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proposed stochastic-optimization framework is significantly higher than heuristic counterparts. Secondly,

post-optimization performance analysis of the operators in the form of blocking probability in various

scenarios is investigated to determine the probable performance gain and degradation of the secondary

and primary operators respectively. We mathematically model the sharing agreement scenario and derive

the closed form solution of blocking probabilities for each operator. Results show how the secondary

operator perform in terms of blocking probability under various offered loads and sharing capacity.
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I. INTRODUCTION

A. Background and motivation

The static partitioning of spectrum in cellular networks has significant operational implications,

(e.g., pseudo scarcity of the available radio spectrum) which have been identified by extensive

spectrum utilisation measurements [1, 2]. These measurements show that a large part of the

spectrum, which is allocated to cellular use, are well utilised, but the utilisation varies dramati-

cally over time and space. Such variation of spectrum utilisation causes the so-called spectrum

holes, which can be opportunistically utilised to improve the network’s grade of service (GoS)

[3, 4]. The grade of service is generally defined by the level of blocking probability, where

higher blocking probability means lower grade of service [5]. Depending on type of bandwidth

(800 MHz, 1.8 GHz, 2.5GHz) in a cell, location of the cell, number of users, demand of spectrum

may vary significantly and GoS is often degraded. Therefore, operators would require additional

spectrum in high demand periods to improve their GoS. A solution to increase the efficiency

of spectrum utilization by means of sharing has been addressed in the research domain [6–

8]. Spectrum sharing between operators often results in a considerable improvement of GoS,

although it would incur additional costs to the operators [9–12]. Since network operators often

operate with a limited budget, the borrowing decisions of a network operator could be affected.

Consequently, the operators would need to make dynamic, on-demand and correct choices of

borrowing additional bandwidths from other operators [13].

Given a market scenario with several primary and secondary operators, where secondary

network operators (SNOs) are operators which obtain spectrum resources via dynamic spectrum

leasing from primary network operators (PNOs) which are the incumbent holders of spectrum

licenses, and also rules and conditions of spectrum access, spectrum requirement and their prices,

and other parameters, our main idea is to optimize the resource sharing among such operators

under a target GoS and budget restriction for the SNOs. We propose two algorithms: the first

is to optimize the amount of savings that SNOs could achieve when they engage in spectrum

trading with PNOs to gain a certain threshold of GoS. The second is to optimize the profit of

SNOs under budget restrictions.

The targeted GoS can not be always guaranteed due to the mutual spectrum sharing agreement

between the operators. Therefore, a post-optimization analysis is needed to calculate the actual
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GoS in terms of blocking probability after borrowing resources from the PNOs. Hence, we

derive the blocking probability formulae under a mutual agreement to share spectrum where

the leased spectrum bandwidth can be deviated according to the operators internal demand. We

allow operators to dynamically access or handover part of the shared spectrum according to their

internal demand state. Major contributions of this paper are summarized as follows:

• a novel purchase approach for dynamic spectrum sharing (DSS) network is proposed in

the presence of multiple secondary and primary network operators. We introduce two

optimization problems in merchant mode DSS,

• the robustness of the proposed algorithms are investigated in the presence of large number of

cells and various types of spectrum bandwidths and the proposed algorithms are compared

with heuristic borrowing algorithm. Comparisons show a substantial gain over the heuristic

borrowing algorithms and

• a post-optimization analysis technique of the operators’ performance (secondary and pri-

mary) in the form of blocking probability is derived, which gives the actual GoS of the

operators after resource sharing.

The dynamic spectrum management framework discussed in this paper can support some

core functions of various systems such as the automation of licensing and Spectrum Access

System (SAS), which perform a number of functions such as real-time assessment of spectrum

availability, determine the available frequencies at a given geographic location, interference

protection, operational privacy, enforcement of regulatory policies, and coexistence techniques

[14].

B. Related work

In the literature, a great number of studies has appeared in recent years on the design of

dynamic spectrum sharing within cellular networks [10, 15–19]. Interests in this context include

secondary leasing and pricing strategies among incumbent spectrum license holders, SNOs and

secondary users. These prior studies mainly focused on approaches using auction mode and

game theory to implement the spectrum pricing and allocation schemes by taking into account

the variation of the networks demands and constraints such as power, price and interference [10,

11, 15–18, 20].
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In [20], the authors proposes a multiple-dimension auctioning mechanism through a broker

to facilitate an efficient secondary spectrum market. Auction schemes where a central clearing

authority auctions spectrum to bidders, while explicitly accounting for communication constraints

is proposed in [21]. While in [22], spectrum auctions in a dynamic setting where secondary users

can change their valuations based on their experiences with the channel quality was studied.

Price-based DSS has also been investigated from the business perspective [23, 24]. For example,

in [25] An extensive business portfolio for heterogeneous networks is presented to analyse the

benefits due to multi-operator cooperation for spectrum sharing. High resolution pricing models

are developed to dynamically facilitate price adaptation to the system State. In [26], a quality-

aware dynamic pricing algorithm (QADP) which maximizes the overall network revenue while

maintaining the stability of the network was studied.

The vast majority of the aforementioned studies consider competitive market scenarios and

therefore auction and game theory have been discussed to develop DSS strategies. By using

the same assumption, pricing in the context of DSS has mainly been considered from the

spectrum owners perspective to maximize their revenues [18, 23, 27]. However, when the number

of available bandwidths from multiple license owners is higher than SNOs’ demand, then auction

mode is not always the best strategy. This is because the number of bidders might be too small

and the best selling price can not be achieved for the license owners by using auction mode. A

more realistic and pragmatic model in this case is a merchant mode, which to the best of our

knowledge, has not been investigated in the context of DSS. Moreover, spectrum borrowing when

considering budget restrictions has not been addressed. Also, there is currently no published

work, which attempted to study the admission cost minimization in the merchant mode with

target performance. Thus the problems that we formulate and solve substantially differ from

those available in the literature.

The analysis of blocking probability and dynamic aggregated channel assignment has been

extensively considered in the context of cellular networks [28, 29]. However, there are significant

differences between auction mode and the focus of our work. For example, in auction mode

network operators are not assumed to claim back the leased spectrum within a single trading

window during busy intervals [30]; whereas in our approach, the leased capacity is dynamic in

size. To the best of our knowledge, the proposed post-optimization analysis in this paper is the
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first to study the blocking probability during a trading window with the presence of multiple

operators. It also addresses the issue of PNOs’ change in state during a single trading window.

The paper is organised as follows: the proposed dynamic spectrum management model is

described in Section II. Section III addresses the problem of spectrum allocation in cellular

networks and describes our mathematical programming formulations to the problem. Section

III-G, presents blocking probability analysis under resource sharing with multiple PNOs. In

Section IV, we present our findings. Finally, Section V summarises our conclusions.

