 that the weak solu-
tions of problem (1.1) are globally bounded. The growth restriction can
be relaxed for the terms d(z, u) of special form. Namely, if we assume
that in the foregoing assumptions

d(z, u) = d1(z, u)|u|
σ(z)−2u+ d2(z, u)|u|

λ−2u+ hd

with

1 < λ ≤ inf
QT

σ(z) < M, d1 ≥ d01 =const > 0, |d2| ≤ d2 = const <∞,

and that the inequality

d01R
σ(z)−1 − d02R

λ−1 − b0R− sup
QT

hd(z) − sup
QT

|hb(z)| ≥ 0

holds in QT for some R > 0, then the solutions of (1.1) are globally
bounded. Moreover, once such a bound is established, we use it to
prove the existence of a global weak solution applying Theorem 3.1.
We finally drop conditions (1.9) and show the under assumptions (1.10)
problem (1.1) admit a local bounded solution for every λ ≥ 1.

Uniqueness of weak solutions is studied in Section 5. It is shown that
the weak solution of problem (1.1) is unique if the function u 7→ d(z, u)
is monotone increasing and

|ai(z, u)− ai(z, v)| ≤ ω(|u− v|)

with the module of continuity ω satisfying the condition
∫

ǫ

ds

ωα(s)
→ ∞ as ǫ→ 0 for some 1 < α < (p+)′ =

p+

p+ − 1
.

If the omit the condition of monotonicity of d(z, u), the uniqueness of
weak solutions still can be proved but under stronger continuity and
growth assumptions: d(z, u) is Lipschitz-continuous with respect to u
and ωα(s) = Cs2. In the proof of uniqueness we follow ideas of [10],
[14], [22], [23] were similar arguments were applied to the study of
elliptic equations with nonstandard growth conditions.
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In Section 6 we study the dependence of the regularity of solutions to
problem (1.1) on the regularity properties of the exponents pi, ai and σ
in the partial case when

i ≡ ai(z), d(z, u) = c(z)|u|σ(z)−2u− f(z), c(z) ≤ 0.

We show that if u0 ∈ Lσ(·,0)(Ω), Diu0 ∈ Lpi(·,0)(Ω), and if the expo-
nents pi and σ are nonincreasing functions of t, then the solutions of
problem (1.1) possess better regularity properties:

ut ∈ L2(QT ), |u|σ(z), |Diu|
pi(z) ∈ L∞(0, T ;L1(Ω)),

|Diu|
pi | ln |Diu|| |pit|, |u|

σ| ln |u|| |σt| ∈ L1(QT ).

In the concluding Section 7 we give certain extensions of the results
to other classes of equations close to (1.1).

2. The function spaces

2.1. Spaces Lp(·)(Ω) and W
1,p(·)
0 (Ω). The definitions of the func-

tion spaces used throughout the paper and a brief description of their
properties follow [25], [26], [34], [38]. The further references can be
found in the review papers [28], [41]. Let

(2.1)

{
Ω ⊂ R

n be a bounded domain, ∂Ω be Lipschitz-continuous,

p(x) satisfy condition (1.7) of log-continuity.

By Lp(·)(Ω) we denote the space of measurable functions f(x) on Ω such
that

Ap(·)(f) =

∫

Ω

|f(x)|p(x) dx <∞.

The space Lp(·)(Ω) equipped with the norm

‖f‖p(·),Ω ≡ ‖f‖Lp(·)(Ω) = inf
{
λ > 0 : Ap(·) (f/λ) ≤ 1

}

becomes a Banach space. The Banach space W
1,p(·)
0 (Ω) with p(x) ∈

[p−, p+] ⊂ (1,∞) is defined by

(2.2)





W
1,p(·)
0 (Ω)=

{
f ∈ Lp(·)(Ω) : |∇ f | ∈ Lp(·)(Ω), u=0 on ∂Ω

}
,

‖u‖
W

1,p(·)
0 (Ω)

=
∑

i

‖Diu‖p(·),Ω + ‖u‖p(·),Ω.

An equivalent norm of W
1,p(·)
0 is given by

‖u‖
W

1,p(·)
0 (Ω)

=
∑

i

‖Diu‖p(·),Ω.
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• If condition (2.1) is fulfilled, then C∞
0 (Ω) is dense in W

1,p(·)
0 (Ω).

The space W
1,p(·)
0 (Ω) can be defined then as the closure of C∞

0 (Ω)
with respect to the norm (2.2) —see [42], [45].

• The spaceW 1,p(·)(Ω) is separable and reflexive provided that p(x) ∈
C0(Ω).

• Let

1 < q(x) ≤ sup
Ω
q(x) < inf

Ω
p∗(x)

with

p∗(x) =






p(x)n

n− p(x)
if p(x) < n,

∞ if p(x) > n.

Then the embeddingW
1,p(·)
0 (Ω) →֒ Lq(·)(Ω) is continuous and com-

pact.

• It follows directly from the definition that

(2.3) min
(
‖f‖p−

p(·) , ‖f‖
p+

p(·)

)
≤ Ap(·)(f) ≤ max

(
‖f‖p−

p(·) , ‖f‖
p+

p(·)

)
.

• Hölder’s inequality. For all f ∈ Lp(·)(Ω), g ∈ Lp′(·)(Ω) with

p(x) ∈ (1,∞), p′ =
p

p− 1
,

the following inequality holds:

(2.4)

∫

Ω

|f g| dx ≤

(
1

p−
+

1

(p′)−

)
‖f‖p(·) ‖g‖p′(·) ≤ 2 ‖f‖p(·) ‖g‖p′(·) .

• If conditions (2.1) are fulfilled, then there exists a constant C > 0
such that

(2.5) ∀ f ∈W
1,p(·)
0 (Ω) ‖f‖p(·),Ω≤C ‖∇f‖p(·),Ω (Poincaré inequality).

2.2. Spaces Lp(·,·)(QT ) and anisotropic spaces W(QT ). Let pi(z)
satisfy conditions (1.6) and (1.7). For every fixed t ∈ [0, T ] we introduce
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the Banach space

Vt(Ω) =
{
u(x) : u(x) ∈ L2(Ω) ∩W 1,1

0 (Ω), |Diu(x)|
p(x,t) ∈ L1(Ω)

}
,

‖u‖Vt(Ω) = ‖u‖2,Ω +
∑

i

‖Diu‖pi(·,t),Ω,

and denote by V′
t(Ω) its dual. For every t ∈ [0, T ] the inclusion

Vt(Ω) ⊂ X = W 1,p−

0 (Ω) ∩ L2(Ω)

holds, which is why Vt(Ω) is reflexive and separable as a closed subspace
of X.

By W(QT ) we denote the Banach space

W(QT ) =
{
u : [0, T ] 7→ Vt(Ω) | u ∈ L2(QT ),

|Diu|
pi(z) ∈ L1(QT ), u = 0 on ΓT

}
,

‖u‖W(QT ) =
∑

i

‖Diu‖pi(·),QT
+ ‖u‖2,QT

.

W′(QT ) is the dual of W(QT ) (the space of linear functionals over
W(QT )):

w∈W′(QT )⇐⇒





w=w0+

n∑

i=1

Diwi, w0∈L
2(QT ), wi∈L

p′

i(·)(QT ),

∀ φ∈W(QT ) 〈〈w, φ〉〉=

∫

QT

(
w0φ+

∑

i

wiDiφ

)
dz.

The norm in W′(QT ) is defined by

‖v‖W′(QT ) = sup
{
〈〈v, φ〉〉 | φ ∈ W(QT ), ‖φ‖W(QT ) ≤ 1

}
.

Let v = (v1, . . . , vn), p(z) = (p1(z), . . . , pn(z)), and

Ap(·),QT
(v) =

n∑

i=1

∫

QT

|vi|
pi(z)

dz.

The following counterpart of (2.3) holds:

(2.6) min

{
∑

i

‖Diu‖
p+

pi(·),QT
,
∑

i

‖Diu‖
p−

pi(·),QT

}
≤ Ap(·),QT

(∇u)

≤ max

{
∑

i

‖Diu‖
p−

pi(·),QT
,
∑

i

‖Diu‖
p+

pi(·),QT

}
.
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Set

V+(Ω) =
{
u(x) | u ∈ L2(Ω) ∩W 1,1

0 (Ω), |∇u| ∈ Lp+

(Ω)
}
.

Since V+(Ω) is separable, it is a span of a countable set of linearly
independent functions {ψk(x)} ⊂ V+(Ω). Without loss of generality, we
may assume that this system forms an orthonormal basis of L2(Ω).

Proposition 2.1. Let conditions (2.1) hold. Then the set {ψk} is dense
in Vt(Ω) for every t ∈ [0, T ].

Proof: In our conditions on ∂Ω and pi, for every u ∈ Vt(Ω) there is a
sequence uδ(·, t) ∈ C∞(Ω) such that suppuǫ(·, t) ⋐ Ω and

‖u− uδ‖Vt(Ω) → 0 as δ → 0.

Such a sequence is obtained via convolution of u with the Friedrics’s
mollifiers [45, Theorem 2.1]. Since uδ ∈ C∞

0 (Ω) ⊂ V+(Ω) and {ψm} is
dense in V+(Ω), one may choose constants cm such that

u
(k)
δ ≡

k∑

m=1

cmψm(x) → uδ strongly in V+(Ω) as δ → 0.

