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ANISOTROPIC PARABOLIC EQUATIONS WITH
VARIABLE NONLINEARITY

S. ANTONTSEV AND S. SHMAREV

Abstract

We study the Dirichlet problem for a class of nonlinear parabolic
equations with nonstandard anisotropic growth conditions. Equa-
tions of this class generalize the evolutional p(x,t)-Laplacian. We
prove theorems of existence and uniqueness of weak solutions in
suitable Orlicz-Sobolev spaces, derive global and local in time
L bounds for the weak solutions.

1. Introduction

1.1. Statement of the problem and assumptions. Let 2 C R" be
a bounded simple-connected domain and 0 < 7' < co. We consider the
Dirichlet problem for the parabolic equation

ut _Zdia:i[ai(z’ u)|Du

u=0on Iy, u(z,0) =up(z) in Q,

pi(z)%Diu—i—bi(z,u) +d(z,u)=0 in Qr,

(1.1)

where z = (z,t) € Qr = Q x (0,T], T'r is the lateral boundary of the
cylinder @7, D; denotes the partial derivative with respect to x; and

df(z,v) :Dif(z,v)‘i‘w

D;v.
d:vi v
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The coefficients a;(z,u), b;(z,u) and d(z,u) may depend on z = (z,t),
u(z) and obey the following conditions:

(1.2) ai(z,r), bi(z,7), d(z,r) are Carathéodory functions

(defined for (z,7) € Q@ x R, measurable in z for every r € R, continuous
in r for a.a. z € Qr),

(1.3) V(2,7) € Qr xR 0<ag < ai(z,r) <a; <oo, ag,a; = const,

V(z,7) € Qr xR

14 bi(z,r P < polr* + b z), p,i:7pi(z) ,
(L) S (e < mlr o+ hufe). o= 25

2

|d(z,7)] < dolr*™" + ha(2),
with positive constants b, dy, d1, d2, A > 1, and

(1.5) ho(2) € L'(Qr), ha(z) € LY (Qr), X = ﬁ

The exponents p;(z) are given continuous in Q7 functions such that

(1.6) pi(2) C (p;,p) S (p~,p") C (1,00),
with finite constants p*, pl?t > 1. Moreover, it will be assumed through-

out the paper that the exponents p;(z) are continuous in Qr with loga-
rithmic module of continuity:

(L7 Vz(eQn [z -( <1, Z pi(2) = pi(Q)| < w(lz = (),

where

lim w(7)In oo +00.

T—0F T
1.2. Physical motivation and previous work. The paper addresses
the questions of existence and uniqueness of weak solutions to prob-
lem (1.1). The main feature of equation (1.1) is the variable character of
nonlinearity which causes a gap between the monotonicity and coercivity
conditions. Because of this gap, equations of the type (1.1) are usually
termed equations with nonstandard growth conditions. Equation (1.1)
can be viewed as a generalization of the evolutional p-Laplacian equation

(1.8) up = div(|Vul[P~2Vu)

with the constant exponent of nonlinearity p € (1,00). During the last
decades equation (1.8) was intensively studied and was casted for the
role of a touchstone in the theory of nonlinear PDEs. There is extensive
literature devoted to equation (1.8). We limit ourselves by referring
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here to monographs [24], [36], papers [5], [9], [20], [29] and the review
paper [30] which provide an excellent insight to the theory of evolutional
p-Laplacian equations.

PDEs with variable nonlinearity are very interesting from the purely
mathematical point of view. On the other hand, their study is motivated
by various applications where such equations appear in the most natural
way. Equations of the type (1.1) and their elliptic counterparts appear
in the mathematical descriptions of motions of the non-newtonian flu-
ids [11], in particular, electro-rheological fluids which are characterized
by their ability to change the mechanical properties under the influence
of the exterior electro-magnetic field [27], [39], [40]. Most of the known
results concern the stationary models, see, e.g., [1], [2], [3]. Some prop-
erties of solutions of the system of modified nonstationary Navier-Stokes
equations describing electro-rheological fluids are studied in [4]. An-
other important application is the image processing where the anisotropy
and nonlinearity of the diffusion operator and convection terms are used
to underline the borders of the distorted image and to eliminate the
noise [6], [8], [21]. Many of the frequently discussed schemes of image
restoration lead to nonlinear elliptic and parabolic equations with lin-
ear growth in the diffusion operator; this situation corresponds to the
case p~ = 1 and is not discussed in the present paper.

To the best of our knowledge, the reported results on the solvability
of parabolic equations of the type (1.1) concern the equations with lin-
ear growth at infinity whose solutions are understood as elements of the
space L% (0,T; BV () N L?(12)), see, e.g., [7], [8], [21]. In our assump-
tions on the structure of the equation, the weak solutions possess better
regularity and belong to Orlicz-Sobolev spaces WP()(Qr) (the rigor-
ous definition is given in Section 2 below). Moreover, it is proved in [18]
that the gradient of the solution to the evolutional p(x, t)-Laplacian sat-
isfy the Meyer-type estimate: the gradient is integrable with the expo-
nent p(z)(1 4 0), § > 0, instead of p(z) as is prompted by the equation.
It is known also that the solutions of equation (1.1) may extinct in a
finite time [15], [17], a property typical for the solutions of the fast dif-
fusion equation. In contrast to the case of the fast diffusion equation
with constant exponents of nonlinearity, the variable nonlinearity makes
that this property may persist even if the equation eventually transforms
into the linear one. It is worth mentioning here the papers [31], [32],
[33] devoted to the study of similar effects in solutions of equations with
singularly perturbed coefficients and exponents of nonlinearity.
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Parabolic equations with variable nonlinearity of the type
uy = div (|u|7(w’t)Vu) + F(z,t,u, Vu)

are studied in papers [12], [16]. This class of equations generalizes the
famous porous media equation (PME) to the case of variable exponents
of nonlinearity. It is shown in [12] that the weak solutions of this equa-
tion display many of the properties intrinsic to the solutions of PME.
However, the methods used in the study of solvability of such equations
are specific for the generalized PME and can not be directly applied to
equations of the type (1.1) which are nonlinear with respect to D;u.

Stationary counterparts of equation (1.1) and the generalized PME
were studied by many authors. We refer here to [13], [14], [37] for a
review of the relevant results.

1.3. Organization of the paper and description of results. The
paper is organized as follows. In Section 2 we introduce the function
spaces of Orlicz-Sobolev type and present a brief description of their
main properties. In our conditions on the regularity of the data, the
smooth functions are dense in these spaces, which allows us to construct
a solution using the sequence of Galerkin’s approximations.

The main existence result for problem (1.1) is stated in Theorem 3.1.
We prove that problem (1.1) has at least one global weak solution if the
growth conditions (1.4) and (1.6) are fulfilled with 2 < A=max{2,p~ -4}
for some § > 0. The assertion remains true if A = max{2,p~}, but
under the additional condition of smallness of the data wug, hg and hy
in the corresponding norms. The case A > max{2,p~} is studied in
Theorem 3.2. We show that in this range of exponents, and with the
functions hy, hg satisfying (1.5), problem (1.1) has a local in time solution
if the parameters A, p~ and n are subject to the conditions

2
max{2,p"} <A< p~ <1 + ﬁ) ;

2n
1. 1,—— -
(1.9) max{,2+n}<p ,

9 _
p(1+—>< np_ ifn>p.
n n—p

The proofs of these assertions do not require monotonicity of the
term d(z,u). The monotonicity of the diffusion part of the equation is
used to prove the convergence of Galerkin’s approximations. In Section 7
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we briefly discuss the possibility of extension of the existence results to
the case of homogeneous Neumann boundary condition.

Section 4 is devoted to derivation of L* bounds for the solutions of
problem (1.1). We assume that the functions hg, hj are subject to the
stronger restrictions

|[d(z,7)| < do|r| + ha,
(1.10) hy, ha € L(0,T; L=(Q)).

|bi(z, )| < bolr| + hs,
Under these assumptions we prove in Theorem 4.1 that the weak solu-
tions of problem (1.1) are globally bounded. The growth restriction can
be relaxed for the terms d(z,u) of special form. Namely, if we assume
that in the foregoing assumptions

d(z,u) = di(z,u)|u|"® 20+ do(z, u)|u]* 2u + hy

with

1< A< glfo(z) <M, dy >dpi=const >0, |da| < dy=const< oo,
T

and that the inequality
dor R°*) =1 — dgo R* ' — boR — sup ha(z) —sup |hsp(2)| >0
Qr

Qr

holds in Qp for some R > 0, then the solutions of (1.1) are globally
bounded. Moreover, once such a bound is established, we use it to
prove the existence of a global weak solution applying Theorem 3.1.
We finally drop conditions (1.9) and show the under assumptions (1.10)
problem (1.1) admit a local bounded solution for every A > 1.