II. DYNAMIC SPECTRUM MANAGEMENT MODEL

We consider a cellular network to consists of S secondary network operators (SNOs) and N ,

with size |N | = N , denote the set of primary network operators (PNOs) serving a region R, see

Figure 1. Let L, with size |L| = L, be the set of cells in the region.

Each primary and secondary operator in the network is licensed with an incumbent bandwidth

consisting of a set of component carriers, each of which can be allocated to support the operators’

subscribers. The antenna towers/masts at the centre of each cell i ∈ L is shared among the

operators. The operators are managed by radio network controllers (RNC) which monitor base

stations and assign resources for the air interface as well as other functions [31, 32]. In the

context of this cellular networks arrangement, we only consider cells with an almost identical

radio environment, which is visible to all providers in each cell. An example of this setup is

when a town or city requires operators to use common towers for their antennas, due to economy

of scale property of telecommunication industry.

Due to spectrum liberalisation, the PNOs |N | will have the freedom to lease their spectrum

bandwidths to the SNOs. Leasing spectrum bandwidths would mean that the SNO will have to

pay a certain compensation to the PNO for using the spectrum bandwidths, and the amount of

compensation is expected to be proportional to the amount of allowed spectrum leasing by the

primary system. We assume the compensation paid to the PNO is in form of monetary value. The

PNOs broadcast specific information about their available bands for leasing and admission cost

(per unit bandwidth) at each cell i ∈ L at fixed identical intervals (e.g., every 2 hours). The lease

conditions may specify additional parameters such as the extent of spatial region for spectrum

use and maximum power. The compliant use of leased spectrum requires that the SNOs return
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the spectrum to the PNO at the end of the lease interval. The duration of each lease could be

decided by the network providers under a mutual agreement, and/or any other regulatory bodies’

conditions (e.g., minutes, hours, days). In our model, we assume that the PNOs receive a series

of demands from multiple SNOs at different time instances [25, 33]. Depending on the time of

SNO’s request, different sets of frequencies and prices can be available. Demands are awarded

instantaneously, in which case the borrowed spectrum can be immediately used. We consider

the spectrum sharing problem among multiple SNOs, which support different types of spectrum

bands and hence have heterogeneous GoS demands at different cells.

The available channels may vary in the bandwidth and transmitting range to support different

sizes of cells and cells with different terrain characteristics. The connectivity and scalability of

the network varies because a channel with shorter transmission range may not cover all the areas

covered by a channel with a longer transmission range. Thus, there is an obvious need for further

band’s categorisation prior to spectrum trading, which takes heterogeneity of cells into account.

We address this issue by considering multiple types of spectrum bands, assuming that each have

different characteristics (e.g., 800 MHz, 1.8 GHz and 2.5 GHz bands). This will be useful when

considering 5G networks where a variety of bands are expected to be in deployment.

Fig. 1: Network model for cellular network with N PNOs and S SNOs

III. PROBLEM FORMULATION

Considering the system model described in Section II, the problem now becomes how the

RNC of an SNO acquires additional spectrum from the PNOs. The spectrum borrowing can be

performed by considering one of the following objectives:

• to minimize borrowing cost in each time slot by selecting the lowest cost combinations of

available spectrum from the primary networks to achieve a specified GoS and
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• to maximize profit in each time slot by borrowing the highest profit combinations of available

spectrum from the primary networks under restricted budget to achieve a specified GoS.

In principle, the RNC’s objective is to minimize overall operating cost or to maximize revenue

for an SNO as well as to maximize utility to the end users.

A. Modelling assumptions

In this subsection we identify the part of network information which is assumed to be known

to the SNOs:

• arrival rate of the sth SNO at ith cell for jth type of spectrum band λsi j, ∀s, i, j,

• service rate of the sth SNO at ith cell for jth type of spectrum band µsi j, ∀s, i, j,

• available bandwidth of the sth SNO at ith cell for jth type of spectrum band wsi j, ∀s, i, j,

• borrowing cost of the sth SNO for unit bandwidth from the PNOs at ith cell for jth type of

spectrum band ci j k, ∀i, j, k (which are assumed to be announced periodically by the PNOs),

• allocated budget for borrowing bandwidths to the sth SNO at ith cell for jth type of spectrum

bandfrom the PNOs bsi j, ∀s, i, j,

• available bandwidth of the kth PNO at ith cell for jth type of spectrum band ai j k, ∀i, j, k,

(which are assumed to be announced periodically by the PNOs), and

Time is divided into equal-length slots T = {0, 1, 2, . . .}. At each time slot t ∈ T the process of

aggregated channel borrowing is repeated. We use the time indicator (t) to emphasise the vectors

dependancy in time. Trading of bandwidth is done between primary and secondary providers

separately in each of successive time windows of a particular duration. Henceforth, we focus on

the the process of channel borrowing and optimization in a single window.

B. Notations used in Problem 1 and Problem 2

Let us define the following quantities which are used later in mathematical programming

problems (Problem 1 and Problem 2):

ci j k (t) B cost of unit bandwidth to be borrowed from kth PNO for j type resource at ith cell

during time interval t, where ci j k (t) ∈ R
L×Ni j

≥0

(
ci j k (t) > 0

)
and Ni j is the number of PNOs in

the ith cell for jth type of service and L is the number of cells in the region R.
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xi j k (t) B unit of spectrum bandwidths (or sub-bands) to be borrowed from kth PNO for j

type resource at ith cell during time interval t, where xi j k (t) ∈ R
L×Ni j

≥0 .

θi j k (t) B PNOs intrinsic quality (e.g., the extent of the coverage area and/or maximum

allowable transmit power), where {θi j1, θi j2, . . . , θi j k, . . . , θL×N }.

psi j (t) B target blocking probability for j type resource at ith cell during time interval t for

the secondary network operator.

ai j k (t) B unit bandwidth available from kth PNO to be leased to sth SNO for jth type resource

at the ith cell during time interval t, where ai j k (t) ∈ R
L×Ni j

≥0 .

rsi j (t) B unit bandwidth required to satisfy the target blocking probability pi j (t) for the sth

SNO’s for jth type resource at ith cell during time interval t, where ri j (t) ∈ R
L
≥0.

γi j k (t) B the expected profit for borrowing unit bandwidth from kth PNO for jth type resource

at ith cell during time interval t, where γi j k (t) ∈ RL×Ni j .