Given an arbitrary ǫ > 0, ‖uδ − u
(k)
δ ‖V+(Ω) < ǫ for all k ∈ N from

some k(ǫ) on. By (2.4)

‖uδ − u
(k)
δ ‖Vt(Ω) ≤ C‖uδ − u

(k)
δ ‖V+(Ω) ≤ C ǫ

with a constant C = C(n, |Ω|, p±, σ±) independent of ǫ. It follows now
that for all sufficiently large k and small δ

‖u−u
(k)
δ ‖Vt(Ω)≤‖u−uδ‖Vt(Ω)+‖uδ−u

(k)
δ ‖Vt(Ω) < 2 ǫ ∀ t∈ [0, T ].

Proposition 2.2. For every u ∈ W(QT ) there is a sequence {dk(t)},
dk(t) ∈ C1[0, T ], such that

∥∥∥∥∥u−
m∑

k=1

dk(t)ψk(x)

∥∥∥∥∥
W(QT )

→ 0 as m→ ∞.

Proof: In view of Proposition 2.1, the assertion immediately follows be-

cause the functions
∑m

k=1 dk(t)ψk(x) are dense in Lp+

(0, T ;W 1,p+

(Ω))∩
L2(0, T ;L2(Ω)).

Let ρ be the Friedrics mollifying kernel

ρ(s) =




κ exp

(
− 1

1−|s|2

)
if |s| < 1,

0 if |s| > 1,
κ = const :

∫

Rn+1

ρ(z) dz = 1.
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Given a function v ∈ L1(QT ), we extend it to the whole R
n+1 by a func-

tion with compact support (keeping the same notation for the continued
function) and then define

vh(z) =

∫

Rn+1

v(s)ρh(z − s) ds with ρh(s) =
1

hn+1
ρ
( s
h

)
, h > 0.

Proposition 2.3. If u ∈ W(QT ) with the exponents pi(z) satisfy-
ing (1.7), then

‖uh‖W(QT ) ≤ C
(
1 + ‖u‖W(QT )

)
and ‖uh − u‖W(QT ) → 0 as h→ 0.

Proposition 2.3 is an immediate byproduct of [45, Theorem 2.1].

Proposition 2.4. Let in the conditions of Proposition 2.3 ut ∈ W′(QT ).
Then (uh)t ∈ W′(QT ), and for every ψ ∈ W(QT )

〈〈(uh)t, ψ〉〉 → 〈〈ut, ψ〉〉 as h→ 0.

Proof: By the definition of W′(QT ) there exist φ0 ∈ L2(QT ), φi ∈

Lp′

i(·)(QT ) such that 〈〈ut, ψ〉〉 = (φ0, ψ)2,QT
+
∑

i(φi, Diψ)2,QT
, ∀ ψ ∈

W(QT ). It follows that

〈〈(uh)t, ψ〉〉 =

∫

QT

(ut)hψ dz =

∫

QT

utψh dz

=

∫

QT

(
φ0ψh +

∑

i

φi Diψh

)
dz

=

∫

QT

(
(φ0)hψ +

∑

i

(φi)hDiψ

)
dz → 〈〈ut, ψ〉〉 as h→ 0

by virtue of Proposition 2.3.

Proposition 2.5 (Integration by parts). Let v, w ∈ W(QT ) and vt, wt ∈
W′(QT ) with the exponents pi(z) satisfying (1.7). Then

∀ a.e. t1, t2 ∈ (0, T )

∫ t2

t1

∫

Ω

v wt dz +

∫ t2

t1

∫

Ω

vt w dz =

∫

Ω

v w dx

∣∣∣∣
t=t2

t=t1

.
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Proof: Let t1 < t2. Take

χk(t) =






0 for t ≤ t1,

k(t− t1) for t1 ≤ t ≤ t1 + 1
k
,

1 for t1 + 1
k
≤ t ≤ t2 −

1
k
,

k(t2 − t) for t2 −
1
k
≤ t ≤ t2,

0 for t ≥ t2.

For every k ∈ N and h > 0

0 =

∫

QT

(vhwhχk)t dz ≡

∫

QT

(vhwh)tχk dz − k

∫ θ

θ− 1
k

∫

Ω

vhwh dz

∣∣∣∣∣

θ=t2

θ=t1

.

The last two integrals on the right-hand side exist because vh, wh ∈
L2(QT ). Letting h→ 0, we obtain the equality

lim
h→0

∫

QT

(vh(wh)t+(vh)twh)χk(t) dz=k

∫ t2

t2−
1
k

∫

Ω

v w dz−k

∫ t1+
1
k

t1

∫

Ω

v w dz.

According to Propositions 2.3 and 2.4 vh → v in W(QT ), (wh)t =
(wt)h → wt weakly in W′(QT ) as h → 0, and ‖v‖W, ‖(wh)t‖W′ are
uniformly bounded. It follows that

lim
h→0

∫

QT

vh(wh)tχk(t) dz = lim
h→0

∫

QT

(vh − v)(wh)tχk(t) dz

+ lim
h→0

∫

QT

v((wh)t−wt)χk(t) dz+

∫

QT

v wt χk(t) dz=

∫

QT

v wtχk(t) dz.

In the same way we check that

lim
h→0

∫

QT

(vh)t wh χk(t) dz =

∫

QT

v wtχk(t) dz.

By the Lebesgue differentiation theorem

∀ a.e. θ > 0 lim
k→0

k

∫ θ

θ− 1
k

(∫

Ω

v w dx

)
dt =

∫

Ω

v w dx,

whence for almost every t1, t2 ∈ [0, T ]
∫ t2

t1

∫

Ω

(v wt+vtw) dz= lim
k→∞

∫

QT

(v wt + vtw)χk(t) dz

= lim
k→∞

k

∫ θ

θ− 1
k

∫

Ω

v w dx

∣∣∣∣
t=t2

θ=t1

=

∫

Ω

v w dx

∣∣∣∣
t=t2

θ=t1

.
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Corollary 2.1. Let u ∈ W(QT ) and ut ∈ W′(QT ) with the expo-
nents pi(z) satisfying (1.7). Then

∀ a.e. t1, t2 ∈ (0, T ]

∫ t2

t1

∫

Ω

u ut dz =
1

2
‖u‖2

2,Ω

∣∣∣∣
t=t2

t=t1

.

3. Existence theorems

In this section we prove the existence of weak solutions to prob-
lem (1.1) under the general growth conditions (1.4). The solution of
problem (1.1) is understood in the following sense.

Definition 3.1. A function u(x, t) ∈ W(QT )∩L∞(0, T ;L2(Ω)) is called
weak solution of problem (1.1) if for every test-function

ζ ∈ Z ≡ {η(z) : η ∈ W(QT ) ∩ L∞
(
0, T ;L2(Ω)

)
, ηt ∈ W′(QT )},

and every t1, t2 ∈ [0, T ] the following identity holds:

(3.1)

∫ t2

t1

∫

Ω

(
uζt−

∑

i

[
ai|Diu|

pi−2Diu+ bi(z, u)
]
Diζ − d(z, u)ζ

)
dz

=

∫

Ω

uζ dx

∣∣∣∣
t2

t1

.

The following are the main results of this section.

Theorem 3.1. a) Let us assume that
1) the coefficients ai(z, r), bi(z, r), d(z, r) satisfy conditions (1.2),

(1.3), (1.4),

2) the exponents pi(z) satisfy (1.6) and (1.7),

3) the constant λ satisfies the condition

(3.2) λ = max{2, p− − δ} with some δ > 0.

Then for every u0 ∈ L2(Ω) problem (1.1) has at least one weak
solution u ∈ W(QT ) satisfying the estimate

(3.3) ‖u‖2
L∞(0,T ;L2(Ω))+

∫

QT

a0

∑

i

|Diu|
pi dz ≤M

[
‖u0‖

2
L2(Ω) +K + 1

]

with a constant M independent of u and K = ‖hb‖1,QT
+‖hd‖λ′,QT

.
Moreover, ut ∈ W′(QT ).
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b) The assertion remains true if (3.2) is substituted by the condi-
tion λ = max{2, p−} and the constant b0 + d0 in (1.4) is appropri-
ately small in comparison with a0.

Theorem 3.2. Let us assume that in the conditions of Theorem 3.1
condition (3.2) is substituted by the following one:

(3.4) max{2, p−}<λ<p−
(

1 +
2

n

)
<

np−

n− p−
, max

{
1,

2n

2 + n

}
<p−.

Then there exists T0 > 0, defined through ‖u0‖
2
L2Ω + K, such that

problem (1.1) has at least one weak solution u ∈ W(QT0) satisfying
estimate (3.3) in QT0 . The weak solution exists globally in time if
‖u0‖

2
L2(Ω) +K is sufficiently small.

3.1. Proof of Theorems 3.1 and 3.2.

3.1.1. Galerkin’s approximations. A solution of problem (1.1) is
constructed as the limit of the sequence of Galerkin’s approximations.
Let us define the operator

〈Lv, φ〉Ω =

∫

Ω

(
vtφ+

n∑

i=1

[
ai(z, v)|Div|

pi−2Div+bi(z, v)
]
Diφ+d(z, v)φ

)
dx,

φ ∈ Vt(Ω).

The approximate solutions to problem (1.1) are sought in the form

u(m)(z) =

m∑

k=1

c
(m)
k (t)ψk(x), ψk ∈ V+(Ω),

where the coefficients c
(m)
k (t) are defined from the relations

(3.5)
〈
Lu(m), ψk

〉

Ω
= 0, k = 1, . . . ,m.

Equalities (3.5) generate the system of m ordinary differential equations

for the coefficients c
(m)
k (t):

(3.6)





(
c
(m)
k

)′
= Fk

(
t, c

(m)
1 (t), . . . , c

(m)
m (t)

)
,

c
(m)
k (0) =

∫

Ω

u0(x)ψk dx k = 1, . . . ,m.