Uniqueness of weak solutions is studied in Section 5. It is shown that
the weak solution of problem (1.1) is unique if the function u — d(z, u)
is monotone increasing and

|ai(z,u) = ai(z,0)] < w(lu —v])

with the module of continuity w satisfying the condition

p+

= o1

/ js — oo ase— 0 forsomel<a< (pt)
e w(s)

If the omit the condition of monotonicity of d(z,u), the uniqueness of
weak solutions still can be proved but under stronger continuity and
growth assumptions: d(z,u) is Lipschitz-continuous with respect to u
and w®(s) = Cs?. In the proof of uniqueness we follow ideas of [10],
[14], [22], [23] were similar arguments were applied to the study of
elliptic equations with nonstandard growth conditions.
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In Section 6 we study the dependence of the regularity of solutions to
problem (1.1) on the regularity properties of the exponents p;, a; and o
in the partial case when

i=ai(z), d(z,u) =c(2)|ul"P2u - f(2), c(z) <O0.

We show that if ug € L7C:0(Q), Dyug € LPi¢:0(Q), and if the expo-
nents p; and ¢ are nonincreasing functions of ¢, then the solutions of
problem (1.1) possess better regularity properties:

ur € LA(Qr), |ul”®,|DaulP®) e L=(0,T; L'(Q2)),

| DyulP | In [ Diwl| |piel, [ul”| I ful| o] € L' (Qr).
In the concluding Section 7 we give certain extensions of the results

to other classes of equations close to (1.1).

2. The function spaces

2.1. Spaces LP()(Q2) and Wol’p(')(ﬂ). The definitions of the func-
tion spaces used throughout the paper and a brief description of their
properties follow [25], [26], [34], [38]. The further references can be
found in the review papers [28], [41]. Let

(2.1) Q C R" be a bounded domain, 052 be Lipschitz-continuous,
. p(z) satisfy condition (1.7) of log-continuity.

By LP()(Q) we denote the space of measurable functions f(x) on € such
that

(D) = [ 1f@)P®) dz < oo,
The space LP()(Q) equipped with the norm
1l = 1oy = i0f {3 > 0= Ay (F/3) < 1)

becomes a Banach space. The Banach space Wol’p(')(Q) with p(z) €
[p~,pT] C (1,00) is defined by

Wy PO (@)= {f € LPO(Q) : |V f| € LPO(Q), u=0 on 8Q}
(2.2) . ‘
[ullyyar0 ) = Z [ Diullpy,0 + llullpe),0

0(°)

An equivalent norm of VVO1 is given by

HU‘HW;W(')(Q) = Z HDzqu(),Q
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e If condition (2.1) is fulfilled, then C§°(€) is dense in Wy ") ().
The space Wol’p(')(Q) can be defined then as the closure of C§°(2)
with respect to the norm (2.2) —see [42], [45].

e The space W' ?()(Q) is separable and reflexive provided that p(z) €

co(Q).
o Let
1 < g(x) < supg(z) <infp.(z)
Q
with
M if p(l’) <mn,
ps(x) = ¢ n—p(x)
00 if p(x) > n.

Then the embedding Wol’p(') (Q) — L90)(Q) is continuous and com-
pact.

o It follows directly from the definition that

23)  win (17100, 1£120)) < Apiy () < max (715, 1711 ) -

e Hilder’s inequality. For all f € LP()(Q), g € LP' ()(Q) with

1 =
p(z) € (1,00), p PEEE

the following inequality holds:

1 1
@) [ 1701de < (= + o ) Wl Mol < 21l ol

o If conditions (2.1) are fulfilled, then there exists a constant C' > 0
such that

(2.5) V fEW()l’p(')(Q) [l SC IVl (Poincaré inequality).

2.2. Spaces LP(>)(Qr) and anisotropic spaces W(Qr). Let p;(2)
satisfy conditions (1.6) and (1.7). For every fixed t € [0, 7] we introduce
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the Banach space

V,(Q) = {u(x) Lu(e) € L2(Q) N WEN(Q), [Diu(z)|P@ e Ll(Q)},

2,0 +Z | Diu

and denote by V4(Q) its dual. For every ¢ € [0, 7] the inclusion
Vi(Q) € X =WyP ()N LQ)

holds, which is why V() is reflexive and separable as a closed subspace
of X.
By W(Qr) we denote the Banach space

ullv, @) = (vl pil-4),5

W(Qr) = {u: [0,T] — Vi(Q) | u € LX(Qr),

IDiuP"® € LY(Qr), u=0 on FT},

lullwi@r) = Y IDsullp,).r + lll2,0r-

W'(Qr) is the dual of W(Qr) (the space of linear functionals over
W(Qr)):

w=wo+z Dijwi, wo€L*(Qr), w;eLPO(Qr),
weW'(Qr) <= =1

VoeW(Qr) <<wa¢>>:/Q <w0¢+zwiDi¢> dz.

The norm in W/(Qr) is defined by

[vllw(@r) = sup {((v,9)) | ¢ € W(Q1), [6llw(qr) <1}
Let v = (v1,...,vp), P(2) = (p1(2),...,pn(2)), and

M) =3 [ ol e
i=17 QT

The following counterpart of (2.3) holds:

. + -
(2.6)  min {Z 1Dl .00 2 ||Diu|§i<v>,czr} < 4Ape)ar (V)

- +
S DOLAAINS LIS
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Set
V(Q) = {u(x) |ue LXQ) N WhH(Q), [Vu| € L7 (Q)} .

Since V(Q) is separable, it is a span of a countable set of linearly
independent functions {¢(z)} C V(). Without loss of generality, we
may assume that this system forms an orthonormal basis of L?((2).

Proposition 2.1. Let conditions (2.1) hold. Then the set {1y} is dense
in Vi(Q) for every t € [0,T].

Proof: In our conditions on 9 and p;, for every u € V() there is a
sequence us(-,t) € C*(Q) such that suppu.(-,t) € Q and
lu —usllv,@ — 0 asd— 0.

Such a sequence is obtained via convolution of v with the Friedrics’s
mollifiers [45, Theorem 2.1]. Since us € C5°(2) C V() and {¢y,} is
dense in V(£2), one may choose constants ¢,, such that

k
u((;k) = Z CmWm(x) — us  strongly in V(Q) as § — 0.

m=1
Given an arbitrary € > 0, |lus — U((;k)HV+(Q) < € for all ¥ € N from
some k(e) on. By (2.4)

—u® < Cllus — uf” <C

[us —us v < Cllus —ug "[lv @) < Ce
with a constant C' = C(n, |Q|,pT, ocT) independent of e. It follows now
that for all sufficiently large k£ and small ¢

lu—1u§" v, o) < lu—usllv, @ +lus—u§” v, < 2¢ Yte[0,7]. O

Proposition 2.2. For every u € W(Qr) there is a sequence {di(t)},
di(t) € C1[0,T], such that

—0 asm — 0.
W(Qr)
Proof: In view of Proposition 2.1, the assertion immediately follows be-
cause the functions Y} ; dp(t)Yr(x) are dense in LP (0, T; Whr' ()N
L2(0,T; L*(Q)). O

u— Z dr.(t)k ()
=1

Let p be the Friedrics mollifying kernel

1 .
K exp (_T) if |s| < 1,
p(s) = 1=lsl? ! K = const : / p(z)dz = 1.
0 if s > 1, R+
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Given a function v € L' (Qr), we extend it to the whole R"*! by a func-
tion with compact support (keeping the same notation for the continued

function) and then define

. 1 s
vp(2) = /R . v(s)pn(z — s)ds with pp(s) = prEsvd (E)’ h > 0.