C. Spectrum allocation by minimising borrowing cost

We now formulate the spectrum allocation problem, that is, how much spectrum bandwidths

to be borrowed from each PNO to keep the blocking probability in a specific level, for instance,

at 1%. Given a set of possible available spectrum resources {ai j k (t)} and their associated prices

{ci j k (t)}, the problem is to find the feasible set of spectrum bandwidths {xi j k (t)} by minimising

the total borrowing cost. The PNOs set their prices according to the maximum allowed transmit

power $i j k and the pricing coefficient ϕi j k , which can be expressed as [9]

ci j k =
*..
,

∑
k ∈ ai j k

[
log

(
1 +

h$i j k

%i

)
− ($i j k · ϕi j k )

]+//
-
· (ai j k )−1 (1)

where h is the average aggregated channel gain, %i is the additive noise received by SNO users

at cell i and ϕi j k represents pricing coefficient of PNO k for the SNO in the ith cell for causing

each unit of interference. Equation (1) shows that PNOs select prices in a way such that the

collective preference order of transmit power, channel gain and noise are retained. This cancels

the intuition that prices are selected so that all channels available for borrowing are equally

preferable to a secondary. In addition, each PNO incurs a minimum cost X(min) when it leases
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its channel to the SNOs and therefore it is not possible to select a price lower than X(min) such

that

ci j k =




RHS of Eq. (1), RHS of Eq. (1) ≥ X(min)

X(min), otherwise.
(2)

Resource acquisition in this case for the sth SNO is obtained by solving the following

optimization problem:

Problem 1:

minimize


L∑
i j=1

Ni j∑
k=1

ci j k (t) · xi j k (t) · θi j k (t)

, (3)

subject to
arg min
xi j k∀i, j,k

Pr
(
λsi j (t), µsi j (t), ωsi j

)
≤ psi j (t), ∀i j, k (4)

xi j k (t) ≤ ai j k (t), ∀i j, k (5)
Ni j∑
k=1

xi j k (t) ≤ rsi j (t), ∀i j, k (6)

where ωsi j =
∑Ni j

k=1 xi j k (t) +wsi j is the total bandwidth (available and borrowed bandwidth from

the PNOs).

In contrast to the formulation of Problem 1, borrowing cost for each cell i can be calculated

as
∑Ni j

k=1 ci j k (t) · xi j k (t) · θi j k (t). The parameter θi j k (t) (0 ≤ θi j k (t) ≤ 1) defines the intrinsic

quality by weighing the cost of borrowing spectrum bandwidths. The intrinsic quality represents

the quality of the available heterogeneous aggregated channels to carry the data for transmission.

Therefore, the price per unit bandwidth in each PNO can vary, i.e., ci j k (t) Q ci j l (t), ∀i j and ∀k, l

with k , l. We thus refer to this pricing scheme as non-uniform pricing.

The constraint (4) in Problem 1 guarantees that the sth SNO is borrowing enough to fulfil

its demand. The blocking probability in constraint (4) is a non-linear function of spectrum

bandwidth for each cell. Therefore, the above optimization problem is considered as a non-

linear optimization, which can be solved in two phases, In the first phase the SNOs set the

target blocking probability for each cell (e.g., psi j = 0.01, ∀i j). Then SNOs calculates the

bandwidth rsi j (t) required to achieve the target blocking probability psi j (t) for each cell i. Next

the SNO finds the amount of bandwidth required to borrow from primary networks. We assume
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that the channel request rates and service rates follow Markov processes (i.e., inter-arrival and

service times are exponential) for all PNOs and SNOs. A channel request is immediately lost if

it finds the system busy, which implies that networks operate independently in a non-cooperative

way. This is referred to as an Erlang loss system [25, 34]. Under a loss system the well-known

blocking probability for the jth type of service at the ith cell of the sth SNO can be given by

the Erlang B formula as

psi j (t) =
1

wsi j !

(
λsi j (t)

µsi j (t)

)wsi j


wsi j∑
n=0

1
n!

(
λsi j (t)

µsi j (t)

)n

−1

. (7)

where λsi j (t), µsi j (t) and wsi j are arrival rate, service rate and existing capacity of the sth SNO,

respectively. Note that during the post-optimization analysis new blocking probability formula

are developed to accommodate sharing and interaction between operators in Section III-G.

Now with the existing bandwidth wsi j , we first calculate the total required bandwidth τsi j (t)

to achieve the target blocking probability for the ith cell of the SNO

τsi j (t) = f −1
(
Pr

(
λsi j (t), µsi j (t),wsi j

))
. (8)

where f −1(·) is the inverse function of P(b) (t) (equation 7) used to derive the required capacity

over the existing capacity. As the function is non-linear in λsi j (t), µsi j (t) and τsi j (t), it is not

easy to get an explicit expression for τsi j (t) for a given target blocking probability. However, it

is possible to calculate τsi j (t) iteratively for given values of λsi j (t), µsi j (t) and a target blocking

probability psi j (t). Subtracting the existing bandwidth wsi j from the total required τsi j (t), we

obtain the required bandwidth rsi j (t) at the ith cell of the SNO during time interval t

rsi j (t) = τsi j (t) − wsi j . (9)

Now the problem is to find the feasible set of bandwidth xi j k (t) from the PNOs which

minimizes the borrowing cost. This is done in the next mathematical programming phase (see

Algorithm 1 for details).

In the second phase, we set up the borrowing cost ci j k (t) and the maximum possible bandwidth

available ai j k (t). The borrowing decisions of the sth SNO are made subject to the lowest price

from the set {ai j k (t)}. The decision variable xi j k (t) in this context can be a combination of
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a number of acquisitions, e.g., the sth SNO selects the lowest price from the available set of

bandwidths from the PNOs. If the acquired resources ai j k (t) are insufficient to reach the target

blocking probability psi j (t) (i.e., rsi j k (t)−ai j k (t) > 0), then the SNO borrows from the remaining

bandwidths from the set {ai j1(t), ai j2(t), . . . , ai j N (t)} = ai j k (t) for which the cost is minimum. If

the required blocking probability pi j (t) is reached, then the SNO stops acquiring new spectrum

bandwidths until the next time interval (t + 1).

Once the problem is solved, the new blocking probability for the sth SNO can be calculated

as

P(bnew
si j

) (t) = Pr *.
,
λsi j (t), µsi j (t),

*.
,
wsi j +

Ni j∑
k=1

xi j k (t)+/
-

+/
-

=
1

ωsi j !

(
λsi j (t)

µsi j (t)

)ωsi j


ωsi j∑
n=0

1
n!