If the coefficients ai, bi, d and the exponents pi, σ satisfy the conditions
of Theorem 3.1 a), the functions Fk are continuous in all their arguments.
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3.1.2. A priory estimates.

Lemma 3.1. Let the conditions of Theorem 3.1 a) be fulfilled. Then

for every T < ∞ and m ∈ N system (3.6) has a solution
{
c
(m)
k (t)

}m

k=1

on the interval (0, T ) and the corresponding function u(m) satisfies the
estimate

(3.7) ‖u(m)(·, t)‖2
L∞(0,T ;L2(Ω)) +

∫

QT

a0

∑

i

|Diu
(m)|pi dz

≤M
[
‖u0‖

2
L2(Ω) +K + 1

]

with the constants M , K defined in the conditions of Theorem 3.1.

Proof: By Peano’s Theorem, for every finite m system (3.6) has a solu-

tion c
(m)
i (t), i = 1, . . . ,m, on an interval (0, Tm). Multiplying each of

equalities (3.5) by c
(m)
k (t) and summing over k = 1, . . . ,m, we arrive at

the relation

(3.8)

1

2
‖u(m)‖2

2,Ω

∣∣∣
t

t=0
+

∫

Qτ

(
∑

i

[
ai(z, u

(m))|Diu
(m)|pi +bi(z, u

(m))Diu
(m)
]

+ d(z, u(m))u(m)

)
dz = 0, τ ∈ [0, Tm].

Using (1.3), (1.4) and applying Young’s inequality, we estimate: ∀ ǫ > 0

|bi(z, u
(m))Diu

(m)| ≤ ǫ a0|Diu
(m)|pi + C |bi(z, u

(m))|p
′

i

≤ ǫ a0|Diu
(m)|pi + C (b0|u

(m)|λ + |hb|),
(3.9)

|d(z, u(m))u(m)| ≤ (d0 + ǫd)|u
(m)|λ + C|hd|

λ′

, ǫd ∈ (0, 1),(3.10)

with a constant C depending on ǫ, ǫd, a0, p
−, p+. Plugging (3.9)–(3.10)

into (3.8), choosing ǫ sufficiently small and simplifying, we get the esti-
mate

1

2
‖u(m)‖2

2,Ω

∣∣∣
t=τ

t=0
+

∫

Qτ

a0

∑

i

|Diu
(m)|pi dz

≤ C

∫

Qτ

(
(d0+b0+ǫd)|u

(m)|λ + |hb| + |hd|
λ′

)
dz

≤ C(d0 + b0 + ǫd)

∫

Qτ

‖u(m)‖λ dz + CK.

(3.11)
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Let λ = 2. Using Gronwall’s inequality to estimate the function∥∥u(m)(·, t)
∥∥2

2,Ω
and then reverting to (3.8), we obtain the required es-

timate (3.7).

Let 2 < λ=p−−δ. This assumption yields the inequality λ < n(p−−δ)
n−p−+δ

,

which allows one to make use of the embedding theorem in Sobolev
spaces:

(3.12) ‖u(m)(·, t)‖λ
λ,Ω ≤ C(λ, p−, n)‖∇u(m)‖λ

p−,Ω.

Applying now (2.3) and Young’s inequality, we arrive at the inequality

∫

Ω

|u(m)|λ dx ≤ C

(∫

Ω

|∇u(m)|p
−

dx

) λ
p−

≤ C



(
∑

i

∫

Ω

|Diu
(m)|pi dx

) λ

p−

+ 1




≤ ǫ a0

∑

i

∫

Ω

|Diu
(m)|pi dx+ C(ǫ, δ,Ω, a0, p

±).

(3.13)

Gathering these estimates with (3.8) and choosing ǫ appropriately small,
we obtain the inequality

1

2
‖u(m)‖2

2,Ω

∣∣∣
t=τ

t=0
+ a0

∑

i

∫

Qτ

|Diu
(m)|pi dz ≤ C (K + 1) .

The right-hand side of the obtained estimate does not depend on m,
which is why the solution of system (3.6) can be continued to the maxi-
mal interval [0, T ].

Lemma 3.2. The assertion of Lemma 3.1 remains true for λ =
max{2, p−}, provided that the constant b0 + d0 is sufficiently small in
comparison with a0.

Proof: We only have to study the case λ = p−. Then the Poincaré
inequality yields

∫

Ω

|u(m)|λ dx ≤ C

∫

Ω

|∇u(m)|p
−

dx, C = C(n, λ).
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Combining (3.11) with this inequality, we have that

(3.14)
1

2
‖u(m)‖2

2,Ω

∣∣∣
t=τ

t=0
+ a0

∑

i

∫

Qτ

|Diu
(m)|pi dz

≤ C(d0 + b0 + ǫd)
∑

i

∫

Qτ

|Diu
(m)|pi dz + CK with ǫd ∈ (0, 1).

The conclusion follows if we claim that C(b0 + d0) < a0 and choose ǫd
sufficiently small.

Lemma 3.3. Let condition (3.4) be fulfilled. Then there exists T0, de-
pending on ‖u0‖

2
2,Ω + K, such that the assertion of Lemma 3.1 is true

on every interval [0, T ] with T < T0.

Proof: Instead of (3.12), we will make use of the interpolation inequality

(3.15) ‖u(m)‖λ
λ,Ω ≤ C(λ, p−, n)‖∇u(m)‖θλ

p−,Ω‖u
(m)‖

(1−θ)λ
2,Ω

with the exponent

(3.16) θ =
λ− 2

λ

np−

np− − 2(n− p−)
∈ (0, 1).

The inclusion θ ∈ (0, 1) follows from condition (3.4):

(3.17)
θλ

p−
=

n(λ− 2)

np− − 2(n− p−)
< 1 ⇐⇒ λ < p−

(
1 +

2

n

)
.

Applying (2.3) and Young’s inequality we transform (3.15) to the form

‖u(m)(·, t)‖λ
λ,Ω ≤C

(
max

{
A

1

p+

p (u(m)), A
1

p−

p (u(m))

})θλ

‖u(m)‖
(1−θ)λ
2,Ω

≤ǫAp(u(m)) + Cmax
{
‖u(m)‖2γ+

2,Ω , ‖u
(m)‖2γ−

2,Ω

}(3.18)

with the exponents

γ± =
(1 − θ)λ

2

p±

p± − λθ
> 1.

Gathering (3.18) with (3.8)–(3.10) and choosing ǫ appropriately small,
we have

1

2
‖u(m)‖2

2,Ω

∣∣∣
t=τ

t=0
+

∫

Qτ

a0

∑

i

|Diu
(m)|pi dz

≤ C

(∫ τ

0

max
{
‖u(m)‖γ+

2,Ω, ‖u
(m)‖γ−

2,Ω

}
dt+K

)
.
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Introducing the function

Y (t) = ‖u(m)(·, t)‖2
2,Ω,

we write the last inequality in the form

(3.19)
Y (t) ≤ A+B

∫ t

0

max
{
Y γ+

(τ), Y γ−

(τ)
}
dτ,

A = Y (0) + 2CK, B = 2C.

The functions satisfying this inequality are bounded on the intervals [0, t0]
with

(3.20) t0e
(γ−1)Bt0 < min

{
1

(γ+ − 1)BA
1

γ+
−1

,
1

(γ− − 1)BA
1

γ−
−1

}
.

Since t0 → ∞ as A→ 0, estimate (3.7) takes the form

‖u(m)(·, t)‖2
2,Ω+

∫

Qt

a0

∑

i

|Diu
(m)|pi dz ≤ C(t0)(1+K), t∈ [0, t0].

3.1.3. Compactness and passage to the limit. Throughout this
subsection we assume that T satisfies the conditions of Lemmas 3.1, 3.2,
and 3.3. Let us show that the constructed sequence

{
u(m)

}
is convergent.

Lemma 3.4. Under the conditions of Lemma 3.1, for every m ∈ N we

have u
(m)
t ∈ W′(QT ) and

‖u
(m)
t ‖W′(QT ) ≤ C′

[
1 +K + ‖u0‖

2
2,Ω

]
.

Proof: Let

Zm =

{
η(x, t)

∣∣∣∣ η =

m∑

k=1

dk(t)ψk(x), dk(t) ∈ C1(0, T )

}
⊂ Z

be a subspace of the set of admissible test-functions. Take a function

φ =

m∑

i=1

φk(t)ψk(x) ∈ Zm with φk(0) = φk(T ) = 0.
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By the definition of u(m) (see (3.6))

∫

QT

u
(m)
t φdz=−

∫

QT

u(m)φt dz

=

n∑

i=1

∫

QT

[
ai(z, u

(m))|Diu
(m)|pi−2Diu

(m)+bi(z, u
(m))

]
Diφdz

+

∫

QT

d(z, u(m))φdz.