Proposition 2.3. If u € W(Qr) with the exponents p;(z) satisfy-
ing (1.7), then

||uh||w(QT) <C (1 + HU’HW(QT)) and ||uh — u||W(QT) — 0 as h — 0.
Proposition 2.3 is an immediate byproduct of [45, Theorem 2.1].

Proposition 2.4. Let in the conditions of Proposition 2.3 u; € W'(Qr).
Then (up): € W/'(Qr), and for every ¥ € W(Qr)

({((un)e, ¥)) — ((ue,¥))  as h— 0.

Proof: By the definition of W/(Qr) there exist ¢9 € L*(Qr), ¢ €

Lpi()(QT) such that <<Utﬂ/’>> = (¢07¢)2,QT + Zi(¢i7Diw)2,QT7 v w €
W(Qr). Tt follows that

W) = [ s = [ wndz

T T

= /Q <¢01/)h + Z¢i Dﬂ/%) dz

= /Q <(¢0)h1/1 + Z(¢i)h Dﬂﬁ) dz — ((u,¢)) ash—0

by virtue of Proposition 2.3. o

Proposition 2.5 (Integration by parts). Letv,w € W(Qr) and vy, wy €
W'(Qr) with the exponents p;(z) satisfying (1.7). Then

to ta
YV a.e. t1,ta € (0,7T) / /thdz—l—/ /vtwdz:/vwd:r
t JQ t JO Q

t=to

t=t1
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Proof: Let t; < to. Take

0 for t < ty,
k(t—t1) forty <t <t + 1,
Xk(t) = {1 for t; ++ <t <tp— £,
k(ta —t) forto — ¢ <t <ty,
0 for t > t5.

For every k € Nand h > 0

0
0= / (vhwp k)t dz = / (vpwp )Xk dz — k/ / vpwp, dz
Qr Qr 0— Q

The last two integrals on the right-hand side exist because v, w; €
L?(Qr). Letting h — 0, we obtain the equality

to t1+%
lim (v (wp) e+ (vn)rwn) xk (t) dz:k/ /vwdz—k/ /vwdz.
Qr ta—1JQ t1 Q

h—0

2

0=t
0=t

1
k 1

According to Propositions 2.3 and 2.4 v, — v in W(Qr), (wp): =
(we)p, — wy weakly in W/ (Qr) as h — 0, and ||v||w, |[(wh):]|w: are
uniformly bounded. It follows that

lim vp(wp)exk(t) dz = lim (vp, — v)(wn)exx(t) dz
h=0Jqr h=0Jqr

+;1Lin% U((wh)t—wt))(k(t)dz—i—/ thXk(t)dZZ/ vwexk(t) dz.
—YJQr T T

In the same way we check that

lim (vp)s wp, Xk () dz = / vwexg(t) dz.
h=0JQr Qr

By the Lebesgue differentiation theorem

0
Vae 6>0 limk/ (/vwdw) dt:/vwdx,
k=0 Jo—1 \Ja Q

whence for almost every t1,t2 € [0, 7]

12
/ / (vwi+vw) dz = lim (vwe + vw) g (t) dz
t1 Q

k—o0 Qr
t=ts
:/vwda:
6=t Q

0
= lim k/ /vwdaz
k—oo Jo_1 Ja




366 S. ANTONTSEV, S. SHMAREV

Corollary 2.1. Let u € W(Qr) and uy € W'(Qr) with the expo-
nents p;(z) satisfying (1.7). Then
t=ts

2
2,0
t=t1

to 1
Y a.e. t1,ta € (0,7 / / uugdz = S |ul
t1 Q 2

3. Existence theorems

In this section we prove the existence of weak solutions to prob-
lem (1.1) under the general growth conditions (1.4). The solution of
problem (1.1) is understood in the following sense.

Definition 3.1. A function u(z,t) € W(Qr)NL>®(0,T; L*(Q)) is called
weak solution of problem (1.1) if for every test-function

Ce€Z={n(z):neW(Qr)NnL®(0,T;L*(Q)), n: € W'(Qr)},
and every t1,ts € [0,7T] the following identity holds:

(3.1) /t Q/Q (MrZ [a;|DiulP "2 Dyu + bi(z,u)] Di¢ — d(z,u)() dz

to
= / uC dx
Q

t1

The following are the main results of this section.

Theorem 3.1. a) Let us assume that
1) the coefficients a;(z,1), bi(z,r), d(z,r) satisfy conditions (1.2),
(1.3), (1.4),

2) the exponents p;(z) satisfy (1.6) and (1.7),
3) the constant A satisfies the condition
(3.2) A =max{2,p” —d} with some § > 0.

Then for every ug € L?(Q) problem (1.1) has at least one weak
solution u € W(Qr) satisfying the estimate

(3:3) [[0ll2 0. rez5(+ /Q w0 D
T i

with a constant M independent of u and K = ||hp||1,0r + | hall 3,0 -
Moreover, uy € W/ (Qr).
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b) The assertion remains true if (3.2) is substituted by the condi-
tion A\ = max{2,p~} and the constant by + dy in (1.4) is appropri-
ately small in comparison with ag.

Theorem 3.2. Let us assume that in the conditions of Theorem 3.1
condition (3.2) is substituted by the following one:

2 - 2
(3.4) max{2,p”}<A<p~ (1 + ﬁ) < nn_pp_, max {1, 2—|——nn} <p~.
Then there exists Ty > 0, defined through ||uo||3zq + K, such that
problem (1.1) has at least one weak solution u € W (Qm,) satisfying
estimate (3.3) in Qr,. The weak solution exists globally in time if
||u0||2L2(Q) + K is sufficiently small.

3.1. Proof of Theorems 3.1 and 3.2.

3.1.1. Galerkin’s approximations. A solution of problem (1.1) is
constructed as the limit of the sequence of Galerkin’s approximations.
Let us define the operator

(Lv, 9)a —/Q<vt¢+z [ai(z,v)|Dsv

i=1

pi72Dﬂ)—|—bi(Z, 1))] D1¢+d(z7 U)¢> dIa

o € V().

The approximate solutions to problem (1.1) are sought in the form

u™(z) =Y M Ounle), b € V()
k=1

where the coefficients c,(cm) (t) are defined from the relations

(3.5) <Lu<m>,¢k>9 —0, k=1,...,m.

Equalities (3.5) generate the system of m ordinary differential equations

for the coefficients cggm) (t):

(™) = B (e @), i)
(3.6) -
¢ (0) = /Quo(x)z/}kdac k=1,...,m.

If the coefficients a;, b;, d and the exponents p;, o satisfy the conditions
of Theorem 3.1 a), the functions F}, are continuous in all their arguments.
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3.1.2. A priory estimates.
Lemma 3.1. Let the conditions of Theorem 3.1 a) be fulfilled. Then
for every T < oo and m € N system (3.6) has a solution {c,(:@)(t)}lC )

on the interval (0,T) and the corresponding function ul™) satisfies the
estimate

B1) 1 02w ogren + /Q

ag Z | D™ |Pi dz
T i
with the constants M, K defined in the conditions of Theorem 3.1.

Proof: By Peano’s Theorem, for every finite m system (3.6) has a solu-
(m)

tion ¢; ’(t), ¢ = 1,...,m, on an interval (0,7,). Multiplying each of
equalities (3.5) by c,(cm) (t) and summing over k = 1,...,m, we arrive at
the relation

(3.8)

1 t
B ||U(m)||§sz} 0+/ (E {ai(zaU(m))|Diu(m)|pi+bi(ZaU(m))Diu(m)
Ct=0 Jg,

+ d(z,u(m))u(m)> dz=0, T€[0,T)]
Using (1.3), (1.4) and applying Young’s inequality, we estimate: V € > 0

|bi (2, u™)D;u™)| < eag|Diul™ [Pi 4+ O |b; (2, u™)
< eag| Daul™ [Pt + C (bo|ul™ N + ),

/
p;

(3.9)
(3.10)  |d(z, u™)ul™| < (do + eq)[u™ | + ClhalY', €4 € (0,1),

with a constant C' depending on €, €4, ag, p~, p*. Plugging (3.9)-(3.10)
into (3.8), choosing e sufficiently small and simplifying, we get the esti-

mate
1 H (m)H2 ‘t:T+/ |D (m)
— |l a E iU
2 2,Q =0 o 0 -

(3.11) < C/ ((d0+b0+€d)|u(m)|>\ + |he| + |hd|>\’) dz

-

Pi dz

T

< O(dg + by + ed)/ [u™|*dz + CK.