(
λsi j (t)

µsi j (t)

)n

−1

, (10)

where
ωsi j = wsi j +

Ni j∑
k=1

xi j k (t). (11)

Consequently, the sth SNO will achieve the blocking probability with the required amount of

bandwidths satisfying the target blocking probability psi j (t) or with the highest possible borrowed

bandwidths which is mathematically expressed as

P(bnew
si j

) (t) =




psi j (t),
∑Ni j

k=1 ai j k (t) ≥ rsi j (t)

P(bnew
si j

) (t), otherwise.
(12)

Algorithm 1: Optimal spectrum borrowing.
1 Calculate ri j ∀i, j which satisfies pi j , and get ci j k and ai j k ∀i, j, k.
2 for every time slot (t) do
3 for all cells i ← 1 : L do
4 for PNOs k = 1 : N do
5 Solve the nonlinear stochastic Problem 1 s.t. constraints (4), (5) and (6).

6 return Total borrowing cost
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D. Spectrum allocation using heuristic algorithm

In this approach, spectrum acquisition is performed randomly as illustrated in Algorithm 2.

The optimal borrowing cost using this algorithm can only be found randomly from the set of

capacity values {ai j k } by satisfying the constraints in equation (5) and (6).

Algorithm 2: Heuristic spectrum borrowing.
1 Calculate ri j ∀i, j which satisfies pi j , and get ci j k and ai j k ∀i, j, k.
2 for every time slot (t) do
3 for all cells i ← 1 : L do
4 Set xi j k ← {φ}, where {φ} is an empty set.
5 Set counter←

∑
k xi j k .

6 Choose a random integer n ∈ {1, 2, . . . , N }.
7 for all PNOs k = n : N 1 : (n − 1) do
8 if 0 < ai j k > (ri j − counter) then
9 xi j k ← (ri j − counter).

10 break
11 else if ai j k > 0 & (counter < ri j ) then
12 xi j k ← ai j k .
13 counter← counter + xi j k .

14 else
15 xi j k ← 0.

16 return Total borrowing cost

For all i, j and k, equation (6) ensures that the sth SNO does not borrow more than the

network’s bandwidths demand by controlling the borrowed spectrum bandwidth size in each

iteration, which can be expressed mathematically as

xi j k (t) =




ai j k (t), ri j (t) ≥ ai j k (t)

rsi j (t), otherwise.
(13)

This scenario can also be regarded as round-robin scheduling algorithm, where SNOs randomly

gain access to the PNOs’ available spectrum, and the PNOs serve one SNO in each turn. The

resource allocation in algorithm 2 evolves in two main discrete steps:

• compute the spectrum demand in each cell rsi j , ∀i, j from equation (9)

• randomly obtain xi j k subject to equations (5) and (6) from the vector ai j k
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The only difference between the two formulations is that in the heuristic formulation, the cost

of spectrum access is not considered, where spectrum acquisition is performed randomly from

the set {ai j k }. Note that when
∑

ai j k ≤ rsi j the feasible set {xi j k } is equal for both formulations.

We also note that when
∑Ni j

k=1 ai j k (t) > rsi j (t), the optimal and heuristic algorithm may achieve

the same outcome in terms of total borrowing cost, however, this is a result of randomness in

the selection process with probability

P(selecting optimal bandwidths) =




1
N

ai j k ≥ rsi j,∀i j

1
���{āi j ..}

���

∑
m{āi j lm, ∀l,m} ≥ rsi j,∀i j

1
∑Ni j

k=1 ai j k ≤ rsi j,∀i j

(14)

where {āi j lm, ∀l,m} ⊂ {ai j k, ∀i j, k }, and ���{āi j ..}
��� is the number of subsets in the set {āi j ..} which

satisfy the bandwidth requirement for the ith cell with jth type of spectrum band.

Remark 1. In Problem 1, the objective function and all constraints are linear except for the

constraint (4). Once we calculate the required bandwidth for the ith cell using the non-linear

constraint (4) iteratively we then solve the optimization Problem 1 using Algorithm 1. With

the remaining of the constraints the optimization problem is solved by the well-known revised

simplex method. However, the computational complexity in Algorithm 1 is polynomial time,

i.e. O(n) time. The computational time increases linearly with number of cells and number of

PNOs. The heuristic counterpart, Algorithm 2, arbitrarily borrows bandwidths from the PNOs

until the target blocking probability of the SNO is achieved. Since the algorithm finds a solution

by performing a combinatorics satisfying a set of constraints, the computational complexity is

quadratic time, i.e. O(n2) with number of PNOs (N) and exponential time, i.e. 2n with number of

cells (L). Note that the Algorithm 2 does not guarantee the optimal solution and the probability

of finding an optimal solution by the heuristic algorithm is given in equation (14).

E. Expected profit maximization under restricted budget

In this section, we formulate the second spectrum allocation problem that illustrates how

much spectrum bandwidths to be borrowed from each PNO to keep the blocking probability in
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a specific level. Given a set of possible available spectrum resources {ai j k (t)}, their associated

prices {ci j k (t)} and expected profit {γi j k (t)}, the problem is to find the feasible set of spectrum

bandwidths {xi j k (t)} by maximising the total profit of the sth SNO, under allocated budget and

performing the selection process according to the highest possible profit combination. Resource

acquisition in this case is obtained by solving the following optimization problem:

Problem 2:

maximize


L∑
i=1

M∑
j=1

Nj∑
k=1

γi j k (t) · xi j k (t)


(15)

subject to
arg min
xi j k∀i, j,k

Pr
(
λsi j (t), µsi j (t), ωsi j

)
≤ psi j (t), ∀i j, k (16)

xi j k (t) ≤ ai j k (t),∀i j, k (17)
Ni j∑
k=1

xi j k (t) ≤ rsi j (t), ∀i j, k (18)

Nj∑
k=1

ci j k (t) · xi j k (t) ≤ bsi j, ∀s, i j, k, (19)

where γi j k (t) consists of two parts: the expected revenue vi j (t) and cost ci j k (t), which can be

obtained as

γi j k (t) = vi j k (t) − ci j k (t), (20)

Here
vi j k (t) = f

(
βi j (t), θi j k (t)

)
. (21)

where βi j (t) is the selling price per unit bandwidth for the ith cell and jth type service during

time period t. In equation (21), the expected revenue vi j k (t) is the function f (·) of the selling

price βi j k (t) and the intrinsic quality (θi j k (t)) which may take, in general, a non-linear form. In

the simplest case, the function can be defined as

vi j k (t) = βi j k (t)
[
−e−θi j k (t)]

. (22)

We consider the the intrinsic quality per unit bandwidth (θi j k (t)) for each PNO, which can vary,

i.e., θi j k (t) Q θi j l (t), ∀i j and ∀k, l with k , l according to spatial structure of the base stations,

allowed transmission power, bandwith types, etc. In this problem formulation, the parameter
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θi j k (t) influences the optimal spectrum borrowing decisions.