Using (1.4) and (3.7), we may estimate the right-side of this equality as
follows:

∣∣∣∣∣

∫

QT

n∑

i=1

ai(z, u
(m))|Diu

(m)|pi−2Diu
(m)Diφdz

∣∣∣∣∣

≤ C

n∑

i=1

‖|Diu
(m)|pi−1‖p′

i,QT
‖Diφ‖pi,QT

≤ C̃

n∑

i=1

‖Diφ‖pi,QT
,

∣∣∣∣∣

∫

QT

n∑

i=1

bi(z, u
(m))Diφdz

∣∣∣∣∣

≤ C

n∑

i=1

‖bi‖p′

i
,QT

‖Diφ‖pi,QT
≤ C̃

n∑

i=1

‖Diφ‖pi,QT
,

∣∣∣∣
∫

QT

d
(
z, u(m)

)
φdz

∣∣∣∣ ≤ ‖d‖λ′,QT
‖φ‖λ,QT

≤
[
C(d0, λ)‖|u

(m)|λ−1‖λ′,QT
+ ‖hd‖λ′,QT

]
‖φ‖λ,QT

≤ C′
[
1 + ‖u(m)‖W(QT )

]
‖φ‖λ,QT

with the constants C′ and C̃ independent of m. It follows that for
every φ ∈ Zm

∣∣∣∣
∫

QT

u
(m)
t φdz

∣∣∣∣ ≤ C
[
1 + ‖u(m)‖W(QT )

]
‖φ‖W(QT ).
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The following inclusions hold:





u(m) ∈ W(QT ) ⊆ Lp−

(0, T ;W 1,p−

0 (Ω)),

u
(m)
t ∈ W′(QT ) ⊆ L

p+

p+
−1
(
0, T ;V′

+(Ω)
)
,

W 1,p−

0 (Ω) ⊂ L2(Ω) ⊂ V′
+(Ω).

It follows that the sequence {u(m)} contains a subsequence strongly con-
vergent in Lq(QT ) with some q > 1 [43]. This subsequence contains
a subsequence which converges to u a.e. in QT (see, e.g., [35, Theo-
rem 2.8.1]). These conclusions together with the uniform in m esti-
mates (3.7) allow one to extract from the sequence

{
u(m)

}
a subsequence

(for the sake of simplicity we assume that it merely coincides with the
whole of the sequence) such that
(3.21)



u(m) → u weakly in W(QT )

and strongly in Lq(QT ),

u
(m)
t → ut weakly in W′(QT ),

u(m) → u a.e. in QT ,

d
(
z, u(m)

)
→ d (z, u) strongly in Lλ′

(QT ),

bi
(
z, u(m)

)
→ bi (z, u) strongly in Lp′

i(·)(QT ),

ai

(
z, u(m)

) ∣∣Diu
(m)
∣∣pi(z)−2

Diu
(m)→Ai(z) weakly in Lp′

i(·)(QT )

for some functions

u ∈ W(QT ), Ai(z) ∈ Lp′

i(·)(QT ).

By the method of construction, each of the functions u(m) satisfies iden-
tity (3.1) with the test-function η ∈ Zm. Let us fix an arbitrary m ∈ N.
Then for every s ≤ m and η ∈ Zs

∫

Ω

u(m)η dx

∣∣∣∣
τ=T

τ=0

−

∫

QT

[
u(m)ηt −

∑

i

(
ai|Diu

(m)|pi−2Diu
(m) + bi

)
Diη+dη

]
dx dt = 0.
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Letting m→ ∞ and using (3.21) we conclude that ∀ η ∈ Zs

(3.22) −

∫

Ω

uη dx

∣∣∣∣
τ=T

τ=0

+

∫

QT

[
uηt −

∑

i

(Ai(z) + bi(z, u))Diη + d(z, u)η

]
dx dty = 0

with an arbitrary s ∈ N. It follows then that identity (3.22) holds for
every η ∈ W(QT ). It remains to identify the limit functions Ai.

Lemma 3.5. For almost all z ∈ QT

(3.23) Ai(z) = ai(z, u)|Diu|
pi(z)−2Diu, i = 1, . . . , n.

Proof: We rely on the monotonicity of the operator M(s) = |s|p−2s:
∀ ξ, η ∈ R

n

(3.24) (M(ξ)−M(η))(ξ−η)≥





2−p |ξ − η|
p

if 2≤p<∞,

(p−1)|ξ−η|2(|ξ|p+|η|p)
p−2

p if 1<p<2.

According to (3.24), for every ξ ∈ Zm

∫

QT

ai(z, u
(m))

(
|Diu

(m)|pi−2Diu
(m)−|Diξ|

pi−2Diξ
)
Di(u

(m)−ξ) dx dt≥0.

Let ξ ∈ Zm. It follows from (3.5) with the test-function η = u(m) − ξ

∫

QT

{
u(m)ηt −

∑

i

[
ai(z, u

(m))|Diξ|
pi−2Diξ + bi(z, u

(m))
]
Diη

− d(z, u(m))η

}
dz

−

∫

Ω

u(m)η dx

∣∣∣∣
t=T

t=0

≥ 0.

Gathering (3.22) with this inequality, integrating by parts the
term u(m)ηt, and then letting m → ∞ we conclude, following [36,
pp. 158–161], that

∀ ξ∈W(QT )
∑

i

∫

QT

[
Ai(z)−ai(z, u)|Diξ|

pi−2Diξ
]
Di(u−ξ) dx dt ≥ 0.
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Choosing now ξ = u± ǫζ with ǫ > 0, simplifying and then letting ǫ→ 0,
we have

∀ ζ∈W(QT )
∑

i

∫

QT

[
Ai(z)−ai(z, u)|Diu|

pi−2Diu
]
Diζ dx dt=0.

We have shown that under the conditions of Theorems 3.1 and 3.2
the solution u ∈ W(QT ) satisfies the identity

(3.25) ∀ ζ∈W(QT )

∫

Q

[
utζ+

∑

i

(
ai|Diu|

pi−2Diu+bi
)
Diζ+dζ

]
dz=0.

Applying Proposition 2.5 and integrating by parts in the first term
of (3.25), we complete the proof of Theorems 3.1 and 3.2.

4. L∞ estimates

4.1. Global estimates.

Theorem 4.1. Let the conditions of Theorem 3.1 be fulfilled and, addi-
tionally,

(4.1) ∀ k ∈ N sup

{
|s|p

′

i(z)−1
∣∣∣
∣∣∣∣
∂bi(z, s)

∂s

∣∣∣∣
p′

i(z)

: z ∈ QT , s ∈ [−k, k]

}

= Bk <∞,

and ∀ s ∈ R, z ∈ QT ,

(4.2)

(a) |d(z, s)| ≤ d0|s| + hd(z),

(b)

∣∣∣∣
∂bi(z, s)

∂xi

∣∣∣∣ ≤ b0|s| + hb(z)

with finite nonnegative constants d0, b0. If ‖u0‖∞,Ω <∞, then the weak
solution of problem (1.1) is bounded and satisfies the estimate

(4.3) ‖u(·, t)‖∞,Ω ≤ eC0t‖u0‖∞,Ω

+ eC0t

∫ t

0

e−C0t (‖hb(·, t)‖∞,Ω + ‖hd(·, t)‖∞,Ω) dt

with C0 = b0 + d0.

Proof: Let us fix k ∈ N and consider the auxiliary problem

(4.4)





ut −
∑

i

d

dxi

[
ai|Diu|

pi−2Diu+ bi
]
+ dk(z, u) = 0 in QT ,

u = 0 on ΓT , u(x, 0) = u0(x) in Ω
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with
dk(z, u) ≡ d(z,min{|u|; k} signu).

Since for every finite k

|d (z,min{|u|; k} signu) | ≤ d0 k
λ−1 + hd,

it follows from Theorem 3.1 that problem (4.4) has a weak solution u(z)
in the sense of Definition 3.1. Let us introduce the function

uk = min{|u|, k} signu ≡





k if u > k,

u if |u| ≤ k,

−k if u < −k.

The function u2m−1
k with m ∈ N can be taken for the test-function

in (3.25). Let in (3.25) t2 = t+ h, t1 = t, with t, t+ h ∈ (0, T ). Observe
that dk(z, u) = d(z, uk). Then

1

2m

∫ t+h

t

d

dt

(∫

Ω

u2m
k (x, t) dx

)
dt

+
∑

i

∫ t+h

t

∫

Ω

(
(2m− 1)aiu

2(m−1)
k |Diuk|

pi + bi(z, u)Diu
2m−1
k

)
dx dt

+

∫ t+h

t

∫

Ω

d(z, uk)u2m−1
k dx dt = 0.

Dividing the last equality by h and letting h→ 0, we have that ∀ a.e. t ∈
(0, T )

1

2m

d

dt

∫

Ω

u2m
k (x, t) dx

+
∑

i

∫

Ω

(
(2m−1)aiu

2(m−1)
k |Diuk|

pi +bi(z, u)Diu
2m−1
k

)
dx

+

∫

Ω

d(z, uk)u2m−1
k dx = 0.

(4.5)

Indeed: by Lebesgue’s dominated convergence theorem for every φ ∈

L1(0, T ) and a.e. t ∈ (0, T ) there exists limh→0

∫ t+h

t
φ(τ) dτ = φ(t). Let

us write (4.5) in the form: ∀ a.e. t ∈ (0, T )

(4.6)
1

2m

d

dt

∫

Ω

u2m
k (x, t) dx + (2m− 1)

∑

i

∫

Ω

ai u
2(m−1)
k |Diuk|

pi dx

=

n∑

i=1

Ji + I,
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where

Ji =

∫

Ω

bi(z, u)Diu
2m−1
k dx ≡

∫

Ω

bi(z, uk)Diu
2m−1
k dx,

I = −

∫

Ω

d(z, uk)u2m−1
k dx.

Integrating by parts, we find that

Ji = −

∫

Ω

∂bi(z, uk)

∂u
u2m−1

k Diuk dx

−

∫

Ω

∂bi(z, uk)

∂xi

u2m−1
k dx = J

(1)
i + J

(2)
i .