QT
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Let A = 2. Using Gronwall’s inequality to estimate the function
Hu(m)(-,t)H; o and then reverting to (3.8), we obtain the required es-
timate (3.7).

Let 2 < A=p~—4. This assumption yields the inequality A < Z(_p;f_fg,
which allows one to make use of the embedding theorem in Sobolev
spaces:

(3.12) [ (0130 < COLp™,n)[Val™]|- o

Applying now (2.3) and Young’s inequality, we arrive at the inequality

A
/ |u(m)|>\ dr < C (/ |Vu(m)|p* d:v) 7
Q Q
A
B
(3.13) <C / D™ d +1
; sz|

< eag Z/ |Diu(m)|pi dx + C(e, 6,9, ao,pi).
—Ja

Gathering these estimates with (3.8) and choosing e appropriately small,
we obtain the inequality

1 t=T1
- (m)|2 (M) i
5 lu ||m’t:0 +ao) /QT D™ Pidz < C (K +1).

The right-hand side of the obtained estimate does not depend on m,
which is why the solution of system (3.6) can be continued to the maxi-
mal interval [0, 7. O

Lemma 3.2. The assertion of Lemma 3.1 remains true for A =
max{2,p~ }, provided that the constant by + dy is sufficiently small in
comparison with ag.

Proof: We only have to study the case A = p~. Then the Poincaré
inequality yields

[u™ A da < c/ Vu™|P" dx, C = C(n,\).
Q Q
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Combining (3.11) with this inequality, we have that
1 m t=T1 m )
1) Gl + a3 [ e a:
< C(do + bo + €a) Z/ |D;u™Pi dz + CK  with €4 € (0,1).
1 QT
The conclusion follows if we claim that C(by + dy) < ag and choose €4

sufficiently small. O

Lemma 3.3. Let condition (3.4) be fulfilled. Then there exists Ty, de-
pending on |luol|3 o + K, such that the assertion of Lemma 3.1 is true
on every interval [0,T) with T < Tp.

Proof: Instead of (3.12), we will make use of the interpolation inequality
(3.15) [[ul™)]

with the exponent

(1—0)A
2,0

ﬁ,Q < C()‘vpi ’ n)||Vu(m) HZiQHu(m”

A—2 np~
A npT—=2(n—p7)

(3.16) 0= € (0,1).

The inclusion 6 € (0, 1) follows from condition (3.4):
ox n(A—2)

p~  mp~ —2(n—p°)
Applying (2.3) and Young’s inequality we transform (3.15) to the form

(3.17)

2
<l<=A<p~ <1+ﬁ)'

1

L oA
m P m pT m m —0 )\

||u( )(.J)H:\\ﬂ §O(max{Ap+(u( )), Ap (u( ))}> IIu( )||§Q )

(3.18)

<edp(u™) + Cmax {u™ 37, ut™ 3%, }
with the exponents
+ _ 1-0)r p* >
7 2 pt—-)X0
Gathering (3.18) with (3.8)—(3.10) and choosing e appropriately small,

we have
1 m t=1 m
5 lu >||;QL_O+/QT DT

T + _
<o ([ max g, 1u ™z} drs ).

1.

Pi ]
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Introducing the function

Y(t) = Hu(m)('vt)| %,Qv

we write the last inequality in the form

(319) Y(t) <A+ B /Ot max {YV+ (1), Y7 (T)} dr,

A=Y(0)+2CK, B=2C.

The functions satisfying this inequality are bounded on the intervals [0, ¢o]
with

1 1
(3.20)  toe(r DBt < min{ — . }
(vF =1)BA* 1 (y~ —1)BA

Since tg — 0o as A — 0, estimate (3.7) takes the form

Hu<’”>(-,t)|\§,g+/ apy _ |Daul™ P dz < C(t)(1+K), te[0,t0]. O
Qt i

3.1.3. Compactness and passage to the limit. Throughout this
subsection we assume that T satisfies the conditions of Lemmas 3.1, 3.2,
and 3.3. Let us show that the constructed sequence {u(m)} is convergent.

Lemma 3.4. Under the conditions of Lemma 3.1, for every m € N we
have ugm) € W (Qr) and
™ wi@e) < €' [1+ K + lluol3q]
Proof: Let
Lo = {n(x,t) ‘ n=>_ de(t)yi(x), di(t) € Ol(o,T)} CZ
k=1
be a subspace of the set of admissible test-functions. Take a function

m

6= ox(t)Yi(z) € Zyn with ¢1(0) = ¢4 (T) = 0.

i=1
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By the definition of u(™ (see (3.6))
Qr Qr
= [ [wteu™) D™ P2 D™ by ™) | Digrd
i=17Qr
+/ d(z,u"™)p dz.
Qr

Using (1.4) and (3.7), we may estimate the right-side of this equality as
follows:

/ Zaz (z, ™) | Dsu™|Pi 2 D™ D¢ d
Q

T =1

< CZ [1Diu m)|pl_l 17QT||D1¢||171)QT < CZ ”DZ¢HP“QT’
i=1 i=1

/Q Zb 2,u"™ND;p dz

T i=1

< CZ ||b HpNQT”Dz(b”quT < CZ ||Dl¢||pl,QTv

i=1 i=1

[ o) o

A—
< [0, ™ P v @r + Ihallver | I91ngr

< ldl[».@r9lIx.0r

<O 1+ [ llwion | 9l

with the constants C’ and C independent of m. It follows that for
every ¢ € Zp,

' / u™ ¢ dz

<C [1 + ||u(m)||W(QT)} lellwion- =
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The following inclusions hold:

w™ e W(Qr) C LP (0, T; W' (Q)),
pt

u™ € W(Qr) C L1 (0,T; V().

Wo? (Q) € L¥(Q) € V' (Q).

It follows that the sequence {u("™} contains a subsequence strongly con-
vergent in LY(Qr) with some ¢ > 1 [43]. This subsequence contains
a subsequence which converges to u a.e. in Qr (see, e.g., [35, Theo-
rem 2.8.1]). These conclusions together with the uniform in m esti-
mates (3.7) allow one to extract from the sequence {u(m)} a subsequence
(for the sake of simplicity we assume that it merely coincides with the
whole of the sequence) such that

(3.21)

w(™ 5y weakly in W(Qr)
and strongly in L9(Qr),

W™ sy weakly in W'(Qr),
wm™ oy a.e. in Qr,
d (z,ul™) = d(z,u) strongly in LY (Qr),
bi (27 u(m)) — b; (z,u) strongly in Lpg(.)(QT)u
a; (z,ut™) [Daut™ 07 Dulm — Ay(z) weakly in LPO(Qr)

for some functions
ue W(Qr), Ai(z) € L0 (Qr).

By the method of construction, each of the functions u(") satisfies iden-
tity (3.1) with the test-function n € Z,,. Let us fix an arbitrary m € N.
Then for every s < m and n € Z;

/ u™n dz
Q 7=0

_ / lu@n)m -3 (ai| Dyu™
T

i

=T

drdt = 0.

Pi=2 Dy (M) bi) Dyn+dn
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Letting m — oo and using (3.21) we conclude that V n € Z;

=T

(3.22) —/undw
Q

7=0
+ / |fmt - Z(Al(z) +bi(z,u))Din + d(z,u)n| dedty =0
Qr i

with an arbitrary s € N. It follows then that identity (3.22) holds for
every 7 € W(Qr). It remains to identify the limit functions A4;.

Lemma 3.5. For almost all z € Qr

Pi=2Dy, i=1

(3.23) Ai(z) = ai(z,u)|Diu N
Proof: We rely on the monotonicity of the operator M(s) = |s[P~2s:
VEneR?

27P ¢ —nl? if 2<p< oo,

(3.24) (M(E)-M(n))(E—n)> i e
(- D)le—n (&P +Inf")> if 1<p<2.

According to (3.24), for every £ € Z,,

/Tal(z u )(|Du

Let £ € Z,,. Tt follows from (3.5) with the test-function n = u("™ — ¢

/ {u(m)nt - Z [az(z u™)|Dy€

%

2D, — | Dig P D€ ) Dilul™=€) drdt 0.