The revenue earned through the sale of the borrowed bandwidth can be equal, higher or lower

than the cost. However, for simplicity, we model the revenue vi j k (t) earned through the sale of

the borrowed bandwidth to exceed the borrowing cost, i.e., vi j k (t) > ci j k (t) due to the assumption

that profit of the sth SNO for borrowing a unit bandwidth is always positive (γi j k (t)).

The inequality constraint in equation (19) implies that the sth SNO maximizes its profit by

taking into account the limitations imposed by cost of the utility and the maximum allowable

expenditure which the sth SNO can spend for borrowing spectrum demand in each cell. Next,

we solve the the above non-linear optimization problem in two phases:

In the first phase, the same steps are performed using equation (16) as for solving Problem 1.

The sth SNO calculates the spectrum demand to meet its time varying target blocking probability

over time and location. The spectrum demand is adjusted dynamically based on the network

information provided by the expected cell demand, service rate and existing spectrum bandwidth.

In the second phase, we set up the vectors {ci j k (t)}, {ai j k (t)} and {γi j k (t)}. The borrowing

decisions of the sth SNO are made subject to achieving the maximum profit for each acquisition

from the PNOs. In Problem 1, the budget restriction is not considered, where the sth SNO is

allowed to make spectrum bandwidth borrowing until it meets the spectrum demand, i.e.,

Nj∑
k=1

xi j k (t) = rsi j (t), assuming
Nj∑

k=1

ai j k (t) ≥ rsi j (t). (23)

Algorithm 3: Optimal spectrum borrowing under restricted budget.
1 Calculate ri j ∀i, j which satisfies pi j , and get ci j k , ai j k , γi j k and θi j k (t) ∀i, j, k.
2 Set maximum allowed budget expenditure for every cell bi j .
3 for every time slot (t) do
4 for all cells i ← 1 : L do
5 for all PNOs k = 1 : N do
6 Solve the nonlinear stochastic Problem 2 s.t. (16), (17), (18) and (19).

7 return Total profit

However, in this formulation, the borrowing capacity of each SNO is restricted to budget

allocation bsi j . Note that in the case where an SNO’s budget is too small to provide the required
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GoS, then Problem 2 is infeasible. The SNOs only achieves a best effort service to minimize

the blocking probability so far as the budget permits.

Algorithm 4: Heuristic spectrum borrowing under restricted budget.
1 Calculate ri j ∀i, j which satisfies pi j , and get ci j k , ai j k , γi j k and θi j k (t) ∀i, j, k.
2 Set maximum allowed budget expenditure for every cell bi j .
3 for every time slot (t) do
4 for all cells i ← 1 : L do
5 Set xi j k ← {φ}, where {φ} is an empty set.
6 Set counter←

∑
k xi j k .

7 Choose a random integer n ∈ {1, 2, . . . , N }.
8 for all PNOs k = n : N and 1 : (n − 1) do
9 if (0 < ai j k ) ≤ (ri j - counter) & (ci j k ∗ ai j k ) ≤ bi j then

10 xi j k ← ai j k .
11 counter← counter +

∑
xi j k .

12 bi j ← bi j −
∑

(xi j k ∗ ci j k ).

13 else if (ai j k > 0) & ci j k ≤ (bi j − counter) & (ai j k ∗ ci j k ) ≥ bi j then

14 xi j k ←

⌊ bi j

ci j k

⌋
where bxc means the floor of x.

15 counter← counter +
∑

xi j k .
16 bi j ← bi j −

∑
xi j k . ∗ ci j k .

17 else if counter ≤ ri j & ai j k > 0 & ai j k ≥ (ri j − counter) & (ai j k ∗ ci j k ) ≤ bi j then
18 xi j k ← ri j − counter.
19 counter← counter +

∑
xi j k .

20 bi j ← bi j −
∑

xi j k . ∗ ci j k .
21 break
22 else if counter ≤ ri j & ai j k > 0 & ai j k ≥ (ri j − counter) & (ai j k ∗ ci j k ) ≥ bi j then

23 xi j k ← min
{⌊ bi j

ci j k

⌋}
.

24 counter← counter +
∑

xi j k .
25 bi j ← bi j −

∑
xi j k ∗ ci j k .

26 else
27 xi j k ← 0.

28 return Total profit

F. Spectrum allocation using heuristic algorithm under budget constraint

In this subsection, we solve the problem of spectrum allocation under budget constraint by

a heuristic bandwidth selection algorithm (Algorithm 4). The algorithm performs all the steps
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as in Algorithm 3. However, Algorithm 4 does not perform spectrum selection according to

the highest possible profit combination from the set {ai j k }, rather runs on randomly selected

combination from the set {ai j k } to satisfy the spectrum demand rsi j . The optimal profit using

Algorithm 4 can only be found from the set of capacity values {ai j k } satisfying the constraints

in equation (17), (18) and (19) with probability given in equation (14). To satisfy the constraints

in equation (17), (18) and (19) we use

xi j k (t) =




ai j k (t), rsi j (t) ≥ ai j k (t), bsi j ≥ ci j k,

rsi j (t), rsi j (t) < ai j k (t), bsi j ≥ ci j k,

0, bsi j < ci j k or rsi j (t) = 0.

(24)

Remark 2. Like Problem 1, in Problem 2 we have the non-linear constraint which is solved

iteratively and then the whole problem is solved by the revised simplex method. Therefore,

Algorithm 3 is polynomial time and the heuristic counterpart (Algorithm 4) is again quadratic

time/exponential time depending on number of cells and PNOs.

G. Post-optimization analysis under resource sharing between SNOs and PNOs

In the optimization problems above, the PNOs lease part of their spectrum resources to SNOs

for monetary benefits. The leasing and borrowing was based on fixed arrival rate and available

spectrum resources. However, the demand in the PNOs may be bursty during trading window

causing one or more of PNOs’ state to change from the underloaded to overloaded and their

blocking probability would increase. As a consequence, a PNO may react by deviating part or all

of its leased spectrum resources under mutual agreement, which results in reducing the size of the

shared spectrum resources. This dynamic mechanism affects the performance of all operators

involved in the trading. The complexity of the problem depends primarily on the number of

PNOs and SNOs involved and the level of interactions between them.