(4.7)

Applying Young’s and Hölder’s inequalities and plugging (4.1)–(4.2), we

estimate J
(1)
i , J

(2)
i and I as follows:

|J
(1)
i | ≤ ǫa0(2m− 1)

∫

Ω

|uk|
2(m−1)|Diuk|

pi dx

+
C(pi, ǫ)

(2m− 1)
1

pi−1

∫

Ω

(
|uk|

p′

i−1

∣∣∣∣
∂bi(z, uk)

∂u

∣∣∣∣
p′

i

)
|uk|

2m−1 dx

≤ ǫa0(2m− 1)

∫

Ω

|uk|
2(m−1)|Diuk|

pi dx

+Bk

C(pi, ǫ)|Ω|
1

2m

(2m− 1)
1

pi−1

(∫

Ω

|uk|
2m dx

)1− 1
2m

,

|J
(2)
i | ≤

∣∣∣∣
∫

Ω

∂bi(z, uk)

∂xi

u2m−1
k dx

∣∣∣∣ ≤
∫

Ω

(b0|uk| + hb) |u|
2m−1
k dx

≤ C

∫

Ω

(
|u|2m

k + h2m
b

)
dx

≤ b0

∫

Ω

|uk|
2m dx+

(∫

Ω

h2m
b dx

) 1
2m
(∫

Ω

|uk|
2m dx

) 2m−1
2m

,

|I| ≤

∫

Ω

|d(z, uk)||uk|
2m−1 dx ≤

∫

Ω

(d0|uk| + hd)|uk|
2m−1 dx

≤ d0

∫

Ω

|uk|
2m +

(∫

Ω

h2m
d dx

) 1
2m
(∫

Ω

|uk|
2m dx

) 2m−1
2m

.

Let us introduce the function

yk(t) = ‖uk(·, t)‖2m,Ω.
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Choosing ǫ sufficiently small and substituting the above estimates
into (4.6), we arrive at the inequality for the function yk(t):

y2m−1
k

dyk

dt
(t) ≤ Bk

∑
iC(pi, ǫ)|Ω|

1
2m

(2m− 1)
1

pi−1

y2m−1
k + (b0 + d0) y

2m
k (t)

+ y2m−1
k (‖hb(·, t)‖2m,Ω + ‖hd(·, t)‖2m,Ω) ,

or

dyk

dt
(t) ≤ Bk

∑
iC(pi, ǫ)|Ω|

1
2m

(2m− 1)
1

pi−1

+ (b0 + d0) yk(t)

+ (‖hb(·, t)‖2m,Ω + ‖hd(·, t)‖2m,Ω) .

Multiplying this inequality by e−C0t, C0 = (b0 + d0), and integrating
over the interval (0, t) we arrive at the estimate

e−C0t‖uk(·, t)‖2m,Ω ≤ ‖u0‖2m,Ω + t Bk

∑
iC(pi, ǫ)|Ω|

1
2m

(2m− 1)
1

pi−1

+

∫ t

0

e−C0τ (‖hb(·, τ)‖2m,Ω + ‖hd(·, τ)‖2m,Ω) dτ

which yields, as m→ ∞,

∀ k ∈ N

‖uk(·, t)‖∞,Ω ≤ eC0t‖u0‖∞,Ω

+ eC0t

∫ t

0

e−C0τ (‖hb(·, τ)‖∞,Ω + ‖hd(·, τ)‖∞,Ω) dτ

≡ K.

(4.8)

The right-hand side of this estimate does not depend on k. Let us choose
now k ≥ K + 1. Under this choice of k

uk ≡ min{|u|; k} signu = u, d (z, uk) ≡ dk(z, u) ≡ d(z, u),

which means that the solution of problem (4.4) with k ≥ K + 1 is, in
fact, a solution of problem (1.1) which satisfies estimate (4.3).

Remark 4.1. It is worth mentioning here paper [44] which addresses
the question of local boundedness of solutions to equation (1.1) with
anisotropic but constant growth conditions. The method of proof is
based on application of suitable embedding theorems in the anisotropic
Sobolev spaces.
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4.2. Global existence via boundedness. Let us consider the case
when in equation (1.1) the term d(z, u) is of the special form:

(4.9) d(z, u) = d1(z, u)|u|
σ(z)−2u+ d2(z, u)|u|

λ−2u+ hd(z),

with

(4.10)
0 < d01 ≤ d1(z, u) <∞, |d2(z, u)| ≤ d02 <∞,

d01, d02, λ = const > 0.

If σ(z) and λ satisfy conditions (1.3), (1.4), the existence of a weak
solution follows from Theorems 3.1 and 3.2. If we additionally assume
that the conditions of Theorem 4.1 are fulfilled, then this weak solution
is bounded. We now turn to the study of the case

(4.11) 2 < λ < σ− ≤ σ(z) ≤ σ+ <∞,

which does not fall into the scope of Theorems 3.1, 3.2, and 4.1. Let us
take a positive number R0 <∞ such that ∀ z ∈ QT

(4.12) P(z,R0)≡d01R
σ(z)−1
0 −d02R

λ−1
0 −b0R0−sup

QT

|hd(z)|−sup
QT

|hb(z)|≥0.

Because of condition σ− > λ > 2, such a number always exists, provided
that

(4.13) sup
QT

|hb| + sup
QT

|hd| <∞.

Theorem 4.2. Let the coefficients ai, bi and the exponents pi, satisfy the
conditions of Theorem 4.1, and let d(z, u) satisfy condition (4.9). Let us
assume that σ(z) is measurable in QT and that conditions (4.9)–(4.12)
are fulfilled. Then problem (1.1) has in QT at least one bounded weak
solution satisfying the estimate

‖u‖∞,QT
≤ max

{
sup
Ω

|u0|;R0

}
.

Remark 4.2. The conditions of Theorem 4.2 are surely fulfilled for the
diffusion-absorption equation

ut = ∆p(z)u− |u|σ(z)−2u+ hd(z), σ(z) > 1.

In this case ‖u‖∞,QT
≤ supΩ |u0| + ‖hd‖∞,QT

.

Proof of Theorem 4.2: Fix an arbitrary finite number R > 0 and con-
sider the regularized problem

(4.14)





ut−
∑

i

d

dxi

[
ai|Diu|

pi(z)−2Diu+biR(z, u)
]
+dR(z, u)=0 in QT ,

u = 0 on ΓT , u(x, 0) = u0(x) in Ω,
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with

dR(z, u) = d1(z, u)|uR|
σ(z)−2uR + d2(z, uR) + hd(z),

biR(z, u) = bi(z, uR),

and

uR = min{|u|, R} signu, DiuR ≡

{
0 if |u|> R,

Diu if |u|≤ R.

The regularized problem (4.14) has a global weak solution. Moreover,
since bi satisfy the conditions of Theorem 4.1, this solution is globally
in time bounded: ‖u‖∞,QT

≤ C(R). The theorem will be proved if we
show that the constant C(R) is in fact independent of R. Let us set

R = max

{
R0, sup

Ω
|u0|

}

with R0 satisfying the inequality P(z,R0) ≥ 0. Let us take for the
test-function in (3.25) the function

u+ = max{u−R, 0}, Diu+ ≡

{
Diu if u > R,

0 if u ≤ R.

Arguing like in the proof of Theorem 4.1 we arrive at the equality

1

2

d

dt

∫

Ω

u2
+(x, t) dx +

∑

i

∫

Ω

(ai|Diu+|
pi + bi(z, uR)Diu+) dx

+

∫

Ω

dR(z, u)u+ dx = 0 ∀ a.e. t ∈ (0, T ),

(4.15)

which can be written in the form

∀ a.e. t ∈ (0, T )

1

2

d

dt

∫

Ω

u2
+ dx+

∑

i

∫

Ω

ai|Diu+|
pi dx+ I ≡

n∑

i=1

(
J

(1)
i + J

(2)
i

)
.

In the last relation

I =

∫

Ω

(
d1(z, u) (min{|u|, R})σ(z)−1 signu

+ d2

(
z, (min{|u|, R})λ−1 signu

)
+ hd(z)

)
u+ dx,

J
(1)
i = −

∫

Ω

∂bi(z, uR)

∂u
u+DiuR dx = 0, J

(2)
i =

∫

Ω

∂bi(z, uR)

∂xi

u+ dx.
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The terms J
(j)
i are estimated exactly like in the proof of Theorem 4.1:

∣∣∣J (2)
i

∣∣∣ ≤
∣∣∣∣
∫

Ω

∂bi(z, uR)

∂xi

u+ dx

∣∣∣∣ ≤
∫

Ω

(b0R + |hb|)u+ dx.

Further,

I ≥

∫

Ω

(
d01R

σ(z)−1 − d02R
λ−1 − sup

QT

|hd|

)
u+ dx.

Gathering these estimates we find that

1

2

d

dt

∫

Ω

u2
+ dx+

∑

i

∫

Ω

ai |Diu+|
pi dx+

∫

Ω

P(z,R0)u+ ≤ 0.

Since P(z,R0) ≥ 0 by the choice of R0, and u+(x, 0) = 0 by the choice
of R, the last inequality yields

∀ a.e. z ∈ Q u+(z) = 0,

whence u(z) ≤ R a.e. in QT . The same argument shows that

u−(z) = max{−u(z)−R, 0} = 0

and, finally,

(4.16) |u(z)| ≤ R = max

{
sup
Ω

|u0(x)|, R0

}
.

This inequality means that

biR(z, u) ≡ bi(z, u), dR(z, u) ≡ d(z, u),

which completes the proof.