Pim2D€ + by(z, w(m ))} Din

—d(z, u(m))n} dz

t=T
> 0.
t=0

_ / W
Q

Gathering (3.22) with this inequality, integrating by parts the
term u("™n,, and then letting m — oo we conclude, following (36,
pp. 158-161], that

VEeEW(Qr) Z/Q —a;(z,u)|Di&|P" "2 D;€] Di(u—¢&) dw dt > 0.
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Choosing now £ = u =+ e¢ with € > 0, simplifying and then letting ¢ — 0,
we have

V¢ eEW(Qr) Z/Q [4;(2)—ai(z,u)|Diul” "*Dju] D;i( de dt=0. O

We have shown that under the conditions of Theorems 3.1 and 3.2
the solution v € W(Qr) satisfies the identity

(325) VCEW(QT) /Q p172D1U+b1)DZC+dC dz=0.

utC—i-Z (ai|Diu

Applying Proposition 2.5 and integrating by parts in the first term
of (3.25), we complete the proof of Theorems 3.1 and 3.2.

4. L°° estimates
4.1. Global estimates.

Theorem 4.1. Let the conditions of Theorem 3.1 be fulfilled and, addi-
tionally,

p;(2)

pi(z)—1 ’ '81)1(25 S)

(4.1) VkeN sup{|s :ZEQT,SE[—k,k]}

ds
= B < o0,
andV s €R, z € Qr,
(a) |d(z, 5)| < dols| + ha(z),
(4.2) 0bi(z,s)

(b) " Om, < bols| + hs(2)

with finite nonnegative constants do, bo. If ||uol|ce,0 < 00, then the weak
solution of problem (1.1) is bounded and satisfies the estimate

(4.3) [[u(,)lco,2 < €7 [Juol| o0

t
+ecot/ e (|| (-, ) [loo,2 + [ (-, 1)l oo.2) dt
0
with OO = bo + do.

Proof: Let us fix k € N and consider the auxiliary problem

d
Up — — ai|Diu|pi_2Diu +bi| +dg(z,u) =0 in Qp,
an 2w |

u=0on Iy, u(z,0) = up(z) in Q
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with
di(z,u) = d(z, min{|u|; k} signw).
Since for every finite k
|d (z, min{|ul; k} signu) | < do k*~! + hy,

it follows from Theorem 3.1 that problem (4.4) has a weak solution u(z)
in the sense of Definition 3.1. Let us introduce the function

k if u>k,
up = min{|ul, k}signu = ¢u  if ju| <k,
-k ifu< —k.
The function uim71 with m € N can be taken for the test-function

in (3.25). Let in (3.25) to =t + h, t1 = ¢, with t,¢+ h € (0,T). Observe
that di(z,u) = d(z,ur). Then

t+h
2m/ pn (/ ui™(xz, t) dx) dt
t+h
/ / 2m — l)azuk )|D iU
Q
t+h

/ / (z, ug ukm Ydz dt = 0.

Q

Dividing the last equality by h and letting h — 0, we have that V a.e. ¢t €
(0,T)

1d [ ,
— = w2z, t)d
2mdt/9uk (z,8) de

(4.5) + Z/ (2m—1)a; uk(m 1)|D k| P 4bi (2, u) Djud™ ™ 1) dx

Pi by (2, u) Dyus ™ 1) dx dt

+/ d(z, ug)u;™ "t dx = 0.
Q

Indeed: by Lebesgue’s dominated convergence theorem for every ¢ €
L'(0,T) and a.e. t € (0,T) there exists limp_o f:Jrh o(1)dr = ¢(t). Let
us write (4.5) in the form: V a.e. t € (0,T)

1 d m— ,
(4.6) %E/ﬂuim(x,t) dx 4+ (2m —1) Z/Qai ui( 1)|Diu;€|p1 dx
=> Jit+1
i=1
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where

Ji:/bi(z,u)Diuim_l dxz/bi(z,uk)Diuim_ldx,
Q Q

I= —/ d(z,u)ui™ " da.
Q
Integrating by parts, we find that
0b;(z, _
Ji—— / Oz, u) 2mrpy )
Q

ou
(4.7)
B / il ) =14y — g0 4 g,
o Oz

Applying Young’s and Holder’s inequalities and plugging (4.1)—(4.2), we
estimate J(l), J® and I as follows:

A A

1TV < eag(2m — 1)/ g 2| Dyug [P dae
Q
C(pi, oy | Obi(z ) |
+ (p 6)1 / |, p;—1 (2, uk) |uk|2m—l dx
2m — 1)1 Jo du

Pi o

< eap(2m — 1)/ g 2" V| Dy,
Q

Ol S
—I—BkC(p 7€)| |f </ |uk|2m dI) ,
(2m —1)7—T \Ja

/ 3bi(2, Uk) uim—l dx
Q

J? <
|7 < oz,

< / (bolux| + h) [u2 " da
Q

<C [ (uim+n) do
Q

1 2m—1
7w o
<bo [ |up*™dx+ (/ hi™ d:v) ( g [*™ d:v) ,
Q Q Q

|I| S‘/ |d(27uk)||uk|2m_l dl’g/(d0|uk|+hd)|uk|2m_l dx
a2 Q

1 2m—1
2m 2m
<do [ |Jup*™ + (/ hAm™ d:c) ( ug 2™ d:c)
Q Q Q

Let us introduce the function

Yk (t) = luk( ) ll2m.0-
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Choosing € sufficiently small and substituting the above estimates
into (4.6), we arrive at the inequality for the function y(t):

_d . Cpi, ©)|Qzn o, .
g2 W gy < g, 2 COn U oy gy o
dt (2m —1)7i-1

+ 4" (o) ll2me + [ha( 8)ll2me)
or
d C iy € Qﬁ
%(t)SBkZl & )L +(
¢ (2m — 1)7

bo + do) yi (%)

+ (17 ) ll2m,0 + (1Bl ) |2m,0) -

Multiplying this inequality by e=¢°* Cy = (b + dp), and integrating
over the interval (0,t) we arrive at the estimate

¥, C(pi, €)|Q7
2

(2m — 1)1

e~ uk (-, t)||l2m,0 < l[uoll2m.e + ¢ Bk

t
+/ e T ([1ho (s T)ll2m,0 + (Rl 7)l2m,0) dr
0

which yields, as m — oo,

(4.8)
VkeN

k() oo, < €9 [tg] 0,02

t
0% [ ()l + a7

=K.

The right-hand side of this estimate does not depend on k. Let us choose
now k > K + 1. Under this choice of k&

up = min{|u; k}signu = u, d(z,ux) = di(z,u) = d(z,u),

which means that the solution of problem (4.4) with £ > K + 1 is, in
fact, a solution of problem (1.1) which satisfies estimate (4.3). O

Remark 4.1. It is worth mentioning here paper [44] which addresses
the question of local boundedness of solutions to equation (1.1) with
anisotropic but constant growth conditions. The method of proof is
based on application of suitable embedding theorems in the anisotropic
Sobolev spaces.
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4.2. Global existence via boundedness. Let us consider the case
when in equation (1.1) the term d(z,u) is of the special form:

(49)  d(z,u) = di (5 W)l + dy(z, w2 + ha(2),
with
0<d01 Sdl(z,u)<oo, |d2(2,u)|§d02<oo,

(4.10)
d()l, dOQ, A = const > 0.

If o(z) and A satisfy conditions (1.3), (1.4), the existence of a weak
solution follows from Theorems 3.1 and 3.2. If we additionally assume
that the conditions of Theorem 4.1 are fulfilled, then this weak solution
is bounded. We now turn to the study of the case

(4.11) 2<A <o <o(z) <ot < o0,

which does not fall into the scope of Theorems 3.1, 3.2, and 4.1. Let us

take a positive number Ry < oo such that V z € Qr

(4.12) P(z, Ro)=do, R} (Z)_l—dozRé_l—boRo—sQup |ha(2)sup |hy(2)] > 0.
T T

Because of condition ¢~ > A > 2, such a number always exists, provided

that

(4.13) sup |hp| + sup |hg| < oco.