In this paper, we present an analytical methodology to model and analyze the above conse-

quences in cellular networks with multiple primary and secondary networks.
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Consider a cell consisting of S SNOs with capacity cs1, cs2, . . . , css and N PNOs with capacity

c1, c2, . . . , cN , respectively. Under a sharing agreement all N PNOs share part of their resources

c′1, c
′
2, . . . , c

′
N , respectively with S SNOs determined using the optimization approach discussed

in the previous sections. These resources may also be used by the corresponding PNO under

mutual agreement. A state of the network is a vector of length [S(1 + N ) + 2N )] defined as

n = {(ns1, ns2, . . . , nss ); ((ns11, ns12, . . . , ns1n), . . . , (nsS1, nsS2, . . . , nsSn));

(n1, n2, . . . , nN ); (n11, n22, . . . , nN N )}

with the condition that (ns1i, ns2i, . . . , nsS i) + nii ≤ c′i ∀ i = 1, 2, . . . , N , where nsi is the number

of channel requests in progress in the ith SNO; nsi j is the number of channel requests in the

shared resources of the ith PNO from the sith SNO; n j is the number of channel requests in

progress in the jth PNO and n j j is the number of request of the jth PNO on its own shared

resources. The states n are restricted due to resource sharing constraints. The set of feasible

states can be written as
Ωs = {n : An ≤ s} (25)

where A is a [S(1+ N ) + 2N )] matrix and s is a d-vector, where d is the number of constraints.

The network topology is reflected in the matrix A and the vector s.

Let channel requests arrive to the ith secondary and jth primary operators according to a non-

homogeneous Poisson process, with rates λsi (t) and λ j (t) at time t. These requests are admitted

if n + ei ∈ Ωs (if PNO) and n + e j ∈ Ωs (if SNO), where ei and e j is the ith unit vector with

1 in place i and 0 elsewhere. When all csi resources of the ith SNO is full then requests are

diverted and admitted to the jth PNO if n+ei j ∈ Ωs, where ei j is the ith unit vector. Similarly, in

the jth PNO being all c j resources occupied requests are diverted to its shared resources c′j for

the jth primary network if n + e j j ∈ Ωs, where e j j is the ith unit vector. Assume that admitted

requests in ith secondary and jth primary operators have exponential holding times with rates

µsi (t) and µ j (t) respectively at time t. Under these assumptions, the network can be modeled

as a non-homogeneous continuous time Markov chain

X(t) = (Xi (t), Xi j (t), X j j (t), X j (t); i = 1, 2, . . . , S, j = 1, 2, . . . , N, t ≥ 0) (26)

that records the number of channel requests in progress from all operators. The state space of



19

the Markov chain is specified in (25), and its transition rates Q(t) = (q(n, n′, t), n, n′ ∈ Ωs) are

given by

q(n, n′, t) =




λsi (t) n′ = n + ei or n′ = n + ei j, if nsi = csi, i = 1, 2, . . . , S

λ j (t) n′ = n + e j or n′ = n + e j j, if n j = c j, j = 1, 2, . . . , N

nsi µsi (t) n′ = n − ei, i = 1, 2, . . . , S

n j µ j (t) n′ = n − e j, j = 1, 2, . . . , N

nsi j µsi (t) n′ = n − ei j, i = 1, 2, . . . , S, j = 1, 2, . . . , N

n j j µ j (t) n′ = n − e j j, j = 1, 2, . . . , N

(27)

Theorem 1. The closed-form solution of n channel requests in progress at time t is given by

equation (28).

P(n, t) = K −1

[
ρ

(ns1+ns11+···+ns1N )
s1 (t)

]
· · ·

[
ρ

(nsS
+nsS1+···+nsS N )

sS (t)
]

(ns1 + ns11 + · · · + ns1 N )! · · · (ns1 + ns11 + · · · + ns1 N )!

·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]
· · ·

[
ρ(nN+nNN )

N (t)
]

(n1 + n11)! (n2 + n22)! · · · (nN + nN N )!
∀ n ∈ Ωs (28)

where ρsi = λsi/µsi and ρ j = λ j/µ j are traffic intensities of the sith SNO and jth PNO,

respectively and K is the normalizing constant and given by

K =
∑

n∈Ωs

[
ρ

(ns1+ns11+···+ns1N )
s1 (t)

]
· · ·

[
ρ

(nsS
+nsS1+···+nsS N )

sS (t)
]

(ns1 + ns11 + · · · + ns1 N )! · · · (ns1 + ns11 + · · · + ns1 N )!

·

[
ρ(n1+n11)

1 (t)
]
·

[
ρ(n2+n22)

2 (t)
]
· · ·

[
ρ(nN+nNN )

N (t)
]

(n1 + n11)! (n2 + n22)! · · · (nN + nN N )!
∀ n ∈ Ωs . (29)

Proof. Define the state probabilities

P(n, t) := Pr (X (t) = n), n ∈ Ωs, t ≥ 0 (30)

with initial condition P0(n) = Pr (X (0) = n). Since the network has a finite state space, these

probabilities are the unique solution of the Kolmogorov forward equations given in (31) for

n ∈ Ωs, t > 0.
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The Kolmogorov forward equations can be defined as

dP(n, t)
dt

=

[ S∑
i=1

λsi (t) ·
(
1(nsi < csi ) + 1(nsi = csi ∩ n + ei j )

)
+

N∑
j=1

λ j (t) ·
(
1(n j < c j )

+ 1(n j = c j ∩ n − e j j )
)]
· P ((n − ei), t) +

S∑
i=1

(nsi + 1)µsi (t)P ((n + ei), t)

+

N∑
j=1

(n j + 1)µ j (t) · P((n + e j ), t) −
[ S∑

i=1

λsi (t) ·
(
1(nsi < csi ) + 1(nsi = csi ∩ n + ei j )

)
+

N∑
j=1

λ j (t) ·
(
1(n j < c j ) + 1(n j = c j ∩ n − e j j ) +

S∑
i=1

nsi µsi (t) +
N∑

j=1

n j µ j (t)
)]

P (n, t)

(31)

where 1(A) is the indicator function for an event A.

Equations in (31) can be written in the operator form as given by

dP(t)
dt
= P(t) Q(t), P(0) = P0, t > 0 (32)

where P(t) is the vector of probabilities P(n, t). The formal solution of the equation (32) is

given by

P(t) = P0 EQ (t), t ≥ 0 (33)

where EQ (t) is the time-ordered exponential of the generator Q(t), that is the unique operator

solution to the equation
dEQ (t)

dt
= EQ (0) Q(t), t ≥ 0 (34)

where EQ (0) = I, the identity operator. The unique solution of the Kolmogorov forward equations

(31) is then given by the equation (28). �

The blocking probability formula can then be derived from the closed-form solution (28). The

blocking probability for an operator i (ith operator could be an SNO or a PNO), is then given

by

Pb(t) =
∑
n∈S

P(n, t) (35)
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=

∑
n∈S

[
ρ

(ns1+ns11+· · ·+ns1N
)

s1 (t)
]
···

[
ρ

(nsS +nsS1+· · ·+nsS N )
sS

(t)
]
·

[
ρ

(n1+n11)
1 (t)

]
···

[
ρ

(nN +nNN )
N (t)

]

(ns1+ns11+···+ns1N )! ··· (ns1+ns11+···+ns1N )!(n1+n11)! ··· (nN+nNN )!