4.3. Local existence via boundedness. Let us consider prob-
lem (1.1) with the term d(z, u) satisfying the growth condition

(4.17) |d(z, u)| ≤ d0|u|
λ−1 + hd(z), λ = const > 2.

For 0 ≤ λ ≤ 2 the existence of a global bounded solution to problem (1.1)
is proved in Theorem 3.1. The next theorem asserts the existence of local
bounded solution in the case λ > 2.
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Theorem 4.3. Let us assume that in the conditions of Theorems 3.1 and
4.1 the growth condition on the function d(z, u) is substituted by (4.17).
Then for every u0 ∈ L∞(Ω) there exists θ ∈ (0, T ] depending on

λ, b0, d0, ‖u0‖L∞(Ω), ‖hd‖L1(0,θ;L∞(Ω)) and ‖hb‖L1(0,θ;L∞(Ω))

such that in the cylinder Qθ problem (1.1) has at least one weak solution
u ∈ W(Qθ) such that ut ∈ W′(Qθ) and ‖u‖∞,Qθ

< ∞. The solution
can be continued to the interval [0, T ∗], where

T ∗ = sup{θ ∈ [0, T ] : ‖u‖∞,Qθ
<∞}.

Proof: Let us consider the auxiliary problem

(4.18)




ut −

∑

i

Di

(
ai|Diu|

pi(z)−2Diu+ bi

)
+ dr(z, u) = 0 in QT

u = 0 on Γ, u(x, 0) = u0(x) in Ω

with the right-hand side

(4.19) dr(z, u) = d(z,min{|u|, r} signu), r = const > 1.

As in the proof of Theorem 4.1, we will make use of the fact that

|dr(z, u)| ≤ d0r
λ−1 + hd(z), dr(z, u) = d(z, u) if r ≥ u.

By Theorems 3.1 and 4.1, for every r > 1 the regularized problem (4.18)
has a global bounded weak solution u(z). Let us show that the func-
tion w(t) = ‖u(·, t)‖∞,Ω can be estimated by a constant which does not
depend on r. Following the proof of Theorem 4.1 we find that the solu-
tion of (4.18) satisfies inequality (4.3) with C0 = b0 and hd substituted
by hd + d0r

λ−1:

‖u(·, t)‖∞,Ω ≤ eb0t‖u0‖∞,Ω + eb0t

∫ t

0

e−b0t‖hb(·, t)‖∞,Ω dt

+ eb0t

∫ t

0

e−b0t‖hd(·, t)‖∞,Ω dt+ d0r
λ−1teb0t ≡ R(r, t).

For every fixed r > 1

R(r, t) → ‖u0‖∞,Ω as t→ 0,

whence for every r ≥ ‖u0‖∞,Ω there is t ≡ t(r) such that

∀ t ∈ [0, t(r)] ‖u(·, t)‖∞,Ω ≤ r.

It follows that for r and t(r) chosen in this way ‖u(·, t)‖∞,Ω ≤ r for all t ≤
t(r), i.e., the constructed solution of the regularized problem (4.18) is a
weak solution of problem (1.1) in the cylinder Qt(r). The possibility of
continuation of this solution to the maximal interval [0, T ∗] follows from



Parabolic Equation with Variable Nonlinearity 383

the fact that the function u(x, t(r)) possesses the same properties as the
initial function u0.

5. Uniqueness theorems

In this section we study the question of uniqueness of weak solutions
to the problem

(5.1)





ut −
∑

i

d

dxi

[
ai(z, u)|Diu|

pi(z)−2Diu
]

+ d(z, u) = 0 in Q,

u = 0 on Γ, u(x, 0) = u0(x) in Ω.

The weak solution is understood in the sense of Definition 3.1.
Let us assume that the functions ai are continuous with the module

of continuity ω,

(5.2) |ai(z, u1) − a(z, u2)| ≤ ω(|u1 − u2|),

and claim that the function ω is nonnegative and satisfies the condition

(5.3)

∫ 1

ǫ

ds

ωα(s)
→ ∞ as ǫ→ 0+ for some 1 < α <

p+

p+ − 1
.

Without loss of generality we may assume that p+ ≥ 2.

Theorem 5.1. Let

1 < p− ≤ pi(z) ≤ p+ <∞, 0 < a0 ≤ ai(z, u) ≤ a1 <∞, i=1, . . . , n.

Problem (5.1) does not admit more than one solution u ∈ W(QT ) if
conditions (5.2), (5.3) are fulfilled and

(5.4) u 7→ d(z, u) is a nondecreasing function.

Proof: We argue by contradiction. Let us assume that problem (5.1)
admits two different solutions u1, u2 ∈ W(QT ) and there is δ > 0 such
that for some τ ∈ (0, T ] w = u2 − u1 > δ on the set

Ωδ = Ω ∩ {x : w(x, t) > δ} and |Ωδ| = µ > 0.

We will show that this assumption leads to a contradiction unless µ = 0.
Not loosing generality we assume that t = T . Set

di ≡ d(z, ui), aij ≡ aj(z, ui), i = 1, 2, j = 1, . . . , n.
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By the definition of weak solution, for every test-function ζ ∈ Z and
τ ∈ [0, T ]

(5.5)
∫

Qτ

(
wtζ+

n∑

i=1

a2i(|Diu2|
pi−2Diu2−|Diu1|

pi−2Diu1)Diζ+(d2−d1)ζ

)
dz

+

∫

Qτ

n∑

i=1

(a2i − a1i)|Diu1|
pi−2Diu1)Diζ dz = 0.

Let us denote

A(u2, u1) = d2 − d1,

J(u2, u1, ζ) = −

∫

Qτ

n∑

i=1

(a2i − a1i)|Diu1|
pi−2Diu1Diζ dz,

and write (5.5) in the form

(5.6)
∫

Qτ

(
wtζ+

n∑

i=1

a2i(|Diu2|
pi−2Diu2−|Diu1|

pi−2Diu1)Diζ+A(u2, u1)ζ

)
dz

= J(u2, u1, ζ).

Let us introduce the functions

(5.7) Fǫ(ξ) =





∫ ξ

ǫ

ds

ωα(s)
ξ > ǫ,

0 ξ ≤ ǫ,

Gǫ(η) =





∫ η

ǫ

Fǫ(s) ds η > ǫ,

0 η ≤ ǫ

depending on the parameters δ ≥ ǫ > 0, and with the function ω(·)
defined in (5.3). The definition of Fǫ and (5.4) yield:

(5.8) ∀ u, v ∈ R A(u, v)Fǫ(u− v) ≥ 0.

Set Qǫ,τ ≡ {z ∈ Qτ : w > ǫ}. By the definition of Fǫ

DiFǫ(w) =






Diw

ωα(w)
in Qǫ,

0 in Q \Qǫ.
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Letting in (5.6) ζ = Fǫ(w), we obtain:

∫

Ωǫ

Gǫ(w(x, τ)) dx

+

∫

Qǫ,τ

(
n∑

i=1

a2i(|Diu2|
pi−2Diu2 − |Diu1|

pi−2Diu1)
Diw

ωα(w)

+A(u2, u1)Fǫ(w)

)
dz

≡ J(u2, u1, Fǫ(w)).

(5.9)

Notice that since δ ≥ ǫ, then Ωδ ⊆ Ωǫ, |Ωǫ| ≥ |Ωδ| > µ and, by virtue
of (5.3),

(5.10)

∫

Ωǫ

Gǫ(w(x, τ)) dx ≥ µFǫ(δ) → ∞ as ǫ→ 0+.

Let us consider first the case pi ≥ 2. By virtue of (1.3) and the first
inequality of (3.24)

(5.11) a0
|Diw|

pi

ωα(w)
≤ a2i(|Diu1|

pi−2Diu1 − |Diu2|
pi−2Diu2)

Diw

ωα(w)
.

According to (5.3)

pi

pi − 1
≥

p+

p+ − 1
≥ α > 1.

Applying Young’s inequality, we may estimate the integrand of J in the
following way:

∣∣∣∣(a21i − a1i)|Diu1|
pi−2Diu1

Diw

ωα(w)

∣∣∣∣

≤ ω(w)|Diu1|
pi−1 |Diw|

ωα(w)

≤
a0

2

|Diw|
pi

ωα(w)
+ C(a0, p

+)|Diu1|
piωp′

i−α(w)

≤
a0

2

|Diw|
pi

ωα(w)
+ C(a0, p

+)|Diu1|
pi .

(5.12)
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Let now 1 < p− ≤ pi < 2. Applying (1.3) and the second inequality
of (3.24) we have

(5.13) a0(p
− − 1)(|Diu1| + |Diu2|)

pi−2 |Diw|
2

ωα(w)

≤ a2i(|Diu2|
pi−2Diu2 − |Diu1|

pi−2Diu1)
Diw

ωα(w)
,

and
∣∣∣∣(a2i − a1i)|Diu1|

pi−2Diu1
Diw

ωα(w)

∣∣∣∣

≤

∣∣∣∣ω(w)(|Diu1| + |Diu2|)
pi−1 Diw

ωα(w)

∣∣∣∣

≤

∣∣∣∣ω(w)(|Diu1| + |Diu2|)
pi−1 Diw

ωα(w)

∣∣∣∣

≤
a0(p

− − 1)

2
(|Diu1| + |Diu2|)

pi−2 |Diw|
2

ωα(w)

+ Cω2−α(w)(|Diu2| + |Diu1|)
pi

≤
a0(p

− − 1)

2
(|Diu1| + |Diu2|)

pi−2 |Diw|
2

ωα(w)

+ C̃(|Diu2| + |Diu1|)
pi

(5.14)

with

1 < α ≤
p+

p+ − 1
≤ 2.