T T

Theorem 4.2. Let the coefficients a;, b; and the exponents p;, satisfy the
conditions of Theorem 4.1, and let d(z,u) satisfy condition (4.9). Let us
assume that o(z) is measurable in Qr and that conditions (4.9)—(4.12)
are fulfilled. Then problem (1.1) has in Qr at least one bounded weak
solution satisfying the estimate

il < masx {supluols o .
Remark 4.2. The conditions of Theorem 4.2 are surely fulfilled for the
diffusion-absorption equation
up = Apzyu — [ul”@ =2y + hy(2), o(z) > 1.
In this case [|uloo,@r < supg [to] + [|hdllco.r-

Proof of Theorem 4.2: Fix an arbitrary finite number R > 0 and con-
sider the regularized problem

d
w—y | ai| DiulP" P 2Diu+bir(z,u) |[+dr(z,u)=0 in Qr,
(4.14) ;dxi[ }

u=0onI'p, u(z,0) = up(z) in Q,
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with
dr(z,u) = di(z,0)|up|” @ 2ug + da(z, ur) + ha(2),
bir(z,u) = bi(z,ur),
and
0 if |u|> R,
Diu if |u|< R.
The regularized problem (4.14) has a global weak solution. Moreover,
since b; satisfy the conditions of Theorem 4.1, this solution is globally

in time bounded: ||ullso,07 < C(R). The theorem will be proved if we
show that the constant C(R) is in fact independent of R. Let us set

ugr = min{|u|, R} signu, Dup = {

R = max {RO, sup |u0|}
Q

with R satisfying the inequality P(z, Ry) > 0. Let us take for the
test-function in (3.25) the function

Dyu ifu> R,

uty = max{u — R,0}, Dus = {O fu<R

Arguing like in the proof of Theorem 4.1 we arrive at the equality

1d 9
—— t)d E i| D
2dt Qu_,_(CC, ) da + 7 /Q (asl D

Pi 4+ b;(z,ur)Dijuy) dx
(4.15)
+/ dr(z,uw)uyder =0 VYae te(0,T),
Q

which can be written in the form
Vae. te (0,T)

1d 9
- d il Di
5 7 Qu+ a:—l—;/ﬂcd Ut

In the last relation

= / <d1(z,u) (min{[u], R})7 ' signu
Q

n

Pidr+1=) (Ji(” + Ji@)) :

i=1

+ds (z, (min{|u|, R} signu) + hd(z)>u+ dx,

bi R bz ’
g = _/ 9 (g uR)u+DiUR de =0, JO = / mm dz.
Q u o O
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The terms Ji(j ) are estimated exactly like in the proof of Theorem 4.1:

/ 61)1(2,’(1,}3) uy da
Q

Xq

iE

S/(boR+|hb|)U+d$~
0

Further,

1 Z / <d01RU(Z)1 - dOQR)\il — sup |hd|) U4 dx.
Q Qr

Gathering these estimates we find that

1d [ ,
5@ Qu_i_dx—i—;/ﬂaﬂDiu_,_

Since P(z, Ry) > 0 by the choice of Ry, and ui(x,0) = 0 by the choice
of R, the last inequality yields

Pidy —|—/ P(z,Ro)us+ < 0.
Q

Vae z€Q uy(z)=0,
whence u(z) < R a.e. in Q. The same argument shows that
u_(z) = max{—u(z) — R,0} =0

and, finally,

(4.16) |u(2)] < R = max {sgp luo(z)], Ro} .

This inequality means that
bir(z,u) = bi(z,u), dr(z,u)=d(z,u),

which completes the proof. o

4.3. Local existence via boundedness. Let us consider prob-
lem (1.1) with the term d(z,u) satisfying the growth condition

(4.17) |d(z,u)| < dolu|*™" + ha(z), X = const > 2.

For 0 < A < 2 the existence of a global bounded solution to problem (1.1)
is proved in Theorem 3.1. The next theorem asserts the existence of local
bounded solution in the case A > 2.
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Theorem 4.3. Let us assume that in the conditions of Theorems 3.1 and
4.1 the growth condition on the function d(z,u) is substituted by (4.17).
Then for every ug € L*>(Q) there exists 6 € (0,T] depending on

A, bo, do, [[uollze(9), hallzr(0,0;200(2)) and |[hslL1(0,6;25 ()

such that in the cylinder Qg problem (1.1) has at least one weak solution
u € W(Qg) such that uy € W'(Qg) and ||ullso,0, < 00. The solution
can be continued to the interval [0, T*], where

T* =sup{f € [0,T] : ||u]|oo,0, < 00}
Proof: Let us consider the auxiliary problem
Up — ZDi (ai|Diu P22 Dy + bi) +d-(z,u) =0 in Qrp
u=0 Z)n T, u(x,0) = ug(x) in
with the right-hand side
(4.19) dr(z,u) = d(z, min{|u|,r} signw), r = const > 1.

(4.18)

As in the proof of Theorem 4.1, we will make use of the fact that
d,(z,u)| < dor* ™ 4 he(2), do(z,u) =d(z,u) ifr>uw.

By Theorems 3.1 and 4.1, for every r > 1 the regularized problem (4.18)
has a global bounded weak solution u(z). Let us show that the func-
tion w(t) = [[u(-,?)[|,, o can be estimated by a constant which does not
depend on r. Following the proof of Theorem 4.1 we find that the solu-
tion of (4.18) satisfies inequality (4.3) with Cy = by and hg substituted
by hq + dor—1:

t
(-, oo < €20¥[ttg | oo 0 + €™0* / 0y (-, ) | o2
0

t
+ebot/ e (-, )]l oo . dt + dor et = R(r,1).
0

For every fixed r > 1
R(r,t) = ||luollooo ast— 0,
whence for every r > ||ugl|co, there is ¢ = ¢(r) such that
Vie[0t(r)] ful; Do <

It follows that for r and ¢(r) chosen in this way [|u(:,t)|| s, < rforall t <
t(r), i.e., the constructed solution of the regularized problem (4.18) is a
weak solution of problem (1.1) in the cylinder Qy(,y. The possibility of
continuation of this solution to the maximal interval [0, T*] follows from
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the fact that the function u(z, t(r)) possesses the same properties as the
initial function ug. O

5. Uniqueness theorems

In this section we study the question of uniqueness of weak solutions
to the problem

d (2)— .
5.1) up — Z - {ai(z,u)|Diu|pl( ) 2Diu} +d(z,u)=0 inQ,

u=0onT, u(x,0) =ug(z) in Q.

The weak solution is understood in the sense of Definition 3.1.
Let us assume that the functions a; are continuous with the module
of continuity w,

(5.2) lai(z,u1) — a(z,u2)| < w(lur — uzl),

and claim that the function w is nonnegative and satisfies the condition

Lods pt
(5.3) /Ewa—(s)—m)o as € — 0+ forsomel<a<p+_1.

Without loss of generality we may assume that p*+ > 2.
Theorem 5.1. Let
1<p <pi(z)<pt <oo, 0<ag<aiz,u)<a; <oo, i=1,...,n.

Problem (5.1) does not admit more than one solution u € W(Qr) if
conditions (5.2), (5.3) are fulfilled and

(5.4) u+— d(z,u) is a nondecreasing function.

Proof: We argue by contradiction. Let us assume that problem (5.1)
admits two different solutions u1,us € W(Qr) and there is § > 0 such
that for some 7 € (0,T] w = ug — uy > 6 on the set

Qs =Qn{z:w(z,t) >0} and [Qs5|=p>0.

We will show that this assumption leads to a contradiction unless p = 0.
Not loosing generality we assume that t =T. Set

d; =d(z,u:), aij =aj(zuw), i=1,2,7=1,...,n.
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By the definition of weak solution, for every test-function ¢ € Z and
7€ [0,T]

(5.5)

/ <wt<+za2i(|Diu2|pi_2Diu2 —|Diur [P 2Diur ) DiC 4 (da —d1)C> dz
QT

i=1
+ / Z(azi — ali)|Di’UJ1|pi_2Di’UJ1) ch dz = 0.
Qr =1
Let us denote

A(UQ;ul) =dy —dy,

J(’U,Q,’U,l,C) = — Z(agi —ali)|Di’UJ1 pi72D1"UJ1 DZCdZ,

Qr j=1

and write (5.5) in the form

(5.6)

/QT<wt<+Za2i(|Diu2

=1

Pi=2Djug — | Diuy

piiQDiul)DiC—FA(UQ, U1)<> dZ

= J(u2,u1, ().