∑
n∈Ωs

[
ρ

(ns1+ns11+· · ·+ns1N
)

s1 (t)
]
···

[
ρ

(nsS +nsS1+· · ·+nsS N )
sS

(t)
]
·

[
ρ

(n1+n11)
1 (t)

]
···

[
ρ

(nN +nNN )
N (t)

]

(ns1+ns11+···+ns1N )! ··· (ns1+ns11+···+ns1N )!(n1+n11)! ··· (nN+nNN )!

(36)

where the set S is the restricted state space, and varies for the SNOs and PNOs. For the sth

SNO, it is defined as

Si =
{
n ∈ Ωs | (nsi = csi∩nsi1+n11 = c′1∩nsi2+n22 = c′2∩· · ·∩nsi N+nN N = c′N )

}
, i = 1, 2, . . . , S.

(37)

and for the jth PNO, Si can be replaced by Sj and defined as

Si =
{
n ∈ Ωs | (nsi = csi ∩ nsi j + n j j = c′i )

}
, j = 1, 2, . . . , N . (38)

IV. RESULTS AND ANALYSIS

In this section, we show the analysis of optimal borrowing solutions by Algorithms 1 and 3

corresponding to the cost minimization and profit maximization with restricted budget scenarios,

respectively. To explore the advantages of the proposed formulations, we compare the results

from Algorithm 1 and 3 with a heuristic spectrum selection formulation by Algorithm 2 and 4,

respectively. We simulate the functionalities of the network management, which are necessary to

generate the optimal solution and to compare with the heuristic spectrum selection algorithms.

We consider one SNO and four PNOs (N = 4) to simulate the dynamics of the merchant mode

resource sharing mechanism. Some parameters are determined randomly by the algorithms with

specific distribution (e.g., λi, µi, wi) while other parameters are preset (e.g., L, pi j ).

TABLE I: Simulation parameters.

Parameter L M N pi j λi j µi j wi j ci j k ai j k bi j

Values for problem 1 100 1 4 0.01 10 1 1 (3, 9) (5, 10) −−

Values for problem 2 100 1 4 0.01 (40, 120) (1, 5) (1, 5) (10, 13) (30, 40) 50
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A. Cost analysis under target performance (Problem 1)

In the simulation, we consider the PNOs spectral usage for all cells L, where four base stations

of primary network operators in each cell are deployed (collocated topology), e.g., the case in

densely populated cities. The demand of service for each provider (primary or secondary) vary

over time and location. We assume the spectral utilisation of secondary provider at time interval

t is high whereas the PNOs are underloaded in the same time interval and at the same location.

(a) (b)

Fig. 2: Cost with optimal and heuristic algorithms for (a) per cell and (b) for varying number
of cells.

The PNOs charge the SNO at variable rates. The charges may be assessed by the market on

the basis of the current supply-demand balance for each individual operator at each cell and

possibly other factors [12]. However, we set limits to the price of unit bandwidth as maximum

X(max) and minimum price X(min) to structure the problem space. For the purpose of analysis, we

parametrise the borrowing cost as ci j k (t) =
{
ci j k (t) | X(min) ≤ ci j k (t) ≤ X(max)

}
, where ci j k (t)

follows a uniform distribution from [X(min) = 3, X(max) = 9]. We keep the difference between

X(max) and X(min) relatively small at all cells. This assumption captures the highly competitive

nature of the market economic environment. We determine the admission cost per unit bandwidth

based on a discrete uniform random variables. In our mathematical model all possible variations

of the available bandwidth values ai j k (t) to provide the SNO demand are considered. This

assumption provides realistic scenarios where PNOs could have different values of leasable

spectrum resources. More details about the simulation parameters are given in Table I.

At time t and in each cell i, the SNO has a particular blocking probability target pi j . By
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considering the SNO’s expected traffic load λi j in the next time interval, the available capacity

wi j and service rate µi j , each cell determines its required number of channels ri j (t).

For comparisons, we simulate the interactions between the network providers and we solve the

resource allocation problem by the optimal and the heuristic allocation as described in Algorithms

1 and 2, respectively. For the simulation of the heuristic allocation, each cell i makes heuristic

selection of aggregated channels for dynamic access from the set {ai j k } which are collocated in

the same cell. The selection of aggregated channels is performed regardless of the admission

cost associated with the choice of selected channels. Algorithm 2 is allowed to perform spectrum

borrowing until the demand is satisfied, assuming
∑Ni j

k=1 ai j k (t) ≥ ri j (t). If
∑Ni j

k=1 ai j k (t) < ri j (t)

then the algorithm takes all available bandwidths, however, the target blocking probability will

not be satisfied, such that, P(bnew) (t) < pi j (t).

For the Algorithm 1, the cells of SNO select the combination {xi j k } with the lowest admission

cost from the set {ai j k (t)}, ∀k, i, to achieve the optimal channel borrowing admission costs. It

is possible that there may be multiple solutions for the allocation problem which provide the

same required bandwidth to the SNO with different costs.

The main observation here is that the optimal model achieves lower costs compared to the

heuristic algorithm, except for cells with
∑Ni j

k=1 ai j k (t) < ri j (t), see Figure 2a. It is also observed

that the total borrowing cost of both the heuristic and optimal configuration vary in every cell

due to the stochastic nature of the costs and number of available channels.

If we consider the admission cost for large number of cells, as we can see from Figure 2b,

we notice that as the number of cells increase, the difference in cost between the heuristic and

the optimal selection algorithm becomes larger, which implies substantial savings for operators

with large territories when the optimal algorithm is used.

We also investigate the effect of target blocking probability on the admission cost. In Figure

3 we show the results for different target blocking probabilities ranging from 0−0.9 for a single

cell. We clearly see that as pi j → 0, the admission cost increases for both algorithms. However,

the optimal algorithm (Algorithm 1) provides lower borrowing cost for most of the points.

The total number of aggregated channels which are acquired through borrowing by using

Algorithms 1 and 2 is equal, see Figure 4. This is because both algorithms allow channels to

be acquired until a certain GoS is reached or until all channels from the available bandwidths
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Fig. 3: Effect of varying target blocking
probability on cost for optimal and heuristic
algorithms.

Fig. 4: Effect of borrowing on bandwidth
acquisition for the optimal and heuristic al-
gorithms.

of PNOs {ai j k } are consumed.