Plugging the pointwise estimates (5.11), (5.12) and (5.13), (5.14) into
(5.9) and dropping the nonnegative terms, we arrive at the inequality

(5.15)

∫

Ωǫ

Gǫ(w(x, τ)) dx ≤ C̃

∫

Qǫ,τ

n∑

i=1

(|Diu1| + |Diu2|)
pi dz = Ĉ

with a constant C̃ independent of ǫ. Gathering this inequality with (5.10)
we obtain the needed contradiction. This means that µ = 0 and w ≤ 0
a.e. in QT . To complete the proof it suffices to replace u1 and u2.
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The above arguments can be extended to non-monotone functions
d(z, u). Let

(5.16) ut −

n∑

i=1

d

dxi

[
ai(z, u)(|Diu1|

pi−2Diu
]
+ d(z, u) = 0.

We assume that

(5.17)





|ai(z, u1) − ai(z, u2)| ≤ C1ω(|u1 − u2|),

ωα(s) = s2,

|d(z, u1) − di(z, u2)| ≤ C2|u1 − u2|.

It is easy to calculate that in this case

Fǫ(s) =






1

ǫ
−

1

s
for s > ǫ,

0 otherwise,
Gǫ(s) =






s

ǫ
− 1 − ln

(s
ǫ

)
for s > ǫ,

0 otherwise.

Proposition 5.1. There exists a positive number µ > 2 such that

(5.18) sFǫ(s) ≤

{
2Gǫ(s) for s ≥ µǫ

const for ǫ ≤ s ≤ µǫ.

Proof: Set z = s/ǫ and introduce the function

f(z) = 2Gǫ(s) − sFǫ(s) ≡ z − 1 − 2 ln z.

Obviously,

f(1) = 0,

f(z) → ∞ as z → ∞,

f ′(z) = 1 −
2

z
≥ 0,

f ′′(z) =
2

z2
≥ 0 if z ≥ 2.

Since f(z) is monotone increasing for z > 2 and tends to infinity as z →
∞, there is µ ≥ 2 such that f(z) ≥ 0 for z ≥ µ. For z ∈ [1, µ]

sFǫ(s) = z − 1 ≤ µ− 1.

Theorem 5.2. Let in the conditions of Theorem 5.1 condition (5.4) is
substituted by condition (5.17). Then the weak solution of problem (5.1)
is unique.
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Proof: We will adapt the proof of Theorem 5.1. Let u1, u2 be two
different solutions of problem (1.1). Set u = u1 − u2. Following the
proof of Theorem 5.1 we arrive at the relation

∫

Ωǫ

Gǫ(u(x, τ)) dx

+

∫

Qǫ,τ

(
n∑

i=1

a1i(|Diu1|
pi−2Diu1−|Diu2|

pi−2Diu2)
Diu

u2

)
dz

= I1 + I2,

(5.19)

with

I1 = −

∫

Qǫ

n∑

i=1

(a1i − a2i)|Diu2|
pi−2Diu2

Diu

u2
dz,

I2 = −

∫

Qǫ

(d(z, u1) − d(z, u2))Fǫ(u) dz.

The difference between this case and the one studied in Theorem 5.1 is
that now the term I2 is not sign-defined. By Proposition 5.1

|I2| ≤ C

∫

Qǫ

uFǫ(u) dz

= C

∫ t

0

(∫

Ω∩(ǫ≤u≤µǫ)

· · · +

∫

Ω∩(µǫ≤u)

· · ·

)
dt ≡ I21 + I22,

whence

I21 ≤ C

∫ t

0

(∫

Ω∩(ǫ≤u≤µǫ)

Gǫ(u) dx

)
dt ≤ C

∫ t

0

(∫

Ωǫ

Gǫ(u) dx

)
dt,

I22 ≤ C|Ω|T.

Let us introduce the function

Y (t) =

∫

Ωǫ

Gǫ(u) dx.

Substituting the above inequalities into (5.19) and taking into account
(3.24), we find that the function Y (t) satisfies the Gronwall type inequal-
ity

Y (t) ≤ C

(∫ t

0

Y (s) ds+
n∑

i=1

∫

Qǫ

(|Diu1|
pi + |Diu2|

pi) dz + 1

)
.

It follows that Y (t) ≤ K, which contradicts condition (5.10).
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Corollary 5.1 (Comparison principle). Let u, v ∈ W(QT ) be two weak
solutions of problem (5.1) such that u(x, 0) ≤ v(x, 0) a.e. in Ω. If the
coefficients and the nonlinearity exponents satisfy the conditions of The-
orem 5.1 or Theorem 5.2, then u ≤ v a.e. in QT .

6. Regularity of solutions for a class of model equations

Let us consider the following simplified version of problem (1.1):

(6.1)





ut−

n∑

i=1

d

dxi

(
ai(z)|Diu|

pi(z)−2Diu
)
+c(z)|u|σ(z)−2u=f(z) in QT ,

u = 0 on Γ, u(x, 0) = u0(x) in Ω.

We want to trace the dependence of the regularity of weak solutions
on the regularity of the data, especially, on the properties of the expo-
nents pi(z) and σ(z). Let us accept the notations

(6.2)
λp(t) =

n∑

i=1

max
Ω

|pit(x, t)| , λa(t) =

n∑

i=1

max
Ω

|ait(x, t)| ,

λσ(t) = max
Ω

|σt(x, t)| , λc(t) = max
Ω

|ct(x, t)| .

Theorem 6.1. Let us assume that

a) ai, pi satisfy the conditions of Theorem 3.1,

b) pit(z) ≤ 0 for a.a. z ∈ QT ,

c) σ(z) and c(z) are bounded measurable in QT functions, σt(z) exists
a.e. in QT , and

σt(z) ≤ 0, 0 ≤ c0 ≤ c(z) a.e. in QT ,

d) λp(t), λσ(t), λa(t), λc(t) ∈ L1(0, T ) and

∫ T

0

(λp(t) + λa(t) + λσ(t) + λc(t)) dt = K <∞,

e) u0 ∈ Lσ(·,0)(Ω), Diu0 ∈ Lpi(·,0)(Ω).
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Then the weak solution of problem (6.1) satisfies the estimate

sup
t∈(0,T )

∫

Ω

[
n∑

i=1

ai|Diu|
pi + c|u|σ

]
dx+

∫

QT

|ut|
2
dz

+

∫

QT

(
n∑

i=1

ai|Diu|
pi | ln |Diu|||pit| + c|u|σ| ln |u|||σt|

)
dz

≤ C

(∫

Ω

(
n∑

i=1

|Diu0|
pi(x,0) + |u0|

σ(x,0)

)
dx+ 1

)

(6.3)

with an absolute constant C = C(p±, σ±, q, T,K).

Proof: Let us recall that under the conditions of Theorem 6.1 a weak
solution of problem (6.1) can be obtained as the limit of the sequence of
Galerkin’s approximations (see the proof of Theorem 3.1)

u(m) =

m∑

k=1

u
(m)
k (t)ψk(x), ψk(x) ∈ W 1,p+

0 (Ω), p+ = max
i

sup
QT

pi(z),

where the system {ψk} is dense in W 1,p+

0 (Ω), and the functions u
(m)
k

are solutions of problem (3.5). By this reason, to prove Theorem 6.1 it
suffices to derive estimate (6.3) for the approximate solutions u(m).

For the sake of simplicity, throughout the proof we use the notation u
for the approximate solution u(m). Fix some m, multiply relations (3.5)

by u
(m)
k,t and take the sum over k = 1, . . . ,m. This gives the equality

‖ut‖
2
2,Ω +

n∑

i=1

∫

Ω

(
ai|Diu|

pi−2DiuDiut

)
dx

+

∫

Ω

c|u|σ−2u ut dx =

∫

Ω

f ut dx.

(6.4)

We will use the easily verified formulas

ai|Diu|
pi−2DiuDiut =

∂

∂t

(
ai

|Diu|
pi

pi

)

+ ai|Diu|
pi

(
1

p2
i

−
ln |Diu|

pi

pi

)
pit − ait

|Diu|
pi

pi

,

c|u|σ−2u ut =
∂

∂t

(
c
|u|σ

σ

)
+ c|u|σ

(
1

σ2
−

ln |u|

σ

)
σt − ct

|u|σ

σ
.
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Using them in (6.4), we obtain the equality

(6.5) ‖ut‖
2
2,Ω + Y ′(t) = I1 +

n∑

i=1

I2,i +

n∑

i=1

I3,i,

where

Y (t) =

∫

Ω

(
n∑

i=1

ai

|Diu|
pi

pi

+ c
|u|σ

σ

)
dx, I1 = −

∫

Ω

f utdx,(6.6)

I2,i =

∫

Ω

(
−ai|Diu|

pi

(
1

p2
i

−
ln |Diu|

pi

pi

)
pit + ait

|Diu|
pi

pi

)
dx,(6.7)

I3,i =

∫

Ω

(
−c|u|σ

(
1

σ2
−

ln |u|σ

σ

)
σt + ct

|u|σ

σ

)
dx.(6.8)

The following estimates hold:

|I1| ≤
δ

2
‖ut‖

2
2,Ω +

1

2δ
‖f‖2

2,Ω, δ ∈ (0, 1),

∣∣∣∣
∫

Ω

ai|Diu|
pi
pit

p2
i

dx

∣∣∣∣≤max
Ω

|pit|

∫

Ω

ai|Diu|
pi

1

p2
i

dx=λp(t)

∫

Ω

ai|Diu|
pi

1

p2
i

dx,

∫

Ω

ai|Diu|
pi

(
ln |Diu|

pi

pi

)
pit dx ≡ A+B,

A = −

∫

Ω∩(|Diu|>1)

|pit|ai|Diu|
pi ln |Diu| dx = − |A| ≤ 0

(recall that pit ≤ 0, ln |Diu|
pi > 0)

|B| =

∫

Ω∩{|Diu|∈[0,1]}

· · · ≤ a1 |Ω|max
Ω

|pit| max
τ∈[0,1]

|τpi ln τ | ≤ Cλp(t),

∣∣∣∣
∫

Ω

ait

|Diu|
pi

pi

dx

∣∣∣∣ ≤ λa(t)

∫

Ω

|Diu|
pi

pi

dx.
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Gathering these estimate we obtain the inequality

I2 ≤ −

n∑

i=1

∫

Ω

|pit|ai|Diu|
pi | ln |Diu|| dx+ Cλp(t)

+ λp(t)
n∑

i=1

∫

Ω

ai|Diu|
pi

1

p2
i

dx+ λa(t)
n∑

i=1

∫

Ω

|Diu|
pi

pi

dx

≤ −
n∑

i=1

∫

Ω

|pit|ai|Diu|
pi | ln |Diu|| dx+C [λp(t) + λa(t)]Y (t)+Cλp(t).