Let us introduce the functions

3 ds n
(5.7) Fe(§) = /Ems) §26 Gy = /EFJSWS n>e
0

0 ¢ <e, n<e

depending on the parameters 6 > ¢ > 0, and with the function w(-)
defined in (5.3). The definition of F, and (5.4) yield:

(5.8) VuveR Au,v)Fe(u—wv)>0.
Set Qc.r = {z € Q- : w > €}. By the definition of F,

Diw .
DiF.(w) = | oo (w) in Q.
0 in Q\ Q.
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Letting in (5.6) ¢ = Fe(w), we obtain:

/Qe Ge(w(z, 7)) dx

n Di
+ / Z agi(|Diu2|pi_2DiuQ — |Diu1|pi_2Diu1) v
(5.9) o7 \i=1 we(w)

N

+ A(ua, ul)FE(w)> d

= J(ug,u1, Fe(w)).

Notice that since & > €, then Qs C Q, |Q| > |Qs5] > 1 and, by virtue
of (5.3),

(5.10) /g Ge(w(z,7))dr > pF(d) — 0o ase— 0+.

Let us consider first the case p; > 2. By virtue of (1.3) and the first
inequality of (3.24)

a |Diw|pi
P we(w)
According to (5.3)

Diw
w(w)

(511) S agi(|Diu1|pi_2Diu1 — |Diu2|pi_2Diu2)

Di >p+

pi—1 7~ pt—

>a> 1
;2
Applying Young’s inequality, we may estimate the integrand of J in the
following way:
Diw
w(w)
*(w)

+ C(aovp+)|Diu1|piné_a(w)

Pim2Diuy

(@215 — a1i)|Diuy

< w(w)|Djuy [Pt |

€

(5.12)
@lDiwlpi
2 w¥(w)

an |Diw|pi
2 w¥(w)

Pi

+ Clao, p*)| Diwy
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Let now 1 < p~ < p; < 2. Applying (1.3) and the second inequality
of (3.24) we have

Dywl?
5.13 ~ —1)(|D; D; pi-2Di
( ) ao(p )(l U1|+| u2|) wo‘(w)
D;
< ag;(|Diua|P "2 Djug — |Dyup [P "2 Dyuy) < )
w(w)
and
D;w
i — a1)| Dy [P 2 D; -
(a2i — a1;)| Diuq ulwo‘(w)‘
D;w
< D; Djug|)Pi—t—2
< ‘w(w)(l ui| + |Djuz|) wa(w)}
D;w
< D; Djug|)Pi 1 —2
< ‘w(w)(l u1| + | Djuz|) wa(w)}
(5.14) to(p — B
olp” = 1) 2| Diw|
< ——2(|D; D; Di
< W (D + | Dl L
+ Cw?™*(w)(|Dsuz| + |Dsus|)P
CLO(p7 — 1) .,2|Diw|2
<22F _~ (D, D))
< (D + [Daual 2
+ C(|Dsug| + | Diua |)P
with
+
l<a< < 2.
a< e

Plugging the pointwise estimates (5.11), (5.12) and (5.13), (5.14) into
(5.9) and dropping the nonnegative terms, we arrive at the inequality

~

(5.15) / Ge(w(z,7))dx < C > (|Dsua| + | Dyug| )P dz = C

Qe Qe,r i=1

with a constant C independent of €. Gathering this inequality with (5.10)
we obtain the needed contradiction. This means that 4 = 0 and w <0
a.e. in Q7. To complete the proof it suffices to replace u; and us. O
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The above arguments can be extended to non-monotone functions
d(z,u). Let

— d
(5.16) up — E g [ai(z,w)(|Diu1 [P > Dyu] + d(z,u) = 0.
T
i=1

We assume that

lai(z,u1) — ai(z, uz)| < Crw(lur — uzl),
(5.17) w(s) = s%,

|d(z,u1) — d;(z,u2)| < Caluy — us|.

It is easy to calculate that in this case

1.1 for s > ¢, f—1—11(1(5) for s > ¢,
FE(S) — € S Ge(s) — € €
0 otherwise, 0 otherwise.

Proposition 5.1. There exists a positive number p > 2 such that

SF,(s) < {26’6(5) for s > pe

(5.18)
const  for e < s < ue.

Proof: Set z = s/e and introduce the function
f(2) =2G(s) —sF.(s) =2 —1—2Inz.
Obviously,

f’(z)zl—%ZO,

2
" _ .
f (z)—z—2201f222.
Since f(z) is monotone increasing for z > 2 and tends to infinity as z —
00, there is p > 2 such that f(z) > 0 for z > u. For z € [1, y]
sF(s)=z—-1<pu-—1. O

Theorem 5.2. Let in the conditions of Theorem 5.1 condition (5.4) is
substituted by condition (5.17). Then the weak solution of problem (5.1)
1S UNIqUe.
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Proof: We will adapt the proof of Theorem 5.1. Let uj;, us be two
different solutions of problem (1.1). Set w = uj; — uz. Following the
proof of Theorem 5.1 we arrive at the relation

/QEGE(U(:U,T)) dx
(5.19) +/ <zn: avi(| Dy

i=1

Pi=2Djuy —| Dyug

D;u
i—27) v
Pim2Diug) 3 ) dz

= Il + 127
with

= D;u
— i—27). kd
L= /E E_l(ali a2;)|Dius|P =% Dius > dz,

I, = —/ (d(z,u1) — d(z,u2))Fe(u) dz.

The difference between this case and the one studied in Theorem 5.1 is
that now the term I is not sign-defined. By Proposition 5.1

|I2] < C’/ uFe(u)dz

t
:C/ (/ _|_/ ...)dt;]21+122,
0 QN(e<u<Lype) QN (peu)
whence
t t
I < C’/ (/ G(u) da:) dt < C/ </ G(u) da:) dt,
0 QN(e<u<pue) 0 Qe

Iy < CIQIT.

Let us introduce the function
Y (t) :/ Ge(u) dz.
Qe

Substituting the above inequalities into (5.19) and taking into account
(3.24), we find that the function Y (¢) satisfies the Gronwall type inequal-

ity
t n
Yit)<C (/ Y (s)ds + Z/ (|IDsur|P? + | DijusalP?) dz + 1) .
0 i=1 Y Qe

It follows that Y (¢) < K, which contradicts condition (5.10). O
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Corollary 5.1 (Comparison principle). Let u,v € W (Qr) be two weak
solutions of problem (5.1) such that u(x,0) < v(z,0) a.e. in Q. If the
coefficients and the nonlinearity exponents satisfy the conditions of The-
orem 5.1 or Theorem 5.2, then u < v a.e. in Qr.

6. Regularity of solutions for a class of model equations

Let us consider the following simplified version of problem (1.1):

“~ d
=3 ——(ai(2)|Diu|"*)*Dyu }+ o(2)=2y, — in O,
61) 4% i_ldxi(a (2)|Diu u) c(2)|ul u=f(z) inQr

u=0onT, u(z,0) =ue(z) in Q.

We want to trace the dependence of the regularity of weak solutions
on the regularity of the data, especially, on the properties of the expo-
nents p;(z) and o(z). Let us accept the notations

Ap(t) = Zmﬁax [pit(x, 1), Aalt) = ngxmit(x,tﬂ ,
i=1 i=1

Ao (t) = max|oy(z,1)], Ac(t) = max e, (z,1)] .
Q o)

(6.2)

Theorem 6.1. Let us assume that

a) a;, p; satisfy the conditions of Theorem 3.1,
b) pit(z) <0 for a.a. z € Qr,

¢) o(z) and c(z) are bounded measurable in Qr functions, o(z) exists
a.e. in Qr, and

o1(2) <0, 0<¢y<c(z2) ae inQr,

d) Ap(t), Ao (£), Aa(t), Ae(t) € L1 (0,T) and

/T Ap(t) + Aa(t) + As(t) + Ae(t)) dt = K < o0,
0

e) up € L70(Q), Dyjug € LP-9(Q).
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Then the weak solution of problem (6.1) satisfies the estimate

sup /[ZaﬂDiu dx—i—/ lug|® dz
Q Qr

te(0,T) =1

Pt clul”

(6.3) + (ZailDiulpw1n|Diu|||pz-t|+c|u|”|1n|u|||ot|> dz
Qr

=1

<C (/ (Z | Diug|"70) 4 |ug|a(w’0)> dx + 1)
Q

i=1
with an absolute constant C = C(p*, o, q, T, K).