B. Expected profit analysis under budget constraints (Problem 2)

The objective of the secondary providers can be described from both economic and system

performance perspective. Firstly, the SNO aims to lower the blocking probability for its sub-

scribers. Secondly, the SNO attempts to maximize its profit by leasing additional spectrum from

the PNOs in terms of cost and intrinsic quality. However, since network operators often operate

with limited budget, SNO can only spend bi j (t) amount of resources/money at a cell i and time

interval t. This is imposed by the government and regulatory bodies to keep the fairness of

spectrum leasing among network operators.

To demonstrate the gain of Algorithm 3, detailed investigation has been made and the results

are compared with Algorithm 4. Figure 5a shows the optimal algorithm can achieve substantial

gain in comparison to the heuristic allocation approach. However, both algorithms provide

acceptable efficiency in terms of GoS. We also notice that as the number of cells increase

the profit of the SNO gets larger, see Figure 5b.

Figure 6 shows the effect of budget and target blocking probability on achievable profit with

varying budget expenditure between 0 − 250 and target blocking probability between 0 and 0.8

for a single cell. It is clear that as we increase the budget further bi j → 250, the profit increases

with respect to the increase of budget and demand. However, as the budget reaches a certain

value, the profit does not increase because the budget is larger than required.
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(a) (b)

Fig. 5: Profit using the optimal and heuristic algorithms for (a) per cell and (b) for varying
number of cells.

Fig. 6: Expected profit of the SNO for spec-
trum borrowing with target blocking proba-
bility = 0 to 0.8 and budget = 0 to 250.

Fig. 7: Bandwidth acquisition of the SNO
for spectrum borrowing by the optimal and
heuristic algorithms.

We also study how the optimal allocation based on profit maximisation affects the amount of

acquired bandwidths. With number of cells between 1 and 100, we compare the two algorithms

presented to solve Problem 2, see Figure 7. We find that, the optimal algorithm can achieve

higher number of aggregated channels due to the higher efficiency in spectrum borrowing under

the restricted budget.

In the proposed algorithms, we added a functionality to allow the trading to be managed more

effectively by assigning each cell with a particular band type. In order to quantify the impact

of the proposed algorithms we simulated a network which could support three different bands,

(M = 3). We also tested the algorithms with two different budgets. In the simulation of 10 cells
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and allocated budget of 50 and 500 for each cell, we observed a markedly increased profit in

both cases, see Figure 8. We can also see from the figures (top and bottom figures) that in all

types of bands, the optimal algorithm outperforms its heuristic counterpart.

Fig. 8: Effect of spectrum borrowing on profit with budget = 50 (top) and budget= 500 (bottom).

C. Post-optimization performance of the operators

To analyze the impact of unilateral deviation strategy of the PNOs, we used the closed form

formulae presented in Section III-G to compute the blocking probability of operators. The arrival

processes involved in all operators are non-homogenous Poisson with rates λs1, λs2, λ1, λ2, and

λ3, respectively. The offered loads are λs/µs and λi/µi for the sth secondary and ith PNO,

respectively. The number of aggregated channels and traffic intensities in each operator are

independent as shown in table II. The results show that the operators could obtain an actual

blocking probability values to determine their benefits when they engage in spectrum trading.

In Figure 9a, we observe the performance of the PNOs and the SNOs by varying the traffic

load at the PNOs (from 1 to 5). If we fix a particular value of traffic intensity at the SNOs

(ρs1 = 1 and ρs2 = 5) and change it for the PNOs, then the SNOs’ blocking probability slightly

increase due to the available capacity for sharing (c′1, c′2 and c′3) become overloaded by the

PNOs’ own traffic. We notice that the severity of traffic intensity change in the PNOs affects

the performance of the SNO.

In Figure 9b, we analyse the impact of change in state of the PNOs from overloaded to

underloaded. As the shared capacity becomes ample to meet the SNOs’ demand, we notice

a significant reduction in blocking probability at the SNOs. We also notice that the blocking
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TABLE II: Configurations used in Figure 9a and 9b.

Number of channels Load (ρ)
SNO 1 SNO 2 PNO 1 PNO 2 PNO 3 SNO 1 SNO 2 PNO 1 PNO 2 PNO 3

cs1 cs1 c1 c′1 c2 c′2 c3 c′3 ρs1 ρs2 ρ1 ρ2 ρ3

Figure 9a 2 2 5 2 5 2 5 2 1 5 (5, 1) (7, 1) (8, 1)
Figure 9b 3 2 (7, 1) (6, 1) 4 1 (7, 1) (6, 1) (5, 10) (5, 10) (5, 0) 2 (6, 1)

(a) (b)

Fig. 9: Blocking probability for each operator when configuration details of (a) and (b) are
according to Table II.

probability of PNO 2 is not affected by the changes in state of other primary and secondary

operators since its shared capacity and traffic load remains constant for the duration. The results

demonstrate that the derived blocking probabilities can provide a crucial insight to the sharing

strategies between operators.

V. CONCLUSION

In this paper, we presented two finite horizon nonlinear optimization algorithms to solve two

optimization problems for dynamic spectrum sharing. The efficiency of the proposed algorithms is

compared with their corresponding heuristic algorithms. We also presented the post-optimization

performance analysis of the SNO and PNOs through blocking probability, which provides useful

details about spectrum sharing strategy.

The optimization problems investigated by considering a comprehensive process of delivering

the SNO’s bandwidth demand and the solution algorithms ensured that either minimum cost of

bandwidth borrowing or maximum profit under budget restrictions are achieved depending on

the aim of the SNO. In both cases the SNO aims to achieve a target performance by borrowing
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spectrum from PNOs on temporal and spatial basis. Detailed comparisons are presented and they

showed that the gain in the results obtained from our proposed stochastic-optimization framework

is markedly higher than heuristic borrowing algorithms. Our proposed approaches facilitate a

dynamic purchasing (also called automation of licensing) scheme for such complex problems,

which provide incentives to the network operators wishing to adopt dynamic spectrum sharing

as well as substantial benefits for efficient use of spectrum. The proposed algorithms showed

significant opportunities to increase spectrum utilisation while keeping GoS at a particular level

and ensuring minimum cost. We also shown that our proposed optimization solution not only

reduce the total borrowing cost of the SNOs, but also finds maximum spectrum access under

any allocated budget.

A major challenge with the spectrum sharing optimization models is to guarantee the oper-

ational GoS under different sharing protocols. Although a vast amount of literature addressed

various spectrum sharing issues very little has discussed the post-optimization results which are

crucial for the operators to gain the detailed insight and final GoS. To study these issues and

provide the final GoS, we derived the blocking probability behavior using a time-dependent

continuous time Markov chain framework. Results showed that the final GoS is largely affected

by the increase of traffic at the PNOs and the amount of shared resources. This post-optimization

analysis of spectrum sharing among the operators is an emerging topic that requires further re-

search that would cover other issues, for instance, different sharing strategies and configurations.
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