The terms I3,i are estimated likewise:
∣∣∣∣
∫

Ω

c|u|σ
σt

σ2
dx

∣∣∣∣ ≤ Cλσ(t)Y (t),

−

∫

Ω∩(|uN |>1)

c|u|σ ln |u|σ|σt| dx+

∫

Ω∩(|uN |≤1)

c|u|σ ln |u|σ|σt| dx

≤ −

∫

Ω

n∑

i=1

(c|u|σ| ln |u|σ||σt|) dx+ Cλσ(t),

∣∣∣∣∣

∫

Ω

n∑

i=1

ct
|u|σ

σ
dx

∣∣∣∣∣ ≤ Cλc(t)Y (t).

It follows that

I3 ≤ −

∫

Ω

n∑

i=1

(c|u|σ ln |u|σ|σt|) dx+ C (λc(t) + λσ(t)) Y (t) + Cλσ(t).

Then the function Y (t) satisfies the differential inequality

Y ′(t) + ‖ut‖
2
2,Ω

+
n∑

i=1

∫

Ω

(c|u|σ ln |u|σ|σt|) dx

+
n∑

i=1

∫

Ω

|pit|ai|Diu|
pi | ln |Diu| dx≤C [Λ(t)Y (t)+λ(t) + 1]

(6.9)

with

Λ(t) = λp(t) + λa(t) + λc(t) + λσ(t), λ(t) = λσ(t) + λp(t),

and the assertion follows from Gronwall’s lemma.
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Remark 6.1. The assertion remains true for the solutions of the equation

ut −
n∑

i=1

[
d

dxi

(
ai(z)|Diu|

pi(z)−2Diu
)

+ ci(z)|u|
σi(z)−2u

]
= f(z),

provided that the functions ci(z), σi(z) satisfy the conditions of Theo-
rem 6.1.

Remark 6.2. Problem (6.1) includes, as a partial case, the problem

(6.10)

{
ut = ∆pu+ f in QT ,

u = 0 on ΓT , u(x, 0) = u0(x) in Ω,

with constant p ∈ (1,∞). It was proved in [19, Lemma 2.1] that the
solutions of this problem satisfy the estimate

(6.11) ‖ut‖
2
L2(QT )+‖u‖p

L∞(0,T ;W 1,p(Ω))≤C
(
‖f‖2

L2(QT ) + ‖u0‖
p

W 1,p(Ω)

)
,

which is contained in (6.3) if p = const. Moreover, if in the conditions
of Theorem 6.1 the coefficients ai, c and the exponents pi and σ are
variable but independent of t, then estimate (6.11) is true as well for the
solutions of problem (6.1).

7. Extensions

The results of this paper can be extended in various directions. Let
us mention here several most obvious generalizations.

1. The class of equations (1.1) can be completed by the equations

ut −
∑

i

d

dxi

[
ai(z, u)|Diu|

pi(z)−2Diu+ bi(z, u)
]

+
∑

i

di(z, u)Diu+ d(z, u) = 0

which reduce to (1.1) by means of the substitution

b̃i(z, u)≡bi(z, u)+

∫ u

0

di(z, s) ds, d̃(z, u)≡d(z, u)−
∑

i

∫ u

0

Didi(z, s) ds.

2. The main existence Theorem 3.1 remains true if in the growth con-
ditions (1.4) hd(z) ∈ W′(QT ), i.e.,

{
hd(z) = h0

d(z) + divH(z), h0
d ∈ Lλ′

(QT ),

H(z) = (H1, . . . , Hn), Hi ∈ Lp′

i(·)(QT ).
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3. The proofs of the main theorems can be easily adapted to the equa-
tions

ut −
∑

i

d

dxi

[
ai(z, u)|∇u|

p(z)−2Diu+ bi(z, u)
]

+ d(z, u) = 0.

For the main function spaces we take

Vt(Ω) =
{
u(x) | u(x) ∈ L2(Ω) ∩W 1,1

0 (Ω), |∇u(x)|p(x,t) ∈ L1(Ω)
}
,

‖u‖Vt(Ω) = ‖u‖2,Ω + ‖∇u‖p(·,t),Ω,

and

W(QT )=
{
u : [0, T ] 7→Vt(Ω) | u∈L2(QT ), |∇u|∈Lp(·)(QT ), u=0 on Γ

}

‖u‖W(QT ) = ‖∇u‖p(·),QT
+ ‖u‖2,QT

.

The rest of the arguments does not need any change.

4. The proofs of the existence theorems can be adapted to the case
of the Neumann boundary condition. For example, let us consider the
problem

(7.1)





ut −
∑

i

d

dxi

(
ai(z, u)|Diu|

pi(z)−2Diu
)

+ d(z, u) = 0 in QT ,

∑

i

ai(z, u)|Diu|
pi(z)−2Diu · νi = 0 on ΓT ,

u(x, 0) = u0(x) in Ω,

where ν = (ν1, . . . , νn) denotes the outer normal vector to ΓT . Let us
introduce the function spaces

Vt(Ω) =
{
u(x) : u(x) ∈ L2(Ω), |Diu(x)|

pi(x,t) ∈ L1(Ω)
}
,

W(QT ) =
{
u : [0, T ] 7→ Vt(Ω) | u ∈ L2(QT ), |Diu|

pi(z) ∈ L1(QT )
}

with the norms

‖u‖Vt(Ω) = ‖u‖2,Ω +
∑

i

‖Diu‖pi(·,t),Ω,

‖u‖W(QT ) =
∑

i

‖Diu‖pi(·),QT
+ ‖u‖2,QT

.
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We say that function u(x, t) ∈ W(QT ) ∩ L∞(0, T ;L2(Ω)) is a weak
solution of problem (7.1) if for every test-function

ζ ∈ Z ≡ {η(z) : η ∈ W(QT ) ∩ L∞
(
0, T ;L2(Ω)

)
, ηt ∈ W′(QT )},

and every t1, t2 ∈ [0, T ] the following identity holds:

(7.2)

∫ t2

t1

∫

Ω

(
uζt−

∑

i

ai|Diu|
pi−2DiuDiζ−d(z, u)ζ

)
dz=

∫

Ω

uζ dx

∣∣∣∣
t2

t1

.

Let us assume that the data of problem (7.1) satisfy the conditions of
Theorem 3.1. Since the space W(QT ) is separable, a solution of prob-
lem (7.1) can be constructed as the limit of the sequence of Galerkin’s
approximations (see the proof of Theorem 3.1).
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[29] J. Kačur, On a solution of degenerate elliptic-parabolic systems
in Orlicz-Sobolev spaces. II, Math. Z. 203(4) (1990), 569–579.

[30] A. S. Kalashnikov, Some problems of the qualitative theory of
second-order nonlinear degenerate parabolic equations, (Russian),
Uspekhi Mat. Nauk 42 (1987), no. 2(254), 135–176, 287.

[31] A. S. Kalashnikov, Nonlinear phenomena in nonstationary pro-
cesses described by asymptotically linear equations, (Russian), Dif-
ferentsial’nye Uravneniya 29(3) (1993), 381–391, 549; translation
in: Differential Equations 29(3) (1993), 324–334.

[32] A. S. Kalashnikov, Perturbation of critical exponents in some
nonlinear problems of mathematical physics, (Russian), Dokl. Akad.



398 S. Antontsev, S. Shmarev

Nauk 337(3) (1994), 320–322; translation in: Phys. Dokl. 39(7)
(1994), 474–476.

[33] A. S. Kalashnikov, On some nonlinear problems in mathematical
physics with exponents that are close to critical, (Russian), Tr.
Semin. im. I. G. Petrovskogo 19 (1996), 73–98, 346; translation in:
J. Math. Sci. (New York) 85(6) (1997), 2287–2301.
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limites non linéaires”, Dunod, Gauthier-Villars, Paris, 1969.

[37] G. Mingione, Regularity of minima: an invitation to the dark side
of the calculus of variations, Appl. Math. 51(4) (2006), 355–426.

[38] J. Musielak, “Orlicz spaces and modular spaces”, Lecture Notes
in Mathematics 1034, Springer-Verlag, Berlin, 1983.

[39] K. R. Rajagopal and M. Ru̇žička, Mathematical modeling
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