Proof: Let us recall that under the conditions of Theorem 6.1 a weak
solution of problem (6.1) can be obtained as the limit of the sequence of
Galerkin’s approximations (see the proof of Theorem 3.1)
i +
W™ =3 (@), dn(a) € WeP (@), pt = max supi ().
k=1 T
where the system {¢} is dense in Wol’p+ (Q), and the functions u,(cm)
are solutions of problem (3.5). By this reason, to prove Theorem 6.1 it
suffices to derive estimate (6.3) for the approximate solutions u(").
For the sake of simplicity, throughout the proof we use the notation u
for the approximate solution u(™). Fix some m, multiply relations (3.5)

by u,(:z) and take the sum over k£ = 1,...,m. This gives the equality

n
Juell.0 + a;| DiulP* > DsuDjuy) dx
' Q
i=1

+/C|u|a_2uutd:c:/futda:.
Q Q

We will use the easily verified formulas

o Di Pi
pi*zDiuDiut = = <CL1| Y >
pi

(6.4)

CLZ|DZ’UJ

ot

i ( 1 In|Du pi) _ | Diul?
& T | Pit —Git———,
D; Di Di

_ 0 ([ |ul” 1 Injul |u|”
2,
clul”fuu, = 5 (c . ) + clul? (02 o
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Using them in (6.4), we obtain the equality

(6.5) w30 +Y' () =L +> i+ T
i=1 i=1
where
n Di pi o
(6.6) Y(t)= / Zai|7u + cﬂ de, I, =— [ fudxz,
o\ Di g Q

1 1 D,L Pi D,L Pi
(6.7) o :/ (—Qi|DiU pi (_2 _ M) it + ait| u ) iz,
Q pz Di Di

1 1 4 o
(6.8) 1371-:/ (_C|u|o (_2_ n |ul )Ut+0t|U| >d:z:.
Q g g o

The following estimates hold:
1)

1< Sl

'/ai|Diu|pip—i2t dx
Q p;

1 Dl Pi
/ai|Diu|pi (M> pirdr = A+ B,
Q Di

K3

A= —/ |pit|ai|Diu
QN(|Dsul>1)

(recall that p;; <0, In|D;ulPi > 0)

1
2ot 35l 50 9€(01),

1 1
<max |pi |/ a;| DiulP — d;v:)\p(t)/ ai|DiulP = dz,
Q Q b; Q p;

3

Piln|Dyulde = —]A] <0

|B| = / - < a1 |Qmax |p;| max |7P InT| < CAp(2),
QN{|D;u|€[0,1]} Q T€[0,1]

Pi

D;
/ait| h da:‘ < A(t)
Q bi

|D1u pi

Q Di
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Gathering these estimate we obtain the inequality

L < —Z/ Ipatlas| DiulP | In | Dyul| dr + Cap (2)
i=17%

+ (1) /ai|Diu|p1—d:E+)\a(t) / —dx
: ; Q p; ; Q DPi

< - Z/ [pit|ai| Diu|P | In | Dyul| de+C [Ap(t) + A (t)] Y (1) +CAp(2).
=17

The terms I3 ; are estimated likewise:

o Ot
—d
‘/Qc|u| = x

—/ c|u|‘71n|u|"|at|d:v+/ olul” In |u|° |0 | da
Qn([ul|>1) Qn(juN|<1)

< CA ()Y (1),

<= [ (elul” el i+ 1),
Q=1

n o
/ Z ctﬂ dzr
o= ¢

< OA()Y (1),

It follows that
I < —/ S (clul® In [l |ou]) d + C (helt) + Ao () Y () + CAo (1),
Q=1

Then the function Y (t) satisfies the differential inequality
Y'(t) + HUtHS,Q

+ /cu"lnu”o dx
(6.9) ;Q(H [ul”|o])

£y /Q (paclas | Deul™ 1 | Dyul da < C [A(E)Y ()4+-M(8) + 1]
=1

with
A(t) = 2p(t) + A () + Xe(t) + Aa(B),  AE) = Aa(t) + Ap(2),

and the assertion follows from Gronwall’s lemma. O



PARABOLIC EQUATION WITH VARIABLE NONLINEARITY 393

Remark 6.1. The assertion remains true for the solutions of the equation
[ d
_ —(a; D; Pz‘(Z)—2Di ) ; oi(2)-2, | —
w3 | (DA ED) e ] = 162,
provided that the functions ¢;(z), 0;(z) satisfy the conditions of Theo-
rem 6.1.
Remark 6.2. Problem (6.1) includes, as a partial case, the problem
ur = Apu+ in ,
(6.10) v= St S or
uw=0on 'y, u(z,0) = up(z) in Q,

with constant p € (1,00). It was proved in [19, Lemma 2.1] that the
solutions of this problem satisfy the estimate
(6.11) [l 2(@pHull] <o rwro ) <C (I\fl\%z@T) + HU‘O”eVlvP(Q)) )

which is contained in (6.3) if p = const. Moreover, if in the conditions
of Theorem 6.1 the coeflicients a;, ¢ and the exponents p; and o are
variable but independent of ¢, then estimate (6.11) is true as well for the
solutions of problem (6.1).

7. Extensions

The results of this paper can be extended in various directions. Let
us mention here several most obvious generalizations.

1. The class of equations (1.1) can be completed by the equations

d ()
Uy — Z d_:zcz [ai(z, u)|DZ—u|p1( )=2Dju + bi(z, u)}

+ Z di(z,u)Du+d(z,u) =0

which reduce to (1.1) by means of the substitution

bi(z,u)=b;(z, u)—l—/oudi(z, s)ds, J(z,u):d(z,u)—Z/()uDidi(z, s)ds.

2. The main existence Theorem 3.1 remains true if in the growth con-
ditions (1.4) hq(z) € W/ (Qr), i.e.,

ha(z) = h9(z) + div H(z), hY e LN (Qr),
H(z) = (Hi,..., Hy,), H; € L""O(Qr).
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3. The proofs of the main theorems can be easily adapted to the equa-
tions

d —
Ut — Z d_CCZ [az(z,u)|Vu|p(z) 2Diu + bl(27u) 4+ d(Z, u) =0.

For the main function spaces we take
Vi(©) = {u(@) [ u@) € L2(@) N W3 (@), [Vu(@)P"? e LH@) },

[ullv, @) = llullze + Vullp 6.0
and

W(QT):{U5 [0,T]—V,(Q) | ue L*(Qr), |Vu|e L) (Qr), u=0 on F}

lullw@ry = IIVullp),or + lull2,.qr-

The rest of the arguments does not need any change.

4. The proofs of the existence theorems can be adapted to the case
of the Neumann boundary condition. For example, let us consider the
problem

d
U — Z — (ai(z,u)|Diu|m(z)—2Diu) +d(z,u) =0 in Qr,

dx;
(7.1) Z a;(z,u)|Daul’" "2 Dju - v; = 0 on I'r,
u(z,0) = ug(x) in Q,
where v = (v1,...,v,) denotes the outer normal vector to I'y. Let us

introduce the function spaces

VMDZ{M@:MQEL%WJDWQWWWeL%m}

W(Qr) = {u: [0.7] = Vu(@) | u € L(Qn). |Deuf € L(Qr)}
with the norms

lullv.@) = llullz + Y 1 Ditllpi.0),0,

K2

lullwi@r) = Y I1Dsullpy.0r + llul

K2

2,Qr-
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We say that function wu(z,t) € W(Qr) N L*>(0,T; L3(Q)) is a weak
solution of problem (7.1) if for every test-function

¢e€Z={n(z):neW(@Qr)NL>(0,T;L*(Q)), n € W' (Qr)},

and every t1,ts € [0, 7] the following identity holds:

(7.2) /tf/sz (ug—zi: ai|Dsu|P~2D;u Dig—d(z,u)§> dz:/ﬂug dz

Let us assume that the data of problem (7.1) satisfy the conditions of
Theorem 3.1. Since the space W(Qr) is separable, a solution of prob-
lem (7.1) can be constructed as the limit of the sequence of Galerkin’s
approximations (see the proof of Theorem 3.1).

ta

t1